
Journal of Artificial Intelligence Research 44 (2012) 533-585 Submitted 03/12; published 07/12

Domain and Function: A Dual-Space Model
of Semantic Relations and Compositions

Peter D. Turney peter.turney@nrc-cnrc.gc.ca

National Research Council Canada

Ottawa, Ontario, Canada, K1A 0R6

Abstract

Given appropriate representations of the semantic relations between carpenter and wood
and between mason and stone (for example, vectors in a vector space model), a suitable
algorithm should be able to recognize that these relations are highly similar (carpenter is
to wood as mason is to stone; the relations are analogous). Likewise, with representations
of dog, house, and kennel, an algorithm should be able to recognize that the semantic
composition of dog and house, dog house, is highly similar to kennel (dog house and kennel
are synonymous). It seems that these two tasks, recognizing relations and compositions,
are closely connected. However, up to now, the best models for relations are significantly
different from the best models for compositions. In this paper, we introduce a dual-space
model that unifies these two tasks. This model matches the performance of the best
previous models for relations and compositions. The dual-space model consists of a space
for measuring domain similarity and a space for measuring function similarity. Carpenter
and wood share the same domain, the domain of carpentry. Mason and stone share the
same domain, the domain of masonry. Carpenter and mason share the same function, the
function of artisans. Wood and stone share the same function, the function of materials.
In the composition dog house, kennel has some domain overlap with both dog and house
(the domains of pets and buildings). The function of kennel is similar to the function of
house (the function of shelters). By combining domain and function similarities in various
ways, we can model relations, compositions, and other aspects of semantics.

1. Introduction

The distributional hypothesis is that words that occur in similar contexts tend to have similar
meanings (Harris, 1954; Firth, 1957). Many vector space models (VSMs) of semantics use
a word–context matrix to represent the distribution of words over contexts, capturing the
intuition behind the distributional hypothesis (Turney & Pantel, 2010). VSMs have achieved
impressive results at the level of individual words (Rapp, 2003), but it is not clear how to
extend them to the level of phrases, sentences, and beyond. For example, we know how to
represent dog and house with vectors, but how should we represent dog house ?

One approach to representing dog house is to treat it as a unit, the same way we handle
individual words. We call this the holistic or noncompositional approach to representing
phrases. The holistic approach may be suitable for some phrases, but it does not scale up.
With a vocabulary of N individual words, we can have N2 two-word phrases, N3 three-
word phrases, and so on. Even with a very large corpus of text, most of these possible
phrases will never appear in the corpus. People are continually inventing new phrases, and
we are able to understand these new phrases although we have never heard them before;
we are able to infer the meaning of a new phrase by composition of the meanings of the

c©2012 National Research Council Canada. Reprinted with permission.



Turney

component words. This scaling problem could be viewed as an issue of data sparsity, but
it is better to think of it as a problem of linguistic creativity (Chomsky, 1975; Fodor &
Lepore, 2002). To master natural language, algorithms must be able to represent phrases
by composing representations of individual words. We cannot treat all n-grams (n > 1) the
way we treat unigrams (individual words). On the other hand, the holistic approach is ideal
for idiomatic expressions (e.g., kick the bucket) for which the meaning cannot be inferred
from the component words.

The creativity and novelty of natural language require us to take a compositional ap-
proach to the majority of the n-grams that we encounter. Suppose we have vector repre-
sentations of dog and house. How can we compose these representations to represent dog
house ? One strategy is to represent dog house by the average of the vectors for dog and
house (Landauer & Dumais, 1997). This simple proposal actually works, to a limited degree
(Mitchell & Lapata, 2008, 2010). However boat house and house boat would be represented
by the same average vector, yet they have different meanings. Composition by averaging
does not deal with the order sensitivity of phrase meaning. Landauer (2002) estimates that
80% of the meaning of English text comes from word choice and the remaining 20% comes
from word order.

Similar issues arise with the representation of semantic relations. Given vectors for
carpenter and wood, how can we represent the semantic relations between carpenter and
wood ? We can treat carpenter :wood as a unit and search for paraphrases of the relations
between carpenter and wood (Turney, 2006b). In a large corpus, we could find phrases such
as the carpenter cut the wood, the carpenter used the wood, and wood for the carpenter. This
variation of the holistic approach can enable us to recognize that the semantic relations
between carpenter and wood are highly similar to the relations between mason and stone.
However, the holistic approach to semantic relations suffers from the same data sparsity
and linguistic creativity problems as the holistic approach to semantic composition.

We could represent the relation between carpenter and wood by averaging their vectors.
This might enable us to recognize that carpenter is to wood as mason is to stone, but it
would incorrectly suggest that carpenter is to wood as stone is to mason. The problem of
order sensitivity arises with semantic relations just as it arose with semantic composition.

Many ideas have been proposed for composing vectors (Landauer & Dumais, 1997;
Kintsch, 2001; Mitchell & Lapata, 2010). Erk and Padó (2008) point out two problems
that are common to several of these proposals. First, often they do not have the adaptive
capacity to represent the variety of possible syntactic relations in a phrase. For example, in
the phrase a horse draws, horse is the subject of the verb draws, whereas it is the object of
the verb in the phrase draws a horse. The composition of the vectors for horse and draws
must be able to adapt to a variety of syntactic contexts in order to properly model the
given phrases. Second, a single vector is too weak to handle a long phrase, a sentence, or
a document. A single vector “can only encode a fixed amount of structural information if
its dimensionality is fixed, but there is no upper limit on sentence length, and hence on the
amount of structure to be encoded” (Erk & Padó, 2008, p. 898). A fixed dimensionality
does not allow information scalability.

Simple (unweighted) averaging of vectors lacks adaptive capacity, because it treats all
kinds of composition in the same way; it does not have the flexibility to represent different
modes of composition. A good model must have the capacity to adapt to different situations.

534



Domain and Function: A Dual-Space Model

For example, with weighted averaging, the weights can be tuned for different syntactic
contexts (Mitchell & Lapata, 2008, 2010).

Information scalability means that the size of semantic representations should grow in
proportion to the amount of information that they are representing. If the size of the
representation is fixed, eventually there will be information loss. On the other hand, the
size of representations should not grow exponentially.

One case where the problem of information scalability arises is with approaches that
map multiple vectors into a single vector. For example, if we represent dog house by adding
the vectors for dog and house (mapping two vectors into one), there may be information
loss. As we increase the number of vectors that are mapped into a single vector, we will
eventually reach a point where the single vector can no longer contain the information from
the multiple vectors. This problem can be avoided if we do not try to map multiple vectors
into a single vector.

Suppose we have a k-dimensional vector with floating point elements of b bits each. Such
a vector can hold at most kb bits of information. Even if we allow b to grow, if k is fixed,
we will eventually have information loss. In a vector space model of semantics, the vectors
have some resistance to noise. If we perturb a vector with noise below some threshold ε,
there is no significant change in the meaning that it represents. Therefore we should think
of the vector as a hypersphere with a radius of ε, rather than a point. We may also put
bounds [−r,+r] on the range of the values of the elements in the vector.1 There is a finite
number N of hyperspheres of radius ε that can be packed into a bounded k-dimensional
space (Conway & Sloane, 1998). According to information theory, if we have a finite set
of N messages, then we need at most log2(N) bits to encode a message. Likewise, if we
have a finite set of N vectors, then a vector represents at most log2(N) bits of information.
Therefore the information capacity of a single vector in bounded k-dimensional space is
limited to log2(N) bits.

Past work suggests that recognizing relations and compositions are closely connected
tasks (Kintsch, 2000, 2001; Mangalath, Quesada, & Kintsch, 2004). The goal of our research
is a unified model that can handle both compositions and relations, while also resolving the
issues of linguistic creativity, order sensitivity, adaptive capacity, and information scalability.
These considerations have led us to a dual-space model, consisting of a domain space for
measuring domain similarity (i.e., topic, subject, or field similarity) and a function space
for measuring function similarity (i.e., role, relationship, or usage similarity).

In an analogy a :b ::c :d (a is to b as c is to d; for example, traffic is to street as water is
to riverbed), a and b have relatively high domain similarity (traffic and street come from the
domain of transportation) and c and d have relatively high domain similarity (water and
riverbed come from the domain of hydrology). On the other hand, a and c have relatively
high function similarity (traffic and water have similar roles in their respective domains;
they are both things that flow) and b and d have relatively high function similarity (street
and riverbed have similar roles in their respective domains; they are both things that carry
things that flow). By combining domain and function similarity in appropriate ways, we

1. In models where the vectors are normalized to unit length (e.g., models that use cosine to measure
similarity), the elements must lie within the range [−1,+1]. If any element is outside this range, then
the length of the vector will be greater than one. In general, floating point representations have minimum
and maximum values.

535



Turney

can recognize that the semantic relations between traffic and street are analogous to the
relations between water and riverbed.

For semantic composition, the appropriate way to combine similarities may depend on
the syntax of the composition. Let’s focus on noun-modifier composition as an example.
In the noun-modifier phrase ab (for instance, brain doctor), the head noun b (doctor) is
modified by an adjective or noun a (brain). Suppose we have a word c (neurologist) that
is synonymous with ab. The functional role of the noun-modifier phrase ab is determined
by the head noun b (a brain doctor is a kind of doctor) and b has a relatively high degree
of function similarity with c (doctor and neurologist both function as doctors). Both a and
b have a high degree of domain similarity with c (brain, doctor, and neurologist all come
from the domain of clinical neurology). By combining domain and function similarity, we
can recognize that brain doctor is synonymous with neurologist.

Briefly, the proposal is to compose similarity measures instead of composing vectors.
That is, we apply various mathematical functions to combine cosine similarity measures,
instead of applying the functions directly to the vectors. This addresses the information
loss problem, because we preserve the vectors for the individual component words. (We do
not map multiple vectors into a single vector.) Since we have two different spaces, we also
have flexibility to address the problem of adaptive capacity.2 This model is compositional,
so it resolves the linguistic creativity problem. We deal with order sensitivity by combining
similarity measures in ways that recognize the effects of word order.

It might be argued that what we present here is not a model of semantic composition, but
a way to compare the words that form two phrases in order to derive a measure of similarity
of the phrases. For example, in Section 4.3 we derive a measure of similarity for the phrases
environment secretary and defence minister, but we do not actually provide a representation
for the phrase environment secretary. On the other hand, most past work on the problem
of semantic composition (reviewed in Section 2.1) yields a representation for the composite
phrase environment secretary that is different from the union of the representations of the
component words, environment and secretary.

This argument is based on the assumption that the goal of semantic composition is to
create a single, general-purpose, stand-alone representation of a phrase, as a composite,
distinct from the union of the representations of the component words. This assumption
is not necessary and our approach does not use this assumption. We believe that this
assumption has held back progress on the problem of semantic composition.

We argue that what we present here is a model of semantic composition, but it is compo-
sition of similarities, not composition of vectors. Vectors can represent individual words, but
similarities inherently represent relations between two (or more) things. Composing vectors
can yield a stand-alone representation of a phrase, but composing similarities necessarily
yields a linking structure that connects a phrase to other phrases. Similarity composition
does not result in a stand-alone representation of a phrase, but practical applications do
not require stand-alone representations. Whatever practical tasks can be performed with
stand-alone representations of phrases, we believe can be performed equally well (or better)
with similarity composition. We discuss this issue in more depth in Section 6.

2. Two similarity spaces give us more options for similarity composition than one space, just as two types
of characters (0 and 1) give us more options for generating strings than one type of character (0 alone).

536



Domain and Function: A Dual-Space Model

The next section surveys related work on the modeling of semantic composition and
semantic relations. Section 3 describes how we build domain and function space. To test
the hypothesis that there is value in having two separate spaces, we also create mono space,
which is the merger of the domain and function spaces. We then present four sets of exper-
iments with the dual-space model in Section 4. We evaluate the dual-space approach with
multiple-choice analogy questions from the SAT (Turney, 2006b), multiple-choice noun-
modifier composition questions derived from WordNet (Fellbaum, 1998), phrase similar-
ity rating problems (Mitchell & Lapata, 2010), and similarity versus association problems
(Chiarello, Burgess, Richards, & Pollock, 1990). We discuss the experimental results in
Section 5. Section 6 considers some theoretical questions about the dual-space model. Lim-
itations of the model are examined in Section 7. Section 8 concludes.

This paper assumes some familiarity with vector space models of semantics. For an
overview of semantic VSMs, see the papers in the Handbook of Latent Semantic Analysis
(Landauer, McNamara, Dennis, & Kintsch, 2007), the review in Mitchell and Lapata’s
(2010) paper, or the survey by Turney and Pantel (2010).

2. Related Work

Here we examine related work with semantic composition and relations. In the introduc-
tion, we mentioned four problems with semantic models, which yield four desiderata for a
semantic model:

1. Linguistic creativity: The model should be able to handle phrases (in the case of
semantic composition) or word pairs (in the case of semantic relations) that it has
never seen before, when it is familiar with the component words.

2. Order sensitivity: The model should be sensitive to the order of the words in a
phrase (for composition) or a word pair (for relations), when the order affects the
meaning.

3. Adaptive capacity: For phrases, the model should have the flexibility to represent
different kinds of syntactic relations. For word pairs, the model should have the
flexibility to handle a variety of tasks, such as measuring the degree of relational
similarity between two pairs (see Section 4.1) versus measuring the degree of phrasal
similarity between two pairs (see Section 4.3).

4. Information scalability: For phrases, the model should scale up with neither loss of
information nor exponential growth in representation size as the number of component
words in the phrases increases. For n-ary semantic relations (Turney, 2008a), the
model should scale up with neither loss of information nor exponential growth in
representation size as n, the number of terms in the relations, increases.

We will review past work in the light of these four considerations.

2.1 Semantic Composition

Let ab be a phrase, such as a noun-modifier phrase, and assume that we have vectors a and
b that represent the component words a and b. One of the earliest proposals for semantic
composition is to represent ab by the vector c that is the average of a and b (Landauer &

537



Turney

Dumais, 1997). If we are using a cosine measure of vector similarity, taking the average of a
set of vectors (or their centroid) is the same as adding the vectors, c = a+b. Vector addition
works relatively well in practice (Mitchell & Lapata, 2008, 2010), although it lacks order
sensitivity, adaptive capacity, and information scalability. Regarding order sensitivity and
adaptive capacity, Mitchell and Lapata (2008, 2010) suggest using weights, c = αa+βb, and
tuning the weights to different values for different syntactic relations. In their experiments
(Mitchell & Lapata, 2010), weighted addition performed better than unweighted addition.

Kintsch (2001) proposes a variation of additive composition in which c is the sum of a,
b, and selected neighbours ni of a and b, c = a+b+

∑
i ni. The neighbours are vectors for

other words in the given vocabulary (i.e., other rows in the given word–context matrix). The
neighbours are chosen in a manner that attempts to address order sensitivity and adaptive
capacity, but there is still a problem with information scalability due to fixed dimensionality.
Utsumi (2009) presents a similar model, but with a different way of selecting neighbours.
Mitchell and Lapata (2010) found that a simple additive model peformed better than an
additive model that included neighbours.

Mitchell and Lapata (2008, 2010) suggest element-wise multiplication as a composition
operation, c = a � b, where ci = ai · bi. Like vector addition, element-wise multiplica-
tion suffers from a lack of order sensitivity, adaptive capacity, and information scalability.
Nonetheless, in an experimental evaluation of seven compositional models and two non-
compositional models, element-wise multiplication had the best performance (Mitchell &
Lapata, 2010).

Another approach is to use a tensor product for composition (Smolensky, 1990; Aerts
& Czachor, 2004; Clark & Pulman, 2007; Widdows, 2008), such as the outer product,
C = a⊗ b. The outer product of two vectors (a and b), each with n elements, is an n× n
matrix (C). The outer product of three vectors is an n × n × n third-order tensor. This
results in an information scalability problem: The representations grow exponentially large
as the phrases grow longer.3 Furthermore, the outer product did not perform as well as
element-wise multiplication in Mitchell and Lapata’s (2010) experiments. Recent work with
tensor products (Clark, Coecke, & Sadrzadeh, 2008; Grefenstette & Sadrzadeh, 2011) has
attempted to address the issue of information scalability.

Circular convolution is similar to the outer product, but the outer product matrix is
compressed back down to a vector, c = a ~ b (Plate, 1995; Jones & Mewhort, 2007).
This avoids information explosion, but it results in information loss. Circular convolution
performed poorly in Mitchell and Lapata’s (2010) experiments.

Baroni and Zamparelli (2010) and Guevara (2010) suggest another model of composition
for adjective-noun phrases. The core strategy that they share is to use a few holistic vectors
to train a compositional model. With partial least squares regression (PLSR), we can learn
a linear model that maps the vectors for the component nouns and adjectives to linear
approximations of the holistic vectors for the phrases. The linguistic creativity problem is
avoided because the linear model only needs a few holistic vectors for training; there is no
need to have holistic vectors for all plausible adjective-noun phrases. Given a phrase that is
not in the training data, the linear model predicts the holistic vector for the phrase, given

3. There are ways to avoid the exponential growth; for example, a third-order tensor with a rank of 1 on
all three modes may be compactly encoded by its three component vectors. Kolda and Bader (2009)
discuss compact tensor representations.

