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ABSTRACT Motor fault diagnosis based on deep learning frameworks has gained much attention from

academic research and industry to guarantee motor reliability. Those methods are commonly under two

default assumptions: 1) massive labeled training samples and 2) the training and test data share a similar

distribution under unvarying working conditions. Unfortunately, these assumptions are nearly invalid in

a real-world scenario, where the signals are unlabeled and the working condition changes constantly,

resulting in the diagnosis models of the previous studies that always fail in classifying the unlabeled data

in real applications. To deal with those issues, in this paper, we propose a novel feature adaptive motor

fault diagnosis using deep transfer learning to improve the performance by transferring the knowledge

learned from labeled data under invariant working conditions to the unlabeled data under constantly

changing working conditions. A convolutional neural network (CNN) is adopted as the base framework

to extract multi-level features from raw vibration signals. Then, the regularization term of maximum mean

discrepancy (MMD) is incorporated in the training process to impose constraints on the CNN parameters

to reduce the distribution mismatch between the features in the source and target domains. To verify the

effectiveness of our proposal, data from the motor tests of European driving cycle (NEDC) for simulating

the real working scenario and the motor tests under invariant working conditions are, respectively, conducted

as the target domain and the source domain. The results show that the proposal presents higher diagnosis

accuracy for the unlabeled target data than other methods, and it is of applicability to bridge the discrepancy

between different domains.

INDEX TERMS Motor fault diagnosis, transfer learning, domain adaptation, convolutional neural network

(CNN).

I. INTRODUCTION

Motor is the key component of many mechanical systems

as the power source, in which a huge demand exists for

higher reliability, security, and availability [1]. Motor fault

diagnosis and health prognostics plays an important role in

reducing unnecessary maintenance operations, attaining the

enhancement of security and improving the reliability of

motors [2]. In recent years, many effective attempts have been

made to design novel algorithms to achieve superior diagnosis

performance. Owing to the significant development of sensor

technology and computing ability, deep learning, which is

thought as an effective tool for the high-level features learn-

ing based on the nonlinear transformations through multiple

layers, has been widely and successfully applied in some
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motor fault diagnosis applications [3]. Several deep learning

techniques such as sparse deep stacking network (SDSN) [4],

Long Short-Term Memory (LSTM) network [5], Convolu-

tional Neural Network (CNN) [6], etc. are successfully used

to identify the motor faults.

However, the use of the diagnosis approaches in the pre-

vious studies is limited in bench tests and hard to extend

to real-world scenario. It can be interpreted by two rea-

sons. 1) The previous studies are mostly trained and vali-

dated by massive labeled faulty data, which is only available

in bench tests and inadequate in real applications. That is

because motors in real working scenario are mostly oper-

ated under a healthy state and even though fault occurs,

the faulty motor will be shut down immediately, which leads

to the lack of labeled samples. 2) In the previous studies,

datasets are acquired under relatively stable motor work-

ing conditions, where the load and speed are unvarying or
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linearly increase\ decrease at most. While in real applica-

tions, the working condition constantly changes over time.

In summary, the good performances of the traditional deep

learning methods in motor fault diagnosis owes to the super-

vised learning with massive labeled data under invariant

working conditions. It still remains as a challenge to detect the

motor faults with unlabeled data under constantly changing

working conditions.

Therefore, transfer learning, which possesses the capacity

to leverage the knowledge learnt from source domain to target

domain [7], provides a promising solution to address this

issue. As an important branch of machine learning, transfer

learning focuses on applying the knowledge which has been

researched before in one domain to a new domain [8]. The

dataset in the target domain shares similar knowledges but

dissimilar probability distribution with that in the source

domain. The core of transfer learning is to find the sim-

ilarities between different domains and improve the per-

formance of the classification or regression model for the

target domain with the help of the knowledges learned in

the source domain [9]. Transfer learning has been widely

researched and gained some attainments in the fields includ-

ing natural language processing [10], [11] and computer

vision [12]–[14]. According to the discrepancy of learning

methods, transfer learning can be classified into four major

categories: instance based, feature based, model based, and

relationship based transfer learning. Recently transfer learn-

ing has emerged as a novel effective method for machinery

fault diagnosis under different operating conditions [15]. First

application of deep transfer learning (DTL) on fault diag-

nosis was proposed by Lu et al. [16], which was based on

maximum mean discrepancy (MMD) and weight regulariza-

tion. Wen et al. proposed a DTL method for bearing fault

diagnosis. A sparse auto-encoder of three layers was used

to scrutinize the raw data and extract the features, and the

MMD term was applied to minimize the discrepancy penalty

between the source data and the target data [17]. Shao et al.

