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We review the idea that domain boundaries, rather than domains, can carry
information and act as memory devices. Domains are bulk objects; their large
response to changing external fields is related to their change in volume, which
implies the movement of domain boundaries. In many cases, the design of
‘optimal’ domain structures corresponds to ‘optimal’ domain boundaries with
parameters such as the domain boundary mobility, pinning properties and the
formation of specific boundaries such as curved boundaries or needle domains.
This argument is enhanced further in this review: domain boundaries themselves
can host properties which are absent in the bulk, they can be multiferroic, super-
or semi-conductors while the matrix shows none of these properties. It is agued
that multiferroic walls can be described formally as chiral whereby the chirality
relates to state-vectors such as polarisation and magnetic moment and their
(non-linear) coupling. Once such walls can be generated reliably, a new
generation of devices with much higher storage density than ever produced
before can be envisaged.

Keywords: domain boundary; order parameter; multiferroic; chirality;
ferroelectricity

1. Introduction

Ferroic phase transitions generate, under the appropriate boundary conditions, domain
structures, which often dominate the macroscopic susceptibility of the material. Magnetic,
ferroelectric and ferroelastic materials show very large values of their switchable magnetic
moment, their polarisation, and their spontaneous strain, respectively, when domain
structures change under external fields. The optimisation of the domain structures to
generate the largest possible susceptibility has been subject to much research and leads to
the formulation of specific domain pattern as collective features. Stripe patterns with a
high density of domain walls, needle patterns with wedge-like needle domains, junction
patterns with many intersections of domain walls, and tweed patterns were extensively
discussed in the literatures [1–7]. In co-elastic materials the strain of the material may be
significant, but no switchable domain structures exist [8,9]. This means that in this case all
structural deformations occur exclusively in the bulk. The role of incommensurations has
been emphasised previously, but will not be discussed here any further [10,11].
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With the re-advent of a wider debate on multi-ferroic materials [12–20] the traditional
issue of how one ferroic property can influence or even create another ferroic property
becomes important. While a full analysis of experimental situations for bulk materials is
still controversial it has become clear [21] that such multi-ferroic behaviour can originate
from the internal domain wall structure. The generic case is a ferroelastic material (say
CaTiO3) with no other ferroic properties besides ferroelasticity. When this material
contains domains and, thus, ferroelastic domain walls, the domain walls themselves can be
ferroelectric or ferri-electric - a property which does not exist in the bulk. Similarly, it may
be possible to observe magnetic walls in ferroelastic or ferroelectric matrices [22,23].
However, while interfacial properties can generate multiferroic properties [24] one needs
to also be careful to avoid trivial artefacts which have nothing to do with multiferroic
behaviour at all [25]. With respect to such ‘local’ properties one observes often that
interfaces and walls are not simply the classic interpolation of bulk properties as seen in
Landau theory [26,27]. The non-ferroic material zircon serves as an example that
undergoes a local transformation into a glassy state when irradiated by radiogenic
impurities. The damaged areas have a diameter of ca. 5 nm and are separated from the
bulk by an interface of highly polymerised material [28,29]. When the elastic susceptibility
of this assembly is measured one finds that the macroscopic sample shows a much stiffer
elastic response than one would calculate in the Hashin-Shtrikman approximation of a
two phase mixture. The reason for the stiff behaviour is that the interface ‘protects’ the
inner core of the damaged areas and prevents it from stronger compression. Hence the
scaling of the elastic response is not that of the bulk proportions of the two phases
(as usually assumed) but is strongly modified by the interfacial stress and, thus, shows the
additional scaling of the interfaces [30]. This behaviour may be more widespread in other
materials where the interfaces or domain walls modify the macroscopic behaviour
significantly even when their volume proportion is modest. Static twin boundaries, on the
other hand, seem not to generate elastic softening even though their internal density can be
much less than that of the bulk [31–33].