538



Domain and Function: A Dual-Space Model

the component vectors for the adjective and the noun. This works well for adjective-noun
phrases, but it is not clear how to generalize it to other parts of speech or to longer phrases.

One application for semantic composition is measuring the similarity of phrases (Erk &
Padó, 2008; Mitchell & Lapata, 2010). Kernel methods have been applied to the closely
related task of identifying paraphrases (Moschitti & Quarteroni, 2008), but the emphasis
with kernel methods is on syntactic similarity, rather than semantic similarity.

Neural network models have been combined with vector space models for the task of
language modeling (Bengio, Ducharme, Vincent, & Jauvin, 2003; Socher, Manning, & Ng,
2010; Socher, Huang, Pennington, Ng, & Manning, 2011), with impressive results. The goal
of a language model is to estimate the probability of a phrase or to decide which of several
phrases is the most likely. VSMs can improve the probability estimates of a language model
by measuring the similarity of the words in the phrases and smoothing probabilities over
groups of similar words. However, in a language model, words are considered similar to
the degree that they can be exchanged without altering the probability of a given phrase,
without regard to whether the exchange alters the meaning of the phrase. This is like
function similarity, which measures the degree to which words have similar functional roles,
but these language models are missing anything like domain similarity.

Erk and Padó (2008) present a model that is similar to ours in that it has two parts, a
vector space for measuring similarity and a model of selectional preferences. Their vector
space is similar to domain space and their model of selectional preferences plays a role
similar to function space. An individual word a is represented by a triple, A = 〈a, R,R−1〉,
consisting of the word’s vector, a, its selectional preferences, R, and its inverse selectional
preferences, R−1. A phrase ab is represented by a pair of triples, 〈A′, B′〉. The triple A′ is
a modified form of the triple A that represents the individual word a. The modifications
adjust the representation to model how the meaning of a is altered by its relation to b in
the phrase ab. Likewise, the triple B′ is a modified form of the triple B that represents b,
such that B′ takes into account how a affects b.

When A is transformed to A′ to represent the influence of b on the meaning of a, the
vector a in A is transformed to a new vector a′ in A′. Let rb be a vector that represents
the typical words that are consistent with the selectional preferences of b. The vector a′

is the composition of a with rb. Erk and Padó (2008) use element-wise multiplication for
composition, a′ = a�rb. The intention is to make a more like a typical vector x that would
be expected for a phrase xb. Likewise, for b′ in B′, we have b′ = b� ra

Erk and Padó’s (2008) model and related models (Thater, Fürstenau, & Pinkal, 2010)
address linguistic creativity, order sensitivity, adaptive capacity, and information scalability,
but they are not suitable for measuring the similarity of semantic relations. Consider the
analogy traffic is to street as water is to riverbed. Let 〈A′, B′〉 represent traffic :street and
let 〈C ′, D′〉 represent water :riverbed. The transformation of A, B, C, and D to A′, B′,
C ′, and D′ reinforces the connection between traffic and street and between water and
riverbed, but it does not help us recognize the relational similarity between traffic :street
and water :riverbed. Of course, these models were not designed for relational similarity, so
this is not surprising. However, the goal here is to find a unified model that can handle
both compositions and relations.

539



Turney

2.2 Semantic Relations

For semantic relations, we can make some general observations about order sensitivity. Let
a : b and c : d be two word pairs and let simr(a : b, c : d) ∈ < be a measure of the degree
of similarity between the relations of a : b and c : d. If a : b :: c : d is a good analogy, then
simr(a : b, c : d) will have a relatively high value. In general, a good model of relational
similarity should respect the following equalities and inequalities:

simr(a :b, c :d) = simr(b :a, d :c) (1)

simr(a :b, c :d) = simr(c :d, a :b) (2)

simr(a :b, c :d) 6= simr(a :b, d :c) (3)

simr(a :b, c :d) 6= simr(a :d, c :b) (4)

For example, given that carpenter :wood and mason :stone make a good analogy, it follows
from Equation 1 that wood :carpenter and stone :mason make an equally good analogy. Also,
according to Equation 2, mason :stone and carpenter :wood make a good analogy. On the
other hand, as suggested by Equation 3, carpenter :wood is not analogous to stone :mason.
Likewise, as indicated by Equation 4, it is a poor analogy to assert that carpenter is to stone
as mason is to wood.

Rosario and Hearst (2001) present an algorithm for classifying word pairs according
to their semantic relations. They use a lexical hierarchy to map word pairs to feature
vectors. Any classification scheme implicitly tell us something about similarity. Two word
pairs that are in the same semantic relation class are implicitly more relationally similar
than two word pairs in different classes. When we consider the relational similarity that is
implied by Rosario and Hearst’s (2001) algorithm, we see that there is a problem of order
sensitivity: Equation 4 is violated.

Let simh(x, y) ∈ < be a measure of the degree of hierarchical similarity between the
words x and y. If simh(x, y) is relatively high, then x and y share a common hypernym
relatively close to them in the given lexical hierarchy. In essence, the intuition behind
Rosario and Hearst’s (2001) algorithm is, if both simh(a, c) and simh(b, d) are high, then
simr(a : b, c : d) should also be high. That is, if simh(a, c) and simh(b, d) are high enough,
then a :b and c :d should be assigned to the same relation class.

For example, consider the analogy mason is to stone as carpenter is to wood. The com-
mon hypernym of mason and carpenter is artisan; we can see that simh(mason, carpenter)
is high. The common hypernym of stone and wood is material; hence simh(stone, wood) is
high. It seems that a good analogy is indeed characterized by high values for simh(a, c) and
simh(b, d). However, the symmetry of simh(x, y) leads to a problem. If simh(b, d) is high,
then simh(d, b) must also be high, but this implies that simr(a :d, c : b) is high. That is, we
incorrectly conclude that mason is to wood as carpenter is to stone (see Equation 4).

Some later work with classifying semantic relations has used different algorithms, but
the same underlying intuition about hierarchical similarity (Rosario, Hearst, & Fillmore,
2002; Nastase & Szpakowicz, 2003; Nastase, Sayyad-Shirabad, Sokolova, & Szpakowicz,
2006). We use a similar intuition here, since similarity in function space is closely related

540



Domain and Function: A Dual-Space Model

to hierarchical similarity, simh(x, y), as we will see later (Section 4.4). However, including
domain space in the relational similarity measure saves us from violating Equation 4.

Let simf(x, y) ∈ < be function similarity as measured by the cosine of vectors x and y
in function space. Let simd(x, y) ∈ < be domain similarity as measured by the cosine of
vectors x and y in domain space. Like past researchers (Rosario & Hearst, 2001; Rosario
et al., 2002; Nastase & Szpakowicz, 2003; Veale, 2004; Nastase et al., 2006), we look for
high values of simf(a, c) and simf(b, d) as indicators that simr(a :b, c :d) should be high, but
we also look for high values of simd(a, b) and simd(c, d). Continuing the previous example,
we do not conclude that mason is to wood as carpenter is to stone, because wood does not
belong in the domain of masonry and stone does not belong in the domain of carpentry.

Let D be a determiner (e.g., the, a, an). Hearst (1992) showed how patterns of the form
“D X such as D Y” (“a bird such as a crow”) or “D Y is a kind of X” (“the crow is a kind
of bird”) can be used to infer that X is a hypernym of Y (bird is a hypernym of crow).
A pair–pattern matrix is a VSM in which the rows are word pairs and the columns are
various “X . . . Y” patterns. Turney, Littman, Bigham, and Shnayder (2003) demonstrated
that a pair–pattern VSM can be used to measure relational similarity. Suppose we have a
pair-pattern matrix X in which the word pair a :b corresponds to the row vector xi and c :d
corresponds to xj . The approach is to measure the relational similarity simr(a : b, c : d) by
the cosine of xi and xj .

At first the patterns in these pair–pattern matrices were generated by hand (Turney
et al., 2003; Turney & Littman, 2005), but later work (Turney, 2006b) used automatically
generated patterns. Other authors have used variations of this technique (Nakov & Hearst,
2006, 2007; Davidov & Rappoport, 2008; Bollegala, Matsuo, & Ishizuka, 2009; Ó Séaghdha
& Copestake, 2009). All of these models suffer from the linguistic creativity problem.
Because the models are noncompositional (holistic), they cannot scale up to handle the
huge number of possible pairs. Even the largest corpus cannot contain all the pairs that a
human speaker might use in daily conversation.

Turney (2006b) attempted to handle the linguistic creativity problem within a holistic
model by using synonyms. For example, if a corpus does not contain traffic and street within
a certain window of text, perhaps it might contain traffic and road. If it does not contain
water and riverbed, perhaps it has water and channel. However, this is at best a partial
solution. Turney’s (2006b) algorithm required nine days to process 374 multiple choice SAT
analogy questions. Using the dual-space model, without specifying in advance what word
pairs it might face, we can answer the 374 questions in a few seconds (see Section 4.1).
Compositional models scale up better than holistic models.

Mangalath et al. (2004) presented a model for semantic relations that represents word
pairs with vectors of ten abstract relational categories, such as hyponymy, meronymy, tax-
onomy, and degree. The approach is to construct a kind of second-order vector space in
which the elements of the vectors are degrees of similarity, calculated from cosines with a
first-order word–context matrix.

For instance, carpenter :wood can be represented by a second-order vector composed of
ten cosines calculated from first-order vectors. In this second-order vector, the value of the
element corresponding to, say, meronymy would be the cosine of two first-order vectors, x
and y. The vector x would be the sum of the first-order vectors for carpenter and wood.
The vector y would be the sum of several vectors for words that are related to meronymy,

541



Turney

such as part, whole, component, portion, contains, constituent, and segment. The cosine of
x and y would indicate the degree to which carpenter and wood are related to meronymy.

Mangalath et al.’s (2004) model suffers from information scalability and order sensitivity
problems. Information loss takes place when the first-order vectors are summed and also
when the high-dimensional first-order space is reduced to a ten-dimensional second-order
space. The order sensitivity problem is that the second-order vectors violate Equation 3,
because the pairs c :d and d :c are represented by the same second-order vector.

A natural proposal is to represent a word pair a : b the same way we would represent
a phrase ab. That is, whatever compositional model we have for phrases could also be
applied to word pairs. However any problems that the compositional model has with order
sensitivity or information scalability carry over to word pairs. For example, if we represent
a : b by c = a + b or c = a � b, then we violate Equation 3, because a + b = b + a and
a� b = b� a.

3. Three Vector Spaces

In this section, we describe three vector space models. All three spaces consist of word–
context matrices, in which the rows correspond to words and the columns correspond to the
contexts in which the words occur. The differences among the three spaces are in the kinds
of contexts. Domain space uses nouns for context, function space uses verb-based patterns
for context, and mono space is a merger of the domain and function contexts. Mono space
was created in order to test the hypothesis that it is useful to separate the domain and
function spaces; mono space serves as a baseline.

3.1 Constructing the Word–Context Matrices

Building the three spaces involves a series of steps. There are three main steps, each of
which has a few substeps. The first and last steps are the same for all three spaces; the
differences in the spaces are the result of differences in the second step.

1. Find terms in contexts: input: a corpus and a lexicon, output: terms in contexts.

1.1. Extract terms from the lexicon and find their frequencies in the corpus.

1.2. Select all terms above a given frequency as candidate rows for the frequency
matrix.

1.3. For each selected term, find phrases in the corpus that contain the term within
a given window size.

1.4. Use a tokenizer to split the phrases into tokens.

1.5. Use a part-of-speech tagger to tag the tokens in the phrases.

2. Build a term–context frequency matrix: input: terms in contexts, output: a
sparse frequency matrix.

2.1. Convert the tagged phrases into contextual patterns (candidate columns).

2.2. For each contextual pattern, count the number of terms (candidate rows) that
generated the pattern and rank the patterns in descending order of their counts.

2.3. Select the top nc contextual patterns as the columns of the matrix.

542



Domain and Function: A Dual-Space Model

2.4. From the initial set of rows (from Step 1.2), drop any row that does not match
any of the top nc contextual patterns, yielding the final set of nr rows.

2.5. For each row (term) and each column (contextual pattern), count the number
of phrases (from Step 1.5) containing the given term and matching the given
pattern, and output the resulting numbers as a sparse frequency matrix.

3. Weight the elements and smooth the matrix: input: a sparse frequency matrix,
output: the singular value decomposition (SVD) of the weighted matrix.

3.1. Convert the raw frequencies to positive pointwise mutual information (PPMI)
values.

3.2. Apply SVD to the PPMI matrix and output the SVD component matrices.

The input corpus in Step 1 is a collection of web pages gathered from university websites
by a webcrawler.4 The corpus contains approximately 5×1010 words, which comes to about
280 gigabytes of plain text. To facilitate finding term frequencies and sample phrases, we
indexed this corpus with the Wumpus search engine (Büttcher & Clarke, 2005).5 The rows
for the matrices were selected from terms (words and phrases) in the WordNet lexicon.6

We found that selecting terms from WordNet resulted in subjectively higher quality than
simply selecting terms with high corpus frequencies.

In Step 1.1, we extract all unique words and phrases (n-grams) from the index.sense file
in WordNet 3.0, skipping n-grams that contain numbers (only letters, hyphens, and spaces
are allowed in the n-grams). We find the n-gram corpus frequencies by querying Wumpus
with each n-gram. All n-grams with a frequency of at least 100 and at least 2 characters
are candidate rows in Step 1.2. For each selected n-gram, we query Wumpus to find a
maximum of 10,000 phrases in Step 1.3.7 The phrases are limited to a window of 7 words
to the left of the n-gram and 7 words to the right, for a total window size of 14 + n words.
We use OpenNLP 1.3.0 to tokenize and part-of-speech tag the phrases (Steps 1.4 and 1.5).8

The tagged phrases come to about 46 gigabytes.9

In Step 2.1, we generate contextual patterns from the part-of-speech tagged phrases.
Different kinds of patterns are created for the three different kinds of spaces. The details
of this step are given in the following subsections. Each phrase may yield several patterns.
The three spaces each have more than 100,000 rows, with a maximum of 10,000 phrases
per row and several patterns per phrase. This can result in millions of distinct patterns, so
we filter the patterns in Steps 2.2 and 2.3. We select the top nc patterns that are shared
by the largest number of rows. Given the large number of patterns, they may not all fit
in RAM. To work with limited RAM, we use the Linux sort command, which is designed
to efficiently sort files that are too large to fit in RAM. For each row, we make a file of
the distinct patterns generated by that row. We then concatenate all of the files for all of

4. The corpus was collected by Charles Clarke at the University of Waterloo.
5. Wumpus is available at http://www.wumpus-search.org/.
6. WordNet is available at http://wordnet.princeton.edu/.
7. The limit of 10,000 phrases per n-gram is required to make Wumpus run in a tolerable amount of time.

Finding phrases is the most time-consuming step in the construction of the spaces. We use a solid-state
drive (SSD) to speed up this step.

8. OpenNLP is available at http://incubator.apache.org/opennlp/.
9. The tagged phrases are available from the author on request.

543



Turney

the rows and alphabetically sort the patterns in the concatenated file. In the sorted file,
identical patterns are adjacent, which makes it easy to count the number of occurrences of
each pattern. After counting, a second sort operation yields a ranked list of patterns, from
which we select the top nc.

It is possible that some of the candidate rows from Step 1.2 might not match any of
the patterns from Step 2.3. These rows would be all zeros in the matrix, so we remove
them in Step 2.4. Finally, we output a sparse frequency matrix F with nr rows and nc
columns. If the i-th row corresponds to the n-gram wi and the j-th column corresponds to
the contextual pattern cj , then the value of the element fij in F is the number of phrases
containing wi (from Step 1.5) that generate the pattern cj (in Step 2.1). In Step 3.2, we use
SVDLIBC 1.34 to calculate the singular value decomposition, so the format of the output
sparse matrix in Step 2.5 is chosen to meet the requirements of SVDLIBC.10

In Step 3.1, we apply positive pointwise mutual information (PPMI) to the sparse fre-
quency matrix F. This is a variation of pointwise mutual information (PMI) (Church &
Hanks, 1989; Turney, 2001) in which all PMI values that are less than zero are replaced
with zero (Niwa & Nitta, 1994; Bullinaria & Levy, 2007). Let X be the matrix that results
when PPMI is applied to F. The new matrix X has the same number of rows and columns
as the raw frequency matrix F. The value of an element xij in X is defined as follows:

pij =
fij∑nr

i=1

∑nc
j=1 fij

(5)

pi∗ =

∑nc
j=1 fij∑nr

i=1

∑nc
j=1 fij

(6)

p∗j =

∑nr
i=1 fij∑nr

i=1

∑nc
j=1 fij

(7)

pmiij = log

(
pij

pi∗p∗j

)
(8)

xij =

{
pmiij if pmiij > 0

0 otherwise
(9)

In this definition, pij is the estimated probability that the word wi occurs in the context
cj , pi∗ is the estimated probability of the word wi, and p∗j is the estimated probability of
the context cj . If wi and cj are statistically independent, then pij = pi∗p∗j (by the definition
of independence), and thus pmiij is zero (since log(1) = 0). The product pi∗p∗j is what we
would expect for pij if wi occurs in cj by pure random chance. On the other hand, if there
is an interesting semantic relation between wi and cj , then we should expect pij to be larger
than it would be if wi and cj were indepedent; hence we should find that pij > pi∗p∗j , and
thus pmiij is positive. If the word wi is unrelated to (or incompatible with) the context cj ,
we may find that pmiij is negative. PPMI is designed to give a high value to xij when there
is an interesting semantic relation between wi and cj ; otherwise, xij should have a value of
zero, indicating that the occurrence of wi in cj is uninformative.

