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The optimal design of structures and systems described by partial differential equations
(PDEs) often gives rise to large-scale optimization problems, in particular if the underly-
ing system of PDEs represents a multi-scale, multi-physics problem. Therefore, reduced order
modeling techniques such as balanced truncation model reduction, proper orthogonal de-
composition, or reduced basis methods are used to significantly decrease the computational
complexity while maintaining the desired accuracy of the approximation. In this paper, we
are interested in such shape optimization problems where the design issue is restricted to a
relatively small portion of the computational domain. In this case, it appears to be natural
to rely on a full order model only in that specific part of the domain and to use a reduced
order model elsewhere. A convenient methodology to realize this idea consists in a suitable
combination of domain decomposition techniques and balanced truncation model reduction.
We will consider such an approach for shape optimization problems associated with the time-
dependent Stokes system and derive explicit error bounds for the modeling error.
As an application in life sciences, we will be concerned with the optimal design of capillary
barriers as part of a network of microchannels and reservoirs on microfluidic biochips that are
used in clinical diagnostics, pharmacology, and forensics for high-throughput screening and
hybridization in genomics and protein profiling in proteomics.

Keywords: shape optimization; time-dependent Stokes system; domain decomposition;
balanced truncation model reduction; microfluidic biochips

AMS Subject Classification: 49Q10;65M55;76D07

1. Introduction

We study a method for the numerical solution of a class of shape optimization
problems governed by the time dependent Stokes or the time dependent linearized
Navier-Stokes equations, linearized around a steady state, in which only a small
part of the overall domain is modified. The numerical solution of such optimiza-
tion problems using gradient based optimization methods requires the solution of
coupled systems of partial differential equations (PDEs) involving the forward in
time governing equation and the backward in time adjoint equation. The solution
of this coupled system can be very expensive, both in terms of computing time and
memory.
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Our approach to reduce the computational complexity of the numerical opti-
mization is an integration of domain decomposition and model reduction. Domain
decomposition in space is used to decouple the small subproblem that corresponds
to the subdomain whose shape is modified by the optimization from the fixed sub-
domain problem. Balanced truncation model reduction is used to replace the sub-
problem corresponding to the fixed subdomain by a substantially smaller problem.
Domain decomposition identifies the proper connectivities between the subprob-
lems, which are used in the balanced truncation. In principle any model reduction
technique can be used, but balanced truncation provides an error bound for the
quality of the reduced order subsystem. This error bound will be used to derive an
error bound for the coupled shape optimization problem.

Domain decomposition and balanced truncation model reduction (DDBTMR)
have been integrated for the solution of locally nonlinear systems, where the solu-
tion shows nonlinear behavior only in a relatively small subdomain of the computa-
tional domain, but is governed by a linear regime otherwise [5, 36, 37]. The papers
[36, 37] contain numerical studies for the simulation of time dependent PDEs with
local nonlinearities. The numerical solution of optimal control and shape optimiza-
tion problems associated with linear time dependent advection-diffusion equations
by DDBTMR has been recently considered in [5]. The present paper extends the
approach and analysis in [5] to shape optimization problems governed by the time
dependent Stokes or the time dependent linearized Navier-Stokes equations, lin-
earized around a steady state. Although conceptually the approach in this paper
is similar to the one in [5], the extension to the Stokes system requires several im-
portant changes. These are due to the presence of the incompressibility constraints
and affect the model reduction, the domain decomposition, the coupling of both,
and the analysis.

Section 2 of this paper is devoted to an appropriate set-up of the problem. Bal-
anced truncation model reduction (BTMR) for the semi-discretized Stokes system
is reviewed in Section 3. Section 4 introduces the domain decomposition (DD)
methodology, including the specification of the optimality systems for the respective
subdomain and interface problems. This is followed by the application of BTMR
to the domain decomposed optimality system in Section 5. Section 6 is concerned
with an a priori estimate of the modelling error which, under certain assumptions,
is shown to be largely determined by the BTMR error bound. The application of
DDBTMR to the shape optimization of a capillary barrier in a surface acoustic
wave driven microfluidic biochip is considered in Section 7 demonstrating the fea-
sibility of the approach for a challenging design problem in life sciences. Finally,
Section 8 contains some concluding remarks as well as an outlook to possible ex-
tensions. While problems governed by the Stokes system are used to demonstrate
our approach, it can be applied to problems governed by the Oseen equation or
linearized Navier-Stokes equations, linearized around a steady state.

2. Shape optimization of the time-dependent Stokes system

Let Ω(θ) ⊂ R
2 be a bounded domain that depends on design variables θ =

(θ1, · · · , θd)
T ∈ Θ, where Θ ⊂ R

d is a given convex set, e.g., θi, 1 ≤ i ≤ d, are
the Bézier control points of a Bézier curve representation of the boundary and

Θ := {θi ∈ R | θ
(i)
min ≤ θi ≤ θ

(i)
max, 1 ≤ i ≤ d}. We assume that the boundary

∂Ω(θ) consists of an inflow boundary Γin(θ), an outflow boundary Γout(θ), and
a lateral boundary Γlat(θ) such that ∂Ω(θ) = Γin(θ) ∪ Γout(θ) ∪ Γlat(θ),Γin(θ) ∩
Γout(θ)∩Γlat(θ) = ∅. We set Q(θ) := Ω(θ)×(0, T ), Σ(θ) := ∂Ω(θ)×(0, T ), Σin(θ) :=
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Γin(θ) × (0, T ), Σlat(θ) := Γlat(θ) × (0, T ), T > 0, and consider shape optimization
problems associated with the time-dependent Stokes system of the form

inf
θ∈Θ

J(θ) (1a)

where

J(θ) :=

T∫

0

∫

Ω(θ)

ℓ(v(θ), p(θ), x, t) dx dt, (1b)

and where v(θ), p(θ) solve

∂

∂t
v(x, t) − ν ∆v(x, t) + ∇p(x, t) = f(x, t) , (x, t) ∈ Q(θ), (1c)

∇ · v(x, t) = 0 , (x, t) ∈ Q(θ), (1d)

v(x, t) =vin(x, t) , (x, t) ∈ Σin(θ), (1e)

v(x, t) =0 , (x, t) ∈ Σlat(θ), (1f)

(∇v(x, t) − p(x, t)I)n =0 , (x, t) ∈ Σout(θ), (1g)

v(x, 0) = v(0)(x) , x ∈ Ω(θ). (1h)

Here, v = v(x, t) = (v1(x, t), v2(x, t))T and p = p(x, t) stand for the velocity and
the pressure, f = f(x, t) is a given forcing term, vin denotes a prescribed normal
velocity on Σin(θ), v(0) = v(0)(x), x ∈ Ω(θ), is the velocity distribution at initial
time t = 0, satisfying ∇ · v(0) = 0, ν > 0 refers to the viscosity of the fluid, and
t,n are the unit tangential and unit exterior normal vector on ∂Ω(θ). Moreover,
the integrand ℓ(·) in the objective functional J is a given function of the velocity,
the pressure, and the independent variables x, t.

For the spatial discretization of the time-dependent Stokes system we use one of
the many standard methods [16], such as the classical P2-P1 Taylor Hood element,
or methods with discontinuous pressure discretizations. We will discuss this in
more detail in Section 4. We assume that the simplicial triangulation Th of the
spatial domain Ω(θ) is geometrically conforming and aligns with Γin(θ), Γlat(θ)
and Γout(θ). This leads to the semi-discrete optimization problem

inf
θ∈Θ

J(θ) (2a)

where

J(θ) :=

T∫

0

ℓ(v(θ),p(θ), x, t, θ) dt, (2b)

and where v(θ),p(θ) solve

E(θ)
d

dt

(
v(t)
p(t)

)
+ S(θ)

(
v(t)
p(t)

)
=

(
g1(θ)(t)
g2(θ)(t)

)
, t ∈ (0, T ], (2c)

M(θ)v(0) = v(0)(θ), (2d)
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−B(θ)M−1v(0)(θ) + g2(θ)(0) = 0. (2e)

Here, the integrand ℓ(·) in (2b) results from the spatial discretization of the inner
integral of the objective functional in (1b). The block matrix E(θ) and the discrete
Stokes operator S(θ) in (2c) are given by

E(θ) :=

(
M(θ) 0

0 0

)
, S(θ) :=

(
A(θ) BT (θ)
B(θ) 0

)
, (3)

where M(θ) ∈ R
n×n,A(θ) ∈ R

n×n and B(θ) ∈ R
m×n are the lumped mass matrix,

the stiffness matrix, and the matrix representation of the discrete divergence op-
erator. The vector g2(θ)(t) ∈ R

m in (2c) stems from the semi-discretization of the
incompressibility condition due to the boundary condition at the inflow boundary
and v(0)(θ) is the initial velocity satisfying the discrete incompressibility condition
(2e). We note that the data of the semi-discrete problem depend on the design
variable θ due to the dependence of the spatial domain on θ.

The Oseen equation and the linearized Navier-Stokes equations, linearized
around a steady state, also lead to systems of the type (2c)–(3). The ex-
istence and uniqueness of a solution (v,p) ∈ L2((0, T ); Rn) × L2((0, T );
R

m/(Ker BT )) of the semi-discretized equations (2c),(2d) as well as its continuous
dependence on the data of the problem is a consequence of the following result
which will also play a prominent role with regard to the application of BTMR and
the derivation of upper estimates for the modeling error. The following result ap-
plies to the semi discretized Stokes system, but also to class of problems governed
by the Oseen equations or the linearized Navier-Stokes equations.

Theorem 2.1 Let A,M ∈ R
n×n,B ∈ R

m×n,m < n, be matrices with the following
properties:

(i) M is symmetric positive definite.
(ii) A is positive definite (not necessarily symmetric) on Ker B, i.e., there

exists a constant α > 0 such that

vTAv ≥ α‖v‖2 , v ∈ Ker B. (4)

(iii) B has full row rank m.

