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tion problems governed by linear time dependent ad-

vection diffusion equations for which the optimization

variables are related to spatially localized quantities.
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Our approach uses domain decomposition applied to

the optimality system to isolate the subsystem that ex-

plicitly depends on the optimization variables from the

remaining linear optimality subsystem. We apply bal-

anced truncation model reduction to the linear optimal-

ity subsystem. The resulting coupled reduced optimal-

ity system can be interpreted as the optimality system

of a reduced optimization problem. We derive estimates

for the error between the solution of the original opti-

mization problem and the solution of the reduced prob-

lem. The approach is demonstrated numerically on an

optimal control problem and on a shape optimization

problem.
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1 Introduction

We investigate the numerical solution of optimization

problems governed by time dependent advection dif-

fusion partial differential equations (PDEs) in which

the optimization variables are located in a small spa-

tial region Ω2 of the entire spatial domain Ω on which

the PDE is posed. This scenario arises, for example, in

shape optimization when only a small portion of the

shape can be modified or in parameter identification

problems where the parameters are associated with spa-

tially localized material properties.

Although the optimization parameters are located

in a small spatial region Ω2, standard methods for the

numerical optimization of such systems require the re-

peated solution of the governing PDE (the state equa-

tion) and the associated adjoint PDE over the entire

domain Ω. It is desirable to reduce the overall problem

size by essentially reducing the optimization problem

to the small spatial region on which the optimization

parameters act. Since the governing PDE on the small

spatial region interacts with the solution on the entire

domain, it is not feasible to simply truncate the do-

main, but one has to carefully reduce the problem to

preserve the important interactions between the differ-

ent components of the system. For a class of problems

we present a systematic approach based on domain de-

composition and balanced truncation model reduction

to reduce the subproblems corresponding to the large

subdomain Ω \ Ω2.

There are many examples where domain decomposi-

tion and some form of model reduction is used to reduce

the computational complexity of the simulation. For

example, the papers [6–8,18] use physics based model

reduction. A complex system of PDEs is replaced by

a simpler model away from the region Ω2 of interest.

Specifically, [6,7] discusses the coupling of the Navier-

Stokes equations to the linear Oseen equations. In [8]

the 3D Navier-Stokes equations are coupled with a 1D

model for the flow in blood vessels. Section 3.3 of the

review paper [18] discusses the coupling of distributed

parameter models with lumped parameter models for

the modeling of blood flow. The papers [16,15,21,22]

use dimension reduction techniques (see [3] for a re-

cent overview). The papers [16,15] describe the use of

domain decomposition and Proper Orthogonal Decom-

position (POD) for the simulation of flows with shocks.

Domain decomposition and balanced truncation model

reduction is used in [21,22] for the simulation of PDEs

with spatially localized nonlinearities. The approach in

these two papers is related to ours, except that we apply

it in the optimization context. Moreover, we provide an

a-priori bound for the error between the solution of the

original and the model reduced optimization problem.
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We study optimization problems governed by ad-

vection diffusion equations of the type

∂

∂t
y(x, t)−∇(k(x)∇y(x, t))+V (x) ·∇y(x, t)) = f(x, t)

in Ω × (0, T ), together with suitable boundary and ini-

tial conditions. The optimization variables can, for ex-

ample, be shape parameters that describe the domain

Ω or they can be related to the parameters k, V , f in

the PDE. In Section 5 we discuss an optimal control

problem in which the optimization variable is related

to the source f and a shape optimization problem in

which the optimization variables are shape parameters.

After a discretization in space the optimization prob-

lems studied in this paper are of the form

minimize

∫ T

0

ℓ(y(t), t, θ)dt, (1a)

subject to

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ (0, T ), (1b)

M(θ)y(0) = y0, (1c)

θ ∈ Θ. (1d)

Here M(θ),A(θ) ∈ R
N×N are mass and stiffness ma-

trices that arise from a spatial discretization. Further-

more Θ is a closed convex set of admissible parameters

and B(θ) ∈ R
N×m, u are given inputs which relate to

the source f and boundary data in the advection diffu-

sion equation. We will discuss the derivation of (1) for

two applications in Section 5. Since the optimization

variables θ are related to spatially localized quantities

(shape parameters, coefficients,..) in the advection dif-

fusion equation, only few entries of M(θ),A(θ),B(θ)

depend on θ.

Our goal is to replace (1) by a reduced order prob-

lem

minimize

∫ T

0

ℓ(ŷ(t), t, θ)dt, (2a)

subject to

M̂(θ)
d

dt
ŷ(t) + Â(θ)ŷ(t) = B̂(θ)u(t), t ∈ (0, T ), (2b)

M̂(θ)y(0) = ŷ0, (2c)

θ ∈ Θ, (2d)

with matrices M̂(θ), Â(θ) ∈ R
n×n, B̂(θ) ∈ R

n×m, such

that n ≪ N and such that the solution θ∗ of (1) is well

approximated by the solution θ̂∗ of (2).

Our approach uses domain decomposition techniques

to divide the optimality system corresponding to (1)

into linear subproblems and small nonlinear subprob-

lems. Balanced truncation is applied to the linear sub-

problems with inputs and outputs determined by the

original in- and outputs as well as the interface condi-

tions between the subproblems. The reduced optimal-

ity system is identified as the optimality system of a

reduced optimization problem (2). We provide a-priori

estimates for the error between the solution θ∗ of (1)

and the solution θ̂∗ of (2). These bounds depend on the
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balanced truncation error bounds as well as properties

of the subsystem that is not reduced.

We expect that this combination of domain decom-

position and balanced truncation will lead to a substan-

tial reduction of the original problem, if the nonlinear-

ities are localized, i.e., the nonlinear subproblems are

small relative to the other subdomains, and if the in-

terfaces between the subproblems are relatively small.

This is confirmed by our numerical results

In the next section we provide a brief review of

balanced truncation model reduction. Section 3 applies

balanced truncation to reduce a linear quadratic opti-

mal control problem. Although this optimization prob-

lem is simpler than (1) it is relevant for many applica-

tions and already provides insight into the main ideas

behind our approach and the corresponding error anal-

ysis. The integration of domain decomposition and bal-

anced truncation model reduction for the reduction of

(1) is presented and analyzed in Section 4. In Section

5 we discuss two problems which lead to (1) and the

application of our approach for the reduction of these

problems.

Throughout this paper we use ‖·‖ to denote the Eu-

clidean norm in R
N or the corresponding matrix norm

in R
N×N . Instead of Lp(0, T ; RN ) we simply write Lp.

2 Balanced Truncation Model Reduction

Model reduction seeks to replace a large-scale system

of differential or difference equations by a system of

substantially lower dimension that has nearly the same

response characteristics. Balanced reduction is a par-

ticular method that preserves asymptotic stability and

also provides an error bound on the discrepancy be-

tween the outputs of the full and reduced order system

[2,3,5,9,17]. We use balanced truncation model reduc-

tion because of the availability of an error bound.

We briefly review balanced truncation model reduc-

tion for linear time invariant systems in state space form

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ) (3a)

z(t) = Cy(t) + Dsu(t), t ∈ (0, T ) (3b)

y(0) = y0, (3c)

−Mλ
′(t) = AT

λ(t) + CT w(t), t ∈ (0, T ) (3d)

q(t) = BT
λ(t) + Daw(t), t ∈ (0, T ) (3e)

λ(T ) = 0, (3f)

where M ∈ R
N×N is symmetric positive definite, A ∈

R
N×N , B ∈ R

N×m, C ∈ R
k×N , Ds ∈ R

k×m, and Da ∈

R
m×k.

Projection methods for model reduction generally

produce N × n matrices V,W with n ≪ N and with

WTMV = In. One obtains a reduced form of equa-
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tions (3) by setting y = Vŷ and projecting (imposing a

Galerkin condition) so that

WT [MV d

dt
ŷ(t) −AVŷ(t) − Bu(t)] = 0, t ∈ (0, T ).

Applying an analogous projection to (3d,e) with λ re-

placed by Wλ̂, we obtain a reduced order system of

order n given by

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) (4a)

ẑ(t) = Ĉŷ(t) + Dsu(t), t ∈ (0, T ) (4b)

ŷ(0) = ŷ0, (4c)

−λ̂
′

(t) = ÂT
λ̂(t) + ĈT w(t), t ∈ (0, T ) (4d)

q̂(t) = B̂T
λ̂(t) + Daw(t), t ∈ (0, T ) (4e)

λ̂(T ) = 0, (4f)

with Â = WTAV, B̂ = WTB, Ĉ = CV, and ŷ0 =

WTMy0.

