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Abstract

Learning to cope with domain change has been known

as a challenging problem in many real-world applications.

This paper proposes a novel and efficient approach, named

domain adaptive semantic diffusion (DASD), to exploit

semantic context while considering the domain-shift-of-

context for large scale video concept annotation. Starting

with a large set of concept detectors, the proposed DASD

refines the initial annotation results using graph diffusion

technique, which preserves the consistency and smoothness

of the annotation over a semantic graph. Different from

the existing graph learning methods which capture rela-

tions among data samples, the semantic graph treats con-

cepts as nodes and the concept affinities as the weights of

edges. Particularly, the DASD approach is capable of si-

multaneously improving the annotation results and adapt-

ing the concept affinities to new test data. The adaptation

provides a means to handle domain change between train-

ing and test data, which occurs very often in video anno-

tation task. We conduct extensive experiments to improve

annotation results of 374 concepts over 340 hours of videos

from TRECVID 2005-2007 data sets. Results show consis-

tent and significant performance gain over various base-

lines. In addition, the proposed approach is very efficient,

completing DASD over 374 concepts within just 2 millisec-

onds for each video shot on a regular PC.

1. Introduction

Annotating large scale video data with semantic con-

cepts has been a popular topic in computer vision and mul-

timedia research in recent years [4, 5, 20]. The predefined

concepts may cover a wide range of topics such as those re-

lated to objects (e.g., car, airplane), scenes (e.g., mountain,

desert), events (e.g., people marching) etc. The annotation

of these concepts enables users to specify a query using a

natural language description of the semantic content of in-

terest. For example, an incoming textual query such as find
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Figure 1. Illustration of context-based video annotation. (a) Top

5 video shots of concept desert according to the annotation scores

from an existing pre-trained detector, in which the semantic con-

text was not considered. (b) Refined shot list by semantic diffu-

sion. The subgraph on the top shows two concepts with higher

correlations to desert. Line width indicates graph edge weight.

(c) Refined subgraph and shot list by the proposed domain adap-

tive semantic diffusion (DASD). The graph adaptation process in

DASD is able to refine concept relationship which in turn can fur-

ther help improve the annotation accuracy.

an airplane could be efficiently handled by returning video

shots with higher likelihood to contain concept airplane.

The existing studies in image and video annotation

mainly aim at the assignment of single or multiple concept

labels to a target data set, where the assignment is often

done independently without considering the inter-concept

relationship [4, 5, 7, 12]. Due to the fact that concepts

do not occur in isolation (e.g., smoke and explosion), more

research attentions have been paid recently for improv-

ing annotation accuracy by learning from semantic context

[18, 24]. Nevertheless, the learning of contextual knowl-

edge is often conducted in an offline manner based on train-
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ing data, resulting in the classical problem of over or under

fitting. For large scale video annotation which could involve

simultaneous labeling of hundreds of concepts, the problem

becomes worse when the unlabeled videos are from a do-

main different from that of the training data. This brings

two challenges related to scalability: the need for adaptive

learning and the demand for efficient annotation.

This paper proposes a novel and efficient approach

for improving large scale video semantic annotation using

graph diffusion technique. Our approach, named domain

adaptive semantic diffusion (DASD), uses a graph diffusion

formulation to enhance the consistency of concept annota-

tion scores. First, we construct an undirected and weighted

graph, namely semantic graph, to model the concept affini-

ties. The graph is then applied to refine concept annotation

results using a function level diffusion process. To handle

the domain change problem, our approach further allows

to simultaneously optimize the annotation results and adapt

the geometry of the semantic graph according to the test

data distribution. Figure 1 gives an idealized example of

DASD. Figure 1 (a) displays the top 5 video shots from an

independent concept detector desert. By considering the

semantic context learnt offline from the manual annotations

on training data, Figure 1 (b) shows better results. DASD,

which is capable of adapting the already-learnt semantic

context to fit the test domain data statistics, attains consider-

able improvement as shown in Figure 1 (c). In this example,

DASD reacts to the domain-shift-of-context by adapting the

affinity of desert and sky.

