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ABSTRACT

Transfer learning is a widely used method to build high performing computer vi-
sion models. In this paper, we study the efficacy of transfer learning by examining
how the choice of data impacts performance. We find that more pre-training data
does not always help, and transfer performance depends on a judicious choice
of pre-training data. These findings are important given the continued increase
in dataset sizes. We further propose domain adaptive transfer learning, a simple
and effective pre-training method using importance weights computed based on
the target dataset. Our methods achieve state-of-the-art results on multiple fine-
grained classification datasets and are well-suited for use in practice.

1 INTRODUCTION

Transfer learning using pre-trained models is one of the most successfully applied methods in the
field of computer vision. In practice, a model is first trained on a large labeled dataset such as Ima-
geNet (Russakovsky et al., 2015), and then fine-tuned on a target dataset. During fine-tuning, a new
classification layer is learned from scratch, but the parameters for the rest of the network layers are
initialized from the ImageNet pre-trained model. This method to initialize training of image models
has proven to be highly successful and is now a central component of object recognition (Razavian
et al., 2014), detection (Girshick, 2015; Ren et al., 2015; Huang et al., 2017), and segmentation
(Shelhamer et al., 2017; Chen et al., 2018; He et al., 2017).

By initializing the network with ImageNet pre-trained parameters, models train with higher accuracy
and converge faster, requiring less training time. They have also achieved good performance when
the target dataset is small. Most prior work have considered only ImageNet as the source of pre-
training data due its large size and availability. In this work, we explore how the choice of pre-
training data can impact the accuracy of the model when fine-tuned on a new dataset.

To motivate the problem, consider a target task where the goal is to classify images of different food
items (e.g., ‘hot dog’ v.s. ‘hamburger’) for a mobile application (Anglade, 2017). A straight-forward
approach to applying transfer learning would be to employ an ImageNet pre-trained model fine-
tuned on a food-specific dataset. However, we might wonder whether the pre-trained model, having
learned to discriminate between irrelevant categories (e.g., ‘dogs’ vs. ‘cats’), would be helpful in
this case of food classification. More generally, if we have access to a large database of images, we
might ask: is it more effective to pre-train a classifier on all the images, or just a subset that reflect
food-like items?

Furthermore, instead of making a hard decision when selecting pre-training images, we can consider
a soft decision that weights each example based on their relevancy to the target task. This could be
estimated by comparing the distributions of the source pre-training data and the target dataset. This
approach has parallels to the covariate shift problem often encountered in survey and experimental
design (Shimodaira, 2000).

We study different choices of source pre-training data and show that a judicious choice can lead
to better performance on all target datasets we studied. Furthermore, we propose domain adaptive
transfer learning - a simple and effective pre-training method based on importance weights computed
based on the target dataset.
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1.1 SUMMARY OF FINDINGS

More pre-training data does not always help. We find that using the largest pre-training dataset
does not always result in the best performance. By comparing results of transfer learning on different
subsets of pre-training data, we find that the best results are obtained when irrelevant examples are
discounted. This effect is particularly pronounced with fine-grained classification datasets.

Matching to the target dataset distribution improves transfer learning. We demonstrate a
simple and computationally-efficient method to determine relevant examples for pre-training. Our
method computes importance weights for examples on a pre-training dataset and is competitive
with hand-curated pre-training datasets. Using this method, we obtain state-of-the-art results on the
fine-grained classification datasets we studied (e.g., Birdsnap, Oxford Pets, Food-101).

Fine-grained target tasks require fine-grained pre-training. We find that transfer learning per-
formance is dependent on whether the pre-training data captures similar discriminative factors of
variations to the target data. When features are learned on coarse grained classes, we do not observe
significant benefits transferred to fine-grained datasets.

2 RELATED WORK

The success of applying convolution neural networks to the ImageNet classification problem
(Krizhevsky et al., 2012) led to the finding that the features learned by a convolutional neural net-
work perform well on a variety of image classification problems (Razavian et al., 2014; Donahue
et al., 2014). Further fine-tuning of the entire model was found to improve performance (Agrawal
et al., 2014).

Yosinski et al. (2014) conducted a study of how transferable ImageNet features are, finding that the
higher layers of the network tend to specialize to the original task, and that the neurons in different
layers in a network were highly co-adapted. They also showed that distance between tasks matters
for transfer learning and examined two different subsets (man-made v.s. natural objects). Azizpour
et al. (2016) also examined different factors of model design such as depth, width, data diversity
and density. They compared data similarity to ImageNet based on the task type: whether it was
classification, attribute detection, fine-grained classification, compositional, or instance retrieval.

