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Abstract

The performance of deep neural models can

deteriorate substantially when there is a do-

main shift between training and test data. For

example, the pre-trained BERT model can be

easily fine-tuned with just one additional out-

put layer to create a state-of-the-art model for

a wide range of tasks. However, the fine-tuned

BERT model suffers considerably at zero-shot

when applied to a different domain. In this

paper, we present a novel two-step domain

adaptation framework based on curriculum

learning and domain-discriminative data selec-

tion. The domain adaptation is conducted in a

mostly unsupervised manner using a small tar-

get domain validation set for hyper-parameter

tuning. We tested the framework on four

large public datasets with different domain

similarities and task types. Our framework

outperforms a popular discrepancy-based do-

main adaptation method on most transfer tasks

while consuming only a fraction of the training

budget.

1 Introduction

Modern deep NLP models with millions of param-

eters are powerful learners in that they can eas-

ily adapt to a new learning task and dataset when

enough supervision is given. However, they are

also very fragile when deployed in the wild since

the data distribution and sometimes even the task

type can be very different between the training

and inference time. Domain adaptation (Csurka,

2017), a prominent approach to mitigate this prob-

lem, aims to leverage labeled data in one or more

related source domains to learn a classifier for un-

seen or unlabeled data in a target domain.

Fine-tuning deep neural networks (Chu et al.,

2016) is a popular supervised approach for domain

adaptation in which a base network is trained with

the source data, and then the first n layers of the

base network are fixed while the target domain la-

beled data is used to fine-tune the last few layers

of the network. However, this approach requires a

significant amount of labeled data from the target

domain to be successful.

While classical methods such as instance re-

weighting and feature transformation (Pan and

Yang, 2010) are among the most popular and ef-

fective early solutions of domain adaptation for

classical machine learning algorithms, deep learn-

ing architectures specifically designed for do-

main adaptation is more promising for deep do-

main adaptation. The major idea in unsuper-

vised domain adaptation is to learn a domain

invariant representation (Wang and Deng, 2018)

leveraging both labeled data from the source do-

mains and unlabeled data from the target do-

main. Various methods and architectures have

been proposed which often fall into discrepancy-

based or adversarial-based domain adaptation cat-

egories. In discrepancy-based methods, domain

discrepancy based on maximum mean discrep-

ancy (MMD) (Smola et al., 2006) or Wasser-

stein Distance (Shen et al., 2017) defined be-

tween corresponding activation layers of the two

streams of the Siamese architecture is often used

as a regularization term to enforce the learning

of domain non-discriminative representations. In

adversarial-based approaches, which can be either

generative or non-generative, the aim is to encour-

age domain confusion through an adversarial ob-

jective. In the generative approach, a Generative

Adversarial Network (GAN) is used to generate

synthetic target data to pair with synthetic source

data to share label information (Liu and Tuzel,

2016). Inspired by GAN, in the non-generative ap-

proach, a domain confusion loss produced by the

domain discriminator helps to learn the domain-

invariant representations. For example, Ganin

et al. implemented a domain-adversarial net-
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work in which unsupervised domain adaptation

is achieved by adding a domain classifier. The

domain classifier is trained via a gradient rever-

sal layer that multiplies the gradient by a certain

negative constant during the backpropagation. As

the training progresses, the approach promotes the

emergence of a representation that is discrimina-

tive for the main learning task and indiscriminate

with respect to the shift between the domains.

However, such type of models are usually hard

to train since the optimization problem involves a

minimization with respect to some parameters, as

well as a maximization with respect to the others.

Very early approaches in NLP utilized instance

re-weighting (Jiang and Zhai, 2007) and target

data co-training (Chen et al., 2011) to achieve

domain adaptation. Recently, Denoising Auto-

encoders (Glorot et al., 2011), domain discrep-

ancy regularization and domain adversarial train-

ing (Shah et al., 2019; Shen et al., 2017) have

been employed to learn a domain invariant repre-

sentation for neural network models. Many do-

main adaptation studies have focused on tasks

such as sentiment analysis (Glorot et al., 2011;

Shen et al., 2017) , Part-Of-Speech (POS) tagging

(Ruder et al., 2017a) and paraphrase detection

(Shah et al., 2019), and tested on neural network

models such as multilayer perceptron (MLP) and

Long Short-term Memory (LSTM). In terms of

multiple source domain adaptation, while some of

the methods of single-source adaptation can be di-

rectly extended to the multiple sources case, mod-

els that specially designed for multiple sources do-

main adaptation such as the mixture of experts and

knowledge adaptation (teacher-student network)

(Ruder et al., 2017b) are more effective.