10. SVDLIBC is available at http://tedlab.mit.edu/∼dr/svdlibc/.

544



Domain and Function: A Dual-Space Model

Finally, in Step 3.2, we apply SVDLIBC to X. SVD decomposes X into the product of
three matrices UΣVT, where U and V are in column orthonormal form (i.e., the columns
are orthogonal and have unit length, UTU = VTV = I) and Σ is a diagonal matrix of
singular values (Golub & Van Loan, 1996). If X is of rank r, then Σ is also of rank r. Let
Σk, where k < r, be the diagonal matrix formed from the top k singular values, and let Uk

and Vk be the matrices produced by selecting the corresponding columns from U and V.
The matrix UkΣkV

T
k is the matrix of rank k that best approximates the original matrix X,

in the sense that it minimizes the approximation errors. That is, X̂ = UkΣkV
T
k minimizes

‖X̂−X‖F over all matrices X̂ of rank k, where ‖ . . . ‖F denotes the Frobenius norm (Golub
& Van Loan, 1996). The final output is the three matrices, Uk, Σk, and Vk, that form the
truncated SVD, X̂ = UkΣkV

T
k .

3.2 Domain Space

The intuition behind domain space is that the domain or topic of a word is characterized by
the nouns that occur near it. We use a relatively wide window and we ignore the syntactic
context in which the nouns appear.

For domain space, in Step 2.1, each tagged phrase generates at most two contextual
patterns. The contextual patterns are simply the first noun to the left of the given n-gram
(if there is one) and the first noun to the right (if there is one). Since the window size is 7
words on each side of the n-gram, there are usually nouns on both sides of the n-gram. The
nouns may be either common nouns or proper nouns. OpenNLP uses the Penn Treebank
tags (Santorini, 1990), which include several different categories of noun tags. All of the
noun tags begin with a capital N, so we simply extract the first words to the left and right
of the n-gram that have tags that begin with N. The extracted nouns are converted to lower
case. If the same noun appears on both sides of the n-gram, only one contextual pattern
is generated. The extracted patterns are always unigrams; in a noun compound, only the
component noun closest to the n-gram is extracted.

Table 1 shows some examples for the n-gram boat. Note that the window of 7 words
does not count punctuation, so the number of tokens in the window may be greater than
the number of words in the window. We can see from Table 1 that the row vector for
the n-gram boat in the frequency matrix F will have nonzero values (for example) in the
columns for lake and summer (assuming that these contextual patterns make it through the
filtering in Step 2.3).

For Step 2.3, we set nc to 50,000. In Step 2.4, after we drop rows that are all zero,
we are left with nr equal to 114,297. After PPMI (which sets negative elements to zero)
we have 149,673,340 nonzero values, for a matrix density of 2.62%. Table 2 shows the
contextual patterns for the first five columns and the last five columns (the columns are in
order of their ranks in Step 2.2). The Count column of the table gives the number of rows
(n-grams) that generate the pattern (that is, these are the counts mentioned in Step 2.2).
The last patterns all begin with c because they have the same counts and ties are broken
by alphabetical order.

545



Turney

Tagged phrases Patterns

1 “would/MD visit/VB Big/NNP Lake/NNP and/CC take/VB our/PRP$
boat/NN on/IN this/DT huge/JJ beautiful/JJ lake/NN ./. There/EX
was/VBD”

“lake”

2 “the/DT large/JJ paved/JJ parking/NN lot/NN in/IN the/DT boat/NN
ramp/NN area/NN and/CC walk/VB south/RB along/IN the/DT”

“lot”
“ramp”

3 “building/VBG permit/NN ./. ’/” Anyway/RB ,/, we/PRP should/MD
have/VB a/DT boat/NN next/JJ summer/NN with/IN skiing/NN
and/CC tubing/NN paraphernalia/NNS ./.”

“permit”
“summer”

Table 1: Examples of Step 2.1 in domain space for the n-gram boat. The three tagged
phrases generate five contextual patterns.

Column Pattern Count

1 “time” 91,483
2 “part” 84,445
3 “years” 84,417
4 “way” 84,172
5 “name” 81,960

Column Pattern Count

49,996 “clu” 443
49,997 “co-conspirator” 443
49.998 “conciseness” 443
49,999 “condyle” 443
50,000 “conocer” 443

Table 2: Contextual patterns for the first and last columns in domain space. CLU is an
abbreviation for Chartered Life Underwriter and other terms, condyle is a round
bump on a bone where it forms a joint with another bone, and conocer is the
Spanish verb to know, in the sense of being acquainted with a person.

3.3 Function Space

The concept of function space is that the function or role of a word is characterized by the
syntactic context that relates it to the verbs that occur near it. We use a more narrow
window for function space than domain space, based on the intuition that proximity to a
verb is important for determining the functional role of the given word. A distant verb is
less likely to characterize the function of the word. We generate relatively complex patterns
for function space, to try to capture the syntactic patterns that connect the given word to
the nearby verbs.

In Step 2.1, each tagged phrase generates up to six contextual patterns. For a given
tagged phrase, the first step is to cut the window down to 3 tokens before the given n-gram
and 3 tokens after it. If any of the remaining tokens to the left of the n-gram are punctu-
ation, the punctuation and everything to the left of the punctuation is removed. If any of
the remaining tokens to the right of the n-gram are punctuation, the punctuation and ev-
erything to the right of the punctuation is removed. Let’s call the remaining tagged phrase
a truncated tagged phrase.

Next we replace the given n-gram in the truncated tagged phrase with a generic marker,

546



Domain and Function: A Dual-Space Model

X. We then simplify the part-of-speech tags by reducing them all to their first character
(Santorini, 1990). For example, all of the various verb tags (VB, VBD, VBG, VBN, VBP,
VBZ) are reduced to V. If the truncated tagged phrase contains no V tag, it generates
zero contextual patterns. If the phrase contains a V tag, then we generate two types of
contextual patterns, general patterns and specific patterns.

For the general patterns, the verbs (every token with a V tag) have their tags removed
(naked verbs) and all other tokens are reduced to naked tags (tags without words). For the
specific patterns, verbs, modals (tokens with M tags), prepositions (tokens with I tags), and
to (tokens with T tags) have their tags removed and all other tokens are reduced to naked
tags. (See Table 3 for examples.)

For both general and specific patterns, to the left of X, we trim any leading naked tags.
To the right of X, we trim any trailing naked tags. A T tag can only be to, so we replace
any remaining naked T tags with to. A sequence of N tags (N N or N N N) is likely a
compound noun, so we reduce the sequence to a single N.

For a given truncated tagged phrase, we now have two patterns, one general pattern
and one specific pattern. If either of these patterns has tokens on both the left and right
sides of X, we make two more patterns by duplicating the X and then splitting the pattern
at the point between the two Xs. If one of the new patterns does not have a verb, we drop
it. Thus we may now have up to three specific patterns and three general patterns for the
given truncated tagged phrase. If the specific and general patterns are the same, only one
of them is generated.

Table 3 shows some examples for the n-gram boat. Note that every pattern must contain
the generic marker, X, and at least one verb.

Truncated tagged phrases Patterns Types

1 “the/DT canals/NNS by/IN boat/NN
and/CC wandering/VBG the/DT”

“X C wandering”
“by X C wandering”

general
specific

2 “a/DT charter/NN fishing/VBG boat/NN
captain/NN named/VBN Jim/NNP”

“fishing X N named”
“fishing X”
“X N named”

general
general
general

3 “used/VBN from/IN a/DT boat/NN
and/CC lowered/VBD to/TO”

“used I D X C lowered”
“used I D X”
“X C lowered”
“used from D X C lowered to”
“used from D X”
“X C lowered to”

general
general
general
specific
specific
specific

Table 3: Examples of Step 2.1 in function space for the n-gram boat. The three truncated
tagged phrases generate eleven contextual patterns.

For Step 2.3, we set nc to 50,000. In Step 2.4, after rows that are all zero are dropped,
nr is 114,101. After PPMI, there are 68,876,310 nonzero values, yielding a matrix density
of 1.21%. Table 4 shows the contextual patterns for the first and the last five columns. The

547



Turney

last patterns all begin with s because they have the same counts and ties are broken by
alphabetical order.

Column Pattern Count

1 “X is” 94,312
2 “X N is” 82,171
3 “is D X” 79,131
4 “is X” 72,637
5 “X was” 72,497

Column Pattern Count

49,996 “since D X N was” 381
49,997 “sinking I D X” 381
49,998 “supplied with X” 381
49,999 “supports D X N of” 381
50,000 “suppressed I D X” 381

Table 4: Contextual patterns for the first and last columns in function space.

The contextual patterns for function space are more complex than the patterns for
domain space. The motivation for this greater complexity is the observation that mere
proximity is not enough to determine functional roles, although it seems sufficient for deter-
mining domains. For example, consider the verb gives. If there is a word X that occurs near
gives, X could be the subject, direct object, or indirect object of the verb. To determine the
functional role of X, we need to know which case applies. The syntactic context that con-
nects X to gives provides this information. The contextual pattern “X gives” implies that
X is the subject, “gives X” implies X is an object, likely the direct object, and “gives to X”
suggests that X is the indirect object. Modals and prepositions supply further information
about the functional role of X in the context of a given verb. The verb gives appears in 43
different contextual patterns (i.e., 43 of the 50,000 columns in function space correspond to
syntactic patterns that contain gives).

Many of the row vectors in the function space matrix correspond to verbs. It might
seem surprising that we can characterize the function of a verb by its syntactic relation to
other verbs, but consider an example, such as the verb run. The row vector for run in the
PPMI matrix for function space has 1,296 nonzero values; that is, run is characterized by
1,296 different contextual patterns.

Note that appearing in a contextual pattern is different from having a nonzero value
for a contextual pattern. The character string for the word run appears in 62 different
contextual patterns, such as “run out of X”. The row vector for the word run has nonzero
values for 1,296 contextual patterns (columns), such as “had to X”.

3.4 Mono Space

Mono space is simply the merger of domain space and function space. For Step 2.3, we
take the union of the 50,000 domain space columns and the 50,000 function space columns,
resulting in a total nc of 100,000 columns. In Step 2.4, we have a total nr of 114,297
rows. The mono matrix after PPMI has 218,222,254 nonzero values, yielding a density of
1.91%. The values in the mono frequency matrix F equal the corresponding values in the
domain and function matrices. Some of the rows in the mono space matrix do not have
corresponding rows in the function space matrix. For these rows, the corresponding values
are zeros (but there are nonzero elements in these rows, which correspond to values in the
domain matrix).

548



Domain and Function: A Dual-Space Model

3.5 Summary of the Spaces

Table 5 summarizes the three matrices. In the following four sets of experiments, we use
the same three matrices (the domain, function, and mono matrices) in all cases; we do not
generate different matrices for each set of experiments. Three of the four sets of experiments
involve datasets that have been used in past by other researchers. We made no special
effort to ensure that the words in these three datasets have corresponding rows in the three
matrices. The intention is that these three matrices should be adequate to handle most
applications without any special customization.

Space Rows (nr) Columns (nc) Nonzeros (after PPMI) Density (after PPMI)

domain 114,297 50,000 149,673,340 2.62%
function 114,101 50,000 68,876,310 1.21%
mono 114,297 100,000 218,222,254 1.91%

Table 5: Summary of the three spaces.

3.6 Using the Spaces to Measure Similarity

In the following experiments, we measure the similarity of two terms, a and b, by the cosine
of the angle θ between their corresponding row vectors, a and b:

sim(a, b) = cos(a,b) =
a

‖a‖
· b

‖b‖
(10)

The cosine of the angle between two vectors is the inner product of the vectors, after they
have been normalized to unit length. The cosine ranges from −1 when the vectors point in
opposite directions (θ is 180 degrees) to +1 when they point in the same direction (θ is 0
degrees). When the vectors are orthogonal (θ is 90 degrees), the cosine is zero. With raw
frequency vectors, which necessarily cannot have negative elements, the cosine cannot be
negative, but weighting and smoothing often introduce negative elements. PPMI weighting
does not yield negative elements, but truncated SVD can generate negative elements, even
when the input matrix has no negative values.

The semantic similarity of two terms is given by the cosine of the two corresponding rows
in UkΣ

p
k (see Section 3.1). There are two parameters in UkΣ

p
k that need to be set. The

parameter k controls the number of latent factors and the parameter p adjusts the weights
of the factors, by raising the corresponding singular values in Σp

k to the power p. The
parameter k is well-known in the literature (Landauer et al., 2007), but p is less familiar.
The use of p was suggested by Caron (2001). In the following experiments (Section 4), we
explore a range of values for p and k.

Suppose we take a word w and list all of the other words in descending order of their
cosines with w, using UkΣ

p
k to calculate the cosines. When p is high, as we go down the list,

the cosines of the nearest neighbours of w decrease slowly. When p is low, they decrease
quickly. That is, a high p results in a broad, fuzzy neighbourhood and a low p yields a sharp,
crisp neighbourhood. The parameter p controls the sharpness of the similarity measure.

549



Turney

To reduce the running time of SVDLIBC, we limit the number of singular values to
1500, which usually results in less than 1500 singular values. For example, the SVD for
domain space has 1477 singular values. As long as k is not greater than 1477, we can
experiment with a range of k values without rerunning SVDLIBC. We can generate UkΣ

p
k

from U1477Σ
p
1477 by simply deleting the 1477−k columns with the smallest singular values.

In the experiments, we vary k from 100 to 1400 in increments of 100 (14 values for k)
and we vary p from −1 to +1 in increments of 0.1 (21 values for p). When p is −1, we
give more weight to the factors with smaller singular values; when p is +1, the factors with
larger singular values have more weight. Caron (2001) observes that most researchers use
either p = 0 or p = 1; that is, they use either Uk or UkΣk.

Let simf(a, b) ∈ < be function similarity as measured by the cosine of vectors a and b
in function space. Let simd(a, b) ∈ < be domain similarity as measured by the cosine of
vectors a and b in domain space. When a similarity measure combines both simd(a, b) and
simf(a, b), there are four parameters to tune, kd and pd for domain space and kf and pf for
function space.

For one space, it is feasible for us to explore all 14×21 = 294 combinations of parameter
values, but two spaces have 294×294 = 86, 436 combinations of values. To make the search
tractable, we initialize the parameters to the middle of their ranges (kf = kd = 700 and
pf = pd = 0) and then we alternate between tuning simd(a, b) (i.e., kd and pd) while holding
simf(a, b) (i.e., kf and pf) fixed and tuning simf(a, b) while holding simd(a, b) fixed. We stop
the search when there is no improvement in performance on the training data. In almost
all cases, a local optimum is found in one pass; that is, after we have tuned the parameters
once, there is no improvement when we try to tune them a second time. Thus we typically
evaluate 294×3 = 882 parameter values (×3 because we tune one similarity, tune the other,
and then try the first again to see if further improvement is possible).11

We could use a standard numerical optimization algorithm to tune the four parame-
ters, but the algorithm we use here takes advantage of background knowledge about the
optimization task. We know that small variations in the parameters make small changes
in performance, so there is no need to make a very fine-grained search, and we know that
simd(a, b) and simf(a, b) are relatively independent, so we can optimize them separately.

The rows in the matrices are based on terms in the WordNet index.sense file. In this
file, all nouns are in their singular forms and all verbs are in their stem forms. To calculate
sim(a, b), we first look for exact matches for a and b in the terms that correspond to the
rows of the given matrix (domain, function, or mono). If an exact match is found, then
we use the corresponding row vector in the matrix. Otherwise, we look for alternate forms
of the terms, using the validForms function in the WordNet::QueryData Perl interface to
WordNet.12 This automatically converts plural nouns to their singular forms and verbs to
their stem forms. If none of the alternate forms is an exact match for a row in the matrix,
we map the term to a zero vector of length k.

11. We use Perl Data Language (PDL) for searching for parameters, calculating cosines, and other operations
on vectors and matrices. See http://pdl.perl.org/.

