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Abstract

Fine-tuning a pre-trained neural language model with
a task specific output layer is the de facto approach
of late when dealing with document classification. This
technique is inadequate when labeled examples are un-
available at training time and when the metadata ar-
tifacts in a document must be exploited. We address
these challenges by generating document representa-
tions that capture both text and metadata in a task ag-
nostic manner. Instead of traditional auto-regressive or
auto-encoding based training, our novel self-supervised
approach learns a soft-partition of the input space when
generating text embeddings by employing a pre-learned
topic model distribution as surrogate labels. Our solu-
tion also incorporates metadata explicitly rather than
just augmenting them with text. The generated docu-
ment embeddings exhibit compositional characteristics
and are directly used by downstream classification tasks
to create decision boundaries from a small number of la-
bels, thereby eschewing complicated recognition meth-
ods. We demonstrate through extensive evaluation that
our proposed cross-model fusion solution outperforms
several competitive baselines on multiple domains.

Introduction
The current popularity of transformer (Vaswani et al. 2017)
based models in NLP is owed to their capacity in construct-
ing semantically rich representations and to their ability to
accommodate transfer-learning. This enables users to pre-
train language models on large unlabeled corpora, and then
fine-tune the representations using smaller sets of labeled
examples (Howard and Ruder 2018). However, the state-of-
the-art research for few-short learning is still far from human
performance on many tasks. This is even more pronounced
in zero-shot experiments, where no labeled data is available
at training time.

Due to the emphasis on scalability and generalizability
of these models, what is often left out of consideration is the
practical aspects of how these models are commonly applied
in real-world settings, where the datasets are accompanied
by metadata tags that include some signal about the nature
and content of each document in the corpus. This metadata
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is often stripped before models are applied to the text, in or-
der to avoid convoluted and bespoke architectures. In some
cases, the metadata is simply concatenated to the document
(Zhang et al. 2020) without specific controls on how repre-
sentations are generated from raw text versus metadata tags.

Another aspect that current research often leaves out is
the topic distribution of the unlabeled dataset. Transformer
models are commonly trained in a stochastic fashion, where
the global composition of topics in the corpus is not explic-
itly built into the loss function. Often the pre-training cor-
pus is large enough for this effect to likely be negligible, but
when the corpus is smaller, this lack of insight into global
distributional statistics may have an impact on the compos-
tionality of the resulting representations.

In this study, we explore how addressing these issues can
improve the performance of transformer-based models on
document classification tasks. We propose a framework that
encapsulates universal distributional statistics about the raw
text, as well as encodings for metadata tags. Figure 1 illus-
trates our framework when applied to a hypothetical dataset
of product reviews with a diverse set of metadata artifacts.
The raw text of each review is paired with other metadata
artifacts available, such as user profile information, prod-
uct identifiers, and location information. All the artifacts are
fed into a deep learning model with the self-learning mech-
anism adjusted to match the type of artifact presented. For
example, for the raw text of the reviews, instead of using
a standard Masked Language Model (MLM) objective (De-
vlin et al. 2018), the model learns by predicting the latent
topic distribution of the text based on a pre-trained genera-
tive model such as LDA (Blei, Ng, and Jordan 2003). For
categorical metadata such as product identifiers and loca-
tion, the model predicts the specific metadata tag. Certain
metadata can also be directly encoded, bypassing the self-
learning task. The resulting representations are semantically
rich and can be plugged into a simple K-NN model for var-
ious label-prediction tasks, bypassing the need for compli-
cated, task-specific classification models.

We demonstrate how the representations created by our
framework exhibit compositional characteristics that can be
useful to granular classification tasks. While small and scal-
able to many different settings, our framework improves the
performance of transformer-based language models on clas-
sification tasks on a variety of datasets from different do-



Figure 1: Multi-part input document is converted into an embedding representation. Self-supervision is based on latent topic
distribution and (optional) metadata reconstruction. An input is classified based on its neighborhood in the representation space.

mains. Our experiments show that regardless of the underly-
ing neural architecture, performance is enhanced by a robust
minimum of 5% over a conventional fine-tuned model. The
remaining sections of this paper lay out our methodology,
describe our datasets, and present experimental results.

Related Work
Semi-supervised learning in neural language models has
largely focused on “pre-train and fine-tune” pipelines
(Howard and Ruder 2018), which take advantage of large
unlabeled datasets, paired with small labeled datasets. Re-
searchers have explored few-sample learning (Sharaf, Has-
san, and au2 2020), to handle prohibitively small labeled
datasets. However, performance on NLP tasks remains far
from human baselines (Wang et al. 2020) due to the fact
that the inductive fine-tuning process fails to directly take
advantage of a dataset’s universal distributional character-
istics beyond what is encoded in the pre-trained representa-
tions. These representations are sometimes paired with other
distributional signal such as topic models and tf-idf vectors
(Lim and Madabushi 2020).