The advantage of the proposed DASD is twofold. First,

it allows the online update of semantic context for address-

ing the problem of domain-shift. Second, it is scalable to

large data sets where only a couple of minutes is required to

complete DASD over hundreds of concepts for thousands

of video shots.

In the following we review related works in Section 2.

We then define notations and introduce the basic theory of

graph diffusion in Section 3. The graph diffusion formu-

lation for context-based video annotation is elaborated in

Section 4 and the domain adaptive semantic diffusion is pro-

posed in Section 5. Section 6 describes experimental setup

and Section 7 presents our experimental results. Finally,

Section 8 concludes this paper.

2. Related Works

Vision researchers have used context information to help

object recognition. In [22], Torralba et al. introduced a

framework of modeling context based on the correlation

between the statistics of low-level features across the en-

tire image and the objects that it contains. Along this line,

several other approaches also adopted context information

from the correlation of low level features within images or

semantic categories [13, 19, 23, 25]. Recently, the semantic

context such as co-occurrence information was considered

to enforce region-based object recognition in [2, 18]. In ad-

dition to co-occurrence, relative location was utilized in [6]

in which knowledge such as “sky usually appear on top of

grass” was exploited to help label image regions. These

approaches in [2, 6, 18], however, are tailored for region

based object and scene recognition. The semantic concepts

cover a wide range of topics – some of them are depicted by

the holistic representation of an entire image rather than a

region (e.g., outdoor and meeting). As a result, the region-

based approaches, though promising, are not applicable in

many cases of video annotation.

There are also a few research efforts focusing on the uti-

lization of semantic context for video annotation [17, 24,

10]. In [17], a multi-label learning method derived from

Gibbs random field was proposed to exploit concept rela-

tionship for improving annotation. Though encouraging re-

sults were observed on a set of 39 concepts, the complex-

ity of this method is quadratic to the number of concepts.

This prevents its application to a larger number of concepts,

which is necessary to provide enough semantic filters for in-

terpreting textual queries and producing satisfactory video

search results [8]. In [24], Weng et al. proposed a method to

learn the inter-concept relationships and then used graphical

model to improve the concept annotation results. In [10],

a context-based concept fusion method using conditional

random field was proposed, in which supervised classifiers

were iteratively trained to refine the annotation results. Dif-

ferent from these existing works, in DASD we formulate

context-based video annotation as a highly efficient graph

diffusion process. Particularly, it involves an adaptation

procedure to handle domain changes between training and

test data.

3. Preliminaries

Notations. We start by defining the notations used in this

paper. Let C = {c1, c2, ..., cm} be a semantic lexicon of m
concepts and X = {xi} ∈ Rn×d be a data set, where n is

the number of samples and d is the sample dimensionality.

From a training set {Xtrn,Y}, a supervised classifier can
be trained for each concept ci, whereY is the ground-truth

label of Xtrn. The classifier is then applied to a test set

Xtst of n test samples and generate annotation scores g(ci),
where g : C → Rn denotes an annotation function and g(ci)
is a 1×n score vector. Concatenating the annotation scores

of all the concepts for Xtst, the video annotation function

can be written as g = {g(ci)}i=1,··· ,m ∈ Rm×n.

Our goal in this paper is to utilize the semantic context

in C to refine the annotation score:

g̃ = f(g,W), (1)

where g̃ is the refined annotation function and g denotes

the initial function based on the supervised classifiers; W



is a concept affinity matrix indicating the concept relation-

ship in C, which can be estimated from the training set

{Xtrn,Y}; f(·) represents the refinement function, which
simultaneously updates g and adaptsW to the test setXtst

(cf. Section 5).