Balanced reduction is a particular techniqe for con-

structing the projecting matrices V and W. Originally,

balanced reduction was developed for state space sys-

tems with M = I. To apply it to (3), we factor M =

RRT , multiply (3) by R−1, and substitute ỹ = RT y,

λ̃ = RT
λ.Then we apply the standard balanced reduc-

tion to the resulting system. Afterwards we transform

back to the original variables and express all operations

in terms of the original system (3).

To compute the balanced reduction, we first have to

compute the controllability and observability Gramians

P,Q, respectively. Under the assumptions of stability,

controllability and observability, the matrices P,Q are

both symmetric and positive definite and they solve the

Lyapunov equations

APM + MPAT + BBT = 0, (5a)

ATQM + MQA + CTC = 0. (5b)

There are direct methods for the small dense case and

iterative methods for the large sparse setting to com-

pute P = UUT and Q = LLT in factored form. In the

large scale setting the factorization is typically a low

rank approximation.

The balancing transformation is constructed by

UTML = ZSYT the SVD, (6a)

V = UZnS−1/2
n , (6b)

W = LYnS−1/2
n . (6c)

Here, Sn = diag(σ1, σ2, . . . , σn) with S = Sn. The σj

are in decreasing order and n is selected to be the small-

est positive integer such that σn+1 < τσ1 where τ > 0

is a prespecified constant. The matrices Zn,Yn consist

of the corresponding leading n columns of Z,Y.
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It is easily verified that PMW = VSn and that

QMV = WSn. Hence,

0 = WT (APM + MPAT + BBT )W

= ÂSn + SnÂT + B̂B̂T , (7a)

0 = VT (ATQM + MQA + CTC)V

= ÂT Sn + SnÂ + ĈT Ĉ. (7b)

The terminology “balanced” refers to the fact that the

controllability and observability Gramians Sn of the re-

duced systems are both diagonal and equal. This is true

for every possible order n of the truncation.

It is well known (see, e.g., [2,9,24]) that Â must be

stable. Furthermore if y0 = 0, then for any given inputs

u, w we have

‖z − ẑ‖L2 ≤ 2‖u‖L2(σn+1 + . . . + σN ), (8a)

‖q − q̂‖L2 ≤ 2‖w‖L2(σn+1 + . . . + σN ). (8b)

Remark 1 One can derive error bounds for inhomoge-

neous initial values y0. These require a slight modifi-

cation of the problem set-up in which the original B

is augmented. Since we are interested in the handling

of local nonlinearities and our examples have homoge-

neous initial values y0 = 0, we omit this extension.

3 Balanced Truncation Model Reduction and

Optimal Control

Before we consider the optimization problem (1), we

consider a simpler problem, a linear quadratic optimal

control problem

minJ(u) ≡ 1

2

∫ T

0

‖Cy(t) + Du(t) − d(t)‖2dt, (9)

where y(t) = y(u; t) is the solution of

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), (10a)

y(0) = y0. (10b)

Here M ∈ R
N×N is symmetric positive definite, A ∈

R
N×N , B ∈ R

N×m, C ∈ R
k×N , D ∈ R

k×m, and d ∈

L2(0, T ) is a given function. We assume that there exists

α > 0 such that

vT Av ≤ −αvT Mv, ∀v ∈ R
N . (11)

Note that (11) implies that all eigenvalues of the pair

(A,M) have negative real part.

We want to reduce this optimization problem us-

ing balanced truncation model reduction and establish

bounds for the error between the solution u∗ of (9),

(10) and the solution û∗ of the reduced optimal con-

trol problem. This will provide some insight into the

process that will be applied for the reduction of the

optimization problem (1) in a simpler setting involving

less notation.
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The necessary and sufficient optimality conditions

for (9), (10) are given by

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ) (12a)

z(t) = Cy(t) + Du(t) − d(t), t ∈ (0, T ) (12b)

y(0) = y0, (12c)

−Mλ
′(t) = AT

λ(t) + CT z(t), t ∈ (0, T ) (12d)

q(t) = BT
λ(t) + DT z(t), t ∈ (0, T ) (12e)

λ(T ) = 0, (12f)

q(t) = 0, t ∈ (0, T ). (12g)

The optimality system (12) is written in a slightly un-

conventional way to highlight its connection with the

system (3) to which balanced truncation model reduc-

tion can be applied.

We use balanced truncation model reduction to com-

pute W,V and the reduced optimality system

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) (13a)

ẑ(t) = Ĉŷ(t) + Du(t) − d(t), t ∈ (0, T ) (13b)

ŷ(0) = ŷ0, (13c)

−λ̂
′

(t) = ÂT
λ̂(t) + ĈT ẑ(t), t ∈ (0, T ) (13d)

q̂(t) = B̂T
λ̂(t) + DT ẑ(t), t ∈ (0, T ) (13e)

λ̂(T ) = 0, (13f)

q̂(t) = 0, t ∈ (0, T ), (13g)

with Â = WT AV, B̂ = WT B, Ĉ = CV, and ŷ0 =

WT My0. We assume that

y0 = 0 (14)

cf., Remark 1. This can always be achieved by repre-

senting the solution of (10) as y = yu + yh, where yh

solves (10) with u ≡ 0 and yu solves (10) with y0 = 0

and then writing the optimal control problem (9), (10)

as a problem in yu.

We note that the reduced optimality system (13) is

the optimality system for the reduced optimal control

problem

min Ĵ(u) ≡ 1

2

∫ T

0

‖Ĉŷ(t) + Du(t) − d(t)‖2dt (15)

where ŷ(t) = ŷ(u; t) solves

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ), (16a)

ŷ(0) = ŷ0. (16b)

Next we provide an estimate for the error between

the solution u∗ of (9), (10) and the solution û∗ of (15),

(16). We assume that J is a strictly convex quadratic

function. More precisely, we assume the existence of

κ > 0 such that

〈u − w,∇J(u) −∇J(w)〉L2 ≥ κ‖u − w‖2
L2 (17)

for all u,w ∈ L2. If u∗ solves (9), (10) and û∗ solves

(15), (16), then

∇J(u∗) = ∇Ĵ(û∗) = 0



8

and (17) implies

‖u∗ − û∗‖L2‖∇Ĵ(û∗) −∇J(û∗)‖L2

= ‖u∗ − û∗‖L2‖∇J(u∗) −∇J(û∗)‖L2

≥ 〈u∗ − û∗,∇J(u∗) −∇J(û∗)〉L2

≥ κ‖u∗ − û∗‖2
L2 .

Hence

‖u∗ − û∗‖L2 ≤ κ−1‖∇Ĵ(û∗) −∇J(û∗)‖L2 . (18)

Thus, to estimate the error we need to estimate the

error in the gradients between the original problem (9),

(10) and of the reduced (15), (16).

To emphasize the dependence of the solution of (12a-

f) and of (13a-f) on the inputs u, we often write y(u),

z(u), λ(u), q(u) and ŷ(u), ẑ(u), λ̂(u), q̂(u). If for given

u the functions y(u), z(u), λ(u), q(u) satisfy (12a-f)

and ŷ(u), ẑ(u), λ̂(u), q̂(u) satisfy (13a-f), then

∇J(u) = q(u), ∇Ĵ(u) = q̂(u).

To estimate the error ‖q(û∗)− q̂(û∗)‖L2 we cannot use

the error estimate (8) for balanced truncation model

reduction directly, since (3d,e) and (4d,e) both depend

on the same input w, whereas (12d,e) has input z and

(13d,e) has input ẑ.

We consider the auxiliary adjoint equation

−Mλ̃
′

(t) = AT
λ̃(t) + CT ẑ(t), t ∈ (0, T ) (19a)

q̃(t) = BT
λ̃(t) + DT ẑ(t), t ∈ (0, T ) (19b)

λ̃(T ) = 0. (19c)

Lemma 1 Let (11) be satisfied. For any z, ẑ ∈ L2 the

outputs q and q̃ of (13d-f) and (19), respectively, satisfy

‖q̃ − q‖L2 ≤ c‖ẑ − z‖L2 .

where c = α−12‖CM−1/2‖‖M−1/2B‖ + ‖D‖.

Proof Since M is symmetric positive definite, M1/2 ex-

ists and is symmetric positive definite. The scaled ad-

joints M1/2(λ̃ − λ) satisfy

−M1/2(λ̃ − λ)′(t) =M−1/2AT M−1/2M1/2(λ̃ − λ)(t)

+ M−1/2CT (ẑ − z)(t),

M1/2(λ̃ − λ)(T ) =0.