BERT model (Devlin et al., 2018) is one of the

latest models that leverage heavily on language

model pre-training. It has achieved state-of-the-

art performance in many natural language under-

standing tasks ranging from sequence classifica-

tion and sequence-pair classification to question

answering. Although pre-trained BERT can be

easily fine-tuned with just one additional output

layer on a supervised dataset, sometimes the zero-

shot transfer of the fine-tuned model from a source

domain is necessary due to the very limited la-

beled data in the target domain. The performance

of the fine-tuned BERT can deteriorate substan-

tially if there is a domain shift between the fine-

tuning and the test data (see section 4.3). Due

to the complex attention mechanisms and large

parameter size, it is hard to train BERT for do-

main adaptation using the domain-adversarial ap-

proach. Our initial experiments demonstrated the

unsteadiness of this approach when applied to

BERT. Unsupervised language model (LM) fine-

tuning method (Howard and Ruder, 2018) consist-

ing of general-domain LM pre-training and target

task LM fine-tuning is effective using a AWD-

LSTM language model on many text classifica-

tion tasks such as sentimental analysis, question

classification and topic classification. However,

due to the unique objective of BERT language

model pre-training (masked LM and next sentence

prediction) which requires multi-sentences natural

language paragraphs, unsupervised fine-tuning of

BERT LM does not apply to many sentence-pair

classification datasets.

In this work, we propose a novel domain adap-

tation framework, in which the idea of domain-

adversarial training is effectively executed in two

separate steps. In the first step, a BERT-based

domain classifier is trained on data from differ-

ent domains with domain labels. In the second

step, a small subset of source domain data is se-

lected based on the domain classifier for fine-

tuning BERT. The order of presentation of the se-

lected source domain data to the model learner

(training curriculum) also plays an important role

and is determined by the point-wise domain prob-

ability. We demonstrate the effectiveness of our

framework by comparing it against an MMD-

based domain adaptation method and a naive zero-

shot baseline. Our method achieved the best per-

formance on most transfer tasks while only con-

suming a portion of the training budget.

2 Related Work

Our method is inspired by the work on curricu-

lum learning and recent work on data selection for

transfer learning.

Curriculum Learning: Curriculum Learning

(Bengio et al., 2009) deals with the question of

how to use prior knowledge about the difficulty of

the training examples, to boost the rate of learn-

ing and the performance of the final model. The

ranking or weighting of the training examples is

used to guide the order of presentation of exam-

ples to the learner. The idea is to build a cur-

riculum of progressively harder samples in order

to significantly accelerate a neural network’s train-
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ing. While curriculum learning can leverage label

information (loss of the model, training progress)

(Weinshall and Amir, 2018) to guide data selec-

tion, this work assumes no or few labeled data in

the new domain.

Data Selection: Not all the data points from the

source domain are equally important for target do-

main transfer. Irrelevant source data points only

add noise and overfit the training model. Recent

work from Ruder and Plank, applied Bayesian op-

timization to learn a scoring function to rank the

source data points. Data selection method was also

used by Tsvetkov et al. to learn the curriculum for

task-specific word representation learning, and by

Axelrod et al.; Duh et al. for machine translation

using a neural language model.

3 Approach

In this section, we propose a domain adaptation

framework based on domain-discriminative data

selection. Specifically, instead of training a deep

neural network model in a domain-adversarial

way, we effectively execute the idea in two sepa-

rate steps. In the first step, we train a domain clas-

sifier with the same model architecture on the data

from different domains with domain labels. In the

second step, we select a subset of source domain

data based on the domain probability from the do-

main classifier, and train the original model on the

selected source data. We further design the train-

ing curriculum by presenting first the data points

that are most similar to the target domain as ranked

by the domain probability. Compared with the in-

tegrated training of domain classifier and task clas-

sifier based on batch-wise input of source and tar-

get data, the advantage of our two-step approach is

that all the source data can be ranked at the same

time and only the source data that are most sim-

ilar to the target domain are selected for training

the task classifier. We apply this framework to the

domain adaptation of the fine-tuned BERT model.

BERT Domain Classifier BERT representa-

tions are very discriminative of texts from differ-

ent domains due to the extensive language model

pre-training. A t-SNE plot of BERT embeddings

is presented at Figure 3, on which the data points

from different domains are grouped into well-

separated regions. In order to effectively select

source data that is most similar to the target do-

main distribution, we train a BERT-based domain

classifier on mixed data points with domain labels.