In addition, the undirected and weighted semantic graph

used in this paper is denoted as G = (C, E,W), comprising
a set of nodes (concepts) together with a set E = {eij} of
edges. W is the concept affinity matrix, where each entry

Wij indicates the weight of an edge eij between nodes ci

and cj . Define the diagonal node degree matrix as Dii =
d(ci) =

∑

j Wij . Then the graph Laplacian is∆ = D−W

and the normalized version is L = I − D
−1/2

WD
−1/2.

GraphDiffusion. Graph diffusion analysis has been widely

used for data smoothing and multi-scale image analysis.

Some earlier applications on vision tasks include edge de-

tection and denoising in images [15] and discontinuity de-

tection in optical flow [16]. Moreover, graph diffusion is

also closely related to several transductive learning meth-

ods [26, 27], where classification functions are estimated

by investigating the geometry property of data distribution.

Generally speaking, function estimation through graph

diffusion rests on the assumption that a studied function g(·)
is expected to be smooth with respect to the manifold geom-

etry of the discrete data [21]. Specifically, with a definition

of the energy function E(g), the smoothed function g̃ can be

derived using the gradient descent approach. As described

in [3], the gradient of a function g on graph G is defined as:

(∇g)(ci, cj) = Wij

(

g(ci)
√

d(ci)
−

g(cj)
√

d(cj)

)

. (2)

Therefore, given the initial function value g, g̃ can be es-

timated by iteratively repeating the following one step dif-

fusion process along the gradient directions:

gt = gt−1 ± α∇g, (3)

where the coefficient 0 < α ≪ 1 is step size. The symbol+
or− depends on the objective of maximizing or minimizing
the particular energy function E .

4. Efficient Diffusion of Semantic Context

In this section, we formulate context-based video anno-

tation as an efficient graph diffusion process. We start by

presenting the construction of semantic graph and then de-

scribe its utilization for refining the annotation function g.

4.1. Semantic Graph

The semantic graph G is characterized by the relationship
between concepts, i.e., the affinity matrixW. We estimate

the concept relationship using the training set Xtrn and its

corresponding label matrix Y, where yij = 1 denotes the
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Figure 2. A fraction of the semantic graph before and after do-

main adaptation. Thick edges represent strong correlation between

concepts, quantified by the values nearby the edges. (a) The ini-

tial concept relationship computed using the manual annotations

on TRECVID 2005 development set; (b) The updated concept re-

lationship for TRECVID 2007 test set after performing domain

adaptation (more explanations in Section 7).

presence of concept ci in the sample xj , otherwise yij = 0.
The concept relationship is computed using Pearson prod-

uct moment correlation as

PM(ci, cj) =

∑|Xtrn|
k=1 (yik − μi)(yjk − μj)

(|Xtrn| − 1)σiσj
, (4)

where μi and σi are the sample mean and standard devia-

tion, respectively, of observing ci in the training setXtrn.

Since the correlation calculated by the above equation

can be either negative or positive, we construct two positive-

weighted semantic graphs accordingly:

• G+ = (C, E+,W+) considers positive correlation of
the concepts, i.e. an edge eij ∈ E+ is established

when PM(ci, cj) > 0 andW+
ij = PM(ci, cj);

• G− = (C, E−,W−) considers negative correlation of
the concepts, in which an edge eij ∈ E− is established

when PM(ci, cj) < 0 andW−
ij = −PM(ci, cj).

We will discuss the semantic diffusion over G− in the

end of Section 5. Otherwise, in most part of the paper, we

will focus only on G+ and use G+ and G interchangeably
without specific declaration. Figure 2 (a) visualizes a frac-

tion of the semantic graph G+.

4.2. Semantic Diffusion

Recall that the function value g(ci) ∈ Rn on a seman-

tic node ci denotes the concept annotation scores on test

set Xtst, and n = |Xtst| is the number of test samples.
Intuitively, the function values g(ci) and g(cj) should be
consistent with the affinity between concepts ci and cj , i.e.