Transductive learning approaches actively take advantage
of sample distributions during inference. This paradigm has
been used to improve performance on tasks such as cross-
domain text classification (Ionescu and Butnaru 2018) and
neural machine translation (Poncelas, de Buy Wenniger, and
Way 2019). However, these studies do not address cases
where the original dataset lacks enough labeled examples.
Similarly, multi-task learning studies have addressed cases
where the model can be robustly trained for one task such
as entity extraction, and scale to other tasks such as co-
reference resolution (Sanh, Wolf, and Ruder 2018).

In this study, we propose a transductive framework that
can take advantage of a limited labeled dataset paired with a
larger unlabeled dataset to generate rich representations for
document classification tasks.

Model
We first introduce the encoder architecture that is used to
obtain an input representation that captures both the text and
metadata information in a task agnostic manner. Then we
present the decoder structure that employs self-supervision
to define the training objective. Finally, we discuss how the

learned representation is directly used in downstream classi-
fication tasks. Figure 2 provides an overview of our model.

Representation Learning
Given N training examples X = {x1, ..., xN}, let x =
(τ,m1, ...,mP ) be an input that contains text τ accompa-
nied with P different metadata artifacts m. The text consist
of T tokens (τ1, ..., τT ) and each metadata mp is a sequence
(mp1, ...,mpl, ...mpL) of fixed length L. Sequences shorter
than T or L are simply padded. Let mpl ∈ Ωp, where Ωp is
the discrete set of information for pth metadata.

The text input is converted into an interim embedding rep-
resentation φ using a function

f : τ → φ, φ ∈ RDt (1)

where Dt is the text embedding size. The function f is a
transformer model that employs self-attention mechanism to
capture dependencies between arbitrary positions of text in
an efficient manner. The input tokens are augmented with a
special token [CLS] that represents the aggregate informa-
tion of the entire sequence. The output corresponding to this
special token at the last layer is used as φ.

There are P independent non-linear functions to convert
each metadata input into an interim embedding ψ:

gp : mpl → ψpl, ψpl ∈ RDp , ∀p = 1...P, l = 1...L
(2)

where Dp is the metadata embedding size. We make use of
a feed-forward network with multiple layers as the conver-
sion function g, with each layer comprising of a linear trans-
formation followed by a non-linear activation. If a meta-
data cannot be meaningfully interpreted (e.g. product code
or user id), we use one-hot encoding of the metadata values
as input. Otherwise, the input is set to a 300 dimensional
vector derived by averaging the Glove (Pennington, Socher,
and Manning 2014) vectors corresponding to the words in
metadata text. The embedding for a metadata sequence is
aggregated using a mean function that masks out padded po-
sitions γ ∈ {0, 1} as

ψp =
1

L

∑
l

γplψpl. (3)

The final embedding representation for an input x is ob-
tained by first concatenating the text and metadata embed-



dings and then projecting them to a lower-dimensional space
using a linear transformation as follows:

z = W>z (φ⊕ ψ1 ⊕ ...⊕ ψP ), z ∈ RDe (4)

where z is the final input embedding of size De and Wz ∈
R(Dt+

∑
pDp)×De is a parameter matrix.

Figure 2: Model Architecture. Embeddings learned indepen-
dently for different input types are combined and then pro-
jected to a lower dimensional space. The model is trained
using a multi-task objective function.

Self-supervised Loss
The key idea in self-supervision is to generate synthetic la-
bels automatically from the data and use these labels to con-
struct loss functions. Instead of the typical word masking so-
lution, we propose a cross-model fusion approach. A topic
model for the text corpora is learned in an unsupervised
manner and the inferred topic distribution is used as syn-
thetic labels. By discovering latent semantics embedded in
the text, topic models introduce a partition of the input space.
Importantly, the mixed membership of topics enables a soft
partition rather than a hard partition, thereby efficiently han-
dling overlapping boundaries and complex structures.