used pre-trained network to extract lower level features and

labeled images from wavelet transformation to fine-tune the

higher-levels to conduct the transfer tasks [18]. Zhang et al.

used a model-based transfer learning method for a small sam-

ple problem based on multiple fully-connected neural net-

works [19]. Guo et al. designed a deep convolutional transfer

learning network (DCTLN) to transfer the features extracted

from labeled data of one machine to the unlabeled data of

other machines [20]. Yang et al. developed feature-based

transfer neural network named FTNN to improve the diagno-

sis accuracy for real-case machines by extracting the trans-

ferable features from laboratory machines [21].

However, those above-mentioned researches encounter

with two shortcomings. 1) Those transfer learning applica-

tions in machinery fault diagnosis mainly focus on the trans-

fer tasks between different working conditions or different

machines. The used target and source data are both under

unvarying working conditions, where the load and motor

speed remain unchanged during the data acquisition process.

They devoted little consideration to the real-world scenario

and the problem about how to use transfer learning to adapt

the labeled data under invariant working conditions to the

unlabeled data under constantly changing working conditions

is still not addressed well. 2) The regularization terms of

multi-layerMMDs used in previous studies are endowedwith

a unique weight in back propagation. It requires a deeper

investigation about the selection of different weights for

MMDs and its effect to diagnosis performances.

In order to overcome the shortcomings above, in this paper,

we proposed a deep transfer learning framework based on

CNN and the regularization term of MMD to identify the

health states of motors under constantly changing working

conditions, with the help of the labeled data from motors

under unvaryingworking conditions. In the proposedmethod,

a CNN structure is adopted to simultaneously extract the

multi-layer features of the raw vibration data from both

source domain and target domain. MMD acts as a regulariza-

tion term embedded in the optimizer object in the mini-batch

supervised back-propagation training process. It aims to

reduce the distributions discrepancy between two latent fea-

ture spaces drawn from different domains. The major contri-

butions of this paper are summarized as follows:

1) To correctly classify the unlabeled faulty motor data

under changing working conditions, a novel deep trans-

fer learning framework with CNN and MMD is pro-

posed, aiming to bridge the distribution discrepancy

of multi-level features and transfer the knowledges

learned from the labeled motor data under unvarying

working conditions to the unlabeled data under con-

stantly changing working conditions.

2) To acquire the data as close as possible to the real-world

scenario, faulty motor tests of European Driving

Cycle (NEDC) are conducted to collect the data under

changing working conditions as the target data.

3) To find the relationship between the diagnosis perfor-

mance and theMMDweights at different feature levels,

a comparative evaluation of the accuracy with different

MMD weight rates is performed.

The remainder of this paper is organized as follows.

In Section II, some important notions and principles are

presented. In Section III, the proposed framework and the

training process are illustrated in details. In Section IV,

the verification tests of six induction motors with differ-

ent fault types under different operating conditions on the

diagnostics simulator platform are introduced. In Section V,

the classification results of the proposal are illustrated and

discussed. Several other state-of-the-art related works are

tested and contrasted. Finally, Section VI provides conclud-

ing remarks.

II. BASIC THEORIES OF SOME CONCEPTS

A. TRANSFER LEARNING

Some basic notations in transfer learning are introduced

first. Let DS and DT denotes the source and target domain
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FIGURE 1. The overview of the transfer learning procedures using CNN and MMD.

respectively. A domain consists of a sample set and a

probability distribution, thus {DS = XS ,P(xS )}, {DT =

XT ,P(xT )}, where XS and XT respectively represents the

source samples and target samples, xS ∈ XS , xT ∈ XT .

P (xS) and P(xT ) denotes the marginal probability distribu-

tions the source samples and the target samples are subject

to. When P (xS) = P(xT ), the predictive models can be built

by traditional deep learning methods. When P(xS ) 6= P(xT ),

transfer learning emerges as an promising tool to facilitate

constructing the qualified target predictive function FT (X ) in

DT by using the related knowledges or information in DS .