Consider the initial value problem

E
d

dt

(
v(t)
p(t)

)
+ S

(
v(t)
p(t)

)
=

(
g1(t)
g2(t)

)
, t ∈ (0, T ], (5a)

Mv(0) = v(0), (5b)

where E,S are as in (3) and g1 ∈ C([0, T ]; Rn),g2, dg2/dt ∈ C([0, T ]; Rm) and
v(0) ∈ R

n satisfies

−BM−1v(0) + g2(0) = 0. (6)

Under the assumptions (i),(ii) and (iii), the initial value problem (5a),(5b) has a
unique solution (v,p) ∈ C([0, T ]; Rn) × C([0, T ]; Rm/(Ker BT )), and there exist
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constants C1 ≥ 0, C2 ≥ 0, depending on A,B,M such that

‖v‖L2 ≤ C1‖v(0)‖ + C2 (‖g1‖L2 + ‖g2‖L2) ,

‖p‖L2 ≤ C1‖v(0)‖ + C2

(
‖g1‖L2 + ‖g2‖L2 + ‖ d

dt
g2‖L2

)
.

Proof We set Π := I − BT (BM−1BT )−1BM−1. Since Π2 = Π, ΠM = MΠT ,
null(Π) = range(BT ) and range(Π) = null(BM−1), i.e., Π is an oblique projector.

We split v(t) = vH(t) + vP (t) and v(0) = Πv(0) + v
(0)
P , where

vH(t) ∈ KerB , vP (t) := M−1BT (BM−1BT )−1g2(t), (7)

v
(0)
P = BT (BM−1BT )−1g2(0).

We note that vP (t) and v
(0)
P are particular solutions of the second equation in

(5a) and of (6), respectively. Then, the initial value problem (5a),(5b) can be
transformed to

ΠMΠT d

dt
vH(t) = − ΠAΠTvH(t) + Πg̃(t) , t ∈ (0, T ], (8a)

ΠMΠTvH(0) = v
(0)
H , (8b)

where v
(0)
H = Π v(0) and g̃ ∈ R

n is given by

g̃(t) := g1(t) − AM−1BT (BM−1BT )−1g2(t). (9)

Moreover, p(t) ∈ R
m/(Ker BT ) can be recovered according to

p(t) = (BM−1BT )−1
(
BM−1

(
− AvH(t) + g̃(t)

)
− d

dt
g2(t)

)
. (10)

In view of (i),(ii), the matrices M := ΠMΠT and A := ΠAΠT are symmetric
positive definite on Ker B and satisfy

−vTAv ≤ −αvTMv , v ∈ Ker B.

Then, Lemma 5 in [5] implies

‖vH‖L2 ≤
√

2‖M−1/2‖‖M1/2‖√
α

‖v(0)
H ‖ +

2‖M−1‖
α

‖g̃‖L2 . (11)

We conclude due to (7),(10) and (11). ¥

3. Balanced truncation model reduction for Stokes-type systems

Balanced truncation model reduction is a particular model reduction technique
that seeks to replace a large-scale system of differential or difference equations by
a system of substantially lower dimension that has nearly the same response char-
acteristics, that preserves asymptotic stability and that provides an error bound
on the discrepancy between the outputs of the full and reduced order system
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[7, 9, 15, 18, 28, 40]. Originally, balanced truncation model reduction was devel-
oped for systems of ordinary differential equations (ODEs). Recently it has been
extended to descriptor systems. An overview of balanced truncation model reduc-
tion for descriptor systems can be found in [26]. Balanced truncation model reduc-
tion for semidiscretized Stokes and linearized Navier-Stokes systems is studied in
[21, 32, 35]. We summarize the basic ideas for a system that is closely related to the
optimality system arising in control and shape optimization problems governed by
the semidiscretized Stokes or linearized Navier-Stokes equations. Our presentation
follows [21]. We consider

M
d

dt
v(t) = −Av(t) − BTp(t) + Ku(t), t ∈ (0, T ), (12a)

0 = −Bv(t) + Lu(t), t ∈ (0, T ) (12b)

z(t) = Cv(t) + Fp(t) + Du(t), t ∈ (0, T ), (12c)

Mv(0) = v(0), (12d)

BM−1v(0) = Lu(0), (12e)

and

−M
d

dt
λ(t) = −AT λ(t) − BT κ(t) + CTw(t), t ∈ (0, T ), (13a)

0 = −Bλ(t) + FTw(t), t ∈ (0, T ), (13b)

q(t) = KT λ(t) + LT κ(t) + DTw(t), t ∈ (0, T ), (13c)

Mλ(T ) = λ(T ), (13d)

BM−1λ(T ) = FTw(T ), (13e)

where M ∈ R
nv×nv is a symmetric positive definite matrix, A ∈ R

nv×nv , B ∈
R

np×nv , np < nv, is a matrix with rank np, K ∈ R
nv×ng , L ∈ R

np×ng , C ∈ R
nz×nv ,

F ∈ R
nz×np , and D ∈ R

nz×ng . The terms Du(t) and DTw(t) are ‘feed through
terms’ in the output equations. The system (13) is the adjoint system corresponding
to (12). Conditions (12e) and (13e) ensure the compatibility of the inputs u and
w with the initial and final values [13].

In addition to the assumptions above, we assume that the generalized eigenvalues
of the pair (A,M) have positive real part. This assumption is needed to apply
balanced truncation model reduction.

The numerical method discussed in [21] for computing reduced order models
using balanced truncation is applied to the system (12,13) directly. However, it is
derived by eliminating the variables p and κ via projection. This leads to dynamical
systems governed by ODEs to which standard balanced truncation can be applied.
The application of balanced truncation to the projected system of ODEs is then
translated into an approach that applies directly to (12,13) . Since the transforma-
tion of (12,13) into a a system of ODEs is also important for the later application
of balanced truncation in optimization contexts, we summarize the main steps.
Details can be found in [21].

As in the proof of Theorem 2.1 we choose v(t) = vH(t) + vP(t), where

vP(t) = M−1BT (BM−1BT )−1Lu(t) (14)
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is a particular solution of (12b) and vH(t) satisfies 0 = BvH(t). If we insert v(t) =
vH(t) + vP(t), (14) into (12a-c), we obtain

M
d

dt
vH(t) = − AvH(t) − BTp(t)

+
(
K − AM−1BT (BM−1BT )−1L

)
u(t)

− BT (BM−1BT )−1L
d

dt
u(t), (15a)

0 =BvH(t), (15b)

z(t) =CvH(t) + Fp(t) +
(
D + CM−1BT (BM−1BT )−1L

)
u(t). (15c)

Equations (15a,b) imply that

p(t) = − (BM−1BT )−1BM−1AvH(t)

+ (BM−1BT )−1BM−1
(
K − AM−1BT (BM−1BT )−1L

)
u(t)

− (BM−1BT )−1L
d

dt
u(t) (16)

and ΠTvH(t) = vH(t), where

Π = I − BT (BM−1BT )−1BM−1. (17)

Note that Π2 = Π, ΠM = MΠT , null(Π) = range(BT ) and range(Π) =
null(BM−1), i.e., Π is an oblique projector.

Next, we insert (16) into (15a,c), use the identity ΠTvH(t) = vH(t), and multiply
the resulting equation (15a) by Π. Since ΠBT (BM−1BT )−1L = 0 this leads to

ΠMΠT d

dt
vH(t) = −ΠAΠTvH(t) + ΠB̃u(t), (18a)

z(t) = C̃ΠTvH(t) + D̃u(t) − F(BM−1BT )−1L
d

dt
u(t), (18b)

where

B̃ = K − AM−1BT (BM−1BT )−1L,

C̃ = C − F(BM−1BT )−1BM−1A,

D̃ = D + CM−1BT (BM−1BT )−1L + F(BM−1BT )−1BM−1B̃.

To obtain the initial condition for vH we set v(0) = Πv(0) + (I−Π)v(0) and use
(12e)

v(0) = Πv(0) + BT (BM−1BT )−1BM−1v(0)

= Πv(0) + BT (BM−1BT )−1Lu(0).
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Furthermore, we have

Mv(0) = MvH(0) + MvP(0) = MΠTvH(0) + MvP(0)

= ΠMvH(0) + BT (BM−1BT )−1Lu(0).

This leads to

ΠMvH(0) = ΠMΠTvH(0) = Πv(0) (=: v
(0)
H ). (18c)

We can proceed in the same way to transform (13). We set λ = λH(t) + λP(t)
where λP(t) = M−1BT (BM−1BT )−1FTw(t). The equations (13) can be trans-
formed into

−M
d

dt
λH(t) = − AT λH(t) − BT κ(t)

+
(
CT − ATM−1BT (BM−1BT )−1FT

)
w(t)

+ BT (BM−1BT )−1FT d

dt
w(t) (19a)

0 =BλH(t), (19b)

q(t) =KT λH(t) + LT κ(t) +
(
DT + KTM−1BT (BM−1BT )−1FT

)
w(t).
(19c)

Equations (19a,b) imply that

κ(t) = − (BM−1BT )−1BM−1AT λH(t)

+ (BM−1BT )−1BM−1
(
CT − ATM−1BT (BM−1BT )−1FT

)
w(t)

+ (BM−1BT )−1FT d

dt
w(t) (20)

and ΠT λH(t) = λH(t), where Π is given as before.
Next, we insert (20) into (19a,c), use the identity ΠT λH(t) = λH(t), and multiply

the resulting equation (19a) by Π. Since ΠBT (BM−1BT )−1FT = 0 this leads to

−ΠMΠT d

dt
λH(t) = −ΠATΠT λH(t) + ΠC̃Tw(t), (21a)

q(t) = B̃TΠT λH(t) + D̃Tw(t) + LT (BM−1BT )−1FT d

dt
w(t),

(21b)

MλH(T ) = Πλ(T ), (21c)

where B̃, C̃ and D̃ are given as before.
For model reduction purposes we view u and d

dtu as inputs into (18) and w and
d
dtw as inputs into (21). The terms involving u and w in (18b) and (21b) are ‘feed
through’ terms, since inputs are directly fed to the outputs z and q respectively.
These terms are not reduced. Note that the transformed system (21) is the adjoint
system corresponding to (18).