12. WordNet::QueryData is available at http://search.cpan.org/dist/WordNet-QueryData/.

550



Domain and Function: A Dual-Space Model

3.7 Composing Similarities

Our approach to semantic relations and compositions is to combine the two similarities,
simd(a, b) and simf(a, b), in various ways, depending on the task at hand or the syntax
of the phrase at hand. In general, we want the combined similarity to be high when the
component similarities are high, and we want the values of the component similarities to be
balanced. To achieve balance, we use the geometric mean to combine similarities, instead
of the arithmetic mean. The geometric mean is not suitable for negative numbers, and the
cosine can be negative in some cases; hence we define the geometric mean as zero if any of
the component similarities are negative:

geo(x1, x2, . . . , xn) =

{
(x1x2 . . . xn)1/n if xi > 0 for all i = 1, . . . , n

0 otherwise
(11)

3.8 Element-wise Multiplication

One of the most successful approaches to composition, so far, has been element-wise mul-
tiplication, c = a � b, where ci = ai · bi (Mitchell & Lapata, 2008, 2010). This approach
only makes sense when the elements in the vectors are not negative. When the elements in
a and b are positive, relatively large values of ai and bi reinforce each other, resulting in a
large value for ci. This makes intuitive sense. But when ai and bi are both highly negative,
ci will be highly positive, although intuition says ci should be highly negative. Mitchell and
Lapata (2008, 2010) designed their word–context matrices to ensure that the vectors had
no negative elements.

The values in the matrix UkΣ
p
k are typically about half positive and half negative. We

use element-wise multiplication as a baseline in some of the following experiments. For a
fair baseline, we cannot simply apply element-wise multiplication to row vectors in UkΣ

p
k.

One solution would be to use the PPMI matrix, X, which has no negative elements, but this
would not allow element-wise multiplication to take advantage of the smoothing effect of
SVD. Our solution is to use row vectors from X̂ = UkΣkV

T
k . Although the PPMI matrix,

X, is sparse (see Table 5), X̂ and UkΣ
p
k have a density of 100%.

Let a′ and b′ be the vectors in X̂ that correspond to the terms a and b. These row
vectors benefit from smoothing due to truncated SVD, but their elements are almost all
positive. If there are any negative elements, we set them to zero. Let c′ = a′ � b′. After
we apply element-wise multiplication to the vectors, we then multiply by VkΣ

p−1
k , so that

the resulting vector c = c′VkΣ
p−1
k can be compared with other row vectors in the matrix

UkΣ
p
k:

X̂(VkΣ
p−1
k ) = (UkΣkV

T
k )(VkΣ

p−1
k ) (12)

= UkΣkV
T
k VkΣ

p−1
k (13)

= UkΣkΣ
p−1
k (14)

= UkΣ
p
k (15)

Note that, since Vk is column orthonormal, VT
k Vk equals Ik, the k × k identity matrix.

551



Turney

Similarly, if a is a row vector in UkΣ
p
k, we can find its counterpart a′ in X̂ by multiplying

a with Σ1−p
k VT

k :

(UkΣ
p
k)(Σ1−p

k VT
k ) = UkΣ

p
kΣ

1−p
k VT

k (16)

= UkΣkV
T
k (17)

= X̂ (18)

Let nn(x) (nn for nonnegative) be a function that converts negative elements in a vector
x to zero:

nn(〈x1, . . . , xn〉) = 〈y1, . . . , yn〉 (19)

yi =

{
xi if xi > 0
0 otherwise

(20)

Our version of element-wise multiplication may be expressed as follows:

c = (nn(aΣ1−p
k VT

k )� nn(bΣ1−p
k VT

k )) VkΣ
p−1
k (21)

Another way to deal with element-wise multiplication would be to use nonnegative
matrix factorization (NMF) (Lee & Seung, 1999) instead of SVD. We have not yet found
an implementation of NMF that scales to the matrix sizes that we have here (Table 5). In
our past experiments with smaller matrices, SVD and NMF have similar performance.

4. Experiments with Varieties of Similarities

This section presents four sets of experiments. The first set of experiments presents a dual-
space model of semantic relations and evaluates the model with multiple choice analogy
questions from the SAT. The second set presents a model of semantic composition and
evaluates it with multiple choice questions that are constructed from WordNet. The third
set applies a dual-space model to the phrase similarity dataset of Mitchell and Lapata
(2010). The final set uses three classes of word pairs from Chiarello et al. (1990) to test a
hypothesis about the dual-space model, that domain space and function space capture the
intuitive concepts of association and similarity.

4.1 Similarity of Relations

Here we evaluate the dual-space model applied to the task of measuring the similarity of
semantic relations. We use a set of 374 multiple-choice analogy questions from the SAT
college entrance exam (Turney, 2006b). Table 6 gives an example of one of the questions.
The task is to select the choice word pair that is most analogous (most relationally similar)
to the stem word pair.

Let a : b represent the stem pair (e.g., lull :trust). We answer the SAT questions by
selecting the choice pair c :d that maximizes the relational similarity, simr(a :b, c :d), defined
as follows:

552



Domain and Function: A Dual-Space Model

Stem: lull:trust

Choices: (1) balk:fortitude
(2) betray:loyalty
(3) cajole:compliance
(4) hinder:destination
(5) soothe:passion

Solution: (3) cajole:compliance

Table 6: An example of a question from the 374 SAT analogy questions. Lulling a person
into trust is analogous to cajoling a person into compliance.

sim1(a :b, c :d) = geo(simf(a, c), simf(b, d)) (22)

sim2(a :b, c :d) = geo(simd(a, b), simd(c, d)) (23)

sim3(a :b, c :d) = geo(simd(a, d), simd(c, b)) (24)

simr(a :b, c :d) =

{
sim1(a :b, c :d) if sim2(a :b, c :d) ≥ sim3(a :b, c :d)

0 otherwise
(25)

The intent of sim1 is to measure the function similarity across the two pairs. The domain
similarity inside the two pairs is measured by sim2, whereas the domain similarity across the
two pairs is given by sim3. The relational similarity, simr, is simply the function similarity,
sim1, subject to the constraint that the domain similarity inside pairs, sim2, must not be
less than the domain similarity across pairs, sim3.

Figure 1 conveys the main ideas behind Equations 22 to 25. We want high function
similarities (indicated by ↑ F) for a : c and b : d, as measured by sim1. We also prefer
relatively high domain similarities (marked with ↑D) for a :b and c :d (measured by sim2),
in contrast to relatively low domain similarities (↓D) for a :d and c :b (as given by sim3).13

Using the example in Table 6, we see that lulling a person into trust is analogous to
cajoling a person into compliance, since the functional role of lull is similar to the functional
role of cajole (both involve manipulating a person) and the functional role of trust is similar
to the functional role of compliance (both are states that a person can be in). This is
captured by sim1. The constraint sim2(a : b, c : d) ≥ sim3(a : b, c : d) implies that the
domain similarities of lull :trust (the domain of confidence and loyalty) and cajole :compliance
(the domain of obedience and conformity) should be greater than or equal to the domain
similarities of lull :compliance and cajole :trust.

Analogy is a way of mapping knowledge from a source domain to a target domain
(Gentner, 1983). If a in the source domain is mapped to c in the target domain, then a
should play the same role in the source domain as c plays in the target domain. This is
the theory behind sim1. If a and b are in the source domain and c and d are in the target

13. We recently came across this same rectangular structure in Lepage and Shin-ichi’s (1996) paper on
morphological analogy (see their Figure 1). Although our algorithm and our task differ considerably
from the algorithm and task of Lepage and Shin-ichi (1996), we have independently discovered the same
underlying structure in analogical reasoning.

553



Turney

a b

c d

↑D

↑D

↑F ↑F

↓D ↓D

simr(a :b, c :d)

relational similarity

Figure 1: A diagram of the reasoning behind Equations 22 to 25. ↑ F represents high
function similarity, ↑ D means high domain similarity, and ↓ D indicates low
domain similarity.

domain, then the internal domain similarity of a and b and the internal domain similarity of
c and d should not be less than the cross-domain similarities. This motivates the constraint
sim2 ≥ sim3. Our definition is a natural expression of Gentner’s (1983) theory of analogy.

Recall the four equations that we introduced in Section 2.2. We repeat these equations
here for convenience:

simr(a :b, c :d) = simr(b :a, d :c) (26)

simr(a :b, c :d) = simr(c :d, a :b) (27)

simr(a :b, c :d) 6= simr(a :b, d :c) (28)

simr(a :b, c :d) 6= simr(a :d, c :b) (29)

Inspection will show that the definition of relational similarity in Equation 25 satisfies the
requirements of Equations 26, 27, 28, and 29. This can be understood by considering
Figure 1. Equation 26 tells us that we can rotate Figure 1 about its vertical axis without
altering the network of similarities, due to the symmetry of the figure. Equation 27 tells
us that we can rotate Figure 1 about its horizontal axis without altering the network of
similarities.

On the other hand, we cannot swap c and d while holding a and b fixed, because this
would change both the ↑ F and ↓ D links (although it would not change the ↑ D links).
In other words, sim1 and sim3 would be changed, although sim2 would not be affected.
Therefore Equation 28 is satisfied.

Also, we cannot swap b and d while holding a and c fixed, because this would change
the ↑D and ↓D links (although it would not change the ↑F links). In other words, sim2

and sim3 would be changed, although sim1 would not be affected. Therefore Equation 29

554



Domain and Function: A Dual-Space Model

is satisfied. We can see that sim1 by itself would violate Equation 29, due to the symmetry
of cosines, simf(b, d) = simf(d, b). The constraint sim2(a : b, c : d) ≥ sim3(a : b, c : d) breaks
this symmetry.

Another way to break the symmetry, so that Equation 29 is satisfied, would be to use a
similarity measure that is inherently asymmetric, such as skew divergence. In Equation 25,
the symmetry is broken in a natural way by considering how domain and function similarity
apply to analogies, so there is no need to introduce an inherently asymmetric measure. Also,
note that the symmetries of Equations 26 and 27 are desirable; we do not wish to break
these symmetries.

It would have been reasonable to include simd(a, c) and simd(b, d) in sim3, but we decided
to leave them out. It seems to us that the function similarities simf(a, c) and simf(b, d),
which should have high values in a good analogy, might cause simd(a, c) and simd(b, d)
to be relatively high, even though they cross domains. If people observe a certain kind
of abstract function similarity frequently, that function similarity might become a popular
topic for discussion, which could result in a high domain similarity.

For example, carpenter :wood is analogous to mason :stone. The domain of carpenter :wood
is carpentry and the domain of mason :stone is masonry. The functional role of carpenter
is similar to the functional role of mason, in that both are artisans. Although carpenter
and mason belong to different domains, their high degree of abstract function similarity
may result in discussions that mention them together, such as discussions about special-
ized trades, skilled manual labour, the construction industry, and workplace injuries. In
other words, high function similarity between two words may cause a rise in their domain
similarity. Therefore we did not include simd(a, c) and simd(b, d) in sim3.

When all five choices for a SAT question have a relational similarity of zero, we skip the
question. We use ten-fold cross-validation to set the parameters for the SAT questions. The
same parameter values are selected in nine of the ten folds, kd = 800, pd = −0.1, kf = 300,
and pf = 0.5. After the parameters are determined, all 374 SAT questions can be answered
in a few seconds. Equation 25 correctly answers 191 of the questions, skips 2 questions, and
incorrectly answers 181 questions, achieving an accuracy of 51.1%.

4.1.1 Comparison with Past Work

For comparison, the average score for senior highschool students applying to US universities
is 57.0%. The ACL Wiki lists many past results with the 374 SAT questions.14 Table 7
shows the top ten results at the time of writing. In this table, dual-space refers to the dual-
space model using Equation 25. Four of the past results achieved an accuracy of 51.1%
or higher. All four used holistic approaches and hence are not able to address the issue of
linguistic creativity. The best previous algorithm attains an accuracy of 56.1% (210 correct,
4 skipped, 160 incorrect) (Turney, 2006b). The difference between 51.1% and 56.1% is not
statistically significant at the 95% confidence level, according to Fisher’s Exact Test.

The majority of the algorithms in Table 7 are unsupervised, but Dual-Space, PairClass
(Turney, 2008b), and BagPack (Herdağdelen & Baroni, 2009) use limited supervision. Pair-
Class and BagPack answer a given SAT question by learning a binary classification model
that is specific to the given question. The training set for a given question consists of one

14. See http://aclweb.org/aclwiki/index.php?title=SAT Analogy Questions.

555



Turney

Algorithm Reference Accuracy 95% confidence

LSA+Predication Mangalath et al. (2004) 42.0 37.2–47.4
KNOW-BEST Veale (2004) 43.0 38.0–48.2
k-means Biçici and Yuret (2006) 44.0 39.0–49.3
BagPack Herdağdelen and Baroni (2009) 44.1 39.0–49.3
VSM Turney and Littman (2005) 47.1 42.2–52.5
Dual-Space 51.1 46.1–56.5
BMI Bollegala et al. (2009) 51.1 46.1–56.5
PairClass Turney (2008b) 52.1 46.9–57.3
PERT Turney (2006a) 53.5 48.5–58.9
LRA Turney (2006b) 56.1 51.0–61.2
Human Average US college applicant 57.0 52.0–62.3

Table 7: The top ten results with the 374 SAT questions, from the ACL Wiki. The 95%
confidence intervals are calculated using the Binomial Exact Test.

positive training example, the stem pair for the question, and ten randomly selected pairs
as (assumed) negative training examples. The induced binary classifier is used to assign
probabilities to the five choices and the most probable choice is the guess. Dual-Space uses
the training set only to tune four numerical parameters. These three algorithms are best
described as weakly supervised.

4.1.2 Sensitivity to Parameters

To see how sensitive the dual-space model is to the values of the parameters, we perform
two exhaustive grid searches, one with a coarse, wide grid and another with a fine, narrow
grid. For each point in the grids, we evaluate the dual-space model using the whole set
of 374 SAT questions. The narrow grid search is centred on the parameter values that
were selected in nine of the ten folds in the previous experiment, kd = 800, pd = −0.1,
kf = 300, and pf = 0.5. Both searches evaluate 5 values for each parameter, yielding a total
of 54 = 625 parameter settings. Table 8 shows the values that were explored in the two grid
searches and Table 9 presents the minimum, maximum, average, and standard deviation of
the accuracy for the two searches.

Grid Parameter Values

Coarse kd 100 425 750 1075 1400
pd -1.0 -0.5 0.0 0.5 1.0
kf 100 425 750 1075 1400
pf -1.0 -0.5 0.0 0.5 1.0

Fine kd 600 700 800 900 1000
pd -0.3 -0.2 -0.1 0.0 0.1
kf 100 200 300 400 500
pf 0.3 0.4 0.5 0.6 0.7

Table 8: The range of parameter values for the two grid searches.

556



Domain and Function: A Dual-Space Model

Accuracy
Grid Minimum Maximum Average Standard deviation

Coarse 31.0 48.7 40.7 4.1
Fine 42.5 51.6 47.3 2.0

Table 9: The sensitivity of the dual-space model to the parameter settings.

The accuracy attained by the heuristic search (described in Section 3.6) with ten-fold
cross-validation, 51.1% (Table 7), is near the best accuracy of the fine grid search using the
whole set of 374 SAT questions, 51.6% (Table 9). This is evidence that the heuristic search is
effective. Accuracy with the coarse search varies from 31.0% to 48.7%, which demonstrates
the importance of tuning the parameters. On the other hand, accuracy with the fine search
spans a narrower range and has a lower standard deviation, which suggests that the dual-
space model is not overly sensitive to relatively small variations in the parameter values;
that is, the parameters are reasonably stable. (That nine of the ten folds in cross-validation
select the same parameters is further evidence of stability.)

4.1.3 Parts of Speech

Since domain space is based on nouns and function space is based on verbs, it is interesting
to know how the performance of the dual-space model varies with different parts of speech.
To answer this, we manually labeled all 374 SAT questions with part-of-speech labels. The
labels for a single pair can be ambiguous, but the labels become unambiguous in the context
of the whole question. For example, lull :trust could be noun :verb, but in the context of
Table 6, it must be verb :noun.

Table 10 splits out the results for the various parts of speech. None of the differences
in this table are statistically significant at the 95% confidence level, according to Fisher’s
Exact Test. A larger and more varied set of questions will be needed to determine how part
of speech affects the dual-space model.

Parts of speech Right Accuracy Wrong Skipped Total

noun:noun 97 50.8 93 1 191
noun:adjective or adjective:noun 35 53.0 31 0 66
noun:verb or verb:noun 27 49.1 28 0 55
adjective:adjective 9 37.5 15 0 24
verb:adjective or adjective:verb 12 60.0 7 1 20
verb:verb 11 64.7 6 0 17
verb:adverb or adverb:verb 0 0.0 1 0 1

all 191 51.1 181 2 374

Table 10: Performance of the dual-space model with various parts of speech.