Lemma 4 in the Appendix gives

‖M1/2(λ̃ − λ)‖L2 ≤ 2‖CM−1/2‖
α

‖ẑ − z‖L2 .

The desired inequality follows since

q̃ − q = BT M−1/2M1/2(λ̃ − λ) + DT (ẑ − z).

�

The error estimate (8) for balanced truncation model

reduction implies

‖z − ẑ‖L2 ≤ 2‖u‖L2(σn+1 + . . . + σN ), (20a)

‖q̂ − q̃‖L2 ≤ 2‖ẑ‖L2(σn+1 + . . . + σN ) (20b)

for all u ∈ L2 and all ẑ ∈ L2. We can now use Lemma 1

and the balanced truncation model reduction error es-

timates (20) to derive a bound for the error between

the solutions u∗ of (9), (10) and û∗ of (15), (16).
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Theorem 1 Let (11) be satisfied. For any u ∈ L2 let

ŷ(u) be the corresponding reduced state and ẑ(u) =

Ĉŷ(u) + Du − d. The error in the gradients obeys

‖∇J(u) −∇Ĵ(u)‖L2

≤ 2 (c‖u‖L2 + ‖ẑ(u)‖L2) (σn+1 + . . . + σN ),

where c is the constant specified in Lemma 1.

Proof For arbitrary u ∈ L2 let the functions y(u), z(u),

λ(u), q(u) satisfy (12a-f), let ŷ(u), ẑ(u), λ̂(u), q̂(u)

satisfy (13a-f), and let λ̃(u), q̃(u) satisfy (19).

We have ∇J(u) = q(u), ∇Ĵ(u) = q̂(u). Lemma 1

and the balanced truncation model reduction error es-

timates (20) imply

‖q(u) − q̂(u)‖L2

≤ ‖q(u) − q̃(u)‖L2 + ‖q̃(u) − q̂(u)‖L2

≤ c‖ẑ(u) − z(u)‖L2 + 2‖ẑ(u)‖L2(σn+1 + . . . + σN )

≤ 2 (c‖u‖L2 + ‖ẑ(u)‖L2) (σn+1 + . . . + σN ).

�

Inequality (18) and Theorem 1 imply the following

estimate for the error in the optimal controls.

Corollary 1 Let (11) be satisfied and let κ > 0 be a

constant such that (17) holds. Furthermore, let u∗ solve

(9), (10) and let û∗ be the solution of (15), (16) with

corresponding state ŷ∗ and ẑ∗ = Ĉŷ∗ + Du∗ − d. The

error between the solutions satisfies

‖u∗ − û∗‖L2

≤ 2

κ
(c‖û∗‖L2 + ‖ẑ∗‖L2) (σn+1 + . . . + σN ),

where c is the constant specified in Lemma 1.

Note that the size of σn+1 + . . . + σN can be con-

trolled by the user during the computation of the re-

duced order models. Moreover, ‖û∗‖L2 and ‖ẑ∗‖L2 can

be computed.

4 The Optimization Problem

We now return to the optimization problem (1). The

Lagrangian associated with this problem is

L(y,λ, θ)

=

∫ T

0

ℓ(y(t), t, θ)dt

+

∫ T

0

λ(t)T
(
M(θ)y′(t) + A(θ)y(t) − B(θ)u(t)

)
dt.

Since Θ is a closed convex set, the first order necessary

optimality conditions for (1) are given by θ ∈ Θ,

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), (21a)

− M(θ)T d

dt
λ
′(t) + A(θ)T

λ(t) = −∇yℓ(y(t), t, θ),

(21b)
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for t ∈ (0, T ),

∫ T

0

Dθℓ(y(t), t, θ)(θ̃ − θ)dt

+

∫ T

0

λ(t)T
[(

DθM(θ)(θ̃ − θ)
) d

dt
y(t)

+
(
DθA(θ)(θ̃ − θ)

)
y(t)

−
(
DθB(θ)(θ̃ − θ)

)
u(t)

]
dt ≥ 0 (21c)

for all θ̃ ∈ Θ, and y(0) = y0, λ(T ) = 0.

4.1 Domain Decomposition

We assume that Ω(θ) is decomposed into a subdomain

Ω1 independent of θ and a subdomain Ω2(θ) that de-

pends on θ. More precisely, we assume

Ω(θ) = Ω1 ∪ Ω2(θ), Ω1 ∩ Ω2(θ) = ∅.

Moreover, we assume that the integrand ℓ in the objec-

tive function (1a) is of the form

ℓ(y(t), t, θ) = 1
2‖C

(1)
I y

(1)
I (t) − d

(1)
I (t)‖2

+ℓ̃(yΓ (t),y
(2)
I (t), t, θ).

(22)

In the following section we will use domain decom-

position to decompose the optimality conditions (21)

into three components, one corresponding to the fixed

subdomain Ω1, one corresponding to the variable sub-

domain Ω2(θ), and one corresponding to the interface.

The decomposed problems will be used to identify lin-

ear quadratic subproblems corresponding to the fixed

domain Ω1, which will be reduced using balanced trun-

cation model reduction.

We note that both subdomains Ω1 and Ω2(θ) could

be subdivided further. This additional structure can be

used in the implementation of the balanced truncation

and the optimization algorithm for the solution of the

reduced shape optimization problem. However, the di-

vision of Ω(θ) into Ω1 and Ω2(θ) is enough to study the

essential features of our approach.

We use a standard nonoverlapping domain decom-

position approach (substructuring) to decompose the

optimality system. See, e.g., [20, Ch. 4] and [23, Ch. 1].

Our notation follows that of [20,23]. The finite element

stiffness matrix can be decomposed into

A(θ) =




A
(1)
II A

(1)
IΓ 0

A
(1)
ΓI AΓΓ (θ) A

(2)
ΓI (θ)

0 A
(2)
IΓ (θ) A

(2)
II (θ)




where

AΓΓ (θ) = A
(1)
ΓΓ + A

(2)
ΓΓ (θ).

The matrices M, B admit similar representations and

the vectors y,u can be structured accordingly.

In the following we frequently omit the argument t

and, for example, simply write y
(1)
I instead of y

(1)
I (t).
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Using the domain decomposition structure, the state

equations (1b) can be written as

M
(1)
II

d

dt
y

(1)
I + M

(1)
IΓ

d

dt
yΓ

+ A
(1)
II y

(1)
I + A

(1)
IΓ yΓ

= B
(1)
I u

(1)
I , (23a)

M
(2)
II (θ)

d

dt
y

(2)
I + M

(2)
IΓ (θ)

d

dt
yΓ

+ A
(2)
II (θ)y

(2)
I + A

(2)
IΓ (θ)yΓ

= B
(2)
I (θ)u

(2)
I , (23b)

M
(1)
ΓI

d

dt
y

(1)
I + MΓΓ (θ)

d

dt
yΓ + M

(2)
ΓI

d

dt
y

(2)
I

+ A
(1)
ΓIy

(1)
I + AΓΓ (θ)yΓ + A

(2)
ΓIy

(2)
I

= BΓ (θ)uΓ . (23c)

The optimality conditions (21) can now be written as

(23a-c) and the adjoint equations

− M
(1)
II

d

dt
λ

(1)
I − M

(1)
IΓ

d

dt
λΓ

+
(
A

(1)
II

)T
λ

(1)
I +

(
A

(1)
ΓI

)T
λΓ

= −
(
C

(1)
I

)T (
C

(1)
I y

(1)
I − d

(1)
I

)
, (23d)

− M
(2)
II (θ)

d

dt
λ

(2)
I − M

(2)
IΓ (θ)

d

dt
λΓ

+
(
A

(2)
II (θ)

)T
λ

(2)
I +

(
A

(2)
ΓI (θ)

)T
λΓ

= −∇
y

(2)
I

ℓ̃(yΓ ,y
(2)
I , t, θ), (23e)

− M
(1)
ΓI

d

dt
λ

(1)
I − MΓΓ (θ)

d

dt
λΓ − M

(2)
ΓI

d

dt
λ

(2)
I

+
(
A

(1)
IΓ

)T
λ

(1)
I +

(
AΓΓ (θ)

)T
λΓ +

(
A

(2)
IΓ

)T
λ

(2)
I

= −∇yΓ
ℓ̃(yΓ ,y

(2)
I , t, θ), (23f)

and

∫ T

0

Dθ ℓ̃(yΓ ,y
(2)
I , t, θ)(θ̃ − θ)dt

+

∫ T

0




λΓ

λ
(2)
I




T

[(
DθM

(2)(θ)(θ̃ − θ)
) d

dt




yΓ

y
(2)
I




+
(
DθA

(2)(θ)(θ̃ − θ)
)



yΓ

y
(2)
I




−
(
DθB

(2)(θ)(θ̃ − θ)
)



uΓ

u
(2)
I



]
dt ≥ 0 (23g)

for all θ̃ ∈ Θ, where we have set

M(2)(θ) =




MΓΓ (θ) M
(2)
ΓI (θ)

M
(2)
IΓ (θ) M

(2)
II (θ)


 ,

A(2)(θ) =




AΓΓ (θ) A
(2)
ΓI (θ)

A
(2)
IΓ (θ) A

(2)
II (θ)


 ,

B(2)(θ) =




BΓ (θ)

B
(2)
I (θ)


 .