The systems (18) and (21) are almost in the form to which standard balanced
truncation model reduction can be applied. Since Π has a non-trivial null-space,
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the dynamical systems in (18) and (21) have to be solved for vH with ΠTvH = vH

and λH with ΠT λH = λH This can be made explicit by expressing

Π = ΘlΘ
T
r (22a)

with Θl,Θr ∈ R
nv×(nv−np) satisfying

ΘT
l Θr = I. (22b)

Substituting this decomposition into (18) shows that ṽH = ΘT
l vH ∈ R

nv−np must
satisfy

ΘT
r MΘr

d

dt
ṽH(t) = −ΘT

r AΘrṽH(t) + ΘT
r B̃u(t), (23a)

z(t) = C̃Θr
d

dt
ṽH(t) + D̃u(t) − F(BM−1BT )−1L

d

dt
u(t). (23b)

An analogous substitution is applied in (21). Standard balanced truncation model
reduction can now be applied to the system (23) and the corresponding adjoint
system derived from (21). The projection matrices computed by balanced trunca-
tion for (23) and the corresponding adjoint system derived from (21) can then be
transformed into projection matrices for the systems (18) and (21).

Balanced truncation model reduction generates projection matrices V,W ∈
R

nv×k with k ≪ nv such that

V = ΠTV,W = ΠTW, and WTMV = I.

The reduced order model for (18) is obtained by replacing vH(t) in (18) by Vv̂(t)
and multiplying the resulting equation by WT . This gives

d

dt
v̂(t) = −WTAVv̂(t) + WT B̃u(t), (24a)

ẑ(t) = C̃Vv̂(t) + D̃u(t) − F(BM−1BT )−1L
d

dt
u(t), (24b)

v̂(t) = WTΠv(0). (24c)

Similarly, the reduced order model for (21) is obtained by replacing λH(t) in (21)

by Wλ̂(t) and multiplying the resulting equation by VT . This gives

− d

dt
λ̂(t) = −VTATWλ̂(t) + VT C̃Tw(t), (25a)

q̂(t) = B̃TWλ̂(t) + D̃Tw(t) + LT (BM−1BT )−1FT d

dt
w(t), (25b)

λ̂(t) = VTΠλ(T ). (25c)

We can show that WTAV is stable see [21, Sec. 7] for details. Furthermore if
vH(0) = λH(T ) = 0, then for any given inputs u, w we have

‖z − ẑ‖L2 ≤ 2‖u‖L2(σk+1 + . . . + σn), (26a)

‖q − q̂‖L2 ≤ 2‖w‖L2(σk+1 + . . . + σn). (26b)
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Remark 1 Inhomogeneous initial conditions can be handled by modifying the bal-
anced truncation model reduction as discussed in [8].

4. Domain decomposition

We consider a decomposition of Ω(θ) into subdomains Ω1, Ω2(θ) such that

Ω(θ) = Ω1 ∪ Ω2(θ) , Ω1 ∩ Ω2(θ) = ∅ , Γ := Ω1 ∩ Ω2(θ), (27)

where Γ stands for the interfaces between the subdomains. The domain decom-
position is motivated by such PDE constrained optimization problems where the
optimal design issues focus on a relatively small portion of the domain, namely the
subdomain Ω2(θ). Consequently, only that subdomain is supposed to depend on
the design variables θ, whereas Ω1 is independent of θ. In practice, the subdomains
Ω1 and Ω2(θ) can be further subdivided. Multiple subdomains can be incorpo-
rated into our approach, but to keep the presentation simple we consider the two
subdomain case.

We assume that the objective functional can be split accordingly

J(θ) := J1(v, p) + J2(v(θ), p(θ), θ). (28)

Here, J1(v, p) is given in terms of observation operators C : L2((0, T );V) →
L2((0, T ); (L2(Ω1)

q)), F : L2((0, T );L2
0(Ω)) → L2((0, T ); (L2(Ω1))

q) and a feed-
through operator D : L2((0, T );L2(Ω)) → L2((0, T ); (L2(Ω1))

q), q ∈ N. For a given
function d ∈ L2((0, T ); (L2(Ω1))

q), we define

J1(v, p) :=

T∫

0

∫

Ω1

|Cv + Fp + Du − d|2 dx dt. (29)

On the other hand, J2(v, p, θ) is supposed to be as in (1b) with Ω(θ) replaced by
Ω2(θ).

We consider geometrically conforming simplicial triangulations Th(Ω(θ)) that
align with the decomposition in the sense that their restrictions to Ω1, Ω2(θ)
represent geometrically conforming triangulations Th(Ω1), Th(Ω2(θ)). The semi-
discretization in space of the Stokes equation in the domain decomposition context
requires some care. See, e.g., [2, 11, 24, 29–31, 38, 39]. For semi-discretization in
space, we may use stable discontinuous pressure elements such as nonconforming
P2-P0 or P1-P0 elements [14] or spectral elements [29, 39]. The subsequent analysis
also applies, if we use continuous pressure elements such as the Taylor-Hood P2-P1
element or the mini-element [10, 12], provided the incompressibility condition on
the interface Γ(θ) is not discretized and hence, we do not explicitly consider the
semi-discrete pressure on the interface Γ(θ) (cf., e.g., [31]).

The discretization needs to be such that the coupled problem is solv-
able, i.e., the local subproblems corresponding to the subdomains Ω1 and
Ω2(θ) as well as those corresponding to the interface are solvable. The global
problem (2c)–(2e) has a unique solution (v,p) ∈ L2((0, T ); Rn) × L2((0, T );
R

m/(Ker BT )). Some of the local problems associated with the subdomain Ω1 or
Ω2(θ) correspond to Stokes subdomain problems with Dirichlet boundary condi-
tions only. Consequently, for these subproblems the pressure is only unique up to a
constant. To ensure that the subdomain solution is the restriction of the solution of
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(2c)–(2e) to the subdomain, we split the subdomain pressures into a constant and
a subdomain pressure with zero spatial average. The latter is determined uniquely
as the solution of the subdomain problem, whereas the constant is determined
through the coupled problems. This split is not necessary for subdomains with
an outflow condition, where the local pressure is unique. However, to simplify the
presentation, we assume that the split has to be made for both subdomains.

The velocities are discretized using

vh(x, t) =
n∑

j=1

vj(t)φj(x),

where φj(t), j = 1, . . . , n1 have support in Ω1, φj(t), j = n1 + 1, . . . , n1 + n2 have
support in Ω2, and φj(t), j = n1+n2+1, . . . , n = n1+n2+nΓ are the remaining basis
functions, which are associated with the interface. The semidiscretized pressure
ph(x, t) is the sum of subdomain pressures ph,i(x, t), i = 1, 2 with zero average on
the subdomain,

∫
Ωj

ph,i(x, t)dx = 0, i = 1, 2, and constant pressures p0,i(t), i = 1, 2,

for each subdomain. We have

ph(x, t) =

2∑

j=1

p0,j(t)χΩj
(x) +

m−2∑

j=1

pj(t)ψj(x),

where χS denotes the characteristic function of a set S ⊂ Ω, ψj(t), j = 1, . . . , m1 are
basis functions that have support in Ω1, and ψj(t), j = m1+1, . . . ,m−2 = m1+m2

have support in Ω2. We require that

∫

Ωj

m1∑

j=1

pj(t)ψj(x)dx =

∫

Ωj

m2∑

j=1

pm1+j(t)ψm1+j(x)dx = 0.

Thus, we have velocities v1(t) ∈ R
n1 , v2(t) ∈ R

n2 , vΓ(t) ∈ R
nΓ associated

with Ω1, Ω2(θ), and Γ(θ), respectively. We set v(t) = (v1(t),v2(t),vΓ(t))T . The
pressures associated with Ω1, Ω2(θ) are p1(t) ∈ R

m1 , p2(t) ∈ R
m2 . Addition-

ally, we have constants p0,1(t), p0,2(t) ∈ R. We set p0(t) = (p0,1(t), p0,2(t))
T and

p(t) = (p1(t),p2(t),p0(t))
T . Finally, we define the state variables

x(t) := (v1,p1,v2,p2,vΓ,p0)
T , t ∈ [0, T ]. (30)

With this discretization and partitioning of variables, the matrices A(θ) and
B(θ) can be partitioned as follows

A(θ) =




A11 0 A1Γ

0 A22(θ) A2Γ(θ)
AT

1Γ AT
2Γ(θ) AΓΓ(θ)


 , B(θ) =




B11 0 B1Γ

0 B22(θ) B2Γ(θ)
0 0 B0(θ)


 . (31)

Here, A11 ∈ R
n1×n1 , A22(θ) ∈ R

n2×n2 , AΓΓ(θ) ∈ R
nΓ×nΓ , AiΓ(θ) ∈ R

ni×nΓ , 1 ≤
i ≤ 2, and B11 ∈ R

m1×n1 , B22(θ) ∈ R
m2×n2 , BiΓ(θ) ∈ R

mi×nΓ , 1 ≤ i ≤ 2,
B0(θ) ∈ R

2×nΓ . Likewise, the matrices K(θ),L(θ) and the lumped mass matrix
M(θ) admit the decompositions

K(θ) = (K1,K2(θ),KΓ(θ))T L(θ) = (L1,L2(θ),L0(θ))
T , (32a)