Wij . In other words, strongly correlated concepts should

have similar concept annotation scores. Motivated by this

semantic consistency, here we formulate our problem as a

graph diffusion process and define a cost function on the

semantic graph as:

E(g) =
1

2

m
∑

i,j=1

Wij ||
g(ci)

√

d(ci)
−

g(cj)
√

d(cj)
||2. (5)



Apparently, this cost function evaluates the smoothness of

the function g over semantic graph G. Therefore, minimiz-
ing E makes the annotation results more consistent with the
concept relationships, which are captured by G.
We apply gradient descending to gradually reduce the

value of the cost function. Rewrite the Equation 5 into ma-

trix formulation as:

E(g) =
1

2
tr(gT

Lg), (6)

where L ∈ Rm×m is the graph Laplacian of the semantic

graph G. From Equation 2, the gradient of E with respect to
g on the semantic graph is:

∇gE = Lg. (7)

Thus we can derive the following iterative diffusion process

gt = gt−1 − α∇gt−1
E = gt−1 − αLgt−1 (8)

= (I − αL)gt−1 = (I − αL)2gt−2

= · · · = (I − αL)tg0.

Through exponentiating the graph Laplacian with step size

α, we can get

gt =

(

I − t(αL) +
t2

2!
(αL)2 −

t3

3!
(αL)3 + · · ·

)

g0

≈

(

I − t(αL) +
1

2
(αLt)2 −

1

6
(αLt)3

)

g0. (9)

Omitting the high order terms O((αLt)3), the above cubic
form approximates the exponential diffusion procedure. In-

stead of iterative diffusion on the initial function value g0,

Equations 8 and 9 give the one step close form diffusion

operation through applying the diffusion kernel Kt on g0,

which is defined as:

Kt = (I − αL)t. (10)

Notice that the cost function in Equation 5 has two

main fundamental differences from the existing graph-

based semi-supervised learning (SSL) techniques such as

[27, 26]. First, the semantic graph is formed with concepts

as nodes, and consistency is defined in the concept space.

This is in contrast to graph-based SSL where a node is a

data sample and smoothness is thus measured in the fea-

ture space. Second, with given label information, graph-

based SSL methods drive label propagation through mini-

mizing the cost function with either elastic regularization or

strict constraint, e.g., the harmonic function formulation in

[27]. Our cost function aims at recovering the consistency

of annotation scores with respect to the semantic graph. It

is minimized using gradient descending and this leads to a

close form solution for efficient semantic diffusion. While

in graph-based SSL methods, the optimization procedure

commonly involves an expensive matrix inverse operation.

For large scale applications, compact representation and ef-

ficient optimization are always critical and our formulation

takes into account both factors.

5. Domain Adaptive Semantic Diffusion

A challenge tightly correlates with scalability issue is the

problem of over and under fitting. Specifically, the learnt

semantic graph is not expected to completely capture the

context relationship of unseen video data. This can happen

particularly if there is lack of sufficient training samples or

the unseen data has been shifted to another domain different

from the training samples. For the latter case, this can imply

a real-word problem that the semantic graph learnt from one

domain (e.g., broadcast news videos) cannot always prop-

erly reflect the semantic context in another domain (e.g.,

documentary videos). For example, the concept weapon al-

ways co-occurs with desert in news videos due to plenty of

events about Iraq war. While such context relationship can

be captured in G, misleading annotation will be generated
if applying to documentary videos where such relationship

is seldom observed. In this section, we address this prob-

lem by proposing the DASD algorithm. DASD captures the

test domain knowledge by learning from the responses of g

over the new and previously unseen data. The initial seman-

tic graph learnt from training samples is online adapted to

fit the new knowledge mined from test data.

DASD combines both semantic diffusion and graph

adaptation by minimizing the cost function via alternatively

updating g and the concept affinity. Notice that the sym-

metric affinity matrix W indirectly imposes on the diffu-

sion procedure in the form of normalized graph Laplacian

L = I − D
−1/2

WD
−1/2 = I − W̃. Recall the cost func-

tion in Equation 6 and express it as a function of W̃:

E(g,W̃) =
1

2
tr(gT

Lg) =
1

2
tr

(

gT
[

I − D
− 1

2 WD
− 1

2

]

g
)

=
1

2
tr(gT g) −

1

2
tr

(

gT
D

− 1

2 WD
− 1

2 g
)

=
1

2
tr(gT g) −

1

2
tr

(

gT
W̃g

)

, (11)

where W̃ is the normalized affinity matrix. Although our

goal is to adapt the concept affinity matrix W, in the dif-

fusion process W̃ directly affects the annotation results.