These examples show that the internal structure of domain boundaries, interfaces, twin
walls etc. can have a significant effect on the macroscopic behaviour of material useful for
engineering purposes. This effect can, in specific cases, even outperform the enhanced
properties, which come from the optimisation of the domain structure [34]. In this sense
one would like to optimise the interfacial properties rather than the domain structure itself.
Once this becomes possible we enter into an area where ‘domain boundary engineering’
may provide answers where the more traditional ‘domain engineering’ fails or gives only
insufficient solutions [35–37]. The term ‘engineering’ implies that specific domain
boundaries can be made which have the desired properties. In this review we focus on
properties of domain boundaries as they naturally occur in bulk material rather than
MBE-made devices where the interfaces are the result of the growth conditions [24].

2. Chemical doping of domain walls

Before we investigate the intrinsic changes of the crystal structure inside twin walls, we
focus on their chemical modifications. Chemical transport along twin walls and grain
boundaries is well understood to be different from that of the bulk [38–41]. In general,
transport is faster along twin walls (or grain boundaries) so that any modification of the
twin wall composition is relatively easily achieved when the sample is exposed to external
chemical agents. These can then diffuse and equilibrate along the walls while the bulk
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remains relatively unaffected. In material sciences of ferroic materials we have examples

where small amounts of Na were injected into WO3 (Figure 1a and b). As a result, the

composition of the twin walls changed from WO3 to NaxWO3 or WO3�x which are for

certain values of x superconducting phases [42–44]. Indeed, these twin walls became

superconducting while the bulk remained an insulator (Figure 2).
The enrichment of domain walls with chemical species is a well-known phenomenon in

mineralogy and geo-chemistry. Careful chemical analysis using analytical transmission

electron microscopy [45] showed that, e.g., twin boundaries in feldspars preferentially

Figure 1. (a) Twinned crystal of WO3, with domains from the tetragonal-orthorhombic phase
transition. The white line (length¼ 25mm) shows the line scanned in the microprobe analysis which
shows that the Na ions are preferentially located along the twin walls. (b) macroscopic sample with
two parallel twin walls loaded with traces of Na. These walls are superconducting (Figure 2). The
scale bar in the top left corner is 50 mm.
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attract alkali atoms and are depleted in Ca and Al leading to shape memory effects [46].
The connection between shape memory effects and mobile atomic species was also
postulated for alloys [47–50] although Otsuka and Ren [51] argued that strain related
ordering inside the domains rather than the pinning of the domain boundaries leads to
aging and shape memory effects in some alloys. This idea was extended [52,53] whereby the
wall pinning at the interface between two different atomic ordering schemes can still not be
excluded.

It is important to note that transport can also be reduced in twin walls for specific
materials. Such a case is related to the transport of Naþ and Liþ through a quartz crystal
with {100} Dauphine twinning [54]. Computer simulation showed that the transport rate
along the twin walls was reduced for the [0 0 1] channels. This effect is related to the local
structure of quartz at the twin boundary; structural continuity across the twin boundary
requires that the [0 0 1] channels are more distorted in the twin wall than in the bulk
material while the volume of the channels increases. This increase goes together with a
decrease of the minimum diameter of the channels which, ultimately, limits the transport.
The probably most common doping in perovskite oxides relates to oxygen vacancies.
Significant pinning of the movement of twin boundaries by oxygen vacancies occurs in
polycrystalline Ca1�xSrxTiO3 and LaAlO3 single crystals [55,56]. The activation energy for
domain wall motion (determined from the temperature and frequency dependence of the
storage modulus and loss tangent), is of the order of 0.88–1.09 eV, which is comparable
with the activation energy for O-atom diffusion through a perovskite structure. Lagraff
and Payne [57] found that the ferroelastic domain mobility in YBa2Cu3O7�� was also
constrained by O-atom mobility, and simulations by Calleja et al. [58] found that O-atom
vacancies were stabilised on twin boundaries in CaTiO3, with a saddle point energy of
1.2 eV. The accumulation of such defects as discussed in much detail heavily influences the
thickness of the domain [59–61].

The equivalent effect is much weaker in fluorides. In improper ferroelastic KMnF3 and
KMn1�xCaxF3, the an-elastic softening related to the movement of twin boundaries below
the cubic-tetragonal phase transition is very strong [62]. Very weak pinning of the walls
was observed with a fairly narrow distribution of activation energies near 0.42 eV.