In this paper, DS is the labeled data from unvarying work-

ing conditions, and DT is the unlabeled data from changing

working conditions. Thus XS =
{

x iS , y
i
S

}ns

i=1
with ns labeled

samples, and XT =
{

x
j
T

}nt

j=1
with nt unlabeled samples.

The unlabeled samples in DT are expected to be correctly

classified by using both the ns labeled samples in DS and the

nt unlabeled samples in DT . To achieve this goal, XS and XT
are simultaneously fed into a CNN to extract different-levels

features in different layers, and MMD is adopt to adapt the

feature distributions P(FS ) in DS to the feature distributions

P(FT ) inDT . The overview of the transfer process can be seen

in Fig.1.

B. MAXIMUM MEAN DISCREPANCY

The Maximum Mean Discrepancy (MMD) is a kind of

distance metric for probability distributions between two

datasets. It is a valid criterion that can measure the dis-

tribution difference without considering the initial density

functions [22]. Given the nonlinear mapping function H (·)

in a reproducing Kernel Hilbert space (RKHS) H , MMD

between XS and XT can be defined as

MMDH| (XS ,XT )=sup[
1

nS

∑nS

i=1
H

(

x iS

)

−
1

nt

∑nt

j=1

(

x
j
T

)

]

(1)

where sup (·) represents the supremum of the aggregate no

matter what H (·) is selected. ns is the source sample number

and nt is the target sample number. To simplify the function

above, some kernels such as Gaussian kernels are introduced.

The MMD can be rewritten with embedding kernels as

follows to empirically estimate.

MMDe (XS ,XT )

=

(

1

n2s

∑ns

i=1

∑ns

j=1
K

(

x iS , x
j
S

)

+
1

n2t

∑nt

i=1

∑nt

j=1
K

(

x iT , x
j
T

)

−
1

nsnt

∑ns

i=1

∑nt

j=1
K

(

x iS , x
j
T

)

)1/2

(2)

where K (·) represents the kernel function, x iS ∈ XS , and

x iT ∈ XT .

C. CONVOLUTIONAL NEURAL NETWORK

CNN, as a type of most state-of-the-art deep learning model,

has been effectively used for a variety of fault diagnosis and

health monitoring problems [23]. It is further effective for

reducing computational burden by the use of weight sharing

and local receptive field strategies [24]. Typically, a CNN

consists of three types of layers including convolutional lay-

ers, pooling layers and fully-connected layers. The convolu-

tional layer is the core building block. It contains a set of

trainable filters named as kernels. Generally the kernel length

should be smaller than the input data length. Let Xn denotes

the nth input data point of the convolutional layer, and N be

the number of such data points. The nth segment is denoted

as I
j:j+lk
n , where lk is the kernel length, and j represents the jth

data point. The general form of the convolution process is as

expressed as followed:

Y
j
k = f (

∑N

n=1
X j:j+lkn ∗ wk,n + bn) (3)

where ∗ denotes a one dimensional convolution operation,

wk,n is the convolution kernel connecting the nth group to

the kth group, bn is the bias vector, f (·) is the activation
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function, and Y
j
k is the output of the convolutional operation.

A pooling layer is added after the convolutional layer in order

to eliminate the dimensionality curse of the convolutional

layer. In a pooling layer, first the input data is segmented into

a set of sub-region. Then, the ideal output of each sub-region

is calculated through the pooling function. In this approach,

we utilize the Max-pooling function to return the maximum

value of each sub-region. The general form of the process is

expressed as follows:

Pjn = max{Y
j∗lp:(j+1)∗lp
n } (4)

where lp is the length of sub-region and P
j
n is the output value

of the jth group from the n data points. For each channel of

training data, the learned shift invariant multi-dimensional

features are extracted through the convolution and pooling

processing.

A flatten layer is added after the pooling layers to convert

the multiple dimensions of features to one dimension. After

that, fully-connected layers are added and the neurons at

different layers are all connected to each other. The activation

functions of ReLU at the first few layers and the activation

function of Softmax at the last layer are selected.