Hence, we compute the partial differential of E with respect
to W̃ instead ofW as:

∂E

∂W̃
= −ggT . (12)

Similar to the Section 4.2, we use the gradient method to

iteratively modify the normalized affinity matrix W̃:

W̃t = W̃t−1 − β
∂E

∂W̃t−1

= W̃t−1 + βgt−1g
T
t−1, (13)
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Figure 3. Example keyframes of several concepts evaluated in TRECVID 2005–2007. The left shows examples from broadcast news videos

in 2005 and 2006, while the right shows examples from documentary videos in 2007. Note that the appearance of the same concept from

the two data domains may be visually very different.

where β (0 < β ≪ 1) is the step size for gradient search.
The adaptation process of W̃, executed in Equation 13

with the aim of minimizing E , can be explained intuitively
as follows. Recall that g ∈ Rm×n, where m is the num-

ber of concepts and n is the number of test samples. The

dot product ggT ∈ Rm×m in the above equation implies

the pairwise concept affinities estimated by the annotation

scores in the test domain (each row of g is normalized to

unit length). Thus the above equation implicitly and gradu-

ally incorporates the new domain knowledge into W̃.

To combine the graph adaptation process and the seman-

tic diffusion described in Section 4.2, we update the nor-

malized graph Laplacian as:

Lt = I − W̃t = I − W̃t−1 − βgt−1g
T
t−1

= Lt−1 − βgt−1g
T
t−1. (14)

Now we can derive the following iterative alternating opti-

mization procedure:

gt = (I − αLt−1)gt−1, (15)

Lt = Lt−1 − βgt−1g
T
t−1.

The above two equations form the DASD process, which

jointly imposes the semantic diffusion of annotation scores

and the adaptation of semantic graph structure.

All the above derivation is based on the positive graph

G+. The diffusion and adaptation on G− can be done in

a similar manner as G+. Because in G− the edge weights

hint the dissimilarity between the nodes (concepts), here the

graph diffusion is casted in the way of maximizing the cost

function as:

(g∗, (W̃−)∗) = arg max
g,W̃−

E . (16)

Repeat the similar derivations as before, we can obtain

the following DASD process on G−:

gt = (I + αL
−
t−1)gt−1, (17)

L
−
t = L

−
t−1 + βgt−1g

T
t−1.

TRECVID- Data domain Development set Test set

2005 Broadcast News 80h (43,873) 80h (45,765)

2006 Broadcast News – 80h (79,484)

2007 Documentary 50h (21,532) 50h (22,084)

Table 1. Descriptions of TRECVID 2005–2007 data sets. The

total number of video shots in each data set is shown in the paren-

thesis. Note that the 160h data from TRECVID 2005 was used as

development data for TRECVID 2006.

6. Experimental Setup

We conduct experiments using the TRECVID 2005–

2007 video data sets. The data sets were used in the annual

TRECVID benchmark evaluation by NIST [20]. In total,

there are 340 hours of video data. The videos are parti-

tioned into shots and one or more representative keyframes

are extracted from each shot. As shown in Table 1, the 2005

and 2006 videos are broadcast news from different TV pro-

grams in English, Chinese and Arabic, while the 2007 data

set consists mainly of documentary videos in Dutch. These

data sets are suitable for evaluating the performance in han-

dling domain changes. The contents of the videos are also

highly diversified, making large scale video annotation a

challenging task.