Figure 2. Resistivity of the sample shown in Figure 1(b) with two parallel domain walls over an
extended temperature interval. The onset of superconductivity in the walls is at 3.2K. The magnetic
fields are 0T (�), 6T (œ) and 13T (¨). The inset shows the temperature dependence of Hc2.
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Wall movements in Ca-doped samples are best described by Vogel-Fulcher relaxations
with a characteristic energy of 0.23 eV. The activation energies are related to interaction
between F vacancies or interstitials and the moving domain walls; additional Ca doping
appears to increase the tendency to form glass-like states. No domain freezing occurs at
temperatures above the phase transition I4/mcm–Pnma at lower temperatures; the Pnma
phase does not show any domain movement or anelastic behaviour [62].

In summary, chemical modifications of twin walls are very common, even when they
are not intended and occur by accident. Deliberate doping can lead to new compounds
along the walls while defects accumulate in case of oxygen vacancies while the equivalent
fluorene vacancies are less common or less significant for the pinning of twin walls.
Finally, a very exciting new development for the self-pinning of twin walls and interfaces
was postulated several authors involving the spontaneous generation of dislocations by the
moving interface. The role of the dislocations is then to hinder exactly this movement and
lead to shape memory behaviour [63]. Experimental observation on the role of dislocations
together with the presence of hydrogen can be found in a recent paper [64]. In Shape
Memory Alloys (SMA) equivalent studies of pinning processes of domain walls and their
effect on aging has been clearly identified [65–67], in particular the role of dislocations
during the first order martensitic transition [64,68,69].

3. Structural modifications of twin walls: the role of the secondary order parameter

The main advance made in the understanding of the internal structure of domain
boundaries in solids is the realisation that structural changes inside walls do not follow the
simple concept of the Landau–Ginzburg theory for one order parameter – even when
the chemical composition is not changed. Before we discuss in detail, let us first recall the
traditional concept of a single-order parameter treatment. The profile of Q(x) across a
twin wall is found by minimisation of the Gibbs free energy

GðQ,TÞ ¼
1

2
A=�sðcothð�s=TÞ � cothð�s=TcÞÞQ

2 þ
1

4
BQ4 þ

1

6
CQ6 þ

1

2
gðrQÞ2 ð1Þ

where Tc is the Curie temperature, �s is the quantum mechanical saturation temperature.
A, B, C and g are appropriate energy parameters which may either be determined
experimentally [68,70–75] or follow from energy calculations. The minimisation is usually
performed via solving the time-dependent Euler–Lagrange equation in the steady state

@Q=@t ¼ �A=�sðcothð�s=TÞ � cothð�s=TcÞÞQ� BQ3 � CQ5 þ gðr2QÞ ¼ 0 ð2Þ

The well-known answer for the boundary conditions of a kink (Q¼�Qmax for x ¼ �1
and Q¼Qmax for x ¼ 1) is Q ¼ Qmax tanhðx=wÞ. The total wall thickness is 2w with

w ¼ ð2g�s=Aðcothð�s=TÞ � cothð�s=TcÞÞ
1=2

ð3Þ

which simplifies at high temperatures to the well known Landau-Ginzburg dependence

w ¼ ð2g=AðT� TcÞÞ
1=2

ð4Þ

The wall energy increases very weakly when lowering the temperature through the
transition point [76].

There are few experimental observations which confirm these results; probably the
most extensive study is by Chrosch and Salje [77] who measured the wall thickness in
LaAlO3 as a function of temperature over a very large temperature interval [78–87].
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An excellent attempt to measure the wall thickness in a SMA using direct AFM methods
was undertaken recently by Shilo et al. [70]. The wall thickness was found to be 0.7 nm.
While the error in such determinations is large they show that the walls are rather akin
to (but thinner than) ferroelastic walls in non-metallic materials. The wall energy was
accordingly estimated to be 70mJm�2 which is again similar to wall energies in
ferroelastics. A similar estimate for Ni-Ti-Fe alloys [71] found an estimate of 14mJm�2 for
this compound.