Formally, the topic distribution ϕ corresponding to an in-
put text is obtained using a function

h : τ → ϕ, ϕ ∈ RK (5)

where K is the number of topics and h is a topic model-
ing function based on LDA. The input embeddings obtained
using (4) are first linearly projected into the topic space as:

λn = W>t z
n, λn ∈ RK . (6)

Here λn is the projected distribution in topic space for the
nth training example and Wt ∈ RDe×K is a parameter ma-
trix. The Kullback-Leibler (KL) divergence between the pre-
learned topic distribution and the input projection is mini-
mized during training. This translates into the following loss
function for text inputs:

Ltext =
∑
n

∑
k

ϕnk log
ϕnk
λnk
. (7)

For the metadata, we employ a loss function that aims to
minimize the reconstruction error between the input meta-
data value and the value decoded from the final embedding

representation. Given that each metadata is a sequence of
values from a discrete set, a multi-label binary cross-entropy
loss is an appropriate choice.

Let there be V p possible values for the pth metadata i.e.
|Ωp| = V p and let yp ∈ {0, 1}V

p

denote the multi-label val-
ues consolidated from an input metadata sequence. A linear
transformation decoder layer first converts the input embed-
dings into the metadata space as

ζnp = W>p z
n, ζnp ∈ RV

p

(8)

where ζnp is the projection for the nth input and Wp ∈
RDe×V p

is a parameter matrix as before. The reconstruction
loss function is formulated as:

Lmeta
p =

∑
n

∑
v

−yp,v log σ(ζnp,v)− (1− yp,v) log (1− σ(ζnp,v))

(9)

where σ is the standard sigmoid function.
Using the text and metadata losses in (7) and (9), the

training objective is framed as

min
θ

ωtextLtext +
∑
p

ωmetap Lmetap (10)

where θ is the set of all model parameters and ω is a real-
valued hyper-parameter that controls the relative importance
between the text and various metadata.

Unseen Classification Tasks
The input representations obtained using the above model
have several desirable characteristics: the embeddings are
in a compact form because of the projection into a lower-
dimensional space, the salient information in the inputs are
preserved by the reconstruction loss, and similar points are
grouped together with the use of soft-partition labels. Hence
these embeddings can be used as-is in a non-parametric set-
ting for downstream classification tasks. This approach is
particularly attractive in situations where it is expensive to
train new classification models or it may not be possible to
perform training due to the scarcity of labeled examples.

Given a small number of labeled examples, we use near-
est neighbor technique to compute the classification label of
a query point. Specifically, the Euclidean distance between
the embeddings of the query point and the labeled points is
used to identify the nearest neighbours. The query point’s
class label is computed using a mode function on the nearest
neighbour labels.

Experiments
Experiments are conducted on three real-world datasets that
vary in text style, application domain and nature of meta-
data. We demonstrate using these datasets that the proposed
solution outperforms standard self-supervised training ob-
jectives for a variety of benchmark models.

Setup
We use three datasets in our experiments: Github-AI (Zhang
et al. 2019) dataset that contains a list of source code repos-
itories, Amazon (McAuley and Leskovec 2013) dataset that



Table 1: Samples form each of the three datasets.

Github-AI

Description Handbag GAN. In this project I will implement a DCGAN to see if I can generate handbag designs...
Repo Name GAN experiments
Tags gan,dcgan,deep-learning,google-cloud
Labels Image Generation (granular), Computer Vision (coarse)

Amazon
Review Best little ice cream maker works well, not too noisy, easy to clean. Recommend buying extra...
Product B00000JGRT
Label Home and Kitchen

Twitter
Tweet greek yogurt fresh fruit honey granola healthy living bakery.
Hashtags #healthyliving, #bakeri
Label Food

collects review data from online retailer Amazon and Twit-
ter (Zhang et al. 2017) dataset with tweets collected during a
three month period are used for evaluation. All these datasets
are publicly available and Table 1 lists a few samples.

For comparison purposes, we use five state-of-the-art neu-
ral language models namely BERT (Devlin et al. 2018),
DistilBERT (Sanh et al. 2019), XLNet (Yang et al. 2019),
RoBERTa (Liu et al. 2019) and Electra (Clark et al. 2020).
All these models are based on the transformer architecture
with variations in their training procedure.

There are three different evaluation setups corresponding
to these models. In the No Finetuning setup, the side infor-
mation such as repository name or hashtag is augmented
with text data to create a single text block. The LM Fine-
tuning setup has the language model finetuned on the aug-
mented text blocks before performing inference. The Our
Approach setup reflects the architecture described above.

We employ the base configuration of a transformer model,
which typically has 12 layers and 768 hidden neurons per
token. All hyper-parameters were chosen after a careful grid
search and these values include an initial learning rate of
5e − 5, a drop out probability of 0.1, sequence length of
512 and batch size of 8. The metadata embedding size Dp

is set to 50 while the final input embedding size De is set to
500. Only 10% of the data is used as exemplars for nearest
neighbour classification with all points in the neighbourhood
weighted equally.