M(θ) = blockdiag(M1,M2(θ),MΓ(θ)), (32b)
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where Ki(θ) ∈ R
ni×k,Li(θ) ∈ R

mi×k, 1 ≤ i ≤ 2, KΓ(θ) ∈ R
nΓ×k, LΓ(θ) ∈ R

2×k

and M1 ∈ R
n1×n1 ,M2(θ) ∈ R

n2×n2 , MΓ(θ) ∈ R
nΓ×nΓ . We set

E(θ) =




E1 0 0

0 E2(θ) 0

0 0 EΓ(θ)


 , S(θ) =




S1 0 S1Γ

0 S2(θ) S2Γ(θ)
ST

1Γ ST
2,Γ(θ) SΓ(θ)


 , (33)

where

E1 =

(
M1 0

0 0

)
, E2(θ) =

(
M2(θ) 0

0 0

)
, EΓ(θ) =

(
MΓ(θ) 0

0 0

)
, (34a)

S1 =

(
A11 BT

11

B11 0

)
, S2(θ) =

(
A22(θ) BT

22(θ)
B22(θ) 0

)
, (34b)

SΓ(θ) =

(
AΓΓ(θ) BT

0 (θ)
B0(θ) 0

)
, SiΓ(θ) =

(
AiΓ(θ) 0

BiΓ(θ) 0

)
, 1 ≤ i ≤ 2, (34c)

and

N(θ) = (K1 | L1 | K2(θ) | L2(θ) | KΓ(θ) | L0(θ))
T . (35)

We further denote by C1 ∈ R
q×n1 ,F1 ∈ R

q×m1 ,D1 ∈ R
q×n1 ,d(t) ∈ R

q, t ∈ (0, T ),
the matrices and the vector and by ℓ(v2,vΓ,p2,p0, t, θ) the functional resulting
from the semi-discretization of the inner integrals in J2. We set

J(θ) := J1(v1,p1,p0) + J2(v2(θ),vΓ(θ),p2(θ),p0(θ), θ) (36)

where J1 and J2 are given by

J1(v1,p1,p0) =
1

2

T∫

0

|C1v1(t) + F1p1(t) + F0p0(t) + D1u(t) − d(t)|2 dt,

(37a)

J2(v2,vΓ,p2,p0, θ) =

T∫

0

ℓ(v2,vΓ,p2,p0, t, θ) dt. (37b)

The semi-discretized, domain decomposed shape optimization problem can be for-
mulated according to

inf
θ∈Θ

J(θ) (38a)

where x = (v1,p1,v2(θ),p2(θ),vΓ(θ),p0(θ))
T solves

P(θ)x(t) := E(θ)
d

dt
x(t) + S(θ)x(t) = N(θ)u(t) , t ∈ (0, T ], (38b)

M(θ)v(0) = v(0)(θ). (38c)

Remark 1 If the Stokes equations are replaced by the Oseen equations or the lin-
earized Navier-Stokes equations, linearized around a steady state, we also arrive
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at a semi-discretized, domain decomposed shape optimization problem that is es-
sentially of the type (38). In this case, the matrix A(θ) and consequently, the
matrix S(θ), are no longer symmetric. However, this nonsymmetry can be easily
incorporated and the discussion in this and the following sections can be easily
extended to classes of problems governed by the Oseen equation and the linearized
Navier-Stokes equations.

Introducing Lagrange multipliers λ(t) ∈ R
n,κ(t) ∈ R

m, t ∈ [0, T ], that are par-
titioned accordingly, and setting

µ(t) = (λ1(t), κ1(t), λ2(t), κ2(t), λΓ(t), κ0(t))
T ,

the Lagrangian associated with (38a)-(38c) is given by

L(x,µ, θ) := J(v,p, θ) +

T∫

0

µ(t)T (P(θ)x(t) − N(θ)u(t)) dt, (39)

and the optimality conditions read

∇xL(x, µ, θ) = 0 , ∇µL(x,µ, θ) = 0 , ∇θL(x, µ, θ)T (θ̃ − θ) ≥ 0 , θ̃ ∈ Θ. (40)

It is obvious that due to the special structure of the decomposed optimization
problems, the optimality conditions (40) can be split into a coupled system of
optimality conditions associated with the subdomains Ω1, Ω2(θ), and the interface
Γ(θ).

(i) Optimality system associated with subdomain Ω1:

E1
d

dt

(
v1(t)
p1(t)

)
= − S1

(
v1(t)
p1(t)

)
− S1Γ

(
vΓ(t)
p0(t)

)
+

(
K1

L1

)
u(t), (41a)

z1(t) = C1v1(t) + F1p1(t) + F0p0(t) + D1u(t) − d(t), (41b)

M1v1(0) = v
(0)
1 , (41c)

L1u(0) = B11M
−1
1 v

(0)
1 + B1ΓM

−1
Γ v

(0)
Γ (θ), (41d)

and

−E1
d

dt

(
λ1(t)
κ1(t)

)
= − S1

(
λ1(t)
κ1(t)

)
− S1Γ

(
λΓ(t)
κ0(t)

)
−

(
CT

1

FT
1

)
z1(t), (42a)

M1λ1(T ) = λ
(T )
1 , (42b)

FT
1 z1(T ) = − B11M

−1
1 λ

(T )
1 − B1ΓMΓ(θ)−1λ

(T )
Γ (θ). (42c)
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(ii) Optimality system associated with subdomain Ω2(θ):

E2(θ)
d

dt

(
v2(t)
p2(t)

)
= − S2(θ)

(
v2(t)
p2(t)

)
− S2Γ(θ)

(
vΓ(t)
p0(t)

)
(43a)

+

(
K2(θ)
L2(θ)

)
u(t),

M2(θ)v2(0) = v
(0)
2 (θ), (43b)

L2(θ)u(0) = B22(θ)M2(θ)
−1v

(0)
2 (θ) + B2Γ(θ)MΓ(θ)−1v

(0)
Γ (θ), (43c)

and

−E2(θ)
d

dt

(
λ2(t)
κ2(t)

)
= − S2(θ)

(
λ2(t)
κ2(t)

)
− S2Γ(θ)

(
λΓ(t)
κ0(t)

)
(44a)

−
(
∇v2

ℓ(v2,p2,vΓ,p0, t, θ)
∇p2

ℓ(v2,p2,vΓ,p0, t, θ)

)
,

M2(θ)λ2(T ) = λ
(T )
2 (θ), (44b)

∇p2
ℓ(v2,p2,vΓ,p0, t, θ) = − B22(θ)M2(θ)

−1λ
(T )
2 (θ) (44c)

− B2Γ(θ)MΓ(θ)−1λ
(T )
Γ (θ).

(iii) Optimality system associated with the interface Γ(θ):

EΓ(θ)
d

dt

(
vΓ(t)
p0(t)

)
= − SΓ(θ)

(
vΓ(t)
p0(t)

)
− ST

1Γ

(
v1(t)
p1(t)

)
(45a)

− ST
2Γ(θ)

(
v2(t)
p2(t)

)
+

(
KΓ(θ)
L0(θ)

)
u(t),

MΓ(θ)vΓ(0) = v
(0)
Γ (θ), (45b)

L0(θ)u(0) = B0(θ)MΓ(θ)−1v
(0)
Γ (θ), (45c)

and

−EΓ(θ)

(
λΓ(t)
κ0(t)

)
= − SΓ(θ)

(
λΓ(t)
κ0(t)

)
− ST

1Γ

(
λ1(t)
κ1(t)

)
− ST

2Γ(θ)

(
λ2(t)
κ2(t)

)

(46a)

−
(
∇vΓ

ℓ(v2,p2,vΓ,p0, t, θ)
∇p0

ℓ(v2,p2,vΓ,p0, t, θ)

)
−

(
0

FT
0

)
z1,

MΓ(θ)λΓ(T ) = λ
(T )
Γ (θ), (46b)

∇p0
ℓ(v2,p2,vΓ,p0, t, θ)+FT

0 z1 = −B0(θ)MΓ(θ)−1λ
(T )
Γ (θ). (46c)
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The equations (41)-(46) have to be complemented by the variational inequality

T∫

0

∇θℓ(v2,p2,vΓ,p0, t, θ)
T (θ̃ − θ) dt (47)

+

T∫

0

(
µ2(t)
µΓ(t)

)T (
(DθP2(θ)(θ̃ − θ))x2(t) − (DθN2(θ)(θ̃ − θ))u(t)

(DθPΓ(θ)(θ̃ − θ))xΓ(t) − (DθNΓ(θ)(θ̃ − θ))u(t)

)
dt ≥ 0

for all θ̃ ∈ Θ.

Remark 2 Since we are faced with implicit Hessenberg index 2 differential-algebraic

systems, the final values λ
(T )
1 , λ

(T )
2 (θ) and λ

(T )
Γ (θ) are in general nonzero and have

to be computed as outlined in [13]. It seems that for most examples considered in
the flow control literature (see, e.g., [1, 20, 27]) the problem structure is such that

λ
(T )
1 = 0, λ

(T )
2 (θ) = 0 and λ

(T )
Γ (θ) = 0. For a flow control problem in which the

adjoint has a nonzero final time value see, e.g., [34].