We apply balanced truncation model reduction to

the optimality subsystem that corresponds to the fixed

subdomain Ω1.

4.2 Balanced Truncation Model Reduction of the

Fixed Subdomain Problem

We will apply balanced truncation model reduction to

the optimality subsystem that corresponds to the fixed

subdomain Ω1. To accomplish this we need to identify

how y
(1)
I and λ

(1)
I in (23) interact with the other com-

ponents of the system and we have to make sure that
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the resulting subsystem is of the form (3) to which bal-

anced truncation can be applied. This is the reason why

we have assumed that the integrand ℓ in the objective

function (1a) is of the form (22).

If we inspect (23) to see how y
(1)
I and λ

(1)
I interact

with the other components of the system, we are led to

M
(1)
II

d

dt
y

(1)
I = − A

(1)
II y

(1)
I − M

(1)
IΓ

d

dt
yΓ

+ B
(1)
I u

(1)
I − A

(1)
IΓ yΓ (24a)

z
(1)
I = − C

(1)
I y

(1)
I + d

(1)
I , (24b)

zΓ = − M
(1)
ΓI

d

dt
y

(1)
I − A

(1)
ΓIy

(1)
I , (24c)

−M
(1)
II

d

dt
λ

(1)
I = −

(
A

(1)
II

)T
λ

(1)
I + M

(1)
IΓ

d

dt
λΓ

−
(
C

(1)
I

)T
w

(1)
I −

(
A

(1)
ΓI

)T
λΓ (24d)

q
(1)
I =

(
B

(1)
I

)T
λ

(1)
I , (24e)

qΓ =M
(1)
ΓI

d

dt
λ

(1)
I −

(
A

(1)
IΓ

)T
λ

(1)
I . (24f)

In fact (24a) and (24d) are identical to (23a) and (23d),

respectively, if w
(1)
I = −z

(1)
I = C

(1)
I y

(1)
I −d

(1)
I . The out-

put (24b) enters into (23d) and the output (24c) enters

into (23c). Similarly, the output (24f) enters into (23f).

The output (24e) is included as an auxiliary variable.

It does not enter into any of the equations in (23), but

is included to establish the connection with the generic

system (3).

If

M
(1)
IΓ = 0 and M

(1)
ΓI = 0, (25)

then (24) is given by

M
(1)
II

d

dt
y

(1)
I = −A

(1)
II y

(1)
I +

(
B

(1)
I | − A

(1)
IΓ

)



u
(1)
I

yΓ




(26a)




z
(1)
I

zΓ


 =



−C

(1)
I

−A
(1)
ΓI


 y

(1)
I +




I

0


 d

(1)
I , (26b)

−M
(1)
II

d

dt
λ

(1)
I = −(A

(1)
II )T

λ
(1)
I +



−C

(1)
I

−A
(1)
ΓI




T 


w
(1)
I

λΓ




(26c)




q
(1)
I

qΓ


 =

(
B

(1)
I | − A

(1)
IΓ

)T

λ
(1)
I . (26d)

This system is exactly of the form (3) that is needed

for balanced truncation. We assume that

vT Av ≤ −αvT Mv, ∀v ∈ R
N . (27)

Note that assumption (27) implies

vT A
(1)
II v ≤ −αvT M

(1)
II v, ∀v ∈ R

N
(1)
I . (28)

As a consequence of (28) all eigenvalues of the pair

(A
(1)
II ,M

(1)
II ) have negative real part and, hence, bal-

anced truncation model reduction can be applied to

(26) which leads to the following reduced subsystem
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d

dt
ŷ

(1)
I = −Â

(1)
II ŷ

(1)
I − Â

(1)
IΓ yΓ + B̂

(1)
I u

(1)
I (29a)

ẑ
(1)
I = −Ĉ

(1)
I ŷ

(1)
I + d

(1)
I , (29b)

ẑΓ = −Â
(1)
ΓI ŷ

(1)
I , (29c)

− d

dt
λ̂

(1)

I = −
(
Â

(1)
II

)T
λ̂

(1)

I −
(
Â

(1)
ΓI

)T
λΓ −

(
Ĉ

(1)
I

)T
w

(1)
I

(29d)

q̂
(1)
I =

(
B̂

(1)
I

)T
λ̂

(1)

I , (29e)

q̂Γ = −
(
Â

(1)
IΓ

)T
λ̂

(1)

I . (29f)

We assume that

y
(1)
I,0 = 0, (30)

cf., Remark 1.

Balanced truncation generates a reduced order model

(29) such that the error between the input-to-output

maps of (24) and (29) can be estimated by

∥∥∥∥∥∥∥∥




z
(1)
I

zΓ


−




ẑ
(1)
I

ẑΓ




∥∥∥∥∥∥∥∥
L2

≤ 2

∥∥∥∥∥∥∥∥




u
(1)
I

yΓ




∥∥∥∥∥∥∥∥
L2

τ, (31a)

∥∥∥∥∥∥∥∥




q
(1)
I

qΓ


−




q̂
(1)
I

q̂Γ




∥∥∥∥∥∥∥∥
L2

≤ 2

∥∥∥∥∥∥∥∥




w
(1)
I

λΓ




∥∥∥∥∥∥∥∥
L2

τ, (31b)

where

τ = σn+1 + . . . + σN . (31c)

To be consistent with (25) we also assume that M
(2)
IΓ =

0 and M
(2)
ΓI = 0. The reduced order optimality system

corresponding to (23) is given by the state equation

d

dt
ŷ

(1)
I + Â

(1)
II ŷ

(1)
I + Â

(1)
IΓ ŷΓ = B̂

(1)
I u

(1)
I ,

(32a)

M
(2)
II

d

dt
ŷ

(2)
I + A

(2)
II ŷ

(2)
I + A

(2)
IΓ ŷΓ = B

(2)
I u

(2)
I ,

(32b)

MΓΓ
d

dt
ŷΓ + Â

(1)
ΓI ŷ

(1)
I + AΓΓ ŷΓ + A

(2)
ΓI ŷ

(2)
I = BΓ uΓ ,

(32c)

the adjoint equation

− d

dt
λ̂

(1)

I +
(
Â

(1)
II

)T
λ̂

(1)

I +
(
Â

(1)
ΓI

)T
λ̂Γ

= −
(
Ĉ

(1)
I

)T (
Ĉ

(1)
I ŷ

(1)
I − d

(1)
I

)
, (32d)

− M
(2)
II

d

dt
λ̂

(2)

I +
(
A

(2)
II

)T
λ̂

(2)

I +
(
A

(2)
ΓI

)T
λ̂Γ

= −∇
by
(2)
I

ℓ̃(ŷΓ , ŷ
(2)
I , t, θ), (32e)

− MΓΓ
d

dt
λ̂Γ +

(
Â

(1)
IΓ

)T
λ̂

(1)

I + AT
ΓΓ λ̂Γ +

(
A

(2)
IΓ

)T
λ̂

(2)

I

= −∇byΓ
ℓ̃(ŷΓ , ŷ

(2)
I , t, θ), (32f)

where M
(2)
II = M

(2)
II (θ), MΓΓ = MΓΓ (θ), A

(2)
II = A

(2)
II (θ),

AΓΓ = AΓΓ (θ), A
(2)
IΓ = A

(2)
IΓ (θ), A

(2)
ΓI = A

(2)
ΓI (θ), B

(2)
I =

B
(2)
I (θ), BΓ = BΓ (θ), and by

∫ T

0

Dθ ℓ̃(ŷΓ , ŷ
(2)
I , t, θ)(θ̃ − θ)dt

+

∫ T

0




λ̂Γ

λ̂
(2)

I




T

[(
DθM

(2)(θ)(θ̃ − θ)
) d

dt




ŷΓ

ŷ
(2)
I




+
(
DθA

(2)(θ)(θ̃ − θ)
)



ŷΓ

ŷ
(2)
I




−
(
DθB

(2)(θ)(θ̃ − θ)
)



uΓ

u
(2)
I



]
dt ≥ 0 (32g)
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for all θ̃ ∈ Θ.