Results

The F1 scores of the classification results are shown in Table
2. We see that our approach of using a loss function based
on topic distribution significantly improves the classifier per-
formance for all the three datasets across all the five bench-
mark models. DistilBERT trained using our objective func-
tion has a best F1 Score of 50.0% for Github-AI and 50.7%
for Twitter respectively. These two datasets are particularly
challenging due to the large number of classes and a small
sample size. In contrast to the above, the Amazon dataset has
a large training set size and finetuning the language model
results in markedly better classifier performance. However,
our proposed training objective still outperforms all the other
baselines for this dataset with the XLNet model having the
best F1 Score of 88.8%.

Discussion

Our self-supervision method aligns the input embeddings
to reflect topic distributions, thereby inducing a soft clus-
tering of input points with those points that share similar
characteristics appearing together. The embeddings gener-
ated by standard language models do not necessarily have
this clustering property. Figure 3 makes this partitioning ef-
fect evident. It plots in 2-D the inferred input embeddings
for Amazon dataset. The top section of this figure contains
the embeddings from a finetuned language model and there
are no discernible clusters here. However, in the bottom sec-
tion that corresponds to the same model trained using our
objective function, we can clearly see patterns of points ap-
pearing together. This natural grouping of the inputs enable
identification of class labels based on neighbourhood search
very effective when compared with standard masked lan-
guage modeling.

The learned embeddings also capture topic characteris-
tics with input points corresponding to the same latent topic
placed together. To validate this, we over-cluster the embed-
dings using KMeans and qualitatively examine the cluster
contents. The left side of Figure 4 contains one such clus-
ter, where the discussions around locks in the Amazon re-
view are consolidated into the same cluster. Furthermore,
semantically similar labels appear near to each other in the
embedding space. We observe that the cluster closest to an
Apps for Android cluster is the Video Games cluster. Sim-
ilarly, a CDs and Vinyl cluster is close to Movies and TV
cluster as illustrated in the right side of Figure 4. This level
of compositionality opens the model up for applications to
hierarchical classification and clustering.

We explore the robustness of the framework through ab-
lation studies. Figure 5 plots the effect of different topic size
on the classifier performance for GitHub-AI dataset. Hav-
ing extremely few topics does affect the model performance.
However, the results are stable for a wide range of topic
sizes. Hence the model is not sensitive to an exact value of
the topic size hyper-parameter. We also ask how the baseline
model performs in the presence of large amounts of train-
ing data. Figure 6 compares the performance between our
model and LM Finetuning setup for the Amazon dataset. We
see that our model performs significantly better when there
is fewer training data available, with finetuned model con-
verging when training size increases beyond a threshold.



Table 2: Comparison of Classification Results - F1 Scores
Dataset Transformer No Finetuning LM Finetuning Our Solution

Github-AI

BERT 22.8 27.2 45.0
DistilBERT 26.4 28.4 50.0
XLNet 21.6 19.2 46.5
RoBERTa 21.3 19.9 34.4
Electra 21.3 20.8 29.5

Amazon

BERT 32.0 78.1 86.5
DistilBERT 54.3 84.6 88.6
XLNet 19.0 28.1 88.8
RoBERTa 20.8 73.3 88.2
Electra 22.0 37.9 86.4

Twitter

BERT 22.2 40.1 46.0
DistilBERT 32.4 44.3 50.7
XLNet 18.0 26.9 40.9
RoBERTa 15.0 29.3 22.7
Electra 21.0 15.3 42.9

Figure 3: Embedding Visualization. top: Embeddings produced using standard language model training objective. bottom:
Embeddings produced with loss function based on topic distribution with a perceptible grouping of points from the same class.

Figure 4: Semantic composition in learned embeddings. left: Discussions around lock topic occur in the same cluster. right:
Semantically similar labels appear close together in the embedding space.



Figure 5: Topic size effect on classifier performance.

Figure 6: Training set size impact on classifier performance.

Conclusion
In this paper, we presented a flexible framework that com-
bines latent topic information and metadata encodings with
transformer-based models to learn semantically rich docu-
ment representations that can be used for classification tasks
in a transductive fashion. We show 4%+ improvement over
out-of-the-box pre-trained embeddings as well as conven-
tional fine-tuning on a variety of datasets. We also qualita-
tively illustrate the semantic compositionality of the result-
ing embeddings. Our framework is especially effective when
training data is smaller or when metadata tags provide use-
ful semantic signal that would otherwise be missed. In future
work, we plan to explore the effectiveness of our framework
in unsupervised hierarchical clustering.
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