5. Balanced truncation model reduction of the domain decomposed

optimality system

We construct a reduced order model for the optimality system (41)-(47) by applying
balanced truncation only to the optimality system (41),(42) associated with the
fixed subdomain Ω1. To do this, we have to examine (41)-(47) to see how the
subsystems (41),(42) interact with the remaining subsystems. This leads to

E1
d

dt

(
v1(t)
p1(t)

)
= − S1

(
v1(t)
p1(t)

)
− S1Γ

(
vΓ(t)
p0(t)

)
+

(
K1

L1

)
u(t), (48a)

z1(t) = C1v1(t) + F1p1(t) + F0p0(t) + D1u(t) − d(t), (48b)
(

zv,Γ(t)
zp,Γ(t)

)
= − ST

1Γ

(
v1(t)
p1(t)

)
, (48c)

M1v1(0) = v
(0)
1 , (48d)

L1u(0) = B11M
−1
1 v

(0)
1 + B1ΓMΓ(θ)−1v

(0)
Γ (θ), (48e)

and

−E1
d

dt

(
λ1(t)
κ1(t)

)
= − S1

(
λ1(t)
κ1(t)

)
− S1Γ

(
λΓ(t)
κ0(t)

)
−

(
CT

1

FT
1

)
z1(t), (49a)

q1(t) = KT
1 λ1(t) + LT

1 κ1(t) − DT
1 z1(t), (49b)

(
qv,Γ(t)
qp,Γ(t)

)
= − ST

1Γ

(
λ1(t)
κ1(t)

)
−

(
0

FT
0

)
z1, (49c)

M1λ1(T ) = λ
(T )
1 , (49d)

FT
1 z1(T ) = − B11M

−1
1 λ

(T )
1 − B1ΓMΓ(θ)−1λ

(T )
Γ (θ). (49e)

The outputs (48c) and (49c) are inputs into the subsystems (45) and (46), respec-
tively. The terms vΓ, p0, λΓ, κ0 are auxiliary inputs into the subsystems (48a) and
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(49a). The output (49b) does not feed into any of the subsystems in (41)-(47), but
is added to emphasize the fact that (48) and (49) is exactly of the form (12) and
(13). An important observation is that due to the fact that pressures are discon-
tinuous on the boundary, the second row block in ST

1Γ is zero (cf., (31) and (34c)).
Consequently,

zp,Γ(t) ≡ 0 and qp,Γ(t) = −FT
0 z1(t). (50)

The subsystems (48a-c) and (49a-c) can be written as

E1
d

dt

(
v1(t)
p1(t)

)
= − S1

(
v1(t)
p1(t)

)
+

(
−A1Γ 0 K1

−B1Γ 0 L1

)


vΓ(t)
p0(t)
u(t)


 , (51a)




zv,Γ(t)
zp,Γ(t)
z1(t)


 =




−AT
1Γ −BT

1Γ
0 0

C1 F1




(
v1(t)
p1(t)

)
+




0

0

F0p0(t) + D1u(t) − d(t)




(51b)

and

−E1
d

dt

(
λ1(t)
κ1(t)

)
= − S1

(
λ1(t)
κ1(t)

)
+

(
−A1Γ 0 CT

1

−B1Γ 0 FT
1

)


λΓ(t)
κ0(t)
−z1(t)


 , (52a)




qv,Γ(t)
qp,Γ(t)
q1(t)


 =




−AT
1Γ −BT

1Γ
0 0

KT
1 LT

1




(
λ1(t)
κ1(t)

)
+




0

FT
0

DT
1


 (−z1(t)). (52b)

To be able to apply the balanced truncation model reduction technique outlined
in Section 3 we assume that B11 ∈ R

m1×n1 has rank m1, that M11 ∈ R
n1×n1

is symmetric positive definite, and that the generalized eigenvalues of (A11,M11)
have positive real part. These assumptions are satisfied with a proper spatial de-
composition of the problem.

If we apply the techniques introduced in Section 3 we obtain the following reduced
optimality system.

(i) Reduced optimality system associated with the subdomain Ω1:

d

dt
v̂1(t) = − WTA11Vv̂1(t) + WT B̃1




v̂Γ(t)
p̂0(t)
u(t)


 , (53a)




ẑv,Γ(t)
ẑp,Γ(t)
ẑ1(t)


 =C̃1Vv̂1(t) + D̃1




v̂Γ(t)
p̂0(t)
u(t)


 − H̃1

d

dt




v̂Γ(t)
p̂0(t)
u(t)


 , (53b)

v̂(0) =WTΠ1v
(0)
1 (53c)
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and

− d

dt
λ̂1(t) = − VTA11Wλ̂1(t) + VT C̃T

1




λ̂Γ(t)
κ̂0(t)
−ẑ1(t)


 , (54a)




q̂v,Γ(t)
q̂p,Γ(t)
q̂1(t)


 =B̃T

1 Wλ̂1(t) + D̃T
1




λ̂Γ(t)
κ̂0(t)
−ẑ1(t)


 + H̃T

1

d

dt




λ̂Γ(t)
κ̂0(t)
−ẑ1(t)


 , (54b)

λ̂1(T ) =VTΠ1λ
(T )
1 . (54c)

Here Π1 = I − BT
11(B11M

−1
11 BT

11)
−1B11M

−1
11 and

B̃1 =(−A1Γ |0 |K1) − A11M
−1
11 BT

11(B11M
−1
11 BT

11)
−1 (−B1Γ |0 |L1)

C̃1 =




−AT
1Γ

0

C1


 −




−BT
1Γ

0

F1


 (B11M

−1
11 BT

11)
−1B11M

−1
11 A11,

D̃1 =




0 0 0

0 0 0

0 F0 D1


 +




−AT
1Γ

0

C1


M−1

11 BT
11(B11M

−1
11 BT

11)
−1 (−B1Γ |0 |L1)

+




−BT
1Γ

0

F1


 (B11M

−1
11 BT

11)
−1B11M

−1
11 B̃1,

H̃1 =




−BT
1Γ

0

F1


 (B11M

−1
11 BT

11)
−1 (−B1Γ |0 |L1) .

Note that the structure of B̃1, C̃1, D̃1, and H̃1 imply

ẑp,Γ(t) ≡ 0 and q̂p,Γ(t) ≡ 0. (55)

The reduced optimality system associated with the subdomain Ω1 is coupled to
following optimality subsystems.

(ii) Optimality system associated with the subdomain Ω2(θ):

E2(θ)
d

dt

(
v̂2(t)
p̂2(t)

)
= − S2(θ)

(
v̂2(t)
p̂2(t)

)
− S2Γ(θ)

(
v̂Γ(t)
p̂0(t)

)

+

(
K2(θ)
L2(θ)

)
u(t), (56a)

M2(θ)v̂2(0) = v
(0)
2 (θ), (56b)

L2(θ)u(0) = B22(θ)M2(θ)
−1v

(0)
2 (θ) + B2Γ(θ)MΓ(θ)−1v

(0)
Γ (θ), (56c)
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and

−E2(θ)
d

dt

(
λ̂2(t)
κ̂2(t)

)
= − S2(θ)

(
λ̂2(t)
κ̂2(t)

)
− S2Γ(θ)

(
λ̂Γ(t)
κ̂0(t)

)
(57a)

−
(
∇v̂2

ℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ)
∇p̂2

ℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ)

)
,

M2(θ)λ̂2(T ) = λ
(T )
2 (θ). (57b)

(iii) Optimality system associated with the interface Γ(θ):

EΓ(θ)
d

dt

(
v̂Γ(t)
p̂0(t)

)
= − SΓ(θ)

(
v̂Γ(t)
p̂0(t)

)
+

(
ẑv,Γ(t)
ẑp,Γ(t)

)
(58a)

− ST
2Γ(θ)

(
v̂2(t)
p̂2(t)

)
+

(
KΓ(θ)
LΓ(θ)

)
u(t),

MΓ(θ)v̂Γ(0) =v
(0)
Γ (θ), (58b)

and

−EΓ(θ)

(
λ̂Γ(t)
κ̂0(t)

)
= − SΓ(θ)

(
λ̂Γ(t)
κ̂0(t)

)
+

(
q̂v,Γ(t)
q̂p,Γ(t)

)
− ST

2Γ(θ)

(
λ̂2(t)
κ̂2(t)

)
(59a)

−
(
∇v̂Γ

ℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ)
∇p̂0

ℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ)

)
,

MΓ(θ)λ̂Γ(T ) =λ
(T )
Γ (θ). (59b)

The equations have to be complemented by the variational inequality

T∫

0

∇θℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ)
T (θ̃ − θ) dt (60)

+

T∫

0

(
µ̂2(t)

λ̂Γ(t)

)T (
(DθP2(θ)(θ̃ − θ)) x̂2(t) − (DθN2(θ)(θ̃ − θ))u(t)

(DθPΓ(θ)(θ̃ − θ)) x̂Γ(t) − (DθNΓ(θ)(θ̃ − θ))u(t)

)
dt ≥ 0 , θ̃ ∈ Θ.

We have applied domain decomposition and balanced truncation model reduc-
tion to derive the reduced order optimality system (53)-(60) from the full order
optimality system (41)-(47). This raises the question whether the reduced order
optimality system (53)-(60) is the optimality system for a reduced order optimiza-
tion problem. This is important, since numerically we solve the shape optimization
problem using gradient based optimization methods rather than explicitly solving
the optimality system.

Theorem 5.1 The reduced order optimality system (53)-(60) represents the first
order necessary optimality conditions for the shape optimization problem

min Ĵ(θ) (61a)

s.t. θ ∈ Θ
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where Ĵ(θ) = Ĵ1(v̂1, v̂Γ, p̂0) + Ĵ2(v̂2, p̂2, v̂Γ, p̂0, θ),

Ĵ1(v̂1, v̂Γ) =
1

2

T∫

0

|ẑ1|2 dt, (61b)

Ĵ2(v̂2, p̂2, v̂Γ, p̂0, θ) =

T∫

0

ℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ) dt. (61c)

and where ẑ1, v̂ = (v̂1, v̂2, v̂Γ)T p̂ = (p̂2, p̂0)
T , are given as the solution of (53),

(56), (58).

The proof uses standard arguments and is omitted.

6. A priori estimate of the modeling error

Let θ∗ ∈ Θ and θ̂∗ ∈ Θ be local minima of the optimization problem (38) and its
reduced version (61), where the states v = (v1,v2,vΓ)T and p = (p1,p2,p0)

T solve
(41),(43),(45), and where the reduced states v̂ = (v̂1, v̂2, v̂Γ)T and p̂ = (p̂2, p̂0)

T

solve (53), (56), (58). Considering the states as implicit functions of the design
variables, (38) and (61), can be simply written as

inf
θ∈Θ

J(θ) and inf
θ∈Θ

Ĵ(θ).