For any complex structure, however, this simple approach to describe the structural
deformations is bound to fail while the experimentally observable temperature depen-
dence of the wall thickness may not change significantly. The issue is that the change of the
order parameter Q inside the wall will virtually always trigger secondary changes of other
structural parameters. A typical example is the rotation of octahedra in perovskite
structures [88]. Each rotation will be accompanied by a volume change simply because
each twist of two adjacent octahedral will approach the centres of the octahedra, an
effect which preoccupied Helen Megaw already in 1946 [89] and was discussed further by
Glazer [90].

In reality, octahedra do not remain rigid but distort during the rotation. A symmetry
problem remains, however: the symmetry of the rotation representing the order parameter
is given by the active representation, while the volume change is given by the identity
representation. This means that any calculation of the change of the rotation performed
under the symmetry constraints of the active representation will automatically ignore the
volume change. This makes clearly no sense if the consequence of the change of the volume
is actually more important for the physical and chemical behaviour of the twin wall than
the rotation. Lee and collaborators have argued that it is virtually impossible for any
complex structure to be described by one-order parameter [91]. In general the following
couplings to other structural parameters appear plausible:

(1) The domain-wall structure may be strained with respect to the bulk structure. For
instance, a positive dilatational strain, perpendicular to the domain wall, will result
in the domain-wall structure being more open than the bulk structure allowing
atoms to pass through more easily.

(2) The domain wall may have different elastic properties from the bulk material. The
existence of phase transitions in ferroelastic materials relies on those materials
showing non-linear elastic properties. These non-linearities will strongly affect
some of the elastic constants in the bulk. A diffusing atom will cause local
distortions of the crystal lattice as it hops from site to site, and the energies
associated with the distortion will depend on the elastic constants.

(3) The domain wall may be charged. This is possible in, for example, the case of a
ferroelectric domain wall. The diffusion of charged species through the domain
wall will be strongly affected by the electrical potential of the wall.

The strains in the domain wall can be determined by the condition that the stresses
conjugate to these strain components must be zero. It does not, however, follow from this
that the stress tensor is zero in the wall: stresses conjugate to the components of the strain
tensor that must remain fixed in the wall will, in general, take non-zero values in the wall,
although they must tend toward zero in the bulk [91]. The possible twin planes of a
ferroelastic microstructure are determined using the strain compatibility relation
xTð"1 � "2Þx ¼ 0, where "1 and "2 are the spontaneous strains of two domains, and x is
a vector lying in the plane of the domain wall [91]. This equation is usually used to
calculate the possible values of x and, thus, the plane of the domain wall. However, once
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the plane of the domain wall is known, the equation may be written in the form
xTð"1 � "Þx ¼ 0, where " is the strain at some point inside the domain wall. In this
equation, "1 and x are already known, so the general form of the strain tensor allowed in
the wall can be determined. In computer simulations [91–93] it became apparent that the
non-symmetry breaking dilation plays a major role in all materials virtually.

In a one-dimensional approximation, equivalent to the approach in [94] to explain
Q–P coupling and leaving aside the compatibility relation and the anisotropy of
secondary strains, we can formulate the role of the generalised strain e in the simplest
possible model as

�ðQ,T Þ ¼

Z
1

2
aQ2 þ

1

4
bQ4 þ

1

2
ce2 þ �Q2eþ

1

2
g1ð@Q=@xÞ

2
þ
1

2
g2ð@e=@xÞ

2

� �
dx ð5Þ

The order parameter is taken here for simplicity to follow a 2-4 Landau potential while the
strain enters via the quadratic elastic energy. The coupling between the strain and the
order parameter is linear-quadratic in this rather general model. Other coupling terms
occur only for specific symmetry conditions. The dispersion terms are different for the
order parameter and the strain because, in general, g1 6¼ g2. Changing the scales of Q and e
to � and " leads to the scale invariant form with the steady state Euler–Lagrange
equations