III. THE PROPOSED METHOD

In this paper, a feature-based deep transfer learning method

is proposed based on a CNN architecture embedded with

MMD. The core of the transfer task is to encourage the

multi-level representations in different hidden layers induced

by the source samples to be close enough to those induced

by the target samples. It is mainly achieved by incorporating

the multi-layer MMD terms between two domains of features

into the loss function during the optimization process. Gen-

erally, the proposal contains two steps: feature learning and

domain adaptation. For feature learning, a CNN is adopted

to extract multi-level representations in different hidden lay-

ers induced by both source and target domains. Note that,

the source samples and target samples are normalized to the

range of [0,1] and then bound together as the input with

sample length. For domain adaptation, MMD is used as the

nonparametric distance metric to measure the distribution

discrepancy of the multi-layer features. Then, the measured

MMDs with various weights are regarded as the regulariza-

tion terms in the loss function to propagate backward to train

the CNN architecture, which aims to minimize the distri-

bution mismatch and align the cross-domain features. After

that, the unlabeled target samples can be classified by the

trained CNN with higher accuracy, because the distributions

of the learned multi-level features from the source and target

domains are more and more similar, and thus the CNN of

higher robustness and adaptability can deal with the data

under different working conditions. The flow diagram of the

procedures can be seen in Fig. 2.

A. FEATURE LEARNING

Typically, a CNN consists of three types of layers includ-

ing convolutional layers, pooling layers and fully-connected

FIGURE 2. The flow diagram of the proposed framework.

TABLE 1. The architecture of the 1D CNN.

layers. In this paper, the base learner with 1D-CNN architec-

ture embraces the similar philosophy of the CNN structure

in [32], employing wide kernels for the first convolutional

layer C1 and small kernels for the next few convolutional

layers (C2, C3, C4). Besides, one max-pooling layer (P1),

one flatten layer (F0), and three fully-connected layers (F1,

F2, F3) are adopted. The details of the 1D-CNN architecture

are illustrated in Table. 1.

The forward propagation process is displayed

in Fig. 3. We define the feature spaces in different

hidden layers induced by the source data is FS . Thus

FS = {FC1S ,FC2S ,FC3S ,FC4S FF1S ,FF2S }, where FCiS and FFiS
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FIGURE 3. The extraction and adaptation of the multi-level features in the proposed CNN architecture.

respectively means the representations after the Ci layer and

Fi layer. Similarly, the feature spaces induced by the target

data is FT , and FT = {FC1T ,FC2T ,FC3T ,FC4T ,F
F1

T
,FF2T }.

From FC1 to FF2, the feature space shifts from shallow-level

representations to high-level. Note that, each feature space

is generated by a mini-batch of source and target samples

instead of one sample, which can be described as

FL = {FL(i)}
n

i=1 (5)

where n is the batch size, L represents the layer, and FL(i)

denotes the feature space after L layer induced by the i th

sample in the mini-batch. The use of batch size can be inter-

preted by two reasons. 1) The intrinsic advantages of itself,

including improving memory utilization through paralleliza-

tion, correcting the gradient descent direction, and decreasing

the amplitude of training vibration [25]. 2) Adapt to the input

size of MMD, which requires two datasets each containing

multiple samples for distance measurement.

B. DOMAIN ADAPTATION

In order to obtain the desirable diagnosis performance in

the different-distribution target domain, the proposal should

be able to learn domain invariant features. Domain invari-

ant features should be subject to the similar distribution,

no matter the features are learned from source data or target

data. If the learned features from different domains can be

automatically aligned to become domain invariant features,

the fault diagnosis classifier trained by the source domain

data is able to effectively classify the target domain data.

However, the multi-level representations in different hidden

layers learned from the two domains suffer from the distribu-

tion mismatch. As displayed in Fig. 3, to reduce the discrep-

ancy and encourage the feature spaces induced by the source

samples to be close enough to those induced by the target

samples, a new optimization objective through minimizing

the reweighted MMDs of the multi-level representations is

added to the loss function. Note that, in this paper, the source

and target samples are assumed to share the same label space

and same size. In other words, the label order of the source

and target domains should be the same, and the source and

target samples only differ in the data probability distributions.

As the feature level is different, the importance and contri-

butions of different-layer MMDs for domain adaptation may

be not same. To obtain the best transfer performance and

assess the contributions of the MMD of each layer, the multi-

layer MMDs are endowed with different weights in the loss

function. Thus the regularization term about the multi-layer

MMDs can be defined as follows.