We use a total of 374 concepts defined in LSCOM

[14] for constructing the semantic graph. These concepts

are defined by LSCOM according to criteria such as con-

cept utility, observability and the feasibility of developing

classifiers for them using current technologies. Based on

LSCOM, NIST selected 10-20 concepts each year and pro-

vided ground-truth for performance evaluation. Figure 3

shows example keyframes for several concepts evaluated by

NIST. Note that this is a multi-labeling task, meaning that

each shot can be labeled with more than one concept.

In our experiments, for TRECVID 2005, we adopt the

development set as our target database and report perfor-

mance of 39 concepts for the ease of comparison with other

existing works such as [10]. The development set is parti-

tioned into training, validation and test sets. For TRECVID

2006 and 2007, we report performance of the official evalu-

ated concepts on each year’s test set.



Baseline Detector and Graph Construction. To test the

proposed method over a large concept pool, we adopt some

generic semantic concept detectors that can be easily de-

ployed. For this, we use the publicly available VIREO-

3741 [11] as baseline, which includes SVM models of

374 LSCOM concepts. These models have been shown in

TRECVID evaluations to achieve top performance. Late

fusion is used to combine classifier scores from multiple

single-feature SVMs, which are trained using three indi-

vidual features: grid-based color moments, wavelet texture,

and bag-of-visual-words. Details for extracting such fea-

tures from video keyframes can be found in [11]. However,

it is worth noting that the proposed context-based video an-

notation framework is applicable to general concept detec-

tors using different features, including motion. Later in the

paper we will show the effectiveness of the proposed tech-

nique over different baseline classification models.

The semantic graph G is constructed based on the

ground-truth labels on the 2005 development set, where the

edge weights are calculated by Equation 4. In practice, k-

NN is commonly used to generate sparse graphs [9]. In our

experiments, we empirically keep 6 strongest edges for each

semantic node and break the remaining connections. Dur-

ing graph adaptation, in order to keep the graph sparse, we

round small gradients in the partial differential in Equation

12 to zero and only keep the largest gradient for each node.

Evaluation Criteria. Following the TRECVID evaluation,

for each semantic concept, we use average precision (AP)

to evaluate the performance on TRECVID 2005, and use in-

ferred AP for TRECVID 2006 and 2007. AP approximates

the area under the precision-recall curve. The inferred AP

is an approximation of the AP. It is designed for partially

labeled data sets (TRECVID 2006 and 2007 test sets) in or-

der to reduce manual labeling effort [20]. To aggregate the

performance over multiple semantic concepts, mean AP or

mean inferred AP (MAP) is adopted.

7. Results and Comparison

This section describes our experimental results and gives

comparative studies with the state of the arts. In most of the

experiments we only use the semantic graph G+. G− is only

used in one experiment to study the effect of negative corre-

lation. There are some parameters in the proposed method,

such as the step sizes α, β, and the number of iterations

(diffusion time t). We empirically determine their suitable

values, and will show the insensitivity of final performance

to particular settings.

Table 2 shows the results over the TRECVID 2005-2007

data sets, achieved by the VIREO-374 baseline, the se-

mantic diffusion (SD, as described in Section 4.2), and the

DASD. When SD is used, the performance gain (relative

1Download site: http://vireo.cs.cityu.edu.hk/research/vireo374/

TRECVID- 2005 2006 2007

# of evaluated concepts 39 20 20

Baseline (MAP) 0.166 0.154 0.099

SD 11.8% 15.6% 12.1%

DASD 11.9% 17.5% 16.2%

Table 2. Overall performance gain (relative improvement) on

TRECVID 2005–2007 data sets. SD: semantic diffusion. DASD:

domain adaptive semantic diffusion.
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Figure 4. Per-concept performance before and after semantic dif-

fusion on TRECVID 2006 test set. Consistent improvements are

observed for all of the 20 semantic concepts.

improvement) on TRECVID 2005-2007 data sets ranges

from 11.8% to 15.6%. The results confirm the effectiveness

of formulating graph diffusion for improving video annota-

tion accuracy. Figure 4 shows per-concept performance of

the 20 evaluated concepts in TRECVID 2006. Our approach

consistently improves all the concepts. Among a total of 79

concepts from TRECVID 2005 to 2007 as reported in Table

2, almost all concepts show improvement, except five con-

cepts which suffer from slight performance degradation.