The reduced order optimality system (32) is the first

order necessary optimality system for the reduced order

semidiscretized shape optimization problem

minimize
∫ T

0
1
2‖Ĉ

(1)
I ŷ

(1)
I (t) − d

(1)
I (t)‖2

2

+ℓ̃(ŷΓ (t), ŷ
(2)
I (t), t, θ) dt,

(33)

subject to (32a-c) with initial conditions ŷ
(1)
I (0) = ŷ

(1)
I,0,

ŷ
(2)
I (0) = y

(2)
I,0, ŷΓ (0) = yΓ,0 and parameter constraints

θ ∈ Θ.

4.3 Error Analysis

We define the objective functions

J(θ) =

∫ T

0

1
2‖C

(1)
I y

(1)
I (t) − d

(1)
I (t)‖2

2

+ ℓ̃(yΓ (t),y
(2)
I (t), t, θ) dt,

Ĵ(θ) =

∫ T

0

1
2‖Ĉ

(1)
I ŷ

(1)
I (t) − d

(1)
I (t)‖2

2

+ ℓ̃(ŷΓ (t), ŷ
(2)
I (t), t, θ) dt,

where y
(1)
I ,y

(2)
I ,yΓ solve (23a-c) and where ŷ

(1)
I , ŷ

(2)
I , ŷΓ

solve (32a-c). Using these objective functions, which

treat the states y
(1)
I ,y

(2)
I ,yΓ and ŷ

(1)
I , ŷ

(2)
I , ŷΓ as im-

plicit functions of θ ∈ Θ, the optimization problems (1)

and (33) can be written as

min
θ∈Θ

J(θ) and min
θ∈Θ

Ĵ(θ)

respectively. Recall that Θ is a closed convex set. If

θ∗ ∈ Θ and θ̂∗ ∈ Θ are solutions of these problems,

then

∇J(θ∗)
T (θ − θ∗) ≥ 0 ∇Ĵ(θ̂∗)

T (θ − θ̂∗) ≥ 0 (34)

for all θ ∈ Θ. This implies

(∇J(θ∗) −∇Ĵ(θ̂∗))
T (θ̂∗ − θ∗) ≥ 0 (35)

If we assume the convexity condition

(∇J(θ̂∗) −∇J(θ∗))
T (θ̂∗ − θ∗) ≥ κ‖θ̂∗ − θ∗‖2, (36)

then combining (35) and (36) leads to

(∇J((θ̂∗) −∇Ĵ(θ̂∗))
T (θ̂∗ − θ∗) ≥ κ‖θ̂∗ − θ∗‖2.

Hence, we have the error estimate

‖θ∗ − θ̂∗‖ ≤ κ−1‖∇Ĵ(θ̂∗) −∇J(θ̂∗)‖. (37)

As before, assuming (36), an estimate of the error in

the solution of (1) and (33) requires an estimate of the

error in the gradient of the full and the reduced order

optimization problem.

The gradients are given by

∇J(θ)T θ̃

=

∫ T

0

Dθ ℓ̃(yΓ (t),y
(2)
I (t), t, θ)θ̃dt

+

∫ T

0




λΓ (t)

λ
(2)
I (t)




T

{(
DθM

(2)(θ)θ̃
) d

dt




yΓ (t)

y
(2)
I (t)




+
(
DθA

(2)(θ)θ̃
)



yΓ (t)

y
(2)
I (t)




−
(
DθB

(2)(θ)θ̃
)



uΓ (t)

u
(2)
I (t)



}

dt
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where y
(1)
I , y

(2)
I , yΓ , λ

(1)
I , λ

(2)
I , λΓ solve (23a-f), and

∇Ĵ(θ)T θ̃

=

∫ T

0

Dθ ℓ̃(ŷΓ (t), ŷ
(2)
I (t), t, θ)θ̃dt

+

∫ T

0




λ̂Γ (t)

λ̂
(2)

I (t)




T

{(
DθM

(2)(θ)θ̃
) d

dt




ŷΓ (t)

ŷ
(2)
I (t)




+
(
DθA

(2)(θ)θ̃
)



ŷΓ (t)

ŷ
(2)
I (t)




−
(
DθB

(2)(θ)θ̃
)



uΓ (t)

u
(2)
I (t)



}

dt

where ŷ
(1)
I , ŷ

(2)
I , ŷΓ , λ̂

(1)

I , λ̂
(2)

I , λ̂Γ solve (32a-f), re-

spectively. The difference is given by

(
∇J(θ) −∇Ĵ(θ)

)T

θ̃

=

∫ T

0

(
Dθ ℓ̃(yΓ ,y

(2)
I , t, θ) − Dθ ℓ̃(ŷΓ , ŷ

(2)
I , t, θ)

)
θ̃dt

+

∫ T

0




λΓ

λ
(2)
I




T

{(
DθM

(2)(θ)θ̃
) d

dt




yΓ − ŷΓ

y
(2)
I − ŷ

(2)
I




+
(
DθA

(2)(θ)θ̃
)



yΓ − ŷΓ

y
(2)
I − ŷ

(2)
I



}

dt

+

∫ T

0




λΓ − λ̂Γ

λ
(2)
I − λ̂

(2)

I




T

{(
DθM

(2)(θ)θ̃
) d

dt




ŷΓ

ŷ
(2)
I




+
(
DθA

(2)(θ)θ̃
)



ŷΓ

ŷ
(2)
I




−
(
DθB

(2)(θ)θ̃
)



uΓ

u
(2)
I



}

dt. (38)

We begin with an estimate of the error in the states.

Lemma 2 Let (27) be valid. If y
(1)
I , y

(2)
I , yΓ solve

(23a-c), and ŷ
(1)
I , ŷ

(2)
I , ŷΓ solve (32a-c), then

∥∥∥C(1)
I y

(1)
I − Ĉ

(1)
I ŷ

(1)
I

∥∥∥
L2

≤
(

2 +
4‖M−1‖‖C(1)

I ‖
α

)
∥∥∥∥∥∥∥∥




u
(1)
I

ŷΓ




∥∥∥∥∥∥∥∥
L2

τ (39a)

and
∥∥∥∥∥∥∥∥




y
(2)
I − ŷ

(2)
I

yΓ − ŷΓ




∥∥∥∥∥∥∥∥
L2

≤ 4‖M−1‖
α

∥∥∥∥∥∥∥∥




u
(1)
I

ŷΓ




∥∥∥∥∥∥∥∥
L2

τ, (39b)

where τ = σn+1 + . . . + σN .

Proof Let y
(1)
I , y

(2)
I , yΓ solve (23a-c), and let ŷ

(1)
I , ŷ

(2)
I ,

ŷΓ solve (32a-c). Furthermore, let ỹ
(1)
I solve

M
(1)
II

d

dt
ỹ

(1)
I (t) + A

(1)
II ỹ

(1)
I (t) + A

(1)
IΓ ŷΓ (t) = B

(1)
I u

(1)
I (t)

(40)

with initial condition ỹ
(1)
I (0) = y

(1)
I,0.

The balanced truncation error bound (31) implies
∥∥∥∥∥∥∥∥




C
(1)
I ỹ

(1)
I − Ĉ

(1)
I ŷ

(1)
I

A
(1)
ΓI ỹΓ − Â

(1)
ΓI ŷΓ




∥∥∥∥∥∥∥∥
L2

≤ 2

∥∥∥∥∥∥∥∥




u
(1)
I

ŷΓ




∥∥∥∥∥∥∥∥
L2

τ. (41)

The equations (23a-c), (32a-c), and (40) give

M
(1)
II (θ)

d

dt
(y

(1)
I − ỹ

(1)
I )

+ A
(1)
II (θ)(y

(1)
I − ỹ

(1)
I ) + A

(1)
IΓ (θ)(yΓ − ŷΓ ) = 0, (42a)

M
(2)
II (θ)

d

dt
(y

(2)
I − ŷ

(2)
I )

+ A
(2)
II (θ)(y

(2)
I − ŷ

(2)
I ) + A

(2)
IΓ (θ)(yΓ − ŷΓ ) = 0, (42b)

MΓΓ (θ)
d

dt
(yΓ − ŷΓ ) + AΓΓ (θ)(yΓ − ŷΓ )

+ A
(1)
ΓI (y

(1)
I − ỹ

(1)
I ) + A

(2)
ΓI (θ)(y

(2)
I − ŷ

(2)
I )

= Â
(1)
ΓI ŷ

(1)
I − A

(1)
ΓI ỹ

(1)
I (42c)
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with initial conditions y
(1)
I (0) − ỹ

(1)
I (0) = 0, y

(2)
I (0) −

ŷ
(2)
I (0) = 0, yΓ (0) − ŷΓ (0) = 0.