LMMD = W θ ·MMDe (FS,FT ) (6)

whereW θ is the 6-dimension weight vector with weight rate

θ = (W θ (i + 1))/(W θ (i)), MMD vector MMDe (FS,FT ) =

{MMDe

(

F lS ,F
l
T

)

}
l∈{C1,C2,C3,C4,F1,F2}

l=C1
. The empirical esti-

mate of MMD,MMDe is calculated by Eq. (2). In this paper,

the Gaussian radial basis kernels [26] are taken as the kernel

functions as follows.

K (X1,X2) = exp(
− ‖X1 − X2‖

2

2σ 2
) (7)

where σ is the kernel bandwidth. When σ → 0 or σ → ∞,

MMDe will both decrease to zero.

C. TRAINING PROCESS

The proposal is trained through minimizing the loss function

which contains two regularization terms: 1) the classification

loss LC between the real labels of the source samples and the

predicted labels; 2) the reweightedMMD loss LMMD between

the multi-level representations of two domains. The form of
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TABLE 2. 6 faulty motor types in the tests.

the loss function is

Loss = LC+γLMMD (8)

where γ is the tradeoff parameter. The cross-entropy loss

function [27] is used for the classification loss.

LC = −
1

n

∑

x

∥

∥ŷlny+ (1 − ŷ) ln(1 − y)
∥

∥ (9)

where y is the predicted label, and ŷ is the real label in the

source domain.

The batch gradient descent optimization is used to min-

imize the loss function. The parameters of the CNN archi-

tecture are updated with the supervised back propagation

algorithm. Let the U1 as the parameter matrices of weight,

U2 as the parameter matrices of bias. The back propagation

procedures are described as follows.

1) Initial U1and U2with random values.

2) Update U1by minimizing Loss in Eq. (8) with

mini-batched gradient descent.

U t+1
1 = U t

1 − α(
∂Loss

∂U1
)

= U t
1 − α(

∂LC

∂U1
+ γ

∂LMMD

∂U1
) (10)

3) Update U2by only minimizing LC in Eq. (9) with

mini-batched gradient Descent.

U t+1
2 = U t

2 − α(
∂LC

∂U2
) (11)

where α is the learning rate.

4) Repeat the step 2) and 3) until the epoch time reaches

N .

Note that, the training experiments are implemented using

Pytorch deep learning toolbox with NVIDIA Titan X GPU

acceleration. In this paper, the learning rate is set to 0.02,

the Gaussian kernel bandwidth σ is set to 103, the epoch time

is 1000.

FIGURE 4. The test rig of drivetrain diagnostic simulator.

IV. VERIFICATION TESTS

The proposal aims to transfer the learned knowledges from

ideal working conditions to the real-world practice to iden-

tify the health states of motors, by adapting the feature

spaces learned from labeled data under invariant working

conditions to those from the unlabeled data under con-

stantly changing working conditions. In order to acquire

the corresponding motor faulty data and experimentally ver-

ify the effectiveness of the proposed framework, tests of

six three-phase induction motors with different fault types

under three different operating modes were carried out in

the Drivetrain Diagnostic Simulator (DDS) platform, which

is shown in Fig. 4, this system is mainly composed of 3

components: 1) a replaceable three-phase induction motor

as the power mechanism, 2) a two-stage fixed-axis gear-

box and a two-stage planetary gearbox as the transmission

mechanism, 3) a magnetic brake as the load controller. This

platform meets all the requirements for vibration analysts

and provides a reliable test environment for faulty motor

diagnosis.

Six motors of various healthy states (1 healthy and 5 faulty)

were used to obtain the faulty samples. Data from the healthy

motor is regarded as a benchmark for comparison with the

test data from other faulty motors. The five faulty types

include built-in bowed rotor (BBR), faulted bearings (FB),

broken rotor bars (BRB), built-in rotor misalignment (BRM),
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TABLE 3. Descriptions of those datasets.

FIGURE 5. The modified NEDC test in dataset N1 and dataset N2.

built-in rotor unbalance (BRU). The faulty types and the

corresponding causes are listed in Table 2. Three different

operating modes are respectively applied on the six motors

to gain eight datasets named Dataset A1-A3, Dataset B1-B3,

Dataset N1-N2. The details of those datasets are described

in Table. 3.