�ð1þ 2�Þ�þ�3 þ 2��" ¼ @2�=@x2 ð6Þ

and

��"þ ��2 ¼ gð@2"=@x2Þ ð7Þ

where we consider g¼ g2/g1� 1. The simultaneous solution of the two equations is non-
trivial unless g¼ 0. In this case the strain is slaved by the (renormalised) order parameter
"¼�2. The new order parameter is �¼ tanh(x/w) with w2 ¼ 2=ð1þ 2�Þ while the strain
shows an inverse breather-type singularity, i.e. it reduces from unity outside the wall to
zero inside the wall. Increasing coupling strength will decrease the wall width. If g is non-
zero but small, perturbation theory can be attempted where changes in " are larger than
those in �. An elegant approximation can be found using the trial function " ¼ �2 þ�
where the correction is given by � ¼ Að1� tanh x=vÞ with the new wall width v� w. The
differential equation for the correction then becomes

��� ¼ gð@2�=@x2Þ þ 2g=w2½1� 4 tanh2ðx=vÞ þ 3 tanh4ðx=vÞ� ð8Þ

With g¼ 0.1, �¼ 1.1 one finds an excellent fit for v/w¼ 0.35. The effect of the correction
term is to slightly reduce the value of e at x¼ 0, i.e. the breather becomes slightly shallower
than in the slaved case with " ¼ �2 (Figure 3).

The general observation that the order parameter has a tanh-profile and the strain
has a breather-type profile also holds for all other secondary parameters such as
charges where e is replaced by P with the same quadratic form of the self energy as in
Equation (5). Experimentally this situation relates to 90� and 180� domains in BaTiO3

and related materials [95–97]. While the dominant secondary effect is the strain coupling
in 90� walls one finds that the situation in 180� walls is more complex. These walls exist
with polarisation vectors either in head to tail configuration or in anti-parallel
arrangements. The former implies charged walls while the latter has no additional
charges in the wall. Other orientations of walls can then be constructed as combinations
of these two basic types. It is normally argued that the charged 180� walls are
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energetically very unstable with respect to the uncharged walls but, nevertheless, both
types have been observed in transmission electron microscopy. Careful analysis of the
high-resolution images revealed the same situation as envisaged in our treatment: 90�

walls in BaTiO3 and PbTiO3 are rather thick with significant strain contrast [98,99]. The
same is true for charged 180� walls in PbZr0.2Ti0.8O3 where the wall thickness was
determined from the observed wall profile with w¼ 5 unit cells, approximately. The
breather feature was clearly observed for the deformation both in the crystallographic a
and c direction. The width of the breather is, within experimental resolution, the same
as that of the kink. This indicates that the coupling is significant with the strain while
the dipole moment may have additional coupling. Direct observation was reported
using piezoelectric response hysteresis in the case of 90� walls [100]. In this very elegant
work the domain walls in PbZr0.2Ti0.8O3 were swept by an electric field in a
piezoresponse force microscope. The piezoresponse signal is proportional to the normal
component of the local polarisation. When the domain wall was driven so that the
switch between a and c domain happened under the detector, a spike in the polarisation
was observed, fully in agreement with arguments given here and, for the case of
ferroelectric domains by Ishibashi et al. [96].

Figure 3. Graphs showing the primary and secondary order parameter in V3Si. The primary order
parameter in (b) follows the tanh(x/w) – profile while the dilatational strain in (a) shows the typical
inverted breather profile (after [91]).
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4. The case of polar domain walls in a non-polar matrix

Before we discuss the modification of twin walls when two order parameters interact, we

recur to a recent study Goncalves-Ferreira et al. [21]. These authors explored the idea

that all TiO6-based perovskite structure may have a tendency to possess polar walls even

when the bulk of the material is non-polar (Figure 4). The fundamental idea relates

simply to the instability of Ti inside any oxygen octahedron of sufficient size to remain

in the centre of the octahedron. It is easy to visualise that an energy minimum exists in

such structures in which Ti forms bonds with a subset of oxygen atoms at the expense of

the remaining atoms. If Ti forms a bond with one oxygen atom the octahedron suffers

tetragonal deformation. Equivalently, bonding with 2 (3) oxygen would lead to an

orthorhombic (trigonal) deformation. In a structure this tendency can be compensated

by the next nearest neighbour interactions and, while the details of the force balance for

Ti can be complex, it may lead to a high symmetry phase at high temperatures.