Application of Lemma 5 in the Appendix to (42)

followed by an application of (41) gives

∥∥∥∥∥∥∥∥∥∥∥∥




y
(1)
I − ỹ

(1)
I

y
(2)
I − ŷ

(2)
I

yΓ − ŷΓ




∥∥∥∥∥∥∥∥∥∥∥∥
L2

≤ 2‖M−1‖
α

∥∥∥Â(1)
ΓI ŷ

(1)
I − A

(1)
ΓI ỹ

(1)
I

∥∥∥
L2

≤ 4‖M−1‖
α

∥∥∥∥∥∥∥∥




u
(1)
I

ŷΓ




∥∥∥∥∥∥∥∥
L2

τ. (43)

This implies (39b). The estimate (39a) follows from (41)

and (43). �

The errors in the adjoints are estimated similarly.

Lemma 3 Let (27) be valid and assume that

‖∇yΓ
ℓ̃(y

(2)
I ,yΓ , t, θ) −∇yΓ

ℓ̃(ỹ
(2)
I , ỹΓ , t, θ)‖

≤ L
(
‖y(2)

I − ỹ
(2)
I ‖2 + ‖yΓ − ỹΓ ‖2

)1/2

,

‖∇
y

(2)
I

ℓ̃(y
(2)
I ,yΓ , t, θ) −∇

y
(2)
I

ℓ̃(ỹ
(2)
I , ỹΓ , t, θ)‖

≤ L
(
‖y(2)

I − ỹ
(2)
I ‖2 + ‖yΓ − ỹΓ ‖2

)1/2

for all y
(2)
I − ỹ

(2)
I ∈ R

N
(2)
I , yΓ − ỹΓ ∈ R

NΓ , θ ∈ Θ. If

y
(1)
I , y

(2)
I , yΓ , λ

(1)
I , λ

(2)
I , λΓ solve (23a-f), and ŷ

(1)
I ,

ŷ
(2)
I , ŷΓ , λ̂

(1)

I , λ̂
(2)

I , λ̂Γ solve (32a-f), then

∥∥∥∥∥




λ
(2)
I − λ̂

(2)

I

λΓ − λ̂Γ




∥∥∥∥∥
L2

≤ cλ(σn+1 + . . . + σN ), (44)

where

cλ =
4‖M−1‖

α

∥∥∥∥∥




Ĉ
(1)
I ŷ

(1)
I − d

(1)
I

λ̂Γ




∥∥∥∥∥
L2

+
(2‖C(1)

I ‖‖M−1‖
α

(
2 +

4‖C(1)
I ‖‖M−1‖

α

)

+
8L‖M−1‖2

α2

)
∥∥∥∥∥∥∥∥




u
(1)
I

ŷΓ




∥∥∥∥∥∥∥∥
L2

.

Proof Let y
(1)
I , y

(2)
I , yΓ , λ

(1)
I , λ

(2)
I , λΓ solve (23a-f),

and ŷ
(1)
I , ŷ

(2)
I , ŷΓ , λ̂

(1)

I , λ̂
(2)

I , λ̂Γ solve (32a-f) and set

ẑ
(1)
I = Ĉ

(1)
I ŷ

(1)
I

Furthermore, let λ̃
(1)

I solve

− M
(1)
II

d

dt
λ̃

(1)

I (t) + (A
(1)
II )T

λ̃
(1)

I (t) + (A
(1)
ΓI )T

λ̂Γ (t)

= −(C
(1)
I )(Ĉ

(1)
I ŷ

(1)
I − d

(1)
I ) (45)

with the final condition λ̃
(1)

I (T ) = 0.

The balanced truncation error bound (31) implies

∥∥∥∥∥




(B
(1)
I )T

λ̃
(1)

I − (B̂
(1)
I )T

λ̂
(1)

I

(A
(1)
IΓ )T

λ̃
(1)

I − (Â
(1)
IΓ )T

λ̂
(1)

I




∥∥∥∥∥
L2

≤ 2

∥∥∥∥∥




Ĉ
(1)
I ŷ

(1)
I − d

(1)
I

λ̂Γ




∥∥∥∥∥
L2

(σn+1 + ... + σN ). (46)



17

The equations (23d-f), (32d-f), and (45) imply

− M
(1)
II

d

dt
(λ

(1)
I − λ̃

(1)

I )

+ (A
(1)
II )T (λ

(1)
I − λ̃

(1)

I ) + (A
(1)
ΓI )T (λΓ − λ̂Γ )

= − (C
(1)
I )(C

(1)
I y

(1)
I − Ĉ

(1)
I ŷ

(1)
I ),

− M
(2)
II (θ)

d

dt
(λ

(2)
I − λ̂

(2)

I )

+ (A
(2)
II (θ))T (λ

(2)
I − λ̂

(2)

I ) + (A
(2)
ΓI (θ))T (λΓ − λ̂Γ )

= − (∇
y

(2)
I

ℓ(y
(2)
I ,yΓ , θ, t) −∇

by
(2)
I

ℓ(ŷ
(2)
I , ŷΓ , θ, t)),

− MΓΓ (θ)
d

dt
(λΓ − λ̂Γ ) + (AΓΓ (θ))T (λΓ − λ̂Γ )

+ (A
(1)
IΓ )T (λ

(1)
I − λ̃

(1)

I ) + (A
(2)
IΓ (θ))T (λ

(2)
I − λ̂

(2)

I )

=(Â
(1)
IΓ )T

λ̂
(1)

I − (A
(1)
IΓ )T

λ̃
(1)

I

− (∇yΓ
ℓ(y

(2)
I ,yΓ , θ, t) −∇byΓ

ℓ(ŷ
(2)
I , ŷΓ , θ, t)).

with final conditions λ
(1)
I (T ) = λ̃

(1)

I (T ) = 0, λ
(2)
I (T ) =

λ̂
(2)

I (T ) = 0, and λΓ (T ) = λ̂Γ (T ) = 0. Lemma 5 gives

the estimate

∥∥∥∥∥∥∥∥∥∥∥∥




λ
(1)
I − λ̃

(1)

I

λ
(2)
I − λ̂

(2)

I

λΓ − λ̂Γ




∥∥∥∥∥∥∥∥∥∥∥∥
L2

≤ 2‖M−1‖
α

‖C(1)
I ‖‖C(1)

I y
(1)
I − Ĉ

(1)
I ŷ

(1)
I ‖L2

+
2‖M−1‖

α
‖(Â(1)

IΓ )T
λ̂

(1)

I − (A
(1)
IΓ )T

λ̃
(1)

I ‖L2

+
2L‖M−1‖

α

∥∥∥∥∥∥∥∥




y
(2)
I − ŷ

(2)
I

yΓ − ŷΓ




∥∥∥∥∥∥∥∥
L2

. (48)

The error estimate follows from (48), (39) and (46). �

Equation (38) and Lemmas 2, 3 imply the following

result

Theorem 2 Let the assumptions of Lemma 3 be valid

and assume that

‖∇θ ℓ̃(y
(2)
I ,yΓ , t, θ) −∇θ ℓ̃(ỹ

(2)
I , ỹΓ , t, θ)‖

≤ L
(
‖y(2)

I − ỹ
(2)
I ‖2 + ‖yΓ − ỹΓ ‖2

)1/2

for all y
(2)
I − ỹ

(2)
I ∈ R

N
(2)
I , yΓ − ỹΓ ∈ R

NΓ , θ ∈ Θ, and

max
{
‖DθM

(2)(θ)θ̃‖, ‖DθA
(2)(θ)θ̃‖, ‖DθB

(2)(θ)θ̃‖
}
≤ γ

for all ‖θ̃‖ ≤ 1 and all θ ∈ Θ. There exists c > 0

dependent on u, ŷ, and λ̂ such that

‖∇J(θ) −∇Ĵ(θ)‖L2 ≤ c

α
(σn+1 + ... + σN ).