NEDC, New European Driving Cycle [28], was first

designed as the driving rules for the passenger vehicles to

assess the emission levels of vehicle engines and fuel econ-

omy. Now it is widely used as the driving rules for the electric

cars in the tests of battery loss, motor performance, transmis-

sion efficiency, etc. [29]. It is composed of 4 ECE-15 urban

driving cycles (UDC) and one Urban driving cycle (EUDC).

For Dataset N1 and N2, a modified NEDC containing one

UDC and one EUDC was adopted as the motor running rules

to simulate the constantly working conditions of real-world

scenario, which is described in Fig. 5. It aims to acquire the

data as close as possible to the real-world practice as the target

data.

The acceleration sensor BW-BJ14530 was used in the

tests and installed at the shell of motors to gain the accel-

eration signals in radial direction, where the vibrations are

strongest. The vibration signals were collected by the data

acquisition card named NI-9234 with sampling frequency

of 5.12 KHz. The raw signals were equally segmented into

several non-overlapping pieces and every 0.2 second signals

which contain 1024 data points represent a sample. As the

motor frequency is 15Hz, 30Hz, and 45Hz, one sample

contains several complete cycle of motor periodic rotation

signals. Each faulty motor test last about 3 mins to collect

about 106 data points under one unvaryingworking condition,

and thus dataset A1-B3 each contains 950 samples of each

faulty type. The NEDC test last about 5mins to collect around

2.8×106 data points, and thus dataset N1-N2 each contains

2800 samples of each faulty type. In this paper, it is assumed

that the number of the source samples and target samples

in the input layer should be the same. Hence, 950 samples

of each faulty type were randomly selected from Dataset

N1-N2 for each transfer task. Note that, there existed some

pauses in the NEDC tests, and thus the zero sequences in

Dataset N1-N2 should be eliminated before. Fig. 6 respec-

tively displays a set of time waveforms of some samples in

the eight datasets. It can be seen that the distributions and

amplitudes vary a lot among different datasets. To verify our

proposal, Dataset A1-B3 is respectively set as the source

domain, and correspondingly dataset N1-N2 is respectively

set as the target domain. Those transfer tasks are illustrated

in Fig. 6.

V. THE RESULTS AND DISCUSSION

A. RESULTS OF THE PROPOSED FRAMEWORK

As shown in Fig. 6, six transfer tasks Ai →N1 and

Bi →N2 are conducted according to the proposed frame-

work. To guarantee the validity of the results, each task

repeats 5 times and the corresponding results are displayed

in Table. 4. In this table, Acc1 denotes the testing accuracy

of Dataset Ni in the CNN model independently trained by

Dataset Ai or Bi. It is used for comparison as the results with-

out transfer learning. The proposed CNN architecture can

achieve more than 99% training classification accuracy when

the training and testing data are from same dataset in Dataset

A1-B3. Acc2 denotes the testing accuracy of dataset Ni in

the transfer task. To visualize the results, the classification

accuracies of all transfer tasks are displayed in Fig. 7. ‘‘with

transfer learning’’ denotes the proposed framework. ‘‘without

transfer learning’’ means the CNN model is independently

built by the source data. It can be seen in Table. 4 and

Fig. 7 that the classification accuracies for the unlabeled tar-

get data are elevated evidentlywith transfer learning. It proves

the effectiveness of the proposed transfer learning approach

in multi-level feature adaptation between two different

domains.

Fig. 8 uses the confusion matrix to illustrate the specific

classification results of every faulty type. It can be seen that

FB is themost detectable faulty type, and the samples of BRM

and BRU are more likely to be misclassified. Fig. 9 visualizes

the training process in transfer task B3→N2. It can be seen

that significant convergence trend occurs in the accuracy

curves of both source and target datasets. The accuracy curves

ascend slowly in the first 200 epochs and then tends to

fluctuate in a small range. The final accuracy of the source

data reaches nearly 100%, while the target data less than 80%.
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FIGURE 6. The waveforms of the raw signals in the 8 datasets and the 6 transfer fault diagnosis tasks.

TABLE 4. Classification accuracy and improvement.