Pre-training on weakly labeled or noisy data was also found to be effective for transfer learning.
Krause et al. (2016) obtained additional noisy training examples by searching the web with the class
labels. We note that our method does not use the class labels to collect additional data. Mahajan et al.
(2018) were able to attain impressive ImageNet performance by pre-training on 3 billion images
from Instagram. Notably, they found that it was important to appropriately select hash-tags (used as
weak labels) for source pre-training.

Understanding the similarity between datasets based on their content was studied by Cui et al.
(2018), who suggest using the Earth Mover’s Distance (EMD) as a distance measure between
datasets. They constructed two pre-training datasets by selecting subsets of ImageNet and iNat-
uralist, and showed that selecting an appropriate pre-training subset was important for good perfor-
mance. Ge & Yu (2017) used features from filter bank responses to select nearest neighbor source
training examples and demonstrated better performance compared to using the entire source dataset.
Zamir et al. (2018) define a method to compute transferability between tasks on the same input; our
work focuses on computing relationships between different input datasets.

In a comprehensive comparison, Kornblith et al. (2018) studied fine-tuning a variety of models
on multiple datasets, and showed that performance on ImageNet correlated well with fine-tuning
performance. Notably, they found that transfer learning with ImageNet was ineffective for small,
fine-grained datasets.

Our approach is related to domain adaptation which assumes that the training and test set have
differing distributions (Shimodaira, 2000). We adopt similar ideas of importance weighting ex-
amples (Sugiyama et al., 2007; Saerens et al., 2002; Zhang et al., 2013) and adapt them to the
pre-training step instead, showing that this is an effective approach.
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In this work, we show that transfer learning to fine-grained datasets is sensitive to the choice of
pre-training data, and demonstrate how to select pre-training data to significantly improve transfer
learning performance. We build on the work of (Cui et al., 2018; Ge & Yu, 2017), demonstrating
the effectiveness of constructing pre-training datasets. Furthermore, we present a simple, scalable,
and computationally-efficient way to construct pre-training datasets.

3 TRANSFER LEARNING SETUP

We use the ANON1 (Anonymous) and ImageNet (Russakovsky et al., 2015) datasets as our source
pre-training data and consider a range of target datasets for fine-tuning (Section 3.2). For each
target dataset, we consider different strategies for selecting pre-training data, and compare the fine-
tuned accuracy. We do not perform any label alignment between the source and target datasets.
During fine-tuning, the classification layer in the network is trained from random initialization. The
following sections describe the datasets and experiments in further detail.

3.1 SOURCE PRE-TRAINING DATA

The ANON dataset has 300 million images and 18,291 classes. Each image can have multiple labels
and on average, each image has 1.26 labels. The large number of labels include many fine-grained
categories, for example, there are 1,165 different categories for animals. While the labels are noisy
and often missing, we do not find this to a be a problem for transfer learning in practice. The labels
form a semantic hierarchy: for example, the label ‘mode of transport’ includes the label ‘vehicle’,
which in turn includes ‘car’.

The semantic hierarchy of the labels suggests a straight-forward approach to constructing different
subsets of ANON as source pre-training data. Given a label, we can select all of its child labels
in the hierarchy to form a label set, with the corresponding set of training examples. We created 7
subsets of ANON across a range of labels2 (Table 1).

Table 1: ANON subsets by hand-selecting labels.
Top Ancestor Label # Examples # Classes

Entire Dataset 300M 18,291

Animal 33.5M 2,992
Bird 5.4M 403

Car 27.9M 2,959
Aircraft 3.1M 418
Vehicle 43.7M 3,969

Transport 45.0M 3,987

Food 18.4M 3,532

However, creating subsets using the label hierarchy can be limiting for several reasons: (a) the
number of examples per label are pre-defined by the ANON dataset; (b) not all child labels may be
relevant; (c) a union over different sub-trees of the hierarchy may be desired; and (d) not all source
datasets have richly-defined label hierarchies. In section 3.3, we discuss a domain adaptive transfer
learning approach that automatically selects and weights the relevant pre-training data.