4.1.4 Order Sensitivity

It seems that function space is doing most of the work in Equation 25. If we use sim1 alone,
dropping the constraint that sim2 ≥ sim3, then accuracy drops from 51.1% to 50.8%. This

557



Turney

drop is not statistically significant. We hypothesize that the small drop is due to the design
of the SAT test, which is primarily intended to test a student’s understanding of functional
roles, not domains.

To verify this hypothesis, we reformulated the SAT questions so that they would test
both function and domain comprehension. The method is to first expand each choice pair
c :d by including the stem pair a :b, resulting in the full explicit analogy a :b ::c :d. For each
expanded choice, a : b :: c : d, we then generate another choice, a : d :: c : b. Table 11 shows
the reformulation of Table 6. Due to symmetry, sim1 must assign the same similarity to
both a :b ::c :d and a :d ::c :b. This new ten-choice test evaluates both function and domain
similarities.

Choices: (1) lull:trust::balk:fortitude
(2) lull:fortitude::balk:trust
(3) lull:loyalty::betray:trust
(4) lull:trust::betray:loyalty
(5) lull:compliance::cajole:trust
(6) lull:trust::cajole:compliance
(7) lull:destination::hinder:trust
(8) lull:trust::hinder:destination
(9) lull:trust::soothe:passion
(10) lull:passion::soothe:trust

Solution: (6) lull:trust::cajole:compliance

Table 11: An expanded SAT question, designed to test both function and domain compre-
hension. Choices (5) and (6) have the same similarity according to sim1.

The task with the expanded ten-choice SAT questions is the same as with the original
five-choice questions, to select the best analogy. The solution in Table 11 is the same as the
solution in Table 6, except that the stem pair is explicit in Table 11. The only signficant
change is that five new distractors have been added to the choices. We answer the ten-choice
questions by selecting the choice a :b ::c :d that maximizes simr(a :b, c :d).

On the ten-choice reformulated SAT test, simr (Equation 25) attains an accuracy of
47.9%, whereas sim1 alone (Equation 22) only achieves 27.5%. The difference is statistically
significant at the 95% confidence level, according to Fisher’s Exact Test. This more stringent
test supports the claim that function similarity is insufficient by itself.

As a further test of the value of two separate spaces, we use a single space for both
simd and simf in Equation 25. The model still has four parameters it can tune, kd, pd, kf ,
and pf , but the same matrix is used for both similarities. The best result is an accuracy of
40.4% on the ten-question reformulated SAT test, using function space for both simd and
simf . This is significantly below the 47.9% accuracy of the dual-space model when simd is
based on domain space and simf is based on function space (95% confidence level, Fisher’s
Exact Test).

Table 12 summarizes the results. In the cases where the matrix for simd is not used,
the model is based on sim1 alone (Equation 22). In all other cases, the model is based
on simr (Equation 25). For both the five-choice and ten-choice SAT questions, the original

558



Domain and Function: A Dual-Space Model

dual-space model is more accurate than any of the modified models. The Significant column
indicates whether the accuracy of a modified model is significantly less than the original
dual-space model (95% confidence level, Fisher’s Exact Test). The more difficult ten-choice
questions clearly show the value of two distinct spaces.

Algorithm Accuracy Significant Questions Matrix for simd Matrix for simf

dual-space 51.1 five-choice domain space function space
modified dual-space 47.3 no five-choice function space function space
modified dual-space 43.6 yes five-choice mono space mono space
modified dual-space 37.7 yes five-choice domain space domain space
modified dual-space 50.8 no five-choice not used function space
modified dual-space 41.7 yes five-choice not used mono space
modified dual-space 35.8 yes five-choice not used domain space

dual-space 47.9 ten-choice domain space function space
modified dual-space 40.4 yes ten-choice function space function space
modified dual-space 38.2 yes ten-choice mono space mono space
modified dual-space 34.8 yes ten-choice domain space domain space
modified dual-space 27.5 yes ten-choice not used function space
modified dual-space 25.1 yes ten-choice not used mono space
modified dual-space 14.4 yes ten-choice not used domain space

Table 12: Accuracy with the original five-choice questions and the reformulated ten-choice
questions. In the modified models, we intentionally use the wrong matrix (or
no matrix) for simd or simf . The modified models show that accuracy decreases
when only one space is used.

4.1.5 Summary

The dual-space model performs as well as the current state-of-the-art holistic model and
addresses the issue of linguistic creativity. The results with the reformulated SAT questions
support the claim that there is value in having two separate spaces.

As we mentioned in Section 2.2, the task of classifying word pairs according to their
semantic relations (Rosario & Hearst, 2001; Rosario et al., 2002; Nastase & Szpakowicz,
2003) is closely connected to the problem of measuring relational similarity. Turney (2006b)
applied a measure of relational similarity to relation classification by using cosine similarity
as a measure of nearness in a nearest neighbour supervised learning algorithm. The dual-
space model (Equation 25) is also suitable for relation classification with a nearest neighbour
algorithm.

4.2 Similarity of Compositions

In this second set of experiments, we apply the dual-space model to noun-modifier compo-
sitions. Given vectors for dog, house, and kennel, we would like to be able to recognize that
dog house and kennel are synonymous. We compare the dual-space model to the holistic
approach, vector addition, and element-wise multiplication. The approaches are evaluated

559



Turney

using multiple-choice questions that are automatically generated from WordNet, using the
WordNet::QueryData Perl interface to WordNet. Table 13 gives an example of one of the
noun-modifier questions.

Stem: dog house

Choices: (1) kennel
(2) dog
(3) house
(4) canine
(5) dwelling
(6) effect
(7) largeness

Solution: (1) kennel

Table 13: An example of a multiple-choice noun-modifier composition question.

In these questions, the stem is a bigram and the choices are unigrams. Choice (1) is
the correct answer, (2) is the modifier, and (3) is the head noun. Choice (4) is a synonym
or hypernym of the modifier and (5) is a synonym or hypernym of the head noun. If no
synonyms or hypernyms can be found, a noun is randomly chosen. The last two choices, (6)
and (7), are randomly selected nouns. Choices (2) and (4) can be either nouns or adjectives,
but the other choices must be nouns.

The stem bigram and the choice unigrams must have corresponding rows in function
space (the space with the least number of rows). The stem bigram must have a noun sense
in WordNet (it may also have senses for other parts of speech). The solution unigram, (1),
must be a member of the synset (synonym set) for the first noun sense of the stem bigram
(the most frequent or dominant sense of the bigram, when the bigram is used as a noun),
and it cannot be simply the hyphenation (dog-house) or concatenation (doghouse) of the
stem bigram.

These requirements result in a total of 2180 seven-choice questions, which we randomly
split into 680 for training (parameter tuning) and 1500 for testing.15 The questions are de-
liberately designed to be difficult. In particular, all of the approaches are strongly attracted
to choices (2) and (3). Furthermore, we did not attempt to ensure that the stem bigrams are
compositional; some of them may be idiomatic expressions that no compositional approach
could possibly get right. We did not want to bias the questions by imposing theories about
distinguishing compositions and idioms in their construction.

Let ab represent a noun-modifier bigram (dog house) and let c represent a unigram
(kennel). We answer the multiple-choice questions by selecting the unigram that maximizes
the compositional similarity, simc(ab, c), defined as follows:

sim1(ab, c) = geo(simd(a, c), simd(b, c), simf(b, c)) (30)

simc(ab, c) =

{
sim1(ab, c) if a 6= c and b 6= c

0 otherwise
(31)

15. The questions are available as an online appendix at http://jair.org/.

560



Domain and Function: A Dual-Space Model

Equations 30 and 31 are illustrated in Figure 2.

a b

c

6= ↑D ↑D ↑F 6=

simc(ab, c)

noun-modifier compositional similarity

Figure 2: A diagram of Equations 30 and 31.

The thinking behind sim1 is that c (kennel ) should have high domain similarity with
both the modifier a (dog) and the head noun b (house); furthermore, the function of the
bigram ab (dog house) is determined by the head noun b (house), so the head noun should
have high function similarity with c (kennel ). We add the constraints a 6= c and b 6= c
because sim1 by itself tends to have high values for sim1(ab, a) and sim1(ab, b).16 It seems
plausible that humans use constraints like this: We reason that dog house cannot mean the
same thing as house, because then the extra word dog in dog house would serve no purpose;
it would be meaningless noise.17

The constraints a 6= c and b 6= c could be expressed in terms of similarities, such as
simd(a, c) < t and simd(b, c) < t, where t is a high threshold (e.g., t = 0.9), but this would
add another parameter to the model. We decided to keep the model relatively simple.

When all seven choices for a noun-modifier question have a compositional similarity of
zero, we skip the question. On the training set, the best parameter settings are kd = 800,
pd = 0.3, kf = 100, and pf = 0.6. On the testing set, Equation 31 correctly answers 874
questions, skips 22 questions, and incorrectly answers 604, yielding an accuracy of 58.3%.

4.2.1 Comparison with Other Approaches

Mitchell and Lapata (2010) compared many different approaches to semantic composition in
their experiments, but they only considered one task (the task we examine in Section 4.3).
In this paper, we have chosen to compare a smaller number of approaches on a larger
number of tasks. We include element-wise multiplication in these experiments, because this
approach had the best performance in Mitchell and Lapata’s (2010) experiments. Vector

16. In spite of these constraints, it is still worthwhile to include the head noun and the modifier as distractors
in the multiple-choice questions, because it enables us to experimentally evaluate the impact of these
distractors on the various algorithms when the constraints are removed (see Table 15). Also, future users
of this dataset may find a way to avoid these distractors without explicit constraints.

17. In philosophy of language, Grice (1989) argued that proper interpretation of language requires us to
charitably assume that speakers generally do not insert random words into their speech.

561



Turney

addition is included due to its historical importance and its simplicity. Although Mitchell
and Lapata (2010) found that weighted addition was better than unweighted addition, we
do not include weighted addition in our experiments, because it did not perform as well as
element-wise multiplication in Mitchell and Lapata’s (2010) experiments. We include the
holistic model as a noncompositional baseline.

Table 14 compares the dual-space model with the holistic model, element-wise multipli-
cation, and vector addition. For the latter three models, we try all three spaces.

Algorithm Space Accuracy

dual-space domain and function 58.3

holistic mono 81.6
holistic domain 79.1
holistic function 67.5

multiplication mono 55.7
multiplication domain 57.5
multiplication function 46.3

addition mono 48.3
addition domain 50.1
addition function 39.8

Table 14: Results for the noun-modifier questions.

In this table, dual-space refers to the dual-space model using Equation 31. In the holistic
model, ab is represented by its corresponding row vector in the given space. Recall from
Section 3.1 that, in Step 1.1, the rows in the matrices correspond to n-grams in WordNet,
where n may be greater than one. Thus, for example, dog house has a corresponding
row vector in all three of the spaces. The holistic model simply uses this row vector as
the representation of dog house. For element-wise multiplication, ab is represented using
Equation 21. With the vector addition model, ab is represented by a+b, where the vectors
are normalized to unit length before they are added. All four models use the constraints
a 6= c and b 6= c. All four models use the training data for parameter tuning.

The difference between the dual-space model (58.3%) and the best variation of element-
wise multiplication (57.5%) is not statistically significant at the 95% confidence level, ac-
cording to Fisher’s Exact Test. However, the difference between the dual-space model
(58.3%) and the best variation of vector addition (50.1%) is significant.

4.2.2 Limitations of the Holistic Approach

For all three spaces, the holistic model is significantly better than all other models, but its
inability to address the issue of linguistic creativity is a major limitation. The 2180 multiple-
choice questions that we have used in these experiments were intentionally constructed with
the requirement that the stem bigram must have a corresponding row in function space (see
above). This was done so that we could use the holistic model as a baseline; however, it
gives the misleading impression that the holistic model is a serious competitor with the
compositional approaches. By design, Table 14 shows what the holistic model can achieve
under ideal (but unrealistic) conditions.

562



Domain and Function: A Dual-Space Model

Mitchell and Lapata’s (2010) dataset, used in the experiments in Section 4.3, illustrates
the limitations of the holistic model. The dataset consists of 324 distinct pairs of bigrams,
composed of 216 distinct bigrams. Of the 216 bigrams, 28 (13%) occur in WordNet. Of
the 324 pairs of bigrams, 13 (4%) contain bigrams that both occur in WordNet. Given
the matrices we use here (with rows based on WordNet), the holistic approach would be
reduced to random guessing for 96% of the pairs in Mitchell and Lapata’s (2010) dataset.

It might be argued that the failure of the holistic approach with Mitchell and Lapata’s
(2010) dataset is due to our decision to base the rows of the matrices on terms from WordNet.
However, suppose we attempt to build a holistic model for all frequent bigrams. The Web
1T 5-gram corpus (Brants & Franz, 2006) includes a list of all bigrams that appeared 40
or more times in a terabyte of text, a total of 314,843,401 bigrams. Using a compositional
approach, the matrices we use here can represent the majority of these bigrams. On the
other hand, the holistic approach would require a matrix with 314,843,401 rows, which is
considerably beyond the current state of the art.

One possibility is to build a matrix for the holistic approach as needed, for a given
input set of n-grams, instead of building a large, static, multipurpose matrix. There are
two problems with this idea. First, it is slow. Turney (2006b) used this approach for the
SAT analogy questions, but it required nine days to run, whereas the dual-space model can
process the SAT questions in a few seconds, given a static, multipurpose matrix. Second, it
requires a large corpus, and the corpus size must grow exponentially with n, the length of
the phrases. Longer phrases are more rare, so larger corpora are needed to gather sufficient
data to model the phrases. Larger corpora also result in longer processing times.

For a given application, it may be wise to have a predefined list of bigrams with holistic
representations, but it would not be wise to expect this list to be sufficient to cover most
bigrams that would be seen in practice. The creativity of human language use requires
compositional models (Chomsky, 1975; Fodor & Lepore, 2002). Although the holistic model
is included as a baseline in the experiments, it is not a competitor for the other models; it
can only supplement the other models.

4.2.3 Impact of Constraints

If we use sim1 alone (Equation 30), dropping the constraints a 6= c and b 6= c, then accuracy
drops signficantly, from 58.3% to 13.7%. However, all of the models benefit greatly from
these constraints. In Table 15, we take the best variation of each model from Table 14 and
look at what happens when the constraints are dropped.

Accuracy
Algorithm Space constraints no constraints difference

dual-space domain and function 58.3 13.7 -44.6
holistic mono 81.6 49.6 -32.0
multiplication domain 57.5 8.2 -49.3
addition domain 50.1 2.5 -47.6

Table 15: The impact of the constraints, a 6= c and b 6= c, on accuracy.

563



Turney

4.2.4 Element-wise Multiplication

In Section 3.8, we argued that c = a�b is not suitable for row vectors in the matrix UkΣ
p
k

and we suggested Equation 21 as an alternative. When we use c = a � b with domain
space, instead of Equation 21, performance drops significantly, from 57.5% to 21.5%.

4.2.5 Impact of Idioms

Some of the gap between the holistic model and the other models may be due to idiomatic
bigrams in the testing questions. One of the most successful approaches to determining
whether a multiword expression (MWE) is compositional or noncompositional (idiomatic)
is to compare its holistic vector representation with its compositional vector representation
(for example, a high cosine between the two vectors suggests that the MWE is compositional,
not idiomatic) (Biemann & Giesbrecht, 2011; Johannsen, Alonso, Rishøj, & Søgaard, 2011).
However, this approach is not suitable here, because we do not want to assume that the
gap is entirely due to idiomatic bigrams; instead, we would like to estimate how much of
the gap is due to idiomatic bigrams.

WordNet contains some clues that we can use as indicators that a bigram might be less
compositional than most bigrams (allowing that compositionality is a matter of degree).
One clue is whether the WordNet gloss of the bigram contains either the head noun or the
modifier. For example, the gloss of dog house is outbuilding that serves as a shelter for a
dog, which contains the modifier, dog. This suggests that dog house may be compositional.

We classified each of the 1500 testing set questions as head (the first five characters in
the head noun of the bigram match the first five characters in a word in the bigram’s gloss),
modifier (the first five characters in the modifier of the bigram match the first five characters
in a word in the bigram’s gloss), both (both the head and the modifier match), or neither
(neither the head nor the modifier match). The four classes are approximately equally
distributed in the testing questions (424 head, 302 modifier, 330 both, and 444 neither). We
match on the first five characters to allow for cases like brain surgeon, which has the gloss
someone who does surgery on the nervous system (especially the brain). This bigram is
classified as both, because the first five characters of surgeon match the first five characters
of surgery.

Table 16 shows how the accuracy of the models varies over the four classes of ques-
tions. For the three compositional models (dual-space, multiplication, addition), the nei-
ther class is significantly less accurate than the other three classes (Fisher’s Exact Test,
95% confidence), but the difference is not significant for the holistic model. For the three
compositional models, the neither class is 17% to 20% less accurate than the other classes.
This supports the view that a significant fraction of the wrong answers of the compositional
models are due to noncompositional bigrams.