Besides, there are much bigger fluctuations in the accuracy

curves of the target data compared with the source data,

especially at the ascending stage.

In order to obtain the best performance and identify the

contributions of different-layer MMDs, different weight rates

θ of multi-layer MMDs are used to make a comparison.
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FIGURE 7. The testing accuracies of different transfer tasks.

The testing accuracieswith different θ = {0.5, 0.75, 1, 1.5, 2}

of six transfer tasks are visualized in Fig. 10. It can be

observed that it achieves the best accuracy when the weight

rate θ is selected as 2, although the accuracy disparity is

little. It illustrates that the contributions of multi-layerMMDs

increase as the layer goes deeper and the level of features

gets higher. Besides the weight rate, several other key param-

eters in the training process need to be determined, such as

batch size and tradeoff factor γ . The quantification of these

parameters is mainly based on a comparative evaluation of

the performances of various optional values. The accuracies

at different batch size and tradeoff parameters are shown

in Fig. 11. It can be observed that as the batch size increases

from 16 to 256 and γ increases from 0.25 to 1, the accuracy

tends to get lower frommore than 70% to 55%. Consequently,

the optimal batch size is selected as 16 and the tradeoff

parameter γ is 0.25.

B. COMPARISON WITH OTHER METHODS

To demonstrate the superiority of the proposed transfer

learning approach, several other state-of-art transfer learning

methods as follows are employed for comparison. 1) and

2) belong to the traditional unsupervised transfer learning

framework using shallowmanual features. 3)-6) belong to the

deep transfer learning frameworks with various learners such

as MLP, CNN, etc.

1) TCA [30]: Transfer Component Analysis for feature

domain adaptation;

2) JDA [31]: Joint Distribution Adaptation for feature

domain adaptation;

3) DaNN [13]: Multi-layer Neural Networks with MMD

regularization term;

4) TICNN [32]: Convolution Neural Networks with ker-

nel dropout interference;

5) DCTLN [20]: convolution Neural Networks with

MMD used in fully-connected layers;

6) FTNN [21]: convolution Neural Networks with MMD

and pseudo label learning.

In 1) and 2), TCA and JDA are two classic transfer learning

methods. TCA is used to learn some transfer components to

reproduce Hilbert space with MMD. In the subspace spanned

by these transfer components, data distributions in different

domains are similar and data properties are preserved. Once

the subspace is found, we train a KNN for subsequent clas-

sification with the source domain, and obtain the accuracy

of the target domain. JDA, as a modification of TCA, can

reduce the difference between domains by jointly adapting

both the marginal distribution and conditional distribution in

a procedure of dimensionality reduction. It can construct a

new feature subspace that is robust and effective for substan-

tially different distribution. The training and test procedures

are same with TCA. The two methods, both incapable of

addressing sequential data, depend on manual feature engi-

neering, thus 29 statistic features [33], including mean, root

mean square, kurtosis, variance, skewness, etc., are extracted

as the two domains. The kernel type is both selected asrbf

and the dimension after adaptation is set to 16. In 3) MLP

with layers sizes {512 − 256 − 128 − 64 − 128 − 64 − 6} is

adopted. MMD of the feature spaces after 6th layer is used as

the regularization term. In 4), 0.5 kernel dropout is added to

the first convolution layer as the interference term. In 4) and

5), the iterative pseudo labels are tagged on the target samples

every epoch the CNN model is built The classification loss

between the predicted target labels and the pseudo labels is

used as a new regularization term in back propagation.

The comparison results of the testing accuracy are visual-

ized in Fig. 12. Contrasted with the other methods, the pro-

posed method attains to the highest accuracies in the six

transfer tasks. More specifically, it respectively yields 12.7%,

10.5%, 4.6%, 17.2%, 1.8%, and 4.7% average performance

improvement compared with TCA, JDA, DaNN, TICNN,

DCTLN, and FTNN.

C. DISCUSSION

From Table. 4 it can be seen that 1) the classification accu-

racies for the unlabeled target data are elevated evidently

with transfer learning. It proves the effectiveness of the pro-

posed transfer learning approach in bridging the distribution

gap between two different domains; 2) when batch size is

determined to 16, the accuracy improvement gets the highest.