In domain walls, on the other hand, such constraints are limited because the local

symmetry is broken anyway and new secondary order parameters become possible. This

scenario goes beyond the order parameter/strain coupling as discussed so far and

requires two structural instabilities which couple according to their respective symmetry

rules. This coupling is best visualised in the so-called order parameter vector space which

has been used for several cases. A convenient way to depicture such mixed state of

multiferroics or degenerate order parameter is to construct the order parameter vector

space [1,101–103]. In this construction, each state parameter defines a subspace of

dimension n (the degeneracy of the order parameter, i.e. the dimensionality of the active

representation) in which this state is described. The space averaged order parameter

component has always the dimension one and values between 0 for the paraphase and 1

in the classic limit of zero temperature. Taking into account the quantum saturation this

value is always less than one but the parameter space is usually depicted in the interval

[0,1] for each subspace. Each subspace with reduced dimensionality to 1 is now

represented as a vector so that the total order parameter vector space has the dimensionP
ni where the sum is taken over all order parameters considered. To exemplify the

procedure we take two one-dimensional representations which form a two dimensional

order parameter vector space. The state of the system is then described in this vector

space by a resulting vector which can, if both order parameters are independent, simply

the vector sum of the two base vectors (Figure 5). The interesting case is now that the

order parameters are coupled in some well-defined way. Three cases are particularly

interesting, namely the bi-linear case (Q1,Q2) [104], the linear-quadratic coupling as in

the case of the order parameter strain coupling [10,11]. The third and more complex case

is the bi-quadratic case (Q2
1Q

2
2) where minimisers can be derived from the Landau

potential [105,106]

GðQ1,Q2,TÞ ¼
1

2
AðT� TcÞQ

2
1 þ

1

4
BQ4

1 þ
1

6
CQ6

1 þ
1

2
gðrQ1Þ

2
þ
1

2
A0ðT� T 0c ÞQ

2
2 þ

1

4
B0Q4

2

þ
1

6
C0Q6

2 þ
1

2
g0ðrQ2Þ

2
þ �Q2

1Q
2
2 ð9Þ

Solutions for dG/dQ1¼ dG/dQ2¼ 0 were discussed previously for the uniform case [1].

They involve 3 states, namely

Q1 ¼ 0, Q2 6¼ 0 and Q1 6¼ 0, Q2 ¼ 0 and Q1 6¼ 0, Q2 6¼ 0 ð10Þ
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Figure 4. Dipole moments and atomic displacements of Ti inside twin walls of CaTiO3, as projected
on to (a) the xy, (b) the xz and (c) the yz planes [19]. The arrows indicated the Ti displacement from
the center of the corresponding O octahedron. Their sizes have been scaled by a factor of 300 with
respect to the scale in the axes. Part (c) shows the twin wall plane. The gray arrows indicate the
direction of the net polarisation. The compressibility of the twin wall is compared with that of the
bulk in (b). The Ti–Ti distances in the wall are larger and shown as the upper curve while the Ti–Ti
distances in the bulk are smaller in the lower curve. The slopes represent the respective
compressibilities. It is seen that the wall compressibility is slightly greater than the bulk
compressibility.
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While the uniform solutions are well understood, the non-uniform solutions were first

discussed by Houchmanzadeh et al. [107], but not pursued further. Here we discuss some

solutions which can be derived by simple perturbation of the equilibrium uniform state.
Two types of solutions are important in the context of this review. The first solution

relates to the boundary conditions Q1, Q2¼�1 at �1 and Q1, Q2¼ 1 at þ1. For

C¼C0 ¼ 0 the solutions for �¼ 0 is again Q1¼Q10 tanh(x/w) and Q2¼Q20 tanh

((x� d)/w0). In general we will find w 6¼w0 that this solution is bi-chiral (Figure 6) for d¼ 0