Another clue for compositionality in WordNet is whether the head noun is a hypernym
of the bigram. For example, surgeon is a hypernym of brain surgeon. We classified each
of the 1500 testing set questions as hyper (the head noun is a member of the synset of the
immediate hypernym for the first noun sense of the bigram; we do not look further up in the
hypernym hierarchy and we do not look at other senses of the bigram) or not (not hyper).
In the testing set, 621 questions are hyper and 879 are not.

564



Domain and Function: A Dual-Space Model

Accuracy
Algorithm Space both head modifier neither all

dual-space domain and function 63.0 63.0 64.6 45.9 58.3
holistic mono 82.7 83.7 82.1 78.4 81.6
multiplication domain 61.8 63.7 62.9 44.8 57.5
addition domain 53.6 56.8 56.3 36.7 50.1

Table 16: The variation of accuracy for different classes of bigram glosses.

Table 17 gives the accuracy of the models for each of the classes. This table has the
same general pattern as Table 16. The three compositional models have significantly lower
accuracy for the not class, with decreases from 6% to 8%. There is no significant difference
for the holistic model.

Accuracy
Algorithm Space hyper not all

dual-space domain and function 62.0 55.6 58.3
holistic mono 81.0 82.0 81.6
multiplication domain 61.8 54.5 57.5
addition domain 54.8 46.8 50.1

Table 17: The variation of accuracy for different classes of bigram hypernyms.

4.2.6 Order Sensitivity

Note that vector addition and element-wise multiplication lack order sensitivity, but Equa-
tion 31 is sensitive to order, simc(ab, c) 6= simc(ba, c). We can see the impact of this by
reformulating the noun-modifier questions so that they test for order-sensitivity. First we
expand each choice unigram c by including the stem bigram ab, resulting in the explicit
comparison ab ∼ c. For each expanded choice, ab ∼ c, we then generate another choice,
ba ∼ c. This increases the number of choices from seven to fourteen. Due to symmetry,
vector addition and element-wise multiplication must assign the same similarity to both
ab ∼ c and ba ∼ c.

Table 18 compares the dual-space model with element-wise multiplication and vector ad-
dition, using the reformulated fourteen-choice noun-modifier questions. The holistic model
is not included in this table because there are no rows in the matrices for the reversed ba
bigrams (which may be seen as another illustration of the limits of the holistic model). On
this stricter test, the dual-space model is significantly more accurate than both element-wise
multiplication and vector addition (Fisher’s Exact Test, 95% confidence).

For the dual-space model to perform well with the fourteen-choice questions, we need
both simd and simf . If we drop simd from Equation 31 (function alone in Table 18), then we
are ignoring the modifier and only paying attention to the head noun. Accuracy drops from
41.5% down to 25.7%. If we drop simf from Equation 31 (domain alone in Table 18), then
the equation becomes symmetrical, so the same similarity is assigned to both ab ∼ c and

565



Turney

Algorithm Space Accuracy

dual-space domain and function 41.5
multiplication domain 27.4
modified dual-space function alone 25.7
modified dual-space domain alone 25.7
addition domain 22.5

Table 18: Results for the reformulated fourteen-choice noun-modifier questions.

ba ∼ c. Accuracy drops from 41.5% down to 25.7%.18 The dual-space model is significantly
more accurate than either of these modified dual-space models (Fisher’s Exact Test, 95%
confidence).

4.2.7 Summary

With the reformulated fourteen-choice noun-modifier questions (Table 18), the dual-space is
significantly better than element-wise multiplication and vector addition. With the original
seven-choice questions (Table 14), the difference is not as large, because these questions do
not test for order. Unlike element-wise multiplication and vector addition, the dual-space
model addresses the issue of order sensitivity. Unlike the holistic model, the dual-space
addresses the issue of linguistic creativity.

4.3 Similarity of Phrases

In this subsection, we apply the dual-space model to measuring the similarity of phrases,
using Mitchell and Lapata’s (2010) dataset of human similarity ratings for pairs of phrases.
The dataset includes three types of phrases, adjective-noun, noun-noun, and verb-object.
There are 108 pairs of each type (108× 3 = 324 pairs of phrases). Each pair of phrases was
rated by 18 human subjects. The ratings use a 7 point scale, in which 1 signifies the lowest
degree of similarity and 7 signifies the highest degree. Table 19 gives some examples.

Let ab represent the first phrase in a pair of phrases (environment secretary) and let cd
represent the second phrase (defence minister). We rate the similarity of the phrase pairs
by simp(ab, cd), defined as follows:

simp(ab, cd) = geo(simd(a, c), simd(b, d), simf(a, c), simf(b, d)) (32)

This equation is based on the instructions to the human participants (Mitchell & Lapata,
2010, Appendix B), which imply that both function and domain similarity must be high
for a phrase pair to get a high similarity rating. Figure 3 illustrates the reasoning behind
this equation. We want high domain and function similarities between the corresponding
components of the phrases ab and cd.

18. It is only a coincidence that both modified dual-space models have an accuracy of 25.7% on the fourteen-
choice questions. Although their aggregate accuracy is the same, on individual questions, the two models
typically select different choices.

566



Domain and Function: A Dual-Space Model

Participant Phrase type Group Phrase pair Similarity

114 adjective-noun 2 certain circumstance ∼ particular case 6
114 adjective-noun 2 large number ∼ great majority 4
114 adjective-noun 2 further evidence ∼ low cost 2

109 noun-noun 0 environment secretary ∼ defence minister 6
109 noun-noun 0 action programme ∼ development plan 4
109 noun-noun 0 city centre ∼ research work 1

111 verb-object 2 lift hand ∼ raise head 7
111 verb-object 2 satisfy demand ∼ emphasise need 4
111 verb-object 2 like people ∼ increase number 1

Table 19: Examples of phrase pair similarity ratings from Mitchell and Lapata’s (2010)
dataset. Similarity ratings vary from 1 (lowest) to 7 (highest).

a b

c d

↑D ↑F ↑D ↑F

simp(ab, cd)

phrasal similarity

Figure 3: A diagram of Equation 32.

4.3.1 Experimental Setup

Mitchell and Lapata (2010) divided their dataset into a development set (for tuning pa-
rameters) and an evaluation set (for testing the tuned models). The development set has
6 ratings for each phrase pair and the evaluation set has 12 ratings for each phrase pair.
The development and evaluation sets contain the same phrase pairs, but with judgments by
different participants. Thus there are 6×324 = 1, 944 rated phrase pairs in the development
set and 12× 324 = 3, 888 ratings in the evaluation set.19

For a more challenging evaluation, we divide the dataset by phrase pairs rather than
by participants. Our development set has 108 phrase pairs with 18 ratings each and the
evaluation set has 216 phrase pairs with 18 ratings each. For each of the three phrase types,
we randomly select 36 phrase pairs for the development set (3× 36 = 108 phrase pairs) and

19. The information in this paragraph is based on Section 4.3 of the paper by Mitchell and Lapata (2010)
and personal communication with Jeff Mitchell in June, 2010.

567



Turney

72 for the evaluation set (3 × 72 = 216 phrase pairs). Thus there are 18 × 108 = 1, 944
ratings in the development set and 18× 216 = 3, 888 in the evaluation set.

Mitchell and Lapata (2010) use Spearman’s rank correlation coefficient (Spearman’s
rho) to evaluate the performance of various vector composition algorithms on the task of
emulating the human similarity ratings. For a given phrase type, the 108 phrase pairs are
divided into 3 groups of 36 pairs each. For each group in the evaluation set, 12 people
gave similarity ratings to the pairs in the given group. Each group of 36 pairs was given
to a different group of 12 people. The score of an algorithm for a given phrase type is the
average of three rho values, one rho for each of the three groups. With 12 people rating 36
pairs in a group, there are 12× 36 = 432 ratings. These human ratings are represented by
a vector of 432 numbers. An algorithm only generates one rating for each pair in a group,
yielding 36 numbers. To make the algorithm’s ratings comparable to the human ratings, the
algorithm’s ratings are duplicated 12 times, yielding a vector of 432 numbers. Spearman’s
rho is then calculated with these two vectors of 432 ratings. For 3 phrase types with 3 rho
values each and 432 ratings per rho value, we have 3,888 ratings.20

We believe that this evaluation method underestimates the performance of the algo-
rithms. Combining ratings from different people into one vector of 432 numbers does not
allow the correlation to adapt to different biases. If one person gives consistently low ratings
and another person gives consistently high ratings, but both people have the same ranking,
and this ranking matches the algorithm’s ranking, then the algorithm should get a high
score. For a more fair evaluation, we score an algorithm by calculating one rho value for
each human participant for the given phrase type, and then we calculate the average of the
rho values for all of the participants.

For a given phrase type, the 108 phrase pairs are divided into 3 groups of 36 pairs each.
For the development set, we randomly select 12 phrase pairs from each of the 3 groups
(3 × 12 = 36 phrase pairs per phrase type). This leaves 24 phrase pairs in each of the 3
groups for the evaluation set (3 × 24 = 72 phrase pairs per phrase type). Each human
participant’s ratings are represented by a vector of 24 numbers. An algorithm’s ratings are
also represented by a vector of 24 numbers. A rho value is calculated with these two vectors
of 24 numbers as input. For a given phrase type, the algorithm’s score is the average of 54
rho values (18 participants per group × 3 groups = 54 rho values). For 3 phrase types with
54 rho values each and 24 ratings per rho value, we have 3,888 ratings.

4.3.2 Comparison with Other Approaches

Table 20 compares the dual-space model to vector addition and element-wise multiplication.
We use the development set to tune the parameters for all three approaches. For vector
addition, ab is represented by a+b and cd is represented by c+d. The similarity of ab and
cd is given by the cosine of the two vectors. Element-wise multiplication uses Equation 21
to represent ab and cd. The dual-space model uses Equation 32.

The average correlation of the dual-space model (0.48) is significantly below the average
correlation of vector addition using function space (0.51). Element-wise multiplication with
mono space (0.47) is also significantly below vector addition using function space (0.51). The

20. The information in this paragraph is based on personal communication with Jeff Mitchell in June, 2010.
Mitchell and Lapata’s (2010) paper does not describe how Spearman’s rho is applied.

568



Domain and Function: A Dual-Space Model

Correlation for each phrase type
Algorithm ad-nn nn-nn vb-ob avg Comment

human 0.56 0.54 0.57 0.56 leave-one-out correlation between subjects

dual-space 0.48 0.54 0.43 0.48 domain and function space

addition 0.47 0.61 0.42 0.50 mono space
addition 0.32 0.55 0.41 0.42 domain space
addition 0.49 0.55 0.48 0.51 function space

multiplication 0.43 0.57 0.41 0.47 mono space
multiplication 0.35 0.58 0.39 0.44 domain space
multiplication 0.39 0.45 0.27 0.37 function space

Table 20: Performance of the models on the evaluation dataset.

difference between the dual-space model (0.48) and element-wise multiplication with mono
space (0.47) is not signficant. The average correlation for an algorithm is based on 162 rho
values (3 phrase types × 3 groups × 18 participants = 162 rho values = 162 participants).
We calculate the statistical significance using a paired t-test with a 95% significance level,
based on 162 pairs of rho values.

4.3.3 Order Sensitivity

Mitchell and Lapata’s (2010) dataset does not test for order sensitivity. Given a phrase pair
ab ∼ cd, we can test for order sensitivity by adding a new pair ab ∼ dc. We assume that
all such new pairs would be given a rating of 1 by the human participants. In Table 21, we
show what happens when this transformation is applied to the examples in Table 19. To
save space, we only give the examples for participant number 114.

Participant Phrase type Group Phrase pair Similarity

114 adjective-noun 2 certain circumstance ∼ particular case 6
114 adjective-noun 2 certain circumstance ∼ case particular 1
114 adjective-noun 2 large number ∼ great majority 4
114 adjective-noun 2 large number ∼ majority great 1
114 adjective-noun 2 further evidence ∼ low cost 2
114 adjective-noun 2 further evidence ∼ cost low 1

Table 21: Testing for order sensitivity by adding new phrase pairs.

Table 22 gives the results with the new, expanded dataset. With this more stringent
dataset, the dual-space model performs significantly better than both vector addition and
vector multiplication. Unlike element-wise multiplication and vector addition, the dual-
space model addresses the issue of order sensitivity.

We manually inspected the new pairs that were automatically rated 1 and found that a
rating of 1 was reasonable in all cases, although some cases could be disputed. For example,
the original noun-noun pair tax charge ∼ interest rate generates the new pair tax charge ∼
rate interest and the original verb-object pair produce effect ∼ achieve result generates the
new pair produce effect ∼ result achieve. It seems that we have a natural tendency to correct

569



Turney

Correlation for each phrase type
Algorithm ad-nn nn-nn vb-ob avg Comment

human 0.71 0.81 0.73 0.75 leave-one-out correlation between subjects

dual-space 0.66 0.37 0.62 0.55 domain and function space

addition 0.22 0.25 0.19 0.22 mono space
addition 0.15 0.22 0.18 0.18 domain space
addition 0.23 0.23 0.19 0.22 function space

multiplication 0.20 0.24 0.18 0.21 mono space
multiplication 0.18 0.22 0.18 0.19 domain space
multiplication 0.18 0.19 0.12 0.17 function space

Table 22: Performance when the dataset is expanded to test for order sensitivity.

these incorrectly ordered pairs in our minds and then assign them higher ratings than they
deserve. We predict that human ratings of these new pairs would vary greatly, depending
on the instructions that were given to the human raters. If the instructions emphasized the
importance of word order, the new pairs would get low ratings. This prediction is supported
by the results of SemEval 2012 Task 2 (Jurgens, Mohammad, Turney, & Holyoak, 2012),
where the instructions to the raters emphasized the importance of word order and wrongly
ordered pairs received low ratings.

4.3.4 Summary

When the dataset does not test for order sensitivity, vector addition performs slightly better
than the dual-space model. When the dataset tests for order sensitivity, the dual-space
model surpasses both vector addition and element-wise multiplication by a large margin.

4.4 Domain versus Function as Associated versus Similar

Chiarello et al. (1990) created a dataset of 144 word pairs that they labeled similar-only,
associated-only, or similar+associated (48 pairs in each of the three classes). Table 23
shows some examples from their dataset. These labeled pairs were created for cognitive
psychology experiments with human subjects. In their experiments, they found evidence
that processing associated words engages the left and right hemispheres of the brain in
ways that are different from processing similar words. That is, it seems that there is a
fundamental neurological difference between these two types of semantic relatedness.21

We hypothesize that similarity in domain space, simd(a, b), is a measure of the degree to
which two words are associated and similarity in function space, simf(a, b), is a measure of
the degree to which two words are similar. To test this hypothesis, we define similar-only,
simso(a, b), associated-only, simao(a, b), and similar+associated, simsa(a, b), as follows:

ratio(x, y) =

{
x/y if x > 0 and y > 0

0 otherwise
(33)

21. There is some controversy among cognitive scientists over the distinction between semantic similarity
and association (McRae, Khalkhali, & Hare, 2011).

570



Domain and Function: A Dual-Space Model

Word pair Class label

table:bed similar-only
music:art similar-only
hair:fur similar-only
house:cabin similar-only

cradle:baby associated-only
mug:beer associated-only
camel:hump associated-only
cheese:mouse associated-only

ale:beer similar+associated
uncle:aunt similar+associated
pepper:salt similar+associated
frown:smile similar+associated

Table 23: Examples of word pairs from Chiarello et al. (1990), labeled similar-only,
associated-only, or similar+associated. The full dataset is in their Appendix.

simso(a, b) = ratio(simf(a, b), simd(a, b)) (34)

simao(a, b) = ratio(simd(a, b), simf(a, b)) (35)

simsa(a, b) = geo(simd(a, b), simf(a, b)) (36)

The intention is that simso is high when simf is high and simd is low, simao is high when
simd is high and simf is low, and simsa is high when both simd and simf are high. This is
illustrated in Figure 4.

a a a

b b b

↓D ↑F ↑D ↓F ↑D ↑F

simso(a, b) simao(a, b) simsa(a, b)

similar-only associated-only similar+associated

Figure 4: Diagrams of Equations 34, 35, and 36.

571



Turney

4.4.1 Evaluation

From the experiments in the three preceding subsections, we have three sets of parameter
settings for the dual-space model. Table 24 shows these parameter values. In effect, these
three sets of parameter setttings give us three variations of the similarity measures, simso,
simao, and simsa. We will evaluate the three variations to see how well they correspond to
the labels in Chiarello et al.’s (1990) dataset.

Similarity Description Section kd pd kf pf

simr(a :b, c :d) similarity of relations 4.1 800 -0.1 300 0.5
simc(ab, c) similarity of noun-modifier compositions 4.2 800 0.3 100 0.6
simp(ab, cd) similarity of phrases 4.3 200 0.3 600 0.6

Table 24: Parameter settings for the dual-space model.