We want to derive an upper bound for the modeling error ‖θ∗− θ̂∗‖ in terms of the
Hankel singular values occurring in the BTMR of the optimality system for the
fixed subdomain Ω1. Under the convexity assumption, there exists κ > 0 such that

(
∇J(θ̂∗) −∇J(θ∗)

)T
(θ̂∗ − θ∗) ≥ κ ‖θ̂∗ − θ∗‖2, (62)

It is easy to see that

‖θ∗ − θ̂∗‖ ≤ κ−1 ‖∇Ĵ(θ̂∗) −∇J(θ̂∗)‖, (63)

see, e.g., [5]. Hence, we need to provide an upper bound for the right-hand side in

(63). The gradients of the objective functions J and Ĵ can be expressed using the
Lagrangian in (39) and its reduced analogue associated with (61). More precisely,
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we have

(
∇J(θ) −∇Ĵ(θ)

)T
θ̃ (64)

=

T∫

0

(
∇θℓ(v2,vΓ,p2,p0, t, θ) −∇θℓ(v̂2, v̂Γ, p̂2, p̂0, t, θ)

)T
θ̃ dt

+

T∫

0

(
µ̂2(t)
µ̂Γ(t)

)T (
(DθP2(θ)θ̃) (x2 − x̂2)(t)

(DθPΓ(θ)θ̃) (xΓ − x̂Γ)(t)

)
dt

+

T∫

0

(
(µ2 − µ̂2)(t)
(µΓ − µ̂Γ)(t)

)T (
(DθP2(θ)θ̃)x2(t) − (DθN2(θ)θ̃)u(t)

(DθPΓ(θ)θ̃)xΓ(t) − (DθNΓ(θ)θ̃)u(t)

)
dt

where x = (x1,x2,xΓ)T , with xi = (vi,pi)
T , i = 1, 2, xΓ = (vΓ,p0)

T , and µ =
(µ1,µ2, µΓ)T , with µi = (λi,κi)

T , i = 1, 2, µΓ = (λΓ, κ0)
T solve (41)-(46), and

where x̂ = (x̂1, x̂2, x̂Γ)T with x̂1 = v̂1, x̂2 = (v̂2, p̂2)
T , x̂Γ = (v̂Γ, p̂0)

T and µ̂ =

(µ̂1, µ̂2, µ̂Γ)T with µ̂1 = λ̂1, µ̂2 = (λ̂2, κ̂2)
T , µ̂Γ = (λ̂Γ, κ̂0)

T solve (53)-(59).
In order to estimate (64) from above, we have to establish upper bounds for

x2 − x̂2,xΓ − x̂Γ and µ2 − µ̂2,µΓ − µ̂Γ. This will be done in the sequel, where C
will denote a generic positive constant not necessarily the same at each occurrence.

We apply the balanced truncation error bound (26) to estimate the error due
to the reduction of the optimality subsystem 1. The error bound applies when

v
(0)
1 = 0 and λ

(T )
1 = 0, which we will assume. This assumption can be relaxed

when a modification of balanced truncation is applied. See Remark 1 in Section 3.
In order to provide an estimate of the errors in the adjoint states, we make the

following assumption on the matrices A(θ),B(θ),M(θ) defined in (31), (32b), and
submatrices corresponding to subdomain 1. This assumption is satisfied with a
proper spatial decomposition of the problem as described in Section 4.

(A1) The matrix B(θ) ∈ R
m×n has rank m, the matrix M(θ) ∈ R

n×n is symmet-
ric positive definite, and the generalized eigenvalues of (A(θ),M(θ)) have
positive real part.
The matrix B11 ∈ R

m1×n1 has rank m1, the matrix M11 ∈ R
n1×n1 is sym-

metric positive definite, and the generalized eigenvalues of (A11,M11) have
positive real part.

The first part allows the application of Theorem 2.1. The assumption on the sub-
matrices corresponding to subdomain 1 were needed for the application of balanced
truncation model reduction to the optimality subsystem (51,52).

Lemma 6.1 Let x = (x1,x2,xΓ)T , where

xi = (vi,pi)
T , 1 ≤ i ≤ 2, xΓ = (vΓ,p0)

T ,

and x̂ = (x̂1, x̂2, x̂Γ)T , where

x̂1 = v̂1, x̂2 = (v̂2, p̂2)
T , x̂Γ = (v̂Γ, p̂0)

T .

If (A1) and v
(0)
1 = 0 hold and if x and x̂ satisfy (41), (43), (45) and (53), (56),
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(58), respectively, then there exists C > 0 such that

∥∥∥∥
(

v2 − v̂2

vΓ − v̂Γ

)∥∥∥∥
L2

≤ C

∥∥∥∥
(

u

x̂Γ

)∥∥∥∥
L2

(
σk+1 + · · · + σn

)
, (65a)

∥∥∥∥
(

p2 − p̂2

p0 − p̂0

)∥∥∥∥
L2

≤ C

∥∥∥∥
(

u

x̂Γ

)∥∥∥∥
L2

(
σk+1 + · · · + σn

)
, (65b)

∥∥∥∥∥∥




z1 − ẑ1

zv,Γ − ẑv,Γ

zp,Γ − ẑp,Γ




∥∥∥∥∥∥
L2

≤ C

∥∥∥∥
(

u

x̂Γ

)∥∥∥∥
L2

(
σk+1 + · · · + σn

)
. (65c)

Proof We introduce an auxiliary state (ṽ1, p̃1) as the solution of

E1
d

dt

(
ṽ1(t)
p̃1(t)

)
= − S1

(
ṽ1(t)
p̃1(t)

)
− S1Γ

(
v̂Γ(t)
p̂0(t)

)
+

(
K1

L1

)
u(t), (66a)

z̃1(t) = C1ṽ1(t) + F1p̃1(t) + F0p̂0(t) + D1u(t) − d(t), (66b)
(

z̃v,Γ(t)
z̃p,Γ(t)

)
= − ST

1Γ

(
ṽ1(t)
p̃1(t)

)
, (66c)

M1ṽ1(0) = v
(0)
1 , (66d)

L1u(0) = B11M
−1
1 v

(0)
1 + B1ΓMΓ(θ)−1v

(0)
Γ (θ). (66e)

Note that because the second row block in ST
1Γ is zero (cf. (31) and (34c)), we have

z̃p,Γ(t) ≡ 0. (67)

This auxiliary system (66) is almost identical to (48), but has inputs v̂Γ, p̂0

instead of vΓ,p0. Thus the inputs for (66) and the reduced system (53) are the
same and we can apply the balanced truncation error bound (26) to this subsystem.
The balanced truncation error bound for this subsystem is

∥∥∥∥∥∥




z̃1 − ẑ1

z̃v,Γ − ẑv,Γ

z̃p,Γ − ẑp,Γ




∥∥∥∥∥∥
L2

≤ 2(σk+1 + . . . + σn)

∥∥∥∥∥∥




u

v̂Γ

p̂0




∥∥∥∥∥∥
L2

. (68)

We set ev = (v1 − ṽ1,v2 − v̂2,vΓ − v̂Γ)T and ep = (p1 − p̃1,p2 − p̂2,p0 − p̂0)
T .

It follows from (41), (43), (45), (50) and (66), (56), (58), (55), (67) that (ev, ep)T

satisfies the system

E(θ)
d

dt

(
ev(t)
ep(t)

)
= − S(θ)

(
ev(t)
ep(t)

)
+

(
g1(t)

0

)
, t ∈ (0, T ], (69a)

M(θ)ev(0) = 0, (69b)

where

g1(t) =




0

0

z̃v,Γ − ẑv,Γ


 .
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Applying Theorem 2.1 to (69) yields

∥∥∥∥∥∥




v1 − ṽ1

v2 − v̂2

vΓ − v̂Γ




∥∥∥∥∥∥
L2

≤ C ‖z̃v,Γ − ẑv,Γ‖L2 ,

∥∥∥∥∥∥




p1 − p̃1

p2 − p̂2

p0 − p̂0




∥∥∥∥∥∥
L2

≤ C ‖z̃v,Γ − ẑv,Γ‖L2 .

(70)

The estimates (65a,b) follow from (68) and (70).
To prove (65c) we observe that (48b) and (66b) imply

‖z1 − ẑ1‖L2 = ‖z1 − z̃1‖L2 + ‖z̃1 − ẑ1‖L2

≤ C (‖v1 − ṽ1‖L2 + ‖p1 − p̃1‖L2 + ‖p0 − p̂0‖L2) + ‖z̃1 − ẑ1‖L2

≤ C ‖z̃v,Γ − ẑv,Γ‖L2 + ‖z̃1 − ẑ1‖L2 .

Together with (68) this implies the first part of (65c). The second part of (65c)
can be shown analogously. The third part of (65c) is trivially satisfied by (50) and
(55). ¥

In order to provide an estimate of the errors in the adjoint states, we make the
following assumptions.

(A2) F1 = 0 and F0 = 0, i.e, the objective function J1 does not depend explicitly
on the pressure.

(A3) There exists a positive constant L1 such that for all x2,x
′
2,xΓ,x′

Γ and all
θ ∈ Θ, t ∈ [0, T ] there holds

‖∇vℓ(x2,xΓ, t, θ) −∇vℓ(x′
2,x

′
Γ, t, θ)‖ ≤ L1

(
‖δx2‖2 + ‖δxΓ‖2

)1/2
,

‖∇pℓ(x2,xΓ, t, θ) −∇pℓ(x′
2,x

′
Γ, t, θ)‖ ≤ L1

(
‖δx2‖2 + ‖δxΓ‖2

)1/2
,

‖∇θℓ(x2,xΓ, t, θ) −∇θℓ(x
′
2,x

′
Γ, t, θ)‖ ≤ L1

(
‖δx2‖2 + ‖δxΓ‖2

)1/2
,

where v ∈ {v2,vΓ},p ∈ {p2,p0} and δx2 := x2 − x′
2, δxΓ := xΓ − x′

Γ.
(A4) There exists a positive constant C such that for all θ ∈ Θ and θ′ with

‖θ′‖ ≤ 1

max
(
‖DθM2(θ)θ

′‖, ‖DθMΓ(θ)θ′‖, ‖DθS2(θ)θ
′‖, ‖DθSΓ(θ)θ′‖,

‖DθS2Γ(θ)θ′‖, ‖DθN2(θ)θ
′‖‖DθNΓ(θ)θ′‖

)
≤ C.