The probability score from the domain classifier

quantifies the domain similarity.

Learning Curriculum As demonstrated in

many curriculum learning papers, the order of

training data presented to the learning algorithm

plays an important role in convergence rate and fi-

nal model performance. The idea is to build a cur-

riculum of progressively harder samples so that a

neural network can learn from easy samples first

and gradually adjust its parameters. As part of the

proposed domain adaptation framework, we pro-

pose a learning curriculum based on the domain

probability from the domain classifier. In the con-

text of domain adaptation, an “easy” source sam-

ple is a sample very similar to the target domain

data, while a “hard” sample is a sample very dif-

ferent from the target domain data.

Domain Regularization Method We compare

our framework with a popular domain adapta-

tion method: MMD-based domain regularization.

Specifically, we enforce domain regularization

by minimizing the maximum mean discrepancy

(MMD) in the BERT latent space between the

source and target domains. Formally, the squared

MMD between the probability distributions P and

Q in the reproducing kernel Hilbert space Hk

(RKHS) with kernel k is defined as:

d2k(P,Q) := ‖EP [x]−EQ[x]‖
2
Hk

With that, we have the following domain regular-

ized training objective for the BERT model:

min
θ

1

S
Σ(xi,yi)∈S L (xi, yi; θ) + λ · d2k(Ds, Dt; θ)

where S is the collection of labeled source domain

data, and λ is the regularization parameter. We

choose rational quadratic kernel of the form:

k(x, x′) = σ2(1 +
(x− x′)2

2al2
)
−α

as the characteristic kernel in the experiment. The

lengthscale l determines the length of the “wig-

gles” in the function. The parameter α determines

the relative weighting of large-scale and small-

scale variations.

4 Experiment

In this section, we conduct both qualitative and

quantitative studies of the proposed method, and

compare its performance against the MMD-based

domain regularization method and naive zero-shot
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transfer from the source domain. In the experi-

ments, in order to determine the optimal number

of data points selected from the source domain,

we set aside a small target domain dataset for val-

idation. Starting from only a hundred examples,

we double the training data size every time we ob-

serve a significant change in transfer performance

evaluated on the validation set.

4.1 Datasets

We tested our framework on four large public

datasets across three task categories: natural lan-

guage inference (SNLI and MNLI), answer sen-

tence selection (QNLI) and paraphrase detection

(Quora). Large datasets usually have a much

smaller variance in evaluation metrics compared

with smaller datasets. We used the pre-processed

datasets from GLUE natural language understand-

ing benchmark (Wang et al., 2018). A summary of

the dataset statistics and the details of the experi-

ment setup are presented in Table 1.

Task Category Dataset Train Size Dev Size

Natural Language Inference SNLI 510,711 9,831

Natural Language Inference MNLI 392,702 9,815

Answer Sentence Selection QNLI 108,436 5,732

Paraphrase Detection Quora 363,847 40,430

Table 1: Summary of the datasets

SNLI The Stanford Natural Language Inference

(SNLI) Corpus (Bowman et al., 2015) is a collec-

tion of 570k human-written English sentence pairs

supporting the task of natural language inference.

Given a premise sentence and a hypothesis sen-

tence, the task is to predict whether the premise

entails the hypothesis (entailment), contradicts the

hypothesis (contradiction), or neither (neutral). In

order to make the label set the same across all the

datasets, we convert the original three-label clas-

sification task into a binary classification task with

“entailment” as the positive label, and “contradic-

tion” and “neutral” as negative.

MNLI The Multi-Genre Natural Language In-

ference (MNLI) corpus (Williams et al., 2017)

is a crowd-sourced collection of 433k sentence

pairs annotated with textual entailment informa-

tion. The corpus is modeled on the SNLI cor-

pus but differs in that it covers a range of gen-

res including transcribed speech, fiction, and gov-

ernment reports, and supports a distinctive cross-

genre generalization evaluation. We used the

training data from GLUE but evaluate only on the

matched (in-domain) section. Similar as in SNLI,

we convert the three-label classification task into a

binary classification task.

QNLI The Question-answering Natural Lan-

guage Inference (QNLI) is a dataset converted

from the Stanford Question Answering Dataset

(SQuAD) (Rajpurkar et al., 2016). Although its

name contains “natural language inference”, the

text domain and task type of QNLI are funda-

mentally different from those of SNLI and MNLI.