3.2 TARGET TRAINING DATASET

We evaluate the performance of transfer learning on a range of classification datasets (Table 2) that
include both general and fine-grained classification problems. Using the same method as Krause

1Dataset anonymized for ICLR submission.
2The following parent-child relationships exists in the label hierarchy: bird ⊂ animal; car ⊂ vehicle ⊂

transport; aircraft ⊂ vehicle ⊂ transport. We note that Anonymous excluded classes with too few training
examples during training, while we include all classes available.
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et al. (2016), we ensured that the source pre-training data did not contain any of the target training
data by removing all near-duplicates of the target training and test data from the ANON dataset3.

Table 2: Target datasets for fine-tuning.
Target Dataset # Training Examples # Test Examples # Classes

CIFAR-10 (Krizhevsky & Hinton, 2009) 50,000 10,000 10
Birdsnap (Berg et al., 2014) 47,386 2,443 78

Stanford Cars (Krause et al., 2013) 8,144 8,041 196
FGVC Aircraft (Maji et al., 2013) 6,667 3,333 100

Oxford-IIIT Pets (Parkhi et al., 2012) 3,680 3,369 37
Food-101 (Bossard et al., 2014) 75,750 25,250 101

3.3 DOMAIN ADAPTIVE TRANSFER LEARNING BY IMPORTANCE WEIGHTING

In this section, we propose domain adaptive transfer learning, a simple and effective way to weight
examples during pre-training. Let us start by considering a simplified setting where our source and
target datasets are over the same set of values in pixels x, and labels y; we will relax this assumption
later in this section.

During pre-training, we usually minimize parameters θ over a loss function Ex,y∼Ds [L(fθ(x), y)]
computed empirically over a source dataset Ds. L(fθ(x), y) is often the cross entropy loss between
the predictions of the model fθ(x) and the ground-truth labels y. However, the distribution of source
pre-training datasetDs may differ from the target datasetDt. This could be detrimental as the model
may emphasize features which are not relevant to the target dataset. We will mitigate this by up-
weighting the examples that are most relevant to the target dataset. This is closely related4 to prior
probability shift (Saerens et al., 2002; Storkey, 2009) also known as target shift (Zhang et al., 2013).

We start by considering optimizing the loss function over the target dataset, Dt instead:

Ex,y∼Dt

[
L(fθ(x), y)

]
=
∑
x,y

Pt(x, y)L(fθ(x), y)

where we use Ps and Pt to denote distributions over the source and target datasets respectively.
We first reformulate the loss to include the source dataset Ds:

=
∑
x,y

Ps(x, y)
Pt(x, y)

Ps(x, y)
L(fθ(x), y) =

∑
x,y

Ps(x, y)
Pt(y)Pt(x|y)
Ps(y)Ps(x|y)

L(fθ(x), y)

Next, we make the assumption that Ps(x|y) ≈ Pt(x|y), that is the distribution of examples given
a particular label in the source dataset is approximately the same as that of the target dataset. We
find this assumption reasonable in practice: for example, the distribution of ‘bulldog’ images from
a large natural image dataset can be expected to be similar to that of a smaller animal-only dataset.
This assumption also allows us to avoid having to directly model the data distribution P (x).

Cancelling out the terms, we obtain:

≈
∑
x,y

Ps(x, y)
Pt(y)

Ps(y)
L(fθ(x), y) = Ex,y∼Ds

[Pt(y)
Ps(y)

L(fθ(x), y)
]

Intuitively, Pt(y) describes the distribution of labels in the target dataset, and Pt(y)/Ps(y) reweights
classes during source pre-training so that the class distribution statistics match Pt(y). We refer to

3We used a CNN-based duplicate detector and chose a conservative threshold for computing near-duplicates
to err on the side of ensuring that duplicates were removed. We removed a total of 48k examples from ANON,
corresponding to duplicates that were found in target datasets.

4Prior work on prior probability shift usually considered shifts between train and test set, while we instead
consider differences between the pre-training and training datasets.
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Pt(y)/Ps(y) as importance weights and call this approach of pre-training Domain Adaptive Transfer
Learning.

For this approach to be applicable in practice, we need to relax the earlier assumption that the source
and target datasets share the same label space. Our goal is to estimate Pt(y)/Ps(y) for each label in
the source dataset. The challenge is that the source and target datasets have different sets of labels.
Our solution is to estimate both Pt(y) and Ps(y) for labels in the source domain. The denominator
Ps(y) is obtained by dividing the number of times a label appears by the total number of source
dataset examples. To estimate Pt(y), we use a classifier to compute the probabilities of labels from
source dataset on examples from the target dataset.