For a given similarity measure, such as simso, we can sort the 144 word pairs in descend-
ing order of their similarities and then look at the top N pairs to see how many of them
have the desired label; in the case of simso, we would like to see that the majority of the
top N have the label similar-only. Table 25 shows the percentage of pairs that have the
desired labels for each of the three variations of the three similarity measures. Note that
random guessing would yield 33%, since the three classes of pairs have the same size.

Percentage of top N with desired label
Source of parameters N similar-only associated-only similar+associated

simr(a :b, c :d) 10 70 90 90
20 80 85 80
30 63 77 73

simc(ab, c) 10 90 90 80
20 80 70 70
30 70 67 73

simp(ab, cd) 10 50 90 80
20 65 80 80
30 47 77 73

Table 25: Percentage of the top N word pairs with the desired labels.

For all three sets of parameter settings, Table 25 displays a high density of the desired
labels at the tops of the sorted lists. The density slowly decreases as we move down the
lists. This is evidence that the three similarity measures are capturing the three classes of
Chiarello et al. (1990).

As another test of the hypothesis, we use the three similarity measures to create feature
vectors of three elements for each word pair. That is, the word pair a : b is represented by
the feature vector 〈simso(a, b), simao(a, b), simsa(a, b)〉. We then use supervised learning with
ten-fold cross-validation to classify the feature vectors into the three classes of Chiarello
et al. (1990). For the learning algorithm, we use logistic regression, as implemented in

572



Domain and Function: A Dual-Space Model

Weka.22 The results are summarized in Table 26. These results lend further support to the
hypothesis that similarity in domain space, simd(a, b), is a measure of the degree to which
two words are associated and similarity in function space, simf(a, b), is a measure of the
degree to which two words are similar.

F-measure
Source of parameters Accuracy similar-only associated-only similar+associated average

simr(a :b, c :d) 61.1 0.547 0.660 0.625 0.611
simc(ab, c) 59.0 0.583 0.702 0.490 0.592
simp(ab, cd) 58.3 0.472 0.699 0.563 0.578

Table 26: Performance of logistic regression with the three similarity measures as features.

In Table 25, similar-only seems more sensitive to the parameter settings than associated-
only and similar+associated. We hypothesize that this is because function similarity is
more difficult to measure than domain similarity. Note that the construction of function
space (Section 3.3) is more complex than the construction of domain space (Section 3.2).
Intuitively, it seems easier to identify the domain of a thing than to identify its functional
role. Gentner’s (1991) work suggests that children master domain similarity before they
become competent with function similarity.

5. Discussion of Experiments

This section discusses the results of the previous section.

5.1 Summary of Results

In Section 4.1, we used 374 multiple-choice analogy questions to evaluate the dual-space
model of relational similarity, simr(a : b, c : d). The difference between the performance of
the dual-space model (51.1% accuracy) and the best past result (56.1% accuracy), using a
holistic model, was not statistically significant. Experiments with a reformulated version
of the questions, designed to test order sensitivity, supported the hypothesis that both
domain and function space are required. Function space by itself is not sensitive to order
and merging the two spaces (mono space) causes a significant drop in performance.

In Section 4.2, we automatically generated 2,180 multiple-choice noun-modifier compo-
sition questions with WordNet, to evaluate the dual-space model of noun-modifier compo-
sitional similarity, simc(ab, c). The difference between the performance of the dual-space
model (58.3% accuracy) and the state-of-the-art element-wise multiplication model (57.5%
accuracy) was not statistically significant. The best performance was obtained with a holis-
tic model (81.6%), but this model does not address the issue of linguistic creativity. Further
experiments suggest that a significant fraction of the gap between the holistic model and
the other models is due to noncompositional phrases. A limitation of the element-wise mul-
tiplication model is lack of sensitivity to order. Experiments with a reformulated version

22. Weka is available at http://www.cs.waikato.ac.nz/ml/weka/.

573



Turney

of the questions, designed to test order sensitivitiy, demonstrated a statistically significant
advantage to the dual-space model over the element-wise multiplication and vector addition
models.

In Section 4.3, we used Mitchell and Lapata’s (2010) dataset of 324 pairs of phrases to
evaluate the dual-space model of phrasal similarity, simp(ab, cd). A reformulated version of
the dataset, modified to test order sensitivitiy, showed a statistically significant advantage
to the dual-space model over the element-wise multiplication and vector addition models.

In Section 4.4, we used Chiarello et al.’s (1990) dataset of 144 word pairs, labeled
similar-only, associated-only, or similar+associated, to test the hypothesis that similarity
in domain space, simd(a, b), is a measure of the degree to which two words are associated
and similarity in function space, simf(a, b), is a measure of the degree to which two words
are similar. The experimental results support the hypothesis. This is interesting because
Chiarello et al. (1990) argue that there is a fundamental neurological difference in the way
people process these two kinds of semantic relatedness.

The experiments support the claim that the dual-space model can address the issues of
linguistic creativity, order sensitivity, and adaptive capacity. Furthermore, the dual-space
model provides a unified approach to both semantic relations and semantic composition.

5.2 Corpus-based Similarity versus Lexicon-based Similarity

The results in Section 4.4 suggest that function similarity may correspond to the kind of
taxonomical similarity that is often associated with lexicons, such as WordNet (Resnik,
1995; Jiang & Conrath, 1997; Leacock & Chodrow, 1998; Hirst & St-Onge, 1998). The
word pairs in Table 23 that are labeled similar-only are the kinds of words that typically
share a common hypernym in a taxonomy. For example, table:bed share the hypernym
furniture. We believe that this is correct, but it does not necessarily imply that lexicon-
based similarity measures would be better than a corpus-based approach, such as we have
used here.

Of the various similarities in Section 4, arguably relational similarity, simr(a :b, c :d),
makes the most use of function similarity. By itself, function similarity achieves 50.8% on the
SAT questions (original five-choice version; see Table 12). However, the best performance
achieved on the SAT questions using WordNet is 43.0% (Veale, 2004). The difference is
statistically significant at the 95% confidence level, based on Fisher’s Exact Test.

Consider the analogy traffic is to street as water is to riverbed. One of the SAT questions
involves this analogy, with traffic :street as the stem pair and water :riverbed as the correct
choice. Both simr(a : b, c : d) (Equation 25) and function similarity by itself (Equation 22)
make the correct choice. We can recognize that traffic and water have a high degree of
function similarity; in fact, this similarity is used in hydrodynamic models of traffic flow
(Daganzo, 1994). However, we must climb the WordNet hierachy all the way up to entity
before we find a shared hypernym for traffic and water. We believe that no manually
generated lexicon can capture all of the functional similarity that can be discovered in a
large corpus.

6. Theoretical Considerations

This section examines some theoretical questions about the dual-space model.

574



Domain and Function: A Dual-Space Model

6.1 Vector Composition versus Similarity Composition

In the dual-space model, a phrase has no stand-alone, general-purpose representation, as a
composite phrase, apart from the representations of the component words. The composite
meaning is constructed in the context of a given task. For example, if the task is to measure
the similarity of the relation in dog :house to the relation in bird :nest, then we compose the
meanings of dog and house one way (see Section 4.1); if the task is to measure the similarity
of the phrase dog house to the word kennel, then we compose the meanings of dog and
house another way (see Section 4.2); if the task is to measure the similarity of the phrase
dog house to the phrase canine shelter, then we compose the meanings of dog and house a
third way (see Section 4.3). The composition is a construction that explicitly ties together
the two things that are being compared, and it depends on the nature of the comparison
that is desired, the task that is to be performed. We hypothesize that no single stand-alone,
task-independent representation can be constructed that is suitable for all purposes.

As we noted in the introduction, composition of vectors can result in a stand-alone
representation of a phrase, but composing similarities necessarily yields a linking structure
that connects a phrase to other phrases. These linking structures can be seen in Figures
1 to 4. Intuitively, it seems that an important part of how we understand a phrase is by
connecting it to other phrases. Part of our understanding of dog house is its connection to
kennel. Dictionaries make these kinds of connections explicit. From this perspective, the
idea of an explicit linking structure seems natural, given that making connnections among
words and phrases is an essential aspect of meaning and understanding.

6.2 General Form of Similarities in the Dual-Space Model

In this subsection, we present a general scheme that ties together the various similarities
that were defined in Section 4. This scheme includes similarities between chunks of text
of arbitrary size. The scheme encompasses phrasal similarity, relational similarity, and
compositional similarity.

Let t be a chunk of text (an ordered set of words), 〈t1, t2, . . . , tn〉, where each ti is a
word. We represent the semantics of t by T = 〈D,F〉, where D and F are matrices. Each
row vector di in D, i = 1, 2, . . . , n, is the row vector in domain space that represents the
domain semantics of the word ti. Each row vector fi in F, i = 1, 2, . . . , n, is the row vector in
function space that represents the function semantics of the word ti. To keep the notation
simple, the parameters, kd and pd for domain space and kf and pf for function space, are
implicit. Assume that the row vectors in D and F are normalized to unit length. Note
that the size of the representation T scales linearly with n, the number of words in t, hence
we have information scalability. For large values of n, there will inevitably be duplicate
words in t, so the representation could easily be compressed to sublinear size without loss
of information.

Let t1 and t2 be two chunks of text with representations T1 = 〈D1,F1〉 and T2 =
〈D2,F2〉, where t1 contains n1 words and t2 has n2 words. Let D1 and D2 have the same
parameters, kd and pd, and let F1 and F2 have the same parameters, kf and pf . Then D1

is n1 × kd, D2 is n2 × kd, F1 is n1 × kf , and F2 is n2 × kf . Note that D1D
T
1 is an n1 × n1

matrix of the cosines between any two row vectors in D1. That is, the element in the i-th

575



Turney

row and j-th column of D1D
T
1 is cos(di,dj). Likewise, D1D

T
2 is an n1 × n2 matrix of the

cosines between any row vector in D1 and any row vector in D2.

Suppose that we wish to measure the similarity, sim(t1, t2), between the two chunks of
text, t1 and t2. In this paper, we have restricted the similarity measures to the following
general form:

sim(t1, t2) = f(D1D
T
1 ,D1D

T
2 ,D2D

T
2 ,F1F

T
1 ,F1F

T
2 ,F2F

T
2 ) (37)

In other words, the only input to the composition function f is cosines (and the implicit
parameters, kd, pd, kf , and pf); f does not operate directly on any of the row vectors in D1,
D2, F1, and F2. In contrast to much of the work discussed in Section 2.1, the composition
operation is shifted out of the representations, T1 and T2, and into the similarity measure,
f . The exact specification of f depends on the task at hand. When T1 and T2 are sentences,
we envision that the structure of f will be determined by the syntactic structures of the
two sentences.23

Consider relational similarity (Section 4.1):

sim1(a :b, c :d) = geo(simf(a, c), simf(b, d)) (38)

sim2(a :b, c :d) = geo(simd(a, b), simd(c, d)) (39)

sim3(a :b, c :d) = geo(simd(a, d), simd(c, b)) (40)

simr(a :b, c :d) =

{
sim1(a :b, c :d) if sim2(a :b, c :d) ≥ sim3(a :b, c :d)

0 otherwise
(41)

This fits the form of Equation 37 when we have t1 = 〈a, b〉 and t2 = 〈c, d〉. We can see that
sim1 is based on cosines from F1F

T
2 , sim2 is based on cosines from D1D

T
1 and D2D

T
2 , and

sim3 is based on cosines from D1D
T
2 .

Consider compositional similarity (Section 4.2):

sim1(ab, c) = geo(simd(a, c), simd(b, c), simf(b, c)) (42)

simc(ab, c) =

{
sim1(ab, c) if a 6= c and b 6= c

0 otherwise
(43)

This can be seen as an instance of Equation 37 in which t1 = 〈a, b〉 and t2 = 〈c〉. In this
case, sim1 is based on cosines from D1D

T
2 and F1F

T
2 . The constraints, a 6= c and b 6= c,

can be expressed in terms of cosines from D1D
T
2 , as simd(a, c) 6= 1 and simd(b, c) 6= 1.

(Equivalently, we could use cosines from F1F
T
2 .) Similar analyses apply to the similarities

in Sections 4.3 and 4.4; these similarities are also instances of Equation 37.

Although the representations T1 and T2 have sizes that are linear functions of the num-
bers of phrases in t1 and t2, the size of the composition in Equation 37 is a quadratic
function of the numbers of phrases in t1 and t2. However, specific instances of this general
equation may be less than quadratic in size, and it may be possible to limit the growth

23. Note that there is no requirement for the two chunks of text, t1 and t2, to have the same number of
words. That is, n1 does not necessarily equal n2. In Section 4.2, n1 6= n2.

576



Domain and Function: A Dual-Space Model

to a linear function. Also, in general, quadratic growth is often acceptable in practical
applications (Garey & Johnson, 1979).

With function words (e.g., prepositions, conjunctions), one option would be to treat
them the same as any other words. They would be represented by vectors and their sim-
ilarities would be calculated in function and domain spaces. Another possibility would be
to use function words as hints to guide the construction of the composition function f . The
function words would not correspond to vectors; instead they would contribute to deter-
mining the linking structure that connects the two given chunks of text. The first option
appears more elegant, but the choice between the options should be made empirically.

6.3 Automatic Composition of Similarities

In Section 4, we manually constructed the functions that combined the similarity measures,
using our intuition and background knowledge. Manual construction will not scale up to the
task of comparing any two arbitrarily chosen sentences. However, there are good reasons
for believing that the construction of composition functions can be automated.

Turney (2008a) presents an algorithm for solving analogical mapping problems, such as
the analogy between the solar system and the Rutherford-Bohr model of the atom. Given
a list of terms from the solar system domain, {planet, attracts, revolves, sun, gravity, so-
lar system, mass}, and a list of terms from the atomic domain, {revolves, atom, attracts,
electromagnetism, nucleus, charge, electron}, it can automatically generate a one-to-one
mapping from one domain to the other, {solar system → atom, sun → nucleus, planet
→ electron, mass → charge, attracts → attracts, revolves → revolves, gravity → electro-
magnetism}. On twenty analogical mapping problems, it attains an accuracy of 91.5%,
compared to an average human accuracy of 87.6%.

The algorithm scores the quality of a candidate analogical mapping by composing the
similarities of the mapped terms. The composition function is addition and the individual
component similarities are holistic relational similarities. The algorithm searches through
the space of possible mappings for the mapping that maximizes the composite similarity
measure. That is, analogical mapping is treated as an argmax problem, where the argument
to be maximized is a mapping function. In effect, the output of the algorithm (an analogical
mapping) is an automically generated composition of similarities. The mapping structures
found by the algorithm are essentially the same as the linking structures that we see in
Figures 1 to 4.

We believe that a variation of Turney’s (2008a) algorithm could be used to automat-
ically compose similarities in the dual-space model; for example, it should be possible to
identify paraphrases using automatic similarity composition. The proposal is to search for
a composition that maximizes composite similarity, subject to various constraints (such as
constraints based on the syntax of the sentences). Turney (2008a) points out that analogical
mapping could be used to align the words in two sentences, but does not experimentally
evaluate this suggestion.

Recent work (Lin & Bilmes, 2011) has shown that argmax problems can be solved effi-
ciently and effectively if they can be framed as monotone submodular function maximization
problems. We believe that automatic composition of similarities can fit naturally into this
framework, which would result in highly scalable algorithms for semantic composition.

577



Turney

Regarding information scalability, the dual-space model does not suffer from information
loss (unlike approaches that represent compositions with vectors of fixed dimensionality),
because the sizes of the representations grow as the lengths of the phrases grow. The growth
might be quadratic, but it is not exponential. There are questions about how to automate
composition of similarities, which may have an impact on the computational complexity of
scaling to longer phrases, but there is evidence that these questions are tractable.

7. Limitations and Future Work

One area for future work is to experiment with longer phrases (more than two words) and
sentences, as discussed in Section 6.3. An interesting topic for research is how parsing might
be used to constrain the automatic search for similarity composition functions.

Here we have focused on two spaces, domain and function, but it seems likely to us
that a model with more spaces would yield better performance. We are currently experi-
menting with a quad-space model that includes domain (noun-based contextual patterns),
function (verb-based), quality (adjective-based), and manner (adverb-based) spaces. The
preliminary results with quad-space are promising. Quad-space seems to be related to
Pustejovsky’s (1991) four-part qualia structure.

Another issue we have avoided here is morphology. As discussed in Section 3.6, we used
the validForms function in the WordNet::QueryData Perl interface to WordNet to map
morphological variations of words to their base forms. This implies that, for example, a
singular noun and its plural form should have the same semantic representation. This is
certainly a simplification and a more sophisticated model would use different representations
for different morphological forms of a word.

We have also avoided the issue of polysemy. It should be possible to extend past work
with polysemy in VSMs to the dual-space model (Schütze, 1998; Pantel & Lin, 2002; Erk
& Padó, 2008).

In this paper, we have treated the holistic model and the dual-space model as if they are
competitors, but there are certain cases, such as idiomatic expressions, where the holistic
approach is required. Likewise, the holistic approach is limited by its inability to handle
linguistic creativity. These considerations suggest that the holistic and dual-space models
must be integrated. This is another topic for future work.