The original SQuAD dataset consists of question-

paragraph pairs, where one of the sentences in

the paragraph (drawn from Wikipedia) contains

the answer to the corresponding question (written

by an annotator). GLUE converts the task into

sentence pair classification by forming a pair be-

tween each question and each sentence in the cor-

responding context and filtering out pairs with low

lexical overlap between the question and the con-

text sentence. The task is to determine whether the

context sentence contains the correct answer to the

question.

QQP The Quora Question Pairs (QQP) dataset

is a collection of question pairs from the com-

munity question-answering website Quora (Wang

et al., 2017). The task is to determine whether a

pair of questions are semantically equivalent. One

source of negative examples are pairs of “related

questions” which, although pertaining to similar

topics, are not truly semantically equivalent. Due

to community nature, the ground-truth labels con-

tain some amount of noise.

4.2 Experiment Setup

BERT Domain Classifier The setup for training

the BERT domain classifier is shown in Figure

1. Basically, the setup is similar to that for fine-

tuning BERT on sequence-pair classification task

(since we test our method on sequence-pair clas-

sification tasks). We take the hidden state of the

[CLS] token of the input sequence pair, and feed it

into a two-layer feedforward neural network with

hidden units of 100 and 10 in each layer and ReLU

as the activation function. The label for each data

point is the domain that the data point belongs to.

MMD-based Domain Regularization The

goal of domain regularization is to train the BERT

model on the source domain but learn domain-

invariant latent representations. The computation

pipeline of training BERT model using MMD-

based domain regularization is presented in Fig-
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Figure 1: Setup for training a BERT domain classifier.

Picture adapted from (Devlin et al., 2018)

ure 2. Basically, we feed both labeled source do-

main data and unlabelled target domain data to the

model, a classification loss is calculated based on

source labels and model prediction, and an MMD

domain loss is calculated from the BERT represen-

tations of source domain data and target domain

data. We combine the two losses as the training

objective. It is straightforward to optimize this ob-

jective using stochastic gradient methods.

Figure 2: Setup for BERT domain adaptation with

MMD-based domain regularization.

Experiment Details The experiments were

conducted in three phases. In the first phase, a

BERT-based domain classifier is trained to distin-

guish samples from a pair of datasets. In the sec-

ond phase, all source domain training samples are

ranked based on the output from the BERT domain

classifier, and a subset of data points is selected

from the source domain training set. The selected

subset of source data and their ground truth labels

are then used to fine-tune a BERT model in the

final phase.

We train one binary domain classifier for each

pair of source-target datasets. For each dataset,

5, 000 data points were randomly selected to make

up the training set, and another 1, 000 data points

were sampled as the test set. We train the BERT

domain classifier for a fixed step of 100, using a

small learning rate of 2e− 6 and batch size of 64.

Due to the domain discriminative nature of pre-

trained BERT representations, the BERT domain

classifier can easily achieve an accuracy > 99%
domain classification performance on the holdout

test dataset.

The trained domain classifier is then used to

predict the target domain probability for each data

point from the source domain. Source data points

with the highest target domain probability are se-

lected for fine-tuning BERT for domain adapta-

tion. For each target domain, we set aside a small

validation set ( 1 percent of the target training set)

for tuning the hyper-parameters such as batch size.

We incrementally increase the size of the selected

source data. For each batch size and number of se-

lected source data combination, we fine-tuned the

BERT model for 10 epochs, and record the best

performance for each configuration.

4.3 Results

BERT Representations The fact that pre-trained

BERT can be easily fine-tuned with just one addi-

tional output layer to create state-of-the-art mod-

els for a wide range of tasks suggests that BERT

representations are potential universal text em-

beddings. In order to visualize BERT represen-

tations, we randomly select 5, 000 training sam-

ples from each dataset and extract the BERT em-

beddings of them. Figure 3 presents the t-SNE

plot of the BERT representations. As we can see

from the figure, data points from different datasets

are grouped into well-separated regions. This

shows that BERT is extremely effective at map-

ping text from different domains to different loca-

tions within its representation space.

Transfer Performance The transfer perfor-

mance of different methods is presented in Ta-

ble 2. As the first baseline, we evaluate the per-

formance of naive zero-shot transfer of fine-tuned

BERT models. The results are presented in the

column “NZS”. Each fine-tuned BERT model is

trained to convergence using all the source domain

data, and zero-shot transferred to the target do-
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Figure 3: t-SNE plot of [CLS] token activations from

the second-to-last encoder of BERT for four datasets in

this paper. Second-to-last layer is used since the last

layer embeddings may be biased to the target of BERT

pre-training tasks.