It can be explained by the gradient descent mechanism. Too

large batch size will result in a big cumulative descent for the

parameter update, especially whenMMD loss is incorporated

into to the optimization process.

Fig. 10 illustrates the accuracy gap does exist when differ-

ent weight rates are selected. Generally, the tendency is that

the larger the weights of the last few layers are, the better the

performance is. It makes sense to enlarge the MMD weights

of the high-level features and lower those of the shallow-level

features. It can be interpreted by the intrinsic property of deep

learning. Previous studies have proved that for a trained deep

learning model for image classification, the use of high-level

features is more in tune with how objects are classified in

real world, and low-level features are mostly concerned with

dealing with pixel intensities or colors, finding lines or edges,

and investigating corresponding points between images [34].

In general, the low-level representations are general features,
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FIGURE 8. The confusion matrix for the transfer results of each faulty type: (a) the average accuracy in transfer task Ai →N1, (b) the average
accuracy in transfer task Bi →N2.

FIGURE 9. The classification accuracy trends of the source and target
data during 1000 epochs training in the transfer task B3→N2.

FIGURE 10. The testing accuracies of six transfer tasks with different
weight rate θ from 0.5 to 2.

and high-level representations are specific features. There-

fore, the feature domain adaptation in high-level features is of

more importance and should be endowed with higher weight.

FIGURE 11. The test accuracies at different batch size and tradeoff
parameters.

Fig. 12. illustrates the proposed method attains to the high-

est accuracies in both transfer tasks. More specifically, 1) the

performance of TICNN is worst. The reason may be that it

is the only comparative method that doesn’t use any idea

about transfer learning. The only use of interference terms

of kernel dropout and batch size in a CNN is not able to train

a robust enough model for the unlabeled target data. 2) TCA

and JDA performs only slightly better than TICNN. It can be

explained by fact that feature learning of the two methods

heavily depends on manual feature engineering. The deep

learning methods, with stronger feature learning capacity,

always present a superior performance to the methods that

demand manual feature engineering, no matter in traditional

diagnosis framework or transfer learning framework [35].

3) DaNN, DCTLN, and FTNN performs slightly worse than

the proposal. The reason of the good performances may

be the used similar transfer learning framework with deep

learning architecture and the regularization term of MMD.
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FIGURE 12. The performances of all comparative methods in six transfer tasks. The proposal achieves the highest
diagnostic accuracy.

The accuracy disparity between DaNN and the proposal can

be explained by the fact that CNN can extract more mean-

ingful representations based on the more complicated struc-

ture compared with DaNN. The accuracy disparity between

DCTLN or FTNN and the proposal can be interpreted by

the use of pseudo label learning. It can be seen that the test

accuracies are generally lower than 80%, which is not high

enough, and thus the use of pseudo labels may lead to the

phenomenon of double misclassification and cause worse

performance.

VI. CONCLUSION

As the high difficulty in the collection of high quality

data in real scenario, it remains as a challenge in the

real-world motor fault diagnosis applications to improve the

diagnosis accuracy for the unlabeled data under constantly

changing working conditions, with the help of the labeled

data under invariant working conditions. To address those

issues, in this paper, a novel domain adaptive motor fault

diagnosis framework using deep transfer learning is pro-

posed. It possess the capability to transfer the knowledges

learned from labeled data under invariant working condi-

tions to the unlabeled data under constantly changing work-

ing conditions. The core of the proposal is to bridge the

gap between the multi-level representations of the source

domain and the target domain using the regularization term

of MMD.

The proposal is verified by the data from motor tests

under NEDC condition and invariant working conditions.

The obvious classification accuracy improvement for the

target domain in two transfer tasks demonstrates its effec-

tiveness in bridging the discrepancy between different

domains. A comparative evaluation of performances with

various MMD weights distinguishes the importance or

contribution of the low-level features and high-level fea-

tures. The comparisons with other popular transfer learn-

ing or domain adaptive methods prove the proposed trans-

fer learning framework can achieve the highest diagnosis

accuracy.

There still exist some shortcomings in the proposal, such

as the long training time and the too complex architecture.

In future research, our effort will be devoted to two aspects.

1) make attempt to design new transfer learning frameworks

with higher diagnosis accuracy. 2) Collect the faulty motor

data from the real-world vehicle tests to realize motor fault

diagnosis in real practice.
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