Lemma 6.2 Let x, x̂ as in Lemma 6.1 and µ = (µ1, µ2, µΓ)T , where

µi = (λi, κi)
T , 1 ≤ i ≤ 2 , µΓ = (λΓ,κ0)

T

and µ̂ = (µ̂1, µ̂2, µ̂Γ)T , where

µ̂1 = λ̂1 , µ̂2 = (λ̂2, κ̂2)
T , µ̂Γ = (λ̂Γ, κ̂0)

T .

If (A1) − (A3), and λ
(T )
1 = 0 hold, and if x, µ and x̂, µ̂, ẑ1 solve (41)-(46) and
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(53)-(59), respectively, then

∥∥∥∥∥

(
λ2 − λ̂2

λΓ − λ̂Γ

)∥∥∥∥∥
L2

≤ C
(∥∥∥∥

(
u

x̂Γ

)∥∥∥∥
L2

+

∥∥∥∥
(

ẑ1

µ̂Γ

)∥∥∥∥
L2

) (
σk+1 + · · · + σn

)
, (71a)

∥∥∥∥
(

κ2 − κ̂2

κ0 − κ̂0

)∥∥∥∥
L2

≤ C
( ∥∥∥∥

(
u

x̂Γ

)∥∥∥∥
L2

+

∥∥∥∥
(

ẑ1

µ̂Γ

)∥∥∥∥
L2

) (
σk+1 + · · · + σn

)
. (71b)

Proof As in the proof of Lemma 6.1, we introduce an auxiliary adjoint state µ̃1 =

(λ̃1, κ̃1)
T as the solution of

−E1
d

dt

(
λ̃1(t)
κ̃1(t)

)
= − S1

(
λ̃1(t)
κ̃1(t)

)
− S1Γ

(
λ̂Γ(t)
κ̂0(t)

)
−

(
CT

1

FT
1

)
ẑ1(t), (72a)

q̃1(t) = KT
1 λ̃1(t) + LT

1 κ̃1(t) − DT
1 ẑ1(t), (72b)

(
q̃λ,Γ(t)
q̃κ,Γ(t)

)
= − ST

1Γ

(
λ̃1(t)
κ̃1(t)

)
−

(
0

FT
0

)
ẑ1(t), (72c)

M1λ̃1(T ) = λ
(T )
1 , (72d)

FT
1 ẑ1(T ) = − B11M

−1
1 λ

(T )
1 − B1ΓMΓ(θ)−1λ

(T )
Γ (θ). (72e)

Note that due to F1 = 0 the compatibility condition (42c) implies the compatibility
condition (72e).

Moreover, since the second row block in ST
1Γ is zero (cf. (31) and (34c)) and

F0 = 0, we have

q̃κ,Γ(t) ≡ 0. (73)

The inputs for (72) and the reduced system (54) are the same and we can ap-
ply the balanced truncation error bound (26) to this subsystem. The balanced
truncation error bound for this subsystem is

∥∥∥∥∥∥




q̃1 − q̂1

q̃λ,Γ − q̂λ,Γ

q̃κ,Γ − q̂κ,Γ




∥∥∥∥∥∥
L2

≤ 2
(
σk+1 + · · · + σn

)
∥∥∥∥∥∥




ẑ1

λ̂Γ

κ̂0




∥∥∥∥∥∥
L2

. (74)

We set eλ = (λ1− λ̃1, λ2− λ̂2, λΓ− λ̂Γ)T and eκ = (κ1− κ̃1,κ2− κ̂2, κ0− κ̂0)
T .

Observing (42),(44),(46), (55) as well as (72),(57),(59), (73) it follows that

−E1
d

dt

(
eλ(t)
eκ(t)

)
= − S(θ)

(
eλ(t)
eκ(t)

)
+

(
g1(t)
g2(t)

)
, t ∈ (0, T ], (75a)

M(θ)eλ(T ) = 0, (75b)
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where

g1(t) =




−CT
1 (z1 − ẑ1)

−∇v2
ℓ(x2,xΓ, t, θ) + ∇v̂2

ℓ(x̂2, x̂Γ, t, θ)
q̃λ,Γ − q̂λ,Γ −∇vΓ

ℓ(x2,xΓ, t, θ) + ∇v̂Γ
ℓ(x̂2, x̂Γ, t, θ)


 ,

g2(t) =




−FT
1 (z1 − ẑ1)

0

−FT
0 (z1 − ẑ1)


 .

Applying Theorem 2.1 to (75) and assumption (A3) we obtain

∥∥∥∥∥∥∥




λ1 − λ̃1

λ2 − λ̂2

λΓ − λ̂Γ




∥∥∥∥∥∥∥
L2

≤ C
(
‖z1 − ẑ1‖L2 +

∥∥∥∥
(

q̃λ,Γ − q̂λ,Γ

q̃κ,Γ − q̂κ,Γ

)∥∥∥∥
L2

+

∥∥∥∥
(

v2 − v̂2

vΓ − v̂Γ

)∥∥∥∥
L2

+

∥∥∥∥
(

p2 − p̂2

p0 − p̂0

)∥∥∥∥
L2

)
. (76)

Inequality (71a) follows using (74), (76) and Lemma 6.1.
Application of Theorem 2.1 to (75) and using Assumption (A3) also yields

∥∥∥∥∥∥




κ1 − κ̃1

κ2 − κ̂2

κ0 − κ̂0




∥∥∥∥∥∥
L2

≤C1

(
‖z1 − ẑ1‖L2 +

∥∥∥∥
(

q̃λ,Γ − q̂λ,Γ

q̃κ,Γ − q̂κ,Γ

)∥∥∥∥
L2

+

∥∥∥∥
(

v2 − v̂2

vΓ − v̂Γ

)∥∥∥∥
L2

+

∥∥∥∥
(

p2 − p̂2

p0 − p̂0

)∥∥∥∥
L2

)

+ C2

(
‖ d

dt
FT

1 (z1 − ẑ1)‖L2 + ‖ d

dt
FT

0 (z1 − ẑ1)‖L2

)
. (77)

Since F1 = 0 and F0 = 0, inequality (71b) follows using (74), (77) and Lemma
6.1. ¥

The preceding two lemmas lead to the following bound for the gradients of the
objective functions for the full order and the reduced order problem.

Theorem 6.3 If (A1) − (A4) are valid, then

‖∇J(θ) −∇Ĵ(θ)‖ ≤ C
(
σk+1 + · · · + σn

)
,

Proof The gradients ∇J(θ) and ∇Ĵ(θ) applied to an arbitrary θ̃ are given by

∇J(θ)T θ̃ =

T∫

0

∇θℓ(v2,p2,vΓ,p0, t, θ)
T θ̃ dt

+

T∫

0

(
µ2(t)
λΓ(t)

)T (
(DθP2(θ)θ̃)x2(t) − (DθN2(θ)θ̃)u(t)

(DθPΓ(θ)θ̃)xΓ(t) − (DθNΓ(θ)θ̃)u(t)

)
dt,
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∇Ĵ(θ)T θ̃ =

T∫

0

∇θℓ(v̂2, p̂2, v̂Γ, p̂0, t, θ)
T θ̃ dt

+

T∫

0

(
µ̂2(t)

λ̂Γ(t)

)T (
(DθP2(θ)θ̃) x̂2(t) − (DθN2(θ)θ̃)u(t)

(DθPΓ(θ)θ̃) x̂Γ(t) − (DθNΓ(θ)θ̃)u(t)

)
dt.

The estimate now follows from Lemmas 6.1 and 6.2 and Assumption (A3). ¥

Under the convexity assumption (62) the bound (63) combined with Theorem 6.3
gives the desired bound for the error in the solutions computed using the full and
the reduced order model.

Corollary 6.4 If the assumptions of Theorem 6.3 hold and the convexity as-
sumption (62) is valid, then there exists C > 0 such that

‖θ∗ − θ̂∗‖ ≤ C
(
σk+1 + · · · + σn

)
.

7. Shape optimization of capillary barriers in microfluidic biochips

Surface acoustic wave driven microfluidic biochips are used in clinical diagnostics,
pharmacology, and forensics for sequencing and hybridization in genomics, protein
profiling in proteomics, and cell analysis in cytometry. The idea is to transport, for
instance, DNA or proteins along a network of microchannels to a reservoir where a
chemical analysis is carried out. The fluid flow is steered by piezoelectrically gener-
ated surface acoustic waves. The performance of these biochips can be significantly
improved by an optimal design of the walls of the microchannels and the capillary
barriers between the channels and the reservoirs. This amounts to the solution of a
PDE constrained shape optimization problem, where the underlying PDEs repre-
sent a multiscale, multiphysics problem as given by the equations of piezoelectricity
coupled with the compressible Navier-Stokes equations. The multiscale character
of the induced fluid flow is taken care of by homogenization so that the resulting
flow pattern, called acoustic streaming, can be described by Stokes flow. We refer
to [3, 4, 6, 17] for details.

We consider Stokes flow in a network of microchannels and reservoirs on top of a
microfluidic biochip with capillary barriers between the channels and the reservoirs
that are designed to guarantee a precise filling of the reservoirs with the DNA or
protein probes. The objective is twofold: Firstly, we want to design the walls of the
barriers in such a way that a desired velocity profile vd is attained and secondly,
we want to minimize the vorticity ∇× v in some specific part of the network.