main. While in-domain fine-tuned BERT models

usually achieve state-of-the-art performance, their

zero-shot performance on the target domain can

be significantly degraded. For transfers between

dissimilar domains such as SNLI to QNLI, naive

zero-shot can lead to more than 40% loss in ac-

curacy compared with in-domain supervised train-

ing. By learning a domain invariant representa-

tion, the MMD-based domain adaptation method

(column “MMD”) significantly outperforms the

naive zero-shot baseline in almost all the transfer

tasks. However, our discriminative data selection

method (column “DDS”) achieves the best trans-

fer performance in 10 out of the 12 pairwise trans-

fer tasks while training on only a small fraction of

source domain data (column “% Data”). The rela-

tive improvement is as large as 18% over the naive

zero-shot and 3.3% over the MMD-based domain

regularization. Even though we doubled the train-

ing data size every time we observe an increase in

transfer performance, the cumulative training time

is still much smaller than fine-tuning on the whole

source dataset. Compared with the batch-wise

iterative adaptation or regularization techniques,

our method ranks all the source domain data at the

same time, and the learner is trained on the most

target-domain-similar data first. This difference is

critical since early stage updates usually play an

important role in the final model performance.

The Effect of Learning Curriculum In order

to evaluate the effectiveness of our learning cur-

Source Target IFT NZS MMD DDS % Data

MNLI QNLI 85.3 49.8 58.0 58.5 0.1 %

MNLI Quora 89.3 73.7 71.5 73.9 26.1 %

MNLI SNLI 92.9 87.4 87.6 88.3 26.1 %

QNLI MNLI 88.3 63.7 66.0 67.2 0.4 %

QNLI Quora 89.3 61.8 66.1 67.6 1.5 %

QNLI SNLI 92.9 56.1 65.3 66.6 0.4 %

Quora MNLI 88.3 71.0 70.6 83.6 3.5 %

Quora QNLI 85.3 50.8 58.8 59.1 1.8 %

Quora SNLI 92.9 69.1 72.4 71.6 1.8 %

SNLI MNLI 88.3 77.0 82.2 80.2 5.0 %

SNLI QNLI 85.3 49.0 54.9 56.7 0.1 %

SNLI Quora 89.3 67.0 70.8 70.9 1.3 %

Table 2: Transfer performance (accuracy) of different

domain adaptation methods. “IFT”: in-domain fine-

tuning. “NZS”: naive zero-shot. “MMD”: MMD-based

domain regularization. “DDS”: discriminative data se-

lection. “% Data”: percentage of source domain data

selected in DDS method.

riculum, we designed experiments to compare the

learning curves of five learning curricula. The five

learning curricula are described as the following:

“Most Similar”: is the curriculum adopted in this

paper, in which all the source training samples

are ranked based on the target domain probabil-

ity. A subset of source data is selected and pre-

sented to the model learner according to the cur-

riculum that the samples with the highest target

domain probability are trained first. “Most Dis-

similar”: the curriculum ranks the source data re-

versely according to the target domain probabil-

ity, selects and trains the most dissimilar samples

first. In “Random Sample” curriculum, a sub-

set of source samples are randomly selected and

fed into the training model. In “Random Order

within Selected” case, the subset is selected first

based on target domain probability. However, the

order of presentation during training is random.

In “Reverse Order within Selected” scenario, the

subset is selected based on target domain proba-

bility, and the order of presentation during train-

ing is based on the reverse order of target domain

probability. As we can see from the figure, both

the data selection strategy and learning curriculum

have a clear effect on the transfer performance.

“Most Similar” curriculum enjoys the highest con-

vergence rate when trained on a small amount of

source data, while “Most Dissimilar” curriculum

has the lowest convergence rate. The transfer per-

formance of all the learning curricula benefits ini-

tially from adding more training data and eventu-

ally saturates. Overall, “Most Similar” curriculum
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converges to the best performance among other

curricula. The observation demonstrates the ef-

fectiveness of using target domain probability as

a measure of learning “hardness”.

Figure 4: Transfer performance from MNLI to SNLI

for five learning curricula. “Most Similar” curriculum

achieves the best convergence rate and transfer perfor-

mance.

5 Conclusion

In conclusion, we propose a novel domain adap-

tation framework for fine-tuned BERT models

through a two-step domain-discriminative data se-

lection and curriculum learning. Our approach

significantly outperforms the baseline models on

four large datasets, which demonstrates the effec-

tiveness of both the data selection strategy and cur-

riculum design. The method can be readily ex-

tended to multi-source domain adaptation, or ap-

plied to few-shot learning scenarios in which the

selected source domain data can be used to aug-

ment the limited target domain training data.
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