Proof The inequality follows directly from equation (38)

and Lemmas 2, 3. �

Corollary 2 If the assumptions of Theorem 2 and (36)

hold, then there exists c > 0 dependent on u, ŷ, and λ̂

such that

‖θ∗ − θ̂∗‖ ≤ c

ακ
(σn+1 + ... + σN ).

Remark 2 i. The error estimates in Theorem 2 and Corol-

lary 2 rely on an estimate of the type (31) of the errors

between the input-output operators of the full state

and adjoint systems and the reduced state and adjoint

systems. Balanced truncation model reduction provides

such a bound. Any other model reduction technique for

which such a bound is available can be used as well.

ii. The assumption (27) is used in two ways. First,

it implies that all eigenvalues of the pair (A
(1)
II ,M

(1)
II )
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have negative real part and, consequently, is necessary

for the application of balanced truncation model reduc-

tion. Secondly, we use it in connection with Lemma 4.

We could, for example, use Gronwall type estimates to

derive different bounds for the solution of a dynamical

system in terms of the right hand side of the dynamical

system. These bounds can be easily substituted for the

bound in Lemma 4. If such estimates are used, assump-

tion (27) could be weakened.

5 Numerical Examples

5.1 Optimal Control of Water Pollution

This example is motivated by [4], where adaptive finite

elements are considered for a steady state version of

the optimal control problem described below. See also

[1] for a related problem.

The domain Ω is shown in Figure 1. The boundary

specifications in Figure 1 are those for the advection

diffusion equation (50).
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Fig. 1 The domain Ω with boundary conditions for the advec-

tion diffusion equation (50)

The advection V is the solution of the steady Stokes

equation

−µ∆V(x) + ∇p(x) = 0, in Ω (49a)

∇ · V(x) = 0, in Ω (49b)

V(x) = Vin(x), on Γin (49c)

V(x) = 0, on Γ0 (49d)

−µ∇V(x)n + p(x)n = 0, on Γout. (49e)

The problem data are chosen as in [4]. In particular, µ =

0.1 and Vin(x) = (1− (x2/0.2)2, 0)T . Furthermore, the

inflow boundary is Γin =
{
(x1, x2) ∈ Ω : x1 = 0

}
, the

outflow boundary is Γout =
{
(x1, x2) ∈ Ω : x1 = 1.2

}
,

and Γ0 = ∂Ω \ (Γin ∪ Γout).

The optimal control problem is governed by the ad-

vection diffusion equation

∂

∂t
y(x, t) −∇(k∇y(x, t)) + V(x) · ∇y(x, t) (50a)

= u(x, t)χU1
(x) + u(x, t)χU2

(x) in Ω, (50b)
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with boundary and initial conditions

y(x, t) = 0 in ΓD, (50c)

∂

∂n
y(x, t) = 0 in ΓN , (50d)

y(x, 0) = 0 in Ω. (50e)

Here χS is the characteristic function corresponding to

the set S. Furthermore, k = 0.015, V is the solution

of (49), the boundary segments ΓD and ΓN and the

control regions U1 and U2 are shown in Figure 1. In our

experiments, the final time is T = 4.

The objective function is

1

2

∫ T

0

∫

D

(y(x, t) − d(x, t))2dx dt

+
10−4

2

∫ T

0

∫

U1∪U2

u2(x, t)dx dt,

where D is the observation region shown in Figure 1

and d ≡ 0.5.

For the spatial discretization we use piecewise lin-

ear finite elements on three different triangulations with

decreasing mesh sizes. We use the modified low-rank

Smith method in [11] with m = 4 shifts to solve the con-

trollability and observability Lyapunov equations (5).

For the model reduction, we select those Hankel singu-

lar values σn, with σn ≥ 10−4σ1. Table 1 displays the

size of the reduced and the full order problems for the

three grid sizes. The size of the reduced order model is

insensitive to the size of the discretization.

grid

number m k N n

1 168 9 1545 9

2 283 16 2673 9

3 618 29 6036 9

Table 1 The number m of observations, the number k of con-

trols, the size N of the full order system, and the size n of the

reduced order system for three discretizations.

Figure 2 shows the largest Hankel singular values for

the fine grid discretization, together with the threshold

10−4σ1 indicated by the solid line.
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Hankel Singular Values

Fig. 2 The largest Hankel singular values and the threshold

10−4σ1.

For the numerical solution of the optimal control

problem (9), (10) and of its reduced version (15), (16)

we use the Crank-Nicolson method in time with time

step size 10−2. The resulting problem is solved using the

Conjugate Gradient method with initial guess u = 0.

The Conjugate Gradient is stopped if the initial residual
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is reduced by a factor 10−4. Figure 3 shows the integrals

∫
U1

u2(x, t)dx and
∫

U2
u2(x, t)dx of the optimal controls

computed using the full and the reduced order model

on the fine grid problem. The full and the reduced order

model solutions are in excellent agreement as expected

by Corollary 1. For the fine grid problem, the error

between full and the reduced order model solutions is

‖u∗ − û∗‖2
L2 = 6.2 · 10−3.

The convergence histories of the Conjugate Gradi-

ent algorithm applied to the full order and reduced or-

der optimal control problem are shown in Figure 4. The

convergence behavior of the Conjugate Gradient algo-

rithm applied to the full and the reduced order prob-

lems is nearly identical. Although there is no rigorous

theoretical justification for this behavior, it is not sur-

prising, given the gradient error bounds derived in The-

orem 1.

5.2 Shape Optimization

Our second example is a shape optimization problem

governed by the heat equation. The domain Ω is of

the type shown in Figure 5 with a circular hole ΩH .

It is decomposed into subdomains Ω1 = ΩA ∪ ΩB and

Ω2 = ΩC \ ΩH . The boundary ∂Ω is decomposed into

ΓL, ΓR, ΓT , ΓB , and ΓH = ∂ΩH . The interface between

Ω1 and Ω2 is given by ΓI = (ΩA ∩ ΩC) ∪ (ΩB ∩ ΩC).
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10
−6

10
−4

10
−2

10
0

10
2

Time
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Time

Fig. 3 The top plot shows the integrals
R

U1
u2
∗
(x, t)dx and

R

U1
bu2
∗
(x, t)dx of the optimal controls computed using the full

(solid blue line) and and the reduced order model (dashed red

line). The bottom plot shows the integrals
R

U2
u2
∗
(x, t)dx and

R

U2
bu2
∗
(x, t)dx of the optimal controls computed using the full

(solid blue line) and and the reduced order model (dashed red

line). The full and reduced order model solutions are in excellent

agreement.

Assuming a heat source f in Ω2 × (0, T ), no heat

flux through ∂Ω at any time, and zero initial temper-

ature, the objective is to design the shape of the top

Γ2,T and the bottom Γ2,B of ∂Ω2 in such a way that

a prescribed temperature distribution yd is achieved

in Ω2 × (0, T ) and on (ΓL ∪ ΓR) × (0, T ). We use a

parametrization Ω2(θ) of Ω2 by means of the Bézier
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Fig. 4 The convergence histories of the Conjugate Gradient

algorithm applied to the full (blue +) and the reduced (red o)

order optimal control problems.
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Fig. 5 Reference domain Ωref

control points θ ∈ R
k, k = kT + kB , of Bézier curve

representations of Γ2,T and Γ2,B , where kT and kB re-

fer to the number of control points for Γ2,T and Γ2,B ,

respectively. The shape optimization problem amounts

to the minimization of

J(θ) =

T∫

0

∫

ΓL∪ΓR

|y − yd|2dsdt +

T∫

0

∫

Ω2(θ)

|y − yd|2dxdt

subject to the differential equation

yt(x, t) − ∆y(x, t) + y(x, t) =f(x, t) in Ω(θ) × (0, T ),

n · ∇y(x, t) = 0 on ∂Ω(θ) × (0, T ),

y(x, 0) = 0 in Ω(θ).

and design parameter constraints

θmin ≤ θ ≤ θmax,

We set f = 100 in Ω2(θ) × (0, T ) and f = 0 else. Fur-

thermore T = 4. The bounds θmin, θmax on the design

parameters are chosen such that the design constraints

are never active in this example. We use kT = 3, kB = 3

Bézier control points to specify the top and the bottom

boundary of the variable subdomain Ω2(θ). The desired

temperature yd is computed by specifying the optimal

parameter θ∗ (specified in Table 3) below) and solving

the state equation on Ω(θ∗). The optimal domain Ω(θ∗)

is shown in Figure 6.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

Fig. 6 Optimal domain

For the semi-discretization in space we use conform-

ing piecewise linear finite elements with respect to a

simplicial triangulation of the computational domain

Ω(θ) that aligns with its decomposition into the sub-

domains Ω1 and Ω2. For D ⊆ Ω̄, we denote by Nh(D)

the set of nodal points in D. We use the domain de-

composition methodology as described in the previous

section and set N
(ν)
dof = card(Nh(Ω̄ν \ΓI)), ν = 1, 2, and

NΓI

dof := card(Nh(ΓI)) so that Ndof = N
(1)
dof + N

(2)
dof +

NΓI

dof is the total number of degrees of freedom.