Concretely, we first train an image classification model on the entire source dataset. Next, we feed
only the images from the target dataset into this model to obtain a prediction for each target example.
The predictions are averaged across target examples, providing an estimate of Pt(y), where y is
specified over the source label space. We emphasize that this method does not use the target labels
when computing importance weights.

Our approach is in contrast to Ge & Yu (2017), which is computationally expensive as they compute
a similarity metric between every pair of images in the source dataset and target dataset. It is also
more adaptive than Cui et al. (2018), which suggests selecting appropriate labels to pretrain on,
without specifying a weight on each label.

4 EXPERIMENTS

We used the Inception v3 (Szegedy et al., 2016), and AmoebaNet-B (Real et al., 2018) models in
our experiments.

For Inception v3 models, we pre-train from random initialization for 2,000,000 steps using Stochas-
tic Gradient Descent (SGD) with Nesterov momentum. Each mini-batch contained 1,024 examples.
The same weight regularization and learning rate parameters were used for all pre-trained models
and were selected based on a separate hold-out dataset. We used a learning rate schedule that first
starts with a linear ramp up for 20,000 steps, followed by cosine decay.

AmoebaNet-B models followed a similar setup with pre-training from random initialization for
250,000 steps using SGD and Nesterov momentum. We used larger mini-batches of 2,048 examples
to speed up training. The same weight regularization and learning rate parameters were used for all
models, and matched the parameters that Real et al. (2018) used for ImageNet training. We chose
to use AmoebaNet-B with settings (N=18, F=512), resulting in over 550 million parameters when
trained on ImageNet, so as to evaluate our methods on a large model.

During fine-tuning, we used a randomly initialized classification layer in place of the pre-trained
classification layer. Models were trained for 20,000 steps using SGD with momentum. Each mini-
batch contained 256 examples. The weight regularization and learning rate parameters were deter-
mined using a hold-out validation set. We used a similar learning rate schedule with a linear ramp
for 2,000 steps, followed by cosine decay.

For domain adaptive transfer learning, we found that adding a smooth prior when computing Pt(y)
helped performance with ImageNet as a source pre-training data. Hence, we used a temperature5 of
2.0 when computing the softmax predictions for the computation of the importance weights.

4.1 PRE-TRAINING SETUP

While it is possible to directly perform pre-training with importance weights, we found it challeng-
ing as the importance weights varied significantly. When pre-training on a large dataset, this means
that it is possible to have batches of data that are skewed in their weights with many examples
weighted lightly. This is also computationally inefficient as the examples with very small weights
contribute little to the gradients during training.

Hence, we created pre-training datasets by sampling examples from the source dataset using the
importance weights. We start by choosing a desired pre-training dataset size, often large. We then

5The logits are divided by the temperature before computing the softmax.
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Table 3: Transfer learning results with Inception v3. Each row corresponds to a pre-training method.
Adaptive transfer refers to our proposed method described in section 3.3. Each column corresponds
to one target dataset. Results reported are top-1 accuracy for all datasets except Oxford-IIIT Pets,
where we report mean accuracy per class. All results are averaged over 5 fine-tuning runs. Adaptive
transfer is better or competitive with the hand selected subsets.

Target Dataset
Pre-training Birdsnap Oxford-IIIT Stanford FGVC Food-101 CIFAR-10

Method Pets Cars Aircraft

Entire ANON Dataset 74.2 92.5 94.0 88.2 88.6 97.6
ANON - Bird 80.7 86.4 88.1 74.9 87.5 96.9

ANON - Animal 77.8 96.7 89.1 78.2 89.2 98.1
ANON - Car 73.4 79.8 96.0 82.1 86.1 93.0

ANON - Aircraft 73.4 78.7 88.2 91.1 87.1 96.1
ANON - Vehicle 74.2 79.6 95.8 86.8 81.6 96.4

ANON - Transport 74.4 78.4 95.9 88.4 86.9 96.2
ANON - Food 74.9 81.1 90.3 85.6 93.5 96.4

ANON - Adaptive Transfer 81.7 97.1 95.7 94.1 94.1 98.3
ImageNet - Entire Dataset 77.2 93.3 91.5 88.8 88.7 97.4

ImageNet - Adaptive Transfer 76.6 94.1 92.1 87.8 88.9 97.7
Random Initialization 75.2 80.8 92.1 88.3 86.4 95.7

sample examples from the source dataset at a rate proportional to the importance weights, repeating
examples as needed. We report results that construct a pre-training dataset of 80 million examples
for ANON, and 2 million examples for ImageNet. We used the same sampled pre-training dataset
with both the Inception v3 and AmoebaNet-B experiments.