Due to change of video domains from news to docu-

mentary, the semantic graph G constructed from TRECVID
2005 obviously does not fit TRECVID 2007, which requires

the adaptation of the semantic graph. As shown in Table

2, the DASD further boosts the performance on TRECVID

2006 and 2007. It is easy to explain that there is basi-

cally no improvement on TRECVID 2005 since the seman-

tic graph is constructed on the same data set. Note that al-

though both TRECVID 2005 and 2006 data sets are broad-

cast news videos, they were captured in different years so

that the video content may change a lot. We consider the

graph adaptation process as an important merit of our ap-

proach: it can automatically refine the semantic geometry

to fit the test data, which will in turn help improve the video

annotation performance. Figure 2 shows a fraction of the

semantic graph, from which we have a few observations

– the adaptation process enhances the affinity of sky and

clouds, and breaks the edge between desert and weapon.

The concept weapon frequently co-occurs with desert scene

in TRECVID 2005 broadcast news videos because there

are many events about Iraq war, while in the documentary

videos, this is seldom observed.

Effect of Parameters. Figure 5 shows the MAP over

TRECVID 2006 test set using a range of step sizes and dif-
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Figure 5. The MAP performance on TRECVID 2006 test set under

various parameter settings.

fusion time values. As can be seen, there is a tradeoff be-

tween the values of t (number of iterations, namely, diffu-

sion time) and the gradient decent step sizes (α and β). The

finer step sizes are used, the more iterations are needed to

reach the best diffusion performance. Interestingly, our em-

pirical results indicate that different step sizes, when com-

bined with corresponding best diffusion times, result in con-

sistent performances.

We also evaluated the same parameter setting (e.g., α and

β = 0.04) over different data sets, TRECVID 2005–2007,

and verified that the optimal diffusion time t = 20 consis-
tently achieves the best or close to best performances. These

findings confirm the performance stability of the proposed

method over parameter settings. The same parameters (α,

β = 0.04; t=20) are used throughout the experiments in this

paper.

Effect of Negative Correlation. In order to study the effect

of negative correlations, we conduct another experiment on

TRECVID 2007 test set. The performance gain is merely

1.3% when using the negative graph G− alone (Equation

17). When both G+ and G− are used (alternatively ap-

ply Equations 15 and 17), the MAP performance is 0.114,

which is about the same with that using G+ alone (0.115).

Based on these results we speculate that although negative

correlations captured by G− may slightly improve the per-

formance, practically using G+ alone is preferred since it

represents a good tradeoff between performance and speed.

Effect of Concept Affinity Estimation Method. In the

above experiments the concept affinities are computed

based on the ground-truth labels. An alternative way is

to estimate the concept affinities according to the base-

line annotation scores on each year’s test data. Let T be

the test data set and gi
k be the baseline annotation scores

of concept ci in test shot k. Similar to Equation 4, the

weight wij of the edge (ci, cj) can be calculated as wij =
∑|T |

k=1
(gi

k−μi)(g
j

k
−μj)

(|T |−1)σiσj
, where μi and σi are the mean and

standard deviation of the annotation scores of ci, respec-

tively, in T . With the new edge weights, we only consider
positive correlations and construct a new graph GT .
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Figure 6. Performance of DASD using various baselines on

TRECVID 2006 test set. The text under blue and orange bars in-

dicates the feature used in the corresponding SVM detector.

Jiang Aytar Weng

et al. [10] et al. [1] et al. [24] DASD

2005 2.2% 4.0% N/A 11.9%

2006 N/A N/A 16.7% 17.5%

Table 3. Performance comparison of DASD with several existing

works.