The matrices A,M in the semidiscretized optimiza-

tion problem (1) are given as usual. If φi are the piece-
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wise linear basis functions associated with the triangu-

lation of Ω(θ), then, for example,

A(θ)ij =

∫

Ω(θ)

(∇φT
j ∇φi + φjφi)dx.

The matrix B(θ) ∈ R
Ndof×1 corresponds to the right

hand side f and is given by B(θ)i =
∫

Ω2(θ)
φidx such

that with u = 100,
∫

Ω(θ)
f(x, t)φidx = B(θ)u (recall

that f = 100 in Ω2(θ) × (0, T ) and f = 0 else). If

the boundary data in the heat equation were nonzero,

they would also be incorporated into B(θ) by adding

another column. For example, n · ∇y(x, t) = g1(x)g2(t)

on ∂Ω(θ) × (0, T ) would lead to a second column of

B(θ)i,2 =
∫

∂Ω(θ)
φig1(x)dx.

The observation matrix C
(1)
I in (22) is associated

with the term
T∫
0

∫
ΓL∪ΓR

|y − yd|2dsdt in the objective

function. If φi, i = 1, . . . , k1, are the basis functions

associated with the nodes on ΓL ∪ ΓR, then we com-

pute the entries of C
(1)
I ∈ R

k1×N
(1)
dof as (C

(1)
I )i,j =

∫
Ω1

φi(x)φj(x)dx for i = 1, . . . , k1, and j = 1, ..., N
(1)
dof .

We use automatic differentiation [10,19] to compute

the derivatives with respect to the design variables θ.

The semi-discretized optimization problems are solved

using a projected BFGS method with Armijo line search

[13]. The optimization algorithm is terminated when

the norm of projected gradient is less than ǫ = 10−4.

As before, we use the modified low-rank Smith method

in [11] with m = 4 shifts to solve the controllability and

observability Lyapunov equations (5). Figure 7 shows

the largest Hankel singular values. For the model re-

duction, we select those Hankel singular values σj , with

σj ≥ 10−4σ1. The threshold 10−4σ1 is indicated by the

solid line in Figure 7.
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Fig. 7 The largest Hankel singular values and the threshold

10−4σ1.

Table 2 displays the sizes for the full and the reduced

order problems.

N
(1)
dof

Ndof

Reduced 147 581

Full 4280 4714

Table 2 Sizes of the full and the reduced order problems

The optimal shape parameters θ∗ and θ̂∗ computed

by minimizing the full and the reduced order model, re-

spectively, are shown in Table 3. The error ‖θ∗− θ̂∗‖2 =

2.325 · 10−4 is proportional to the threshold applied to
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the truncation of the Hankel singular values, as pre-

dicted by Corollary 2.

θ∗ (1.00, 2.0000, 2.0000, -2.0000, -2.0000, -1.00)

bθ∗ (1.00, 1.9999, 2.0001, -2.0001, -1.9998, -1.00)

Table 3 Optimal shape parameters θ∗ and bθ∗ (rounded to 5

digits) computed by minimizing the full and the reduced order

model, respectively

The convergence histories of the projected BFGS

algorithm applied to the full and the reduced order

problems are shown in Figure 8. Except for the final

iterations, the convergence behavior of the optimiza-

tion algorithm applied to the full and the reduced or-

der problems is nearly identical. Although there is no

rigorous theoretical justification for this behavior, it is

not surprising, given the gradient error bounds derived

in Theorem 2.

6 Conclusions

We have integrated domain decomposition and balanced

truncation model reduction for the numerical solution

of a class of PDE constrained optimization problems

which are governed by linear time dependent advection

diffusion equations and for which the optimization vari-

ables are related to spatially localized quantities. Our

approach leads to a reduced optimization problem with

the same structure as the original one, but of poten-
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Fig. 8 The convergence histories of the projected BFGS algo-

rithm applied to the full and the reduced order problems. The top

figure shows the convergence history of the objective functionals

for the full (blue +) and reduced (red o) order model. The bottom

figure shows the convergence history of the projected gradients

for the full (blue +) and reduced (red o) order model.

tially much smaller dimension. We have derived an es-

timate for the error between the solution of the original

optimization problem and the solution of the reduced

problem. The estimate is largely determined by the bal-

anced truncation error estimate.

Our approach can be extended in various ways. It is

possible to admit localized nonlinearities in the PDE,

such as those considered in [21,22]. Using model reduc-

tion techniques for nonlinear systems such as proper



24

orthognal decomposition (POD) (see e.g., the overview

[12]) or extensions of balanced truncation to nonlinear

systems [14] one can apply our approach to nonlinear

PDEs. However, currently no a-priori error estimates

exists for these model reduction techniques and, conse-

quently, no estimate for the error between the solutions

of the original optimization problem and of the reduced

problem can be obtained.

7 Appendix

Lemma 4 Let A ∈ R
N×N and B ∈ R

N×m. If there

exists α > 0 such that

vTAv ≤ −α‖v‖2 ∀v ∈ R
N , (51)

then the solution of

y′(t) = Ay(t)+Bu(t), t ∈ (0, T ), y(0) = y0 (52)

obeys

‖y‖L2 ≤
√

2√
α
‖y0‖+

2

α
‖Bu‖L2 ≤

√
2√
α
‖y0‖+

2‖B‖
α

‖u‖L2 .

Proof We multiply the differential equation (52) by y(t)T

to obtain

1

2

d

dt
‖y(t)‖2 = y(t)TAy(t) + y(t)TBu(t)

≤ −α‖y(t)‖2 + y(t)TBu(t).

If we multiply the previous inequality by exp(αt) we

arrive at

d

dt

(
eαt‖y(t)‖2

)
≤ 2eαty(t)TBu(t).

Integration from 0 to t gives

‖y(t)‖2 ≤ e−αt‖y0‖2 +

∫ t

0

2eα(τ−t)y(τ)TBu(τ)dτ

and integration of this resulting equation from 0 to T

yields

∫ T

0

‖y(t)‖2dt

≤
∫ T

0

e−αtdt ‖y0‖2 +

∫ T

0

∫ t

0

2eα(τ−t)y(τ)TBu(τ)dτdt

≤ 1 − e−αT

α
‖y0‖2 +

∫ T

0

∫ T

τ

2eα(τ−t)dt y(τ)TBu(τ)dτ

=
1 − e−αT

α
‖y0‖2 +

∫ T

0

2(1 − eα(τ−T ))

α
y(τ)TBu(τ)dτ

≤ 1

α
‖y0‖2 +

∫ T

0

2

α
‖y(τ)‖ ‖Bu(τ)‖dτ

≤ 1

α
‖y0‖2 +

∫ T

0

1

2
‖y(τ)‖2 +

2

α2
‖Bu(τ)‖2dτ,

which implies the desired inequality. �

Lemma 5 Let M ∈ R
N×N be symmetric positive def-

inite, A ∈ R
N×N and B ∈ R

N×m. If there exists α > 0

such that vTAv ≤ −αvTMv for all v ∈ R
N , then the

solution of

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ) (53)

with y(0) = y0 obeys

‖y‖L2 ≤
√

2‖M−1/2‖‖M1/2‖√
α

‖y0‖+
2‖M−1‖

α
‖Bu‖L2 .

Proof If we multiply (53) by M−1/2 and apply Lemma 4

to the resulting system we obtain the estimate

‖M1/2y‖L2 ≤
√

2√
α
‖M1/2y0‖ +

2

α
‖M−1/2Bu‖L2 .
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This implies

‖y‖L2 = ‖M−1/2M1/2y‖L2

≤
√

2‖M−1/2‖√
α

‖M1/2y0‖ +
2‖M−1/2‖

α
‖M−1/2Bu‖L2

≤
√

2‖M−1/2‖‖M1/2‖√
α

‖y0‖ +
2

α
‖M−1‖‖Bu‖L2 .

�
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