4.2 TRANSFER LEARNING RESULTS

Domain adaptive transfer learning is better. When the source pre-training domain matches the
target dataset, such as in ANON-Bird to Birdsnap or ANON-Cars to Stanford Cars, transfer learning
is most effective (Table 3). However, when the domains are mismatched, we observe negative
transfer: ANON-Cars fine-tuned on Birdsnap performs poorly. Strikingly, this extends to categories
which are intuitively close: aircrafts and cars. The features learned to discriminate between types of
cars does not extend to aircrafts, and vice-versa.

More data is not necessarily better. Remarkably, more data during pre-training can hurt transfer
learning performance. In all cases, the model pre-trained on the entire ANON dataset did worse than
models trained on more specific subsets. These results are surprising as common wisdom suggests
that more pre-training data should improve transfer learning performance if generic features are
learned. Instead, we find that it is important to determine how relevant additional data is.

The ImageNet results with Domain Adaptive Transfer further emphasize this point. For ImageNet
with Adaptive Transfer, each pre-training dataset only has around 450k unique examples. While this
is less than half of the full ImageNet dataset of 1.2 million examples, the transfer learning results
are slightly better than using the full ImageNet dataset for many of the target datasets.

Domain adaptive transfer is effective. When pre-training with ANON and ImageNet, we find
that the domain adaptive transfer models are better or competitive with manually selected labels
from the hierarchy. For datasets that are composed of multiple categories such as CIFAR-10 which
includes animals and vehicles, we find further improved results since the constructed dataset includes
multiple different categories.

In Figure 1, we observe that the distributions are much more concentrated with FGVC Aircraft and
Stanford Cars: this arises from the fact that ImageNet has only coarse-grained labels for aircraft and
cars. In effect, ImageNet captures less of the discriminative factors of variation that is captured in
either FGVC Aircraft and Stanford Cars. Hence, we observe that transfer learning only improves
the results slightly.
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Figure 1: Distribution of importance weights for each target dataset when using ImageNet as a source pre-
training dataset. The horizontal axis represents the top 100 ImageNet labels sorted by importance weight for
each dataset; each dataset has a different order. The distributions vary widely between target datasets. FGVC
Aircraft selects only a few labels that turn out to be coarse grained, whereas Oxford Pets selects a wider variety
of fine-grained labels. This reflects the inherent bias in the ImageNet dataset.

4.3 COMPARING PRE-TRAINING SAMPLING MECHANISMS

In section 4.1, we described a method to construct pre-training datasets from sampling the source
dataset. This process also allows us to study the effect of different distributions. Rather than sam-
pling with replacement, as we did earlier, we could also sample without replacement when construct-
ing the pre-training dataset. When sampling without replacement, we deviate from the importance
weights assigned, but gain more unique examples to train on. We compare these two methods of
sampling: (a) sampling with replacement - ‘same distribution matcher’, and (b) sampling without
replacement - ‘elastic distribution matcher’. Details of the methods are elaborated in the appendix.
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Figure 2: Performance (top) and unique examples (bottom) of the same distribution matcher and elastic dis-
tribution matcher at different sampled dataset sizes. We see that when dataset size increases, the performance
of same distribution matcher increases and then saturates, while that of elastic distribution matcher drops after
a peak. Notice that the elastic distribution matcher also has significantly more unique examples than same
distribution matcher as the dataset size increases.

We find that the performance of the same distribution matcher increases, and then saturates. Con-
versely, the elastic distribution matcher performance first increases then decreases. Note that at the
low end of the dataset sizes, both methods will generate similar datasets. Thus, the later decrease in
performance from the elastic distribution matcher comes from diverging from the original desired
distribution. This indicates that using the importance weights during pre-training is more important
than having more unique examples to train on.