The computational domain Ω ⊂ R
2 is displayed in Figure 1. It is decomposed

into subdomains Ω1 = Ω \ Ω2, and Ω2 = {1.5, 2.5} × {9, 10}. The boundary ∂Ω is
decomposed into Γin = {0}×(9, 10), Γout = {10}×(0, 1), and Γlat = ∂Ω\(Γin∪Γout).
The data of the problem is chosen as follows. Assume f = 0 in Ω × (0, T ), a
Poiseuille velocity profile vin((x1, x2), t) = 4(x2 − 9)(10 − x2)(1 − 0.8

15 t)sin(t) on
Γin × (0, T ), outflow boundary conditions on Γout × (0, T ), and no-slip conditions
on Γlat × (0, T ). The objective is to design the shape of the top Γ2,T and the
bottom Γ2,B of ∂Ω2 in such a way that a prescribed velocity profile vd is achieved
in Ω2 × (0, T ) and the vorticity is minimized in Ωobs (four bulb shaped structures
in Figure 1). We use a parametrization Ω2(θ) of Ω2 by means of the Bézier control
points θ ∈ R

k, k = kT +kB, of Bézier curve representations of Γ2,T and Γ2,B, where



26 H. Antil, M. Heinkenschloss, and R.H.W. Hoppe

0 5 10

0

2

4

6

8

10

12

0 5 10

0

2

4

6

8

10

12

Figure 1. The reference domain Ωref (left) and the optimal domain (right).

kT and kB refer to the number of control points for Γ2,T and Γ2,B, respectively.
The shape optimization problem amounts to the minimization of

J(θ) =

T∫

0

∫

Ωobs

|∇ × v(x, t)|2dxdt +

T∫

0

∫

Ω2(θ)

|v(x, t) − vd(x, t)|2dxdt

subject to the Stokes equations

vt(x, t) − µ∆v(x, t) + ∇p(x, t) = f(x, t), in Ω(θ) × (0, T ),

∇ · v(x, t) = 0, in Ω(θ) × (0, T ),

v(x, t) = vin(x, t) on Γin × (0, T ),

v(x, t) = 0 on Γlat × (0, T ),

(µ∇v(x, t) − p(x, t)I)n = 0 on Γout × (0, T ),

v(x, 0) = 0 in Ω(θ).

and design parameter constraints

θmin ≤ θ ≤ θmax,

where µ = 1/50 and T = 15. The bounds θmin, θmax on the design parameters are
chosen such that the design constraints are never active in this example. We use
kT = 6, kB = 6 Bézier control points to specify the top and the bottom boundary of
the variable subdomain Ω2(θ) with the respective first and last control points being
fixed. The desired velocity vd is computed by specifying the optimal parameter θ∗

and solving the state equation on Ω(θ∗). The optimal domain Ω(θ∗) is shown in
Figure 1.

We consider a geometrically conforming simplicial triangulation Th(Ω) of the
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reference that aligns with the decomposition of Ω into the subdomains Ω1 and Ω2

as well as the respective boundaries. The discretization in space is taken care of
by P2-P1 Taylor-Hood elements. For D ⊆ Ω, we denote by Nv,h(D),Np,h(D) the
set of velocity and pressure nodal points in D. We use the domain decomposition

methodology as before and set N
(ν)
v,dof = card(Nv,h(Ω̄ν \ ΓI,v)), ν = 1, 2, and

N
ΓI,v

dof := card(Nv,h(ΓI,v)) so that Nv,dof = N
(1)
v,dof + N

(2)
v,dof + N

ΓI,v

v,dof is the total

number of velocity degrees of freedom. Similarly, Np,dof = N
(1)
p,dof + N

(2)
p,dof is the

total number of pressure degrees of freedom.
We use automatic differentiation [19, 33] to compute the derivatives with respect

to the design variables θ. The semi-discretized optimization problems are solved
using a projected BFGS method with Armijo line search [23]. The optimization
algorithm is terminated when the norm of projected gradient is less than ǫ = 10−4.
The results in Figure 1(right) and Figure 2-4 and Table 2 were generated using the
finest grid i.e., grid 4 with Nv,dof = 16806. We will explain them as we go along.

We use the multishift ADI method [21] to solve the projected Lyapunov equa-
tions. We use four shifts in the ADI method which were computed as in [21]. Figure
2 shows the largest Hankel singular values. For the model reduction, we select those
Hankel singular values σj , with σj ≥ 10−3σ1. The threshold 10−3σ1 is indicated
by the solid line in Figure 2 (left). In this case only twenty-nine Hankel singular
values and corresponding singular vectors determine the reduced order model for
the velocities in Ω1.
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Figure 2. The left plot shows the largest Hankel singular values and the threshold 10−3σ1. The right
plot shows normalized residuals [21] generated by the multishift ADI for the approximate solution of the
controllability Lyapunov equation (o) and of the observablity Lyapunov equation (∗)

In order to test our model reduction routine we compare full and the reduced
order semidiscretized integrand

ℓ(θ0, t) =

∫

Ωobs

|∇ × v(x, t)|2dx +

∫

Ω2(θ0)

|v(x, t) − vd(x, t)|2dx

as a function of time t for the inital value of the design parameter θ0. Note J(θ) =∫ T
0 ℓ(θ) dt. Figure 3 displays the results obtained. The full and reduced order

models are both in excellent agreement, which is expected given the theoretical
apriori error bound for the balanced truncation model reduction.

Table 1 displays the sizes of the reduced and the full order problems (in Degrees
of Freedom (DoF)) for an initial coarse grid and three levels of refinement. We
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Figure 3. Time response for the full (circle) and the reduced (solid line) integrand ℓ(θ0) for the initial
configuration (= reference domain) Figure 1(left).

observe that the size of the reduced order model is nearly independent of the grid
size.

grid

number m N
(1)
v,dof N

(1)
v̂,dof Nv,dof Nv̂,dof

1 149 4752 23 4862 133
2 313 7410 25 7568 183
3 361 11474 26 11700 252
4 537 16472 29 16806 363

Table 1. The number m of observations in Ω1, the numbers N
(1)
v,dof

, N
(1)

v̂,dof
of velocity DoF in Ω1 (full and

reduced order), and the numbers Nv,dof , N
v̂,dof of velocity DoF in Ω (full and reduced order) for four discretiza-

tions.

The optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the
reduced order model, respectively, are shown in Table 2. For the finest grid problem,
the error between full and the reduced order model solutions is ‖θ∗ − θ̂∗‖2 =
8.0751 · 10−3.

θ∗ (9.8987, 9.7510, 9.7496, 9.8994, 9.0991, 9.2499, 9.2504, 9.0989)

θ̂∗ (9.9026, 9.7498, 9.7484, 9.9021, 9.0940, 9.2514, 9.2511, 9.0956)
Table 2. Optimal shape parameters θ∗ and θ̂∗ (rounded to 5 digits) computed by minimizing the full and the

reduced order model

The convergence histories of the projected BFGS algorithm applied to the full and
the reduced order problems are shown in Figure 4. Except for the final iterations,
the convergence behavior of the optimization algorithm applied to the full and the
reduced order problems is nearly identical.

All the computations were performed in Matlab version 7.7.0.471 (R2008b) on
a machine with 2.66 GHz Intel(R) Core(TM)2 Duo processor running Linux OS
Fedora 8.

8. Conclusions

We have integrated domain decomposition and balanced truncation model reduc-
tion for the numerical solution of a class of shape optimization problems governed
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Figure 4. The convergence histories of the projected BFGS algorithm applied to the full and the reduced
order problems. The left figure shows the convergence history of the objective functionals for the full (+)
and reduced (o) order model. The right figure shows the convergence history of the projected gradients for
the full (+) and reduced (o) order model.

by the Stokes equations. This approach can be applied when only small part of
the overall domain can be modified by the optimization. Our approach leads to
a reduced optimization problem with the same structure as the original one, but
of potentially much smaller dimension. We have derived an estimate for the error
between the solution of the original optimization problem and the solution of the
reduced problem. The estimate is largely determined by the balanced truncation
error estimate. The approach can be easily extended to shape optimization prob-
lems governed by the Oseen equations or the linearzed Navier-Stokes equations,
linearized around suitable steady flows.
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[17] A. Gantner, R.H.W. Hoppe, D. Köster, K.G. Siebert, and A. Wixforth Numerical simulation of
piezoelectrically agitated surface acoustic waves on microfluidic biochips, Comp. Visual. Sci. 10 (2007),
pp. 145–161.

[18] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L∞-
error bounds. Internat. J. Control, 39(6):1115–1193, 1984.

[19] A. Griewank and A. Walther. Evaluating derivatives. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, second edition, 2008. Principles and techniques of algorithmic
differentiation.

[20] M. D. Gunzburger. Perspectives in Flow Control and Optimization. SIAM, Philadelphia, 2003.
[21] M. Heinkenschloss, D. C. Sorensen, and K. Sun. Balanced truncation model reduction for a class of

descriptor systems with application to the Oseen equations. SIAM Journal on Scientific Computing,
30(2):1038–1063, 2008.

[22] M. Hinze and S. Volkwein. Proper orthogonal decomposition surrogate models for nonlinear dynamical
systems: Error estimates and suboptimal control. In P. Benner, V. Mehrmann, and D. C. Sorensen,
editors, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and
Engineering, Vol. 45, pages 261–306, Heidelberg, 2005. Springer-Verlag.

[23] C. T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.
[24] B. N. Khoromskij and G. Wittum. Numerical Solution of Elliptic Differential Equations by Reduction

to the Interface. Lecture Notes in Computational Science and Engineering, Vol. 36. Springer Verlag,
Berlin, Heidelberg, New York, 2004.
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