We rerun the semantic diffusion on TRECVID 2007 test

set using GT . The overall performance gain is 9.3%, which

is lower compared to 12.1% when using G derived from the
training set. Nevertheless, this process is more economic

than the construction of G using fully labeled training set.
Manual labels are difficult to obtain in practice, especially

when the number of concepts is in the order of thousands.

Thus, constructing graph based on initial annotation scores

is a promising way when a fully labeled training set such as

TRECVID 2005 is unavailable.

Effect of Baseline Performance. We now evaluate the sen-

sitivity of our approach to the performance of baseline de-

tectors. As mentioned in Section 6, instead of using fused

output of the three SVMs as baseline, here we use the pre-

diction output of each single (and relatively weak) SVM as

initial value for function g(·). The proposed DASD is then
applied to these three weak baselines respectively. The re-

sults on TRECVID 2006 test set are shown in Figure 6. Ap-

parently, the MAPs of all these weak detectors are consis-

tently and steadily improved with quite high performance

gain. Particularly, it improves the baseline of wavelet tex-

ture (MAP is just 0.036) by 24% (the left orange bar). From

this experiment, we can conclude that the proposed DASD

is able to achieve consistently better performance over var-

ious baseline detectors, even for some fairly weak ones.

Comparison with the State of the Art. We compare our

approach to three existing works in [1, 10, 24] for context-

based video annotation. As shown in Table 3, on TRECVID

2005, our approach is able to improve 11.9%. With simi-

lar experimental settings, Jiang et al. reported performance

gains of 2.2% over all 39 concepts and 6.8% over 26 se-

lected concepts [10], and Aytar et al. improved 4% [1]. The

most recent work on utilizing semantic context for video an-

notation is [24], in which a performance gain of 16.7% over

the same VIREO-374 baseline was reported on TRECVID

2006 test set. However, techniques in [24] did not show

the domain adaptation ability and the parameters were op-



TRECVID- 2005 2006 2007

SD 59s 84s 12s

DASD 89s 165s 28s

Table 4. Run time of SD and DASD on TRECVID 2005–2007

data sets. The experiments are conducted on a Intel Core 2 Duo

2.2GHz PC with 2G RAM.

timized separately for each of the concepts. In the contrast,

our approach adapts the concept affinity and uses uniform

parameter setting for all the concepts. We demonstrated a

performance gain of 17.5%, which to the best of our knowl-

edge is the highest reported improvement on exploiting se-

mantic context for video annotation.

Run Time. Our approach is extremely efficient. Con-

structing the semantic graph G using TRECVID 2005 de-
velopment set takes 284 seconds. The complexity of the

DASD algorithm is O(mn), wherem is the number of con-

cepts and n is the number of video shots. Table 4 listed

the detailed run time on each data set. We see that on the

TRECVID 2006 data set which contains 79,484 video shots,

the DASD algorithm finishes in just 165 seconds. In other

words, running the DASD over the 374 concepts for each

video shot only takes 2 milliseconds. This is much faster

than the existing works in [10, 17, 24], in which tens or

hundreds of hours are required due to the expensive train-

ing process involved in their approaches.

8. Conclusion

We have presented a novel and efficient approach, named

DASD, to exploit semantic context for improving large

scale video annotation accuracy. The semantic context

is modeled in an undirected and weighted concept graph,

which is then used to recover the consistency and smooth-

ness of video annotation results via a function level graph

diffusion process. The extensive experiments on 374 se-
mantic concepts over 340 hours of video data show that
the semantic context is powerful for enhancing video an-

notation accuracy and the proposed DASD algorithm con-

sistently and significantly improves the performance over

the vast majority of the evaluated concepts. The proposed

DASD algorithm is able to adapt the concept affinity to test

data from a different domain. The experimental results con-

firm that this adaptive approach can alleviate the domain-

shift-of-context problem and show further improvement of

the video annotation accuracy. In addition, we demonstrate

that the semantic graph can be bootstrapped using initial

annotation results from individual classifiers, which is very

helpful when an exhaustively labeled training set is not

available to construct the semantic graph.
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