4.4 RESULTS ON LARGE MODELS

We furthered studied our method on large models to understand if large models are better able to
generalize because the increased capacity enables them to capture more factors of variation. We
conducted the same experiments on AmoebaNet-B, with over 550 million parameters.
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Table 4: Transfer learning results with AmoebaNet-B.
Target Fine-tuned Dataset

Pre-training Data Birdsnap Oxford-IIIT Stanford FGVC Food-101 CIFAR-10
Pets Cars Aircraft

Entire ANON Dataset 80.3 94.5 95.3 90.5 92.0 98.6
ANON - Bird 85.5 90.4 92.0 86.9 90.7 97.8

ANON - Animal 84.1 96.4 93.2 90.0 92.3 98.8
ANON - Car 79.0 88.9 96.2 92.2 90.1 96.7

ANON - Aircraft 78.0 87.7 93.3 92.5 89.8 97.2
ANON - Vehicle 78.8 88.6 96.0 93.0 90.4 97.2

ANON - Transport 79.2 89.1 95.9 93.1 90.4 97.3
ANON - Food 79.7 89.2 92.6 88.7 95.1 97.5

ANON - Adaptive Transfer 85.1 96.8 95.8 92.8 95.3 98.6
ImageNet - Entire Dataset 80.8 94.5 94.2 90.7 91.7 98.0

ImageNet - Adaptive Transfer 80.7 95.1 93.5 89.2 91.5 98.0

Best Published Results 80.2a,f 94.3b 94.1c 92.9c,f 90.4d 98.5e

a Wei et al. (2018) b Kornblith et al. (2018) c Yu et al. d Cui et al. (2018) e Cubuk et al. (2018)
f Krause et al. (2016) achieve 83.9% on Birdsnap and 94.5% on FGVC Aircraft by adding additional bird and aircraft images during training of the source and target
datasets; images were collected from Google image search using class names from the target datasets.

We found that the general findings persisted with AmoebaNet-B: (a) using the entire ANON dataset
was always worse compared to an appropriate subset and (b) our domain adaptive transfer method
was better or competitive with the hand selected subsets.

Furthermore, we find that the large model was also able to narrow the performance gap between
the more general subsets and specific subsets: for example, the performance on Birdsnap between
ANON-Bird and ANON-Animal is smaller with AmoebaNet-B compared to Inception v3. We also
observe better transfer learning between the transportation datasets compared to Inception v3.

Our results are state of the art compared to the best published results (Table 4). The performance
of the AmoebaNet-B was also better in all cases than Inception v3, except for the FGVC Aircraft
dataset. This is consistent with Kornblith et al. (2018) who also found that Inception v3 did slightly
better than NasNet-A (Zoph et al., 2017).

5 DISCUSSION

Transfer learning appears most effective when the pre-trained model captures the discriminative
factors of variation present in the target dataset. This is reflected in the significant overlap in the
classes between ImageNet and other datasets such as Caltech101, CIFAR-10, etc. where transfer
learning with ImageNet is successful. Our domain adaptive transfer method is also able to identify
the relevant examples in the source pre-training dataset that capture these discriminative factors.

Conversely, the cases where transfer learning is less effective are when it fails to capture the dis-
criminative factors. In the case of the “FGVC Aircraft” dataset (Maji et al., 2013), the task is to
discriminate between 100 classes over manufacturer and models of aircraft (e.g., Boeing 737-700).
However, ImageNet only has coarse grained labels for aircraft (e.g., airliner, airship). In this case,
ImageNet models tend to learn to “group” different makes of aircraft together rather than differenti-
ate them. It turns out that the ANON dataset has fine-grained labels for aircraft and is thus able to
demonstrate better transfer learning efficacy.

Our results using AmoebaNet-B show that even large models transfer better when pre-trained on
a subset of classes, suggesting that they make capacity trade-offs between the fine-grained classes
when training on the entire dataset. This finding posits new research directions for developing large
models that do not make such a trade-off.

We have seen an increase in dataset sizes since ImageNet; for example, the YFCC100M dataset
(Thomee et al., 2016) has 100M examples. We have also seen developments of more efficient
methods to train deep neural networks. Recent benchmarks (Coleman et al., 2018) demonstrate that
it is possible to train a ResNet-50 model in half an hour, under fifty US dollars. This combination of
data and compute will enable more opportunities to employ better methods for transfer learning.
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6 APPENDIX

6.1 DISTRIBUTION MATCHING

We describe the distribution matching methods in detail in this section.

