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I. INTRODUCTION

THERE is a growing consensus that state of the art finite

element technology requires, and will continue to require,

too extensive computational resources to provide the neces-

sary resolution for complex high frequency electromagnetic

simulations, even at the rate of computational power increase.

This leads us to consider methods with a higher order of grid

convergence than the classical second order provided by most

industrial grade codes.

Moreover, the direct application of the finite element

method (FEM) on these high frequency problems leads to

very large, complex and possibly indefinite linear systems.

Unfortunately, direct sparse solvers do not scale well for

solving such large systems, and Krylov subspace iterative

solvers can exhibit slow convergence or even diverge [1].

Domain decomposition methods (DDM) provide an elegant

alternative, iterating between sub-problems of smaller sizes,

amenable to sparse direct solvers [2].

In this paper we investigate the use of high order Whitney

forms for the discretization of the sub-problems as well as the

interface conditions between the sub-domains.

II. PROBLEM DEFINITION

Let us start by considering the time-harmonic propagation

of an electrical wave e in an open waveguide Ω with metallic

boundaries Γ0. A source signal es is imposed on Γs. In order

to solve this problem with the FEM, the infinite domain is

truncated by a fictitious boundary Γ∞, on which a Silver-

Müller radiation condition is used. This leads to the following

problem:














curl curl e− k2e = 0 on Ω,
γT (e) = 0 on Γ0,

γT (e) = es on Γs,

γt (curl e) + k γT (e) = 0 on Γ∞,

(1)
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where k is the wavenumber,  the imaginary unit, and the

tangential trace and tangential component trace operators are

given by γT (v) : v 7→ n × v × n and γt (v) : v 7→ n × v,

with n as the unit vector outwardly oriented normal to Ω.

III. NON-OVERLAPPING DDM

Let us now review the construction of a non-overlapping

additive Schwarz domain decomposition method for the prop-

agation problem (1).

We start by decomposing the domain Ω into non-

overlapping sub-domains Ωi, with i ∈ {1, . . . , Ndom}. On a

given sub-domain Ωi, the interface with sub-domain Ωj is

denoted by Σij . Conversely, on sub-domain Ωj , the interface

with sub-domain Ωi is written Σji. The electric field on Ωi is

denoted by ei.

It can be shown [2] that the solution e of (1), on the whole

domain Ω, can be computed by the following iterative scheme

(indexed by p):






















curl curl e
p
i − k2e

p
i = 0 on Ωi,

γT (epi ) = 0 on Γ0
i ,

γT (epi ) = es on Γs
i ,

γt (curl e
p
i ) + k γT (epi ) = 0 on Γ∞

i ,

γt (curl e
p
i ) + S [γT (epi )] = g

p−1

ij on Σij ,

(2)

with

g
p
ij = −g

p−1

ji + 2S
[

γT (epj )
]

on Σij . (3)

The quantity g
p
ij represents the coupling of Ωi with Ωj , and the

operator S is a well chosen boundary transmission condition.

A short presentation of optimized boundary conditions can be

found in [3]. Let us remark that, in its simplest form (zeroth

order), the S operator is simply a complex value: S = k.

It is worth noticing [3] that solving iteratively (2) and (3)

can be rewritten as the application of the iteration operator A:

gp = Agp−1 + b,

where gp is the concatenation of the g
p
ij for 1 ≤ i, j ≤ Ndom,

and b contains the contribution of the source electric field.

Thus (2) and (3) can be solved using a Krylov solver applied

to:

(I −A)g = b, (4)
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where I is the identity operator. The set of sub-problems

in (2) can be solved independently and are of relatively

small size, since they are defined on small sub-domains.

This property allows us to use (sparse) direct solvers. It is

worth noticing that the interface problem is solved using a

matrix-free iterative solver. Thus, the operator (I −A) is never

explicitly constructed: only its application is required.

IV. HIGH ORDER DISCRETIZATIONS

Classically, DDM implementations make use of the standard

Nédélec basis functions [4]. Here we analyze the behav-

ior of the DDM when higher order bases are used, which

are paramount to the accurate solution of high frequency

propagation problems, thanks to their improved dispersion

properties [5]. In particular, we investigate the use of the

high order hierarchical Whitney forms on tetrahedra proposed

in [6], which associate the higher order degrees of freedom

to the edges, faces and volumes of the mesh elements. The

hierarchical nature of the bases allows to easily mix elements

of different orders in the same mesh. An efficient thread-based

parallel assembler [7] is used to mitigate the drawback of such

higher order elements, that is the high assembly time of the

FEM matrix.

In order to analyze both the accuracy and the efficiency of

the DDM with high order discretizations, we vary the FEM

discretization order of both ei and g, with basis orders ranging

between 1 and 4. (Order 1 refers to the complete first order

basis, not the standard Nédélec basis). We also vary the mesh

density from 1 to 32 elements per wavelength. Since multiple

basis orders are considered, the following notation is used:

O{e, g}, where e is the order used for ei and g the order for

g. We use the term non-mixed DDM when the same basis

orders are employed, and mixed DDM in the opposite case.

From the DDM point for view, we consider the following

transmission conditions: i) zeroth order [2]; ii) optimized

second order [8]; iii) Padé-localized square-root [9]. It is

worth noticing that higher order transmission conditions re-

quire auxiliary unknowns. Based on empirical results, the best

performance was found when those unknowns are discretized

using order g for the optimized second order conditions, and

using order e for the Padé-localized square-root conditions.

V. NUMERICAL EXPERIMENTS

We consider the propagation problem (1) in a rectangu-

lar waveguide 1.7 wavelengths long, with two sub-domains,

where the source field excites the TM1,1 mode at 1GHz. The

linear system (4) is solved using a non-restarted GMRES with

a relative tolerance set to 10−9 (from the PETSc [10] library).

The sub-problems (2) are solved with the direct sparse solver

MUMPS [11].

A. Solution accuracy

Let us start by analyzing the accuracy of the solution with

respect to the mesh size and the FEM discretization order,

using the zeroth transmission condition. Fig. 1 presents the L2

error between the analytic solution [12] and a given simulation,

and Table I summarizes the