Arguably it is a limitation of the dual-space model that there are four parameters to
tune (kd, pd, kf , and pf). On the other hand, perhaps any model with adaptive capacity
must have some parameters to tune. Further research is needed.

A number of design decisions were made in the construction of domain and function
space, especially in the conversion of phrases to contextual patterns (Sections 3.2 and 3.3).
These decisions were guided by our intuitions. We expect that the exploration and experi-
mental evaluation of this design space will be a fruitful area for future research.

The construction of function space (Section 3.3) is specific to English. It may gener-
alize readily to other Indo-European languages, but some other languages may present a
challenge. This is another topic for future research.

Most of our composite similarities use the geometric mean to combine domain and
function similarities, but we see no reason to restrict the possible composition functions.

578



Domain and Function: A Dual-Space Model

Equation 37 allows any composition function f . Exploring the space of possible composition
functions is another topic for future work.

Another question is how formal logic and textual entailment can be integrated into this
approach. The dual-space model seems to be suitable for recognizing paraphrases, but
there is no obvious way to handle entailment. More generally, we have focused on various
kinds of similarity, but when we scale up from phrases (red ball) to sentences (The ball is
red), we encounter truth and falsity. Gärdenfors (2004) argues that spatial models are a
bridge between low-level connectionist models and high-level symbolic models. He claims
that spatial models are best for questions about similarity and symbolic models are best
for questions about truth. We do not yet know how to join these two kinds of models.

8. Conclusions

The goal in this research has been to develop a model that unifies semantic relations and
compositions, while also addressing linguistic creativity, order sensitivity, adaptive capac-
ity, and information scalability. We believe that the dual-space model achieves this goal,
although there is certainly room for improvement and further research.

There are many kinds of word–context matrices, based on various notions of context;
Sahlgren (2006) gives a good overview of the types of context that have been explored
in past work. The novelty of the dual-space model is that it includes two distinct and
complementary word–context matrices that work together synergistically.

With two distinct spaces, we have two distinct similarity measures, which can be
combined in many different ways. With multiple similarity measures, similarity compo-
sition becomes a viable alternative to vector composition. For example, instead of mul-
tiplying vectors, such as c = a � b, we can multiply similarities, such as simsa(a, b) =
geo(simd(a, b), simf(a, b)). The results here suggest that this is a fruitful new way to look
at some of the problems of semantics.

Acknowledgments

Thanks to George Foster, Yair Neuman, David Jurgens, and the reviewers of JAIR for
their very helpful comments on an earlier version of this paper. Thanks to Charles Clarke
for the corpus used to build the three spaces, to Stefan Büttcher for Wumpus, to the
creators of WordNet for making their lexicon available, to the developers of OpenNLP,
to Doug Rohde for SVDLIBC, to Jeff Mitchell and Mirella Lapata for sharing their data
and answering questions about their evaluation methodology, to Christine Chiarello, Curt
Burgess, Lorie Richards, and Alma Pollock for making their data available, to Jason Rennie
for the WordNet::QueryData Perl interface to WordNet, and to the developers of Perl Data
Language.

References

Aerts, D., & Czachor, M. (2004). Quantum aspects of semantic analysis and symbolic
artificial intelligence. Journal of Physics A: Mathematical and General, 37, L123–
L132.

579



Turney

Baroni, M., & Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: Repre-
senting adjective-noun constructions in semantic space. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing (EMNLP 2010),
pp. 1183–1193.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language
model. Journal of Machine Learning Research, 3, 1137–1155.

Biçici, E., & Yuret, D. (2006). Clustering word pairs to answer analogy questions. In
Proceedings of the Fifteenth Turkish Symposium on Artificial Intelligence and Neural
Networks (TAINN 2006), Akyaka, Mugla, Turkey.

Biemann, C., & Giesbrecht, E. (2011). Distributional semantics and compositionality 2011:
Shared task description and results. In Proceedings of the Workshop on Distributional
Semantics and Compositionality (DiSCo 2011), pp. 21–28, Portland, Oregon.

Bollegala, D., Matsuo, Y., & Ishizuka, M. (2009). Measuring the similarity between implicit
semantic relations from the Web. In Proceedings of the 18th International Conference
on World Wide Web (WWW 2009), pp. 651–660.

Brants, T., & Franz, A. (2006). Web 1T 5-gram Version 1. Linguistic Data Consortium,
Philadelphia.

Bullinaria, J., & Levy, J. (2007). Extracting semantic representations from word co-
occurrence statistics: A computational study. Behavior Research Methods, 39 (3),
510–526.

Büttcher, S., & Clarke, C. (2005). Efficiency vs. effectiveness in terabyte-scale informa-
tion retrieval. In Proceedings of the 14th Text REtrieval Conference (TREC 2005),
Gaithersburg, MD.

Caron, J. (2001). Experiments with LSA scoring: Optimal rank and basis.. In Proceedings
of the SIAM Computational Information Retrieval Workshop, pp. 157–169, Raleigh,
NC.

Chiarello, C., Burgess, C., Richards, L., & Pollock, A. (1990). Semantic and associative
priming in the cerebral hemispheres: Some words do, some words don’t . . . sometimes,
some places. Brain and Language, 38, 75–104.

Chomsky, N. (1975). The Logical Structure of Linguistic Theory. Plenum Press.

Church, K., & Hanks, P. (1989). Word association norms, mutual information, and lexicog-
raphy. In Proceedings of the 27th Annual Conference of the Association of Computa-
tional Linguistics, pp. 76–83, Vancouver, British Columbia.

Clark, S., Coecke, B., & Sadrzadeh, M. (2008). A compositional distributional model of
meaning. In Proceedings of the 2nd Symposium on Quantum Interaction, pp. 133–140,
Oxford, UK.

Clark, S., & Pulman, S. (2007). Combining symbolic and distributional models of meaning.
In Proceedings of the AAAI Spring Symposium on Quantum Interaction, pp. 52–55,
Stanford, CA.

Conway, J. H., & Sloane, N. J. A. (1998). Sphere Packings, Lattices and Groups. Springer.

580



Domain and Function: A Dual-Space Model

Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory. Transportation Research Part B:
Methodological, 28 (4), 269–287.

Davidov, D., & Rappoport, A. (2008). Unsupervised discovery of generic relationships using
pattern clusters and its evaluation by automatically generated SAT analogy questions.
In Proceedings of the 46th Annual Meeting of the ACL and HLT (ACL-HLT-08), pp.
692–700, Columbus, Ohio.

Erk, K., & Padó, S. (2008). A structured vector space model for word meaning in context.
In Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing (EMNLP-08), pp. 897–906, Honolulu, HI.

Fellbaum, C. (Ed.). (1998). WordNet: An Electronic Lexical Database. MIT Press.

Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955. In Studies in Linguistic
Analysis, pp. 1–32. Blackwell, Oxford.

Fodor, J., & Lepore, E. (2002). The Compositionality Papers. Oxford University Press.

Gärdenfors, P. (2004). Conceptual Spaces: The Geometry of Thought. MIT Press.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive
Science, 7 (2), 155–170.

Gentner, D. (1991). Language and the career of similarity. In Gelman, S., & Byrnes, J.
(Eds.), Perspectives on Thought and Language: Interrelations in Development, pp.
225–277. Cambridge University Press.

Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations (Third edition). Johns
Hopkins University Press, Baltimore, MD.

Grefenstette, E., & Sadrzadeh, M. (2011). Experimenting with transitive verbs in a DisCo-
Cat. In Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural
Language Semantics.

Grice, H. P. (1989). Studies in the Way of Words. Harvard University Press, Cambridge,
MA.

Guevara, E. (2010). A regression model of adjective-noun compositionality in distributional
semantics. In Proceedings of the 2010 Workshop on GEometrical Models of Natural
Language Semantics (GEMS 2010), pp. 33–37.

Harris, Z. (1954). Distributional structure. Word, 10 (23), 146–162.

Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In Proceed-
ings of the 14th Conference on Computational Linguistics (COLING-92), pp. 539–545.

Herdağdelen, A., & Baroni, M. (2009). Bagpack: A general framework to represent semantic
relations. In Proceedings of the EACL 2009 Geometrical Models for Natural Language
Semantics (GEMS) Workshop, pp. 33–40.

581



Turney

Hirst, G., & St-Onge, D. (1998). Lexical chains as representations of context for the detection
and correction of malapropisms. In Fellbaum, C. (Ed.), WordNet: An Electronic
Lexical Database, pp. 305–332. MIT Press.

Jiang, J. J., & Conrath, D. W. (1997). Semantic similarity based on corpus statistics
and lexical taxonomy. In Proceedings of the International Conference on Research in
Computational Linguistics (ROCLING X), pp. 19–33, Tapei, Taiwan.

Johannsen, A., Alonso, H. M., Rishøj, C., & Søgaard, A. (2011). Shared task system
description: Frustratingly hard compositionality prediction. In Proceedings of the
Workshop on Distributional Semantics and Compositionality (DiSCo 2011), pp. 29–
32, Portland, Oregon.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order informa-
tion in a composite holographic lexicon. Psychological review, 114, 1–37.

Jurgens, D. A., Mohammad, S. M., Turney, P. D., & Holyoak, K. J. (2012). SemEval-2012
Task 2: Measuring degrees of relational similarity. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics (*SEM), pp. 356–364, Montréal,
Canada.

Kintsch, W. (2000). Metaphor comprehension: A computational theory. Psychonomic Bul-
letin & Review, 7 (2), 257–266.

Kintsch, W. (2001). Predication. Cognitive Science, 25 (2), 173–202.

Kolda, T., & Bader, B. (2009). Tensor decompositions and applications. SIAM Review,
51 (3), 455–500.

Landauer, T. K. (2002). On the computational basis of learning and cognition: Arguments
from LSA. In Ross, B. H. (Ed.), The Psychology of Learning and Motivation: Advances
in Research and Theory, Vol. 41, pp. 43–84. Academic Press.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent se-
mantic analysis theory of the acquisition, induction, and representation of knowledge.
Psychological Review, 104 (2), 211–240.

Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2007). Handbook of Latent
Semantic Analysis. Lawrence Erlbaum, Mahwah, NJ.

Leacock, C., & Chodrow, M. (1998). Combining local context and WordNet similarity for
word sense identification. In Fellbaum, C. (Ed.), WordNet: An Electronic Lexical
Database. MIT Press.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix
factorization. Nature, 401, 788–791.

Lepage, Y., & Shin-ichi, A. (1996). Saussurian analogy: A theoretical account and its
application. In Proceedings of the 16th International Conference on Computational
Linguistics (COLING 1996), pp. 717–722.

Lin, H., & Bilmes, J. (2011). A class of submodular functions for document summarization.
In The 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL-HLT), pp. 510–520.

582



Domain and Function: A Dual-Space Model

Mangalath, P., Quesada, J., & Kintsch, W. (2004). Analogy-making as predication using
relational information and LSA vectors. In Proceedings of the 26th Annual Meeting
of the Cognitive Science Society, p. 1623, Austin, TX.

McRae, K., Khalkhali, S., & Hare, M. (2011). Semantic and associative relations in ado-
lescents and young adults: Examining a tenuous dichotomy. In Reyna, V., Chapman,
S., Dougherty, M., & Confrey, J. (Eds.), The Adolescent Brain: Learning, Reasoning,
and Decision Making, pp. 39–66. APA, Washington, DC.

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition. In Proceed-
ings of ACL-08: HLT, pp. 236–244, Columbus, Ohio. Association for Computational
Linguistics.

Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics.
Cognitive Science, 34 (8), 1388–1429.

Moschitti, A., & Quarteroni, S. (2008). Kernels on linguistic structures for answer extrac-
tion. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies: Short Papers, p. 113116, Columbus,
OH.

Nakov, P., & Hearst, M. (2006). Using verbs to characterize noun-noun relations. In Pro-
ceedings of the 12th International Conference on Artificial Intelligence: Methodology,
Systems, and Applications (AIMSA 2006), pp. 233–244, Varna, Bulgaria.

Nakov, P., & Hearst, M. (2007). UCB: System description for SemEval Task 4. In Proceed-
ings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007),
pp. 366–369, Prague, Czech Republic.

Nastase, V., Sayyad-Shirabad, J., Sokolova, M., & Szpakowicz, S. (2006). Learning noun-
modifier semantic relations with corpus-based and WordNet-based features. In Pro-
ceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), pp.
781–786.

Nastase, V., & Szpakowicz, S. (2003). Exploring noun-modifier semantic relations. In
Proceedings of the Fifth International Workshop on Computational Semantics (IWCS-
5), pp. 285–301, Tilburg, The Netherlands.

Niwa, Y., & Nitta, Y. (1994). Co-occurrence vectors from corpora vs. distance vectors from
dictionaries. In Proceedings of the 15th International Conference On Computational
Linguistics, pp. 304–309, Kyoto, Japan.

Ó Séaghdha, D., & Copestake, A. (2009). Using lexical and relational similarity to classify
semantic relations. In Proceedings of the 12th Conference of the European Chapter of
the Association for Computational Linguistics (EACL-09), Athens, Greece.

Pantel, P., & Lin, D. (2002). Discovering word senses from text. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 613–619, Edmonton, Canada.

Plate, T. (1995). Holographic reduced representations. IEEE Transactions on Neural Net-
works, 6 (3), 623–641.

Pustejovsky, J. (1991). The generative lexicon. Computational Linguistics, 17 (4), 409–441.

583



Turney

Rapp, R. (2003). Word sense discovery based on sense descriptor dissimilarity. In Proceed-
ings of the Ninth Machine Translation Summit, pp. 315–322.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI-95), pp. 448–453, San Mateo, CA. Morgan Kaufmann.

Rosario, B., & Hearst, M. (2001). Classifying the semantic relations in noun-compounds
via a domain-specific lexical hierarchy. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing (EMNLP-01), pp. 82–90.

Rosario, B., Hearst, M., & Fillmore, C. (2002). The descent of hierarchy, and selection in
relational semantics. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL-02), pp. 247–254.

Sahlgren, M. (2006). The Word-Space Model: Using distributional analysis to represent syn-
tagmatic and paradigmatic relations between words in high-dimensional vector spaces.
Ph.D. thesis, Department of Linguistics, Stockholm University.

Santorini, B. (1990). Part-of-speech tagging guidelines for the Penn Treebank Project. Tech.
rep., Department of Computer and Information Science, University of Pennsylvania.
(3rd revision, 2nd printing).

Schütze, H. (1998). Automatic word sense discrimination. Computational Linguistics, 24 (1),
97–124.

Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 159–216.

Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., & Manning, C. D. (2011). Dynamic
pooling and unfolding recursive autoencoders for paraphrase detection. In Advances
in Neural Information Processing Systems (NIPS 2011), pp. 801–809.

Socher, R., Manning, C. D., & Ng, A. Y. (2010). Learning continuous phrase representations
and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning Workshop.

Thater, S., Fürstenau, H., & Pinkal, M. (2010). Contextualizing semantic representations
using syntactically enriched vector models. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pp. 948–957.

Turney, P. D. (2001). Mining the Web for synonyms: PMI-IR versus LSA on TOEFL. In
Proceedings of the Twelfth European Conference on Machine Learning (ECML-01),
pp. 491–502, Freiburg, Germany.

Turney, P. D. (2006a). Expressing implicit semantic relations without supervision. In
Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics (Coling/ACL-
06), pp. 313–320, Sydney, Australia.

Turney, P. D. (2006b). Similarity of semantic relations. Computational Linguistics, 32 (3),
379–416.

Turney, P. D. (2008a). The latent relation mapping engine: Algorithm and experiments.
Journal of Artificial Intelligence Research, 33, 615–655.

584



Domain and Function: A Dual-Space Model

Turney, P. D. (2008b). A uniform approach to analogies, synonyms, antonyms, and as-
sociations. In Proceedings of the 22nd International Conference on Computational
Linguistics (Coling 2008), pp. 905–912, Manchester, UK.

Turney, P. D., & Littman, M. L. (2005). Corpus-based learning of analogies and semantic
relations. Machine Learning, 60 (1–3), 251–278.

Turney, P. D., Littman, M. L., Bigham, J., & Shnayder, V. (2003). Combining independent
modules to solve multiple-choice synonym and analogy problems. In Proceedings of
the International Conference on Recent Advances in Natural Language Processing
(RANLP-03), pp. 482–489, Borovets, Bulgaria.

Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of
semantics. Journal of Artificial Intelligence Research, 37, 141–188.

Utsumi, A. (2009). Computational semantics of noun compounds in a semantic space model.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI-09), pp. 1568–1573.

Veale, T. (2004). WordNet sits the SAT: A knowledge-based approach to lexical analogy. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
pp. 606–612, Valencia, Spain.

Widdows, D. (2008). Semantic vector products: Some initial investigations. In Proceedings
of the 2nd Symposium on Quantum Interaction, Oxford, UK.

585