in the sense of Houchmanzadeh et al. [107]. In space the state vector follows first more

closely one-order parameter and then the second. In the projection of the order parameter

vector space (Figure 7) this solution is a curved line through the origin. Linearity occurs

when w¼w0. The solution for negative � leans that the overlap integral

�
R
Q12ðrÞQ22ðr� dÞdr has a minimum for d¼ 0 so that the two ‘solitary wave’ solutions

attract each other. If, on the other hand, � is positive but small (weak repulsive coupling

between the order parameters) the overlap integral has to be minimised over a large but

Figure 5. Evolution in space of two-order parameters in the order parameter vector space. Each
one-dimensional order parameter spans one dimension in the basal plane. The resulting vector sum
represents the structural state of the wall. In the depicted case the order parameter Q1 (horizontal)
changes from þ1 to �1 while the (secondary) order parameter Q2 changes from zero to 1 and back to
zero. This wall is called chiral. It has two degenerate solutions, namely the order parameter Q2

changing via a right turn (via the positive maximum value) or a left turn (via the negative maximum
value).

Figure 6. Sketch of bi-chiral wall. The two-order parameters Q1 and Q2 are plotted as orthogonal
vectors on the left-hand side. The bi-chiral wall is the vector sum Q1+Q2 of two primary kinks in Q1

and Q2 with two different wall thicknesses w 6¼w0. The resulting wall profiles are shown as bold
curve.
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finite sample size and leads to a repulsion between the two boundaries. For general values

of � and finite sample size the solution is not yet known.
Other solutions exist for the boundary conditions for one-order parameter to be the

same as in the first case but the second-order parameter vanishes for large values of |r|

(breather-type solution) (Figure 8). This is exactly the case where the one of the order

parameters exists essentially in and near the wall but is reduced anywhere else. This wall

has simple chirality [107] where the phase between the two-order parameters defines the

sign of the chirality. In perturbation theory the kink-type order parameter, say Q1 is

minimised with the second-order parameter put to zero. The resulting profile is tanh(x/w)

Figure 8. Wall profiles within the marginal stability of phase III (A0 ¼�0.2, Q1 6¼ 0, Q2 6¼ 0,). The
bulk material on either side is in phase I (A0 ¼�0.2, Q1 6¼ 0, Q2¼ 0). The wall is the combination of a
kink (Q1) and a breather (Q2) and is chiral.

Figure 7. Trajectories of the kink wall profiles for different values of the temperature-related model
parameter A0. (A0 changes from 0.2 (horizontal line) to �0.4 in steps of 0.1, then from �0.6 to �2
(steepest curve) in steps of 0.2).
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which is then taken as invariant in the coupled equation. The governing equation for Q2

can be written as

GðQ2,T Þ ¼
1

2
A0ðT� T 0c ÞQ

2
2 þ

1

4
B0Q4

2 þ
1

2
g0ðgradQ2Þ

2
þ �Q2

10 tanhðx=wÞQ
2
2

ð11Þ

which renormalises the transition temperature to

T 0�c ¼ T 0c �
2�Q2

10

A0
tanhðx=wÞ ð12Þ

which for T 0c 5 2�Q2
10=A

0 suppresses the order parameter Q2 in the bulk. This case holds
for repulsive coupling �4 0 while for attractive coupling �5 0 the same breather-type

solutions remains correct. It is interesting to note that for attractive coupling the breather
is a positive function on the uniform order parameter while for attractive coupling the
breather is negative (see also calculations by Lee et al. [91]). In either case, the ‘secondary
order parameter’ Q2 is concentrated (diluted) inside the domain wall while either
suppressed or reduced (enhanced) inside the bulk for repulsive (attractive) coupling.
Solutions for larger values of the coupling parameter are not yet known. Purely kinetic
coupling, where equilibrium conditions do not apply, were earlier discussed in [108] while
applications to polytypism were given in [109]. These areas are outside the scope of this
review but will certainly be of interest once the details of the generation of specific domain
walls is better understood.
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