Let us start by assuming that we have a source dataset with 100 examples with three different classes:
(A: 10 examples), (B: 40 examples), and (C: 50 examples). Next, consider a scenario where the
target dataset has a predicted label distribution over the source label set such that (A: 50%), (B:
30%), and (C: 20%). From this we can examine how to construct a pre-training dataset, say of size
30 examples.

With the same distribution matcher, we sample the examples at a rate proportional to the impor-
tance weight computed using the ratio of the two distributions. Hence, (A: 0.5/0.1 = 5), (B:
0.3/0.4 = 0.75), (C: 0.2/0.5 = 0.4). We then adjust this based on the desired pre-training dataset
size (30/100 = 0.3). Thus, in expectation, this results in the following number of examples per
class: A: (0.3× 5× 10 = 15), (B: 0.3× 0.75× 40 = 9), (C: 0.3× 0.4× 50 = 6).

For the elastic distribution matcher, we avoid selecting each example more than once. In order to
keep the distribution as similar to the desired one, we consider a sequential approach: we start with
the class with the highest importance weight, in this case A, and exhaust the 10 samples available.
Next, we recursively consider sampling a dataset of the remaining desired examples (30− 10 = 20)
from the rest of the classes. Thus, we obtain the following number of examples per class: (A : 10),
(B : 12), (C : 8). In Table 5, we show how the sampling distribution turns out to differ for the
CIFAR-10 dataset when using ImageNet as source pre-training data.

6.2 UNDERSTANDING THE IMPORTANCE OF THE PRE-TRAINING DISTRIBUTION

To further understand the importance of the distribution, we created 3 ANON subsets of the same
size but with different distributions from top 4,000 matched labels on Oxford-IIIT Pets. The uni-
form distribution experiment tells us how important it is to select relevant images, and the reverse
distribution experiment tells us the importance of choosing the weighted distribution that matches
the target dataset.

We observed that their transfer performance aligns well with the degree that their distribution
matches the distribution of target dataset (Table 6).
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Table 5: Comparison of ImageNet labels statistics between the same distribution matcher and elastic
distribution matcher for CIFAR-10.

# ImageNet Label # Examples Sample Rate % Sample Rate %
in ImageNet (Same Distribution) (Elastic Match)

1 Moving van 1159 576.95% 100.00%
2 Sorrel 1300 370.50% 100.00%
3 Container ship 1300 212.25% 100.00%
4 Airliner 1300 189.85% 100.00%
5 Amphibian 1300 149.87% 100.00%
6 Thresher 1300 143.89% 100.00%
7 Hartebeest 1300 138.48% 100.00%
8 Japanese spaniel 771 201.66% 100.00%
9 Chain saw 1194 112.37% 100.00%
10 Fox squirrel 1206 110.68% 100.00%
11 Convertible 1300 92.86% 100.00%
12 Milk can 1097 95.20% 100.00%
13 Gazelle 1300 79.34% 95.39%
14 Speedboat 1300 79.25% 95.28%
15 Rock beauty 969 86.11% 100.00%
16 Yawl 1206 66.16% 79.55%
17 Can opener 1300 61.23% 73.62%
18 Walker hound 1025 69.78% 83.90%
19 Persian cat 1300 54.64% 65.69%
20 Brambling 1300 53.09% 63.83%
...

991 Toilet seat 1300 0.36% 0.43%
992 Gown 1300 0.35% 0.42%
993 Cup 1300 0.35% 0.42%
994 Porcupine 1300 0.34% 0.41%
995 Pencil box 1300 0.34% 0.41%
996 Miniskirt 1300 0.32% 0.39%
997 Strainer 1300 0.29% 0.35%
998 Notebook 1300 0.25% 0.30%
999 Radio 1300 0.24% 0.29%

1000 Suit 1300 0.23% 0.28%

Table 6: Transfer performance on Oxford-IIIT Pets from ANON subsets of the same size (80M) but
with different distribution: Same is the distribution of source dataset labels predicted from target
dataset examples, Uniform is a uniform distribution on all selected labels, and Reverse is a distri-
bution obtained by swapping the sampling rates between the highest and the lowest labels from the
Same distribution.

Target Distribution # Unique Examples Transfer Performance

Same 14.9M 97.0
Uniform 54.7M 95.3
Reverse 10.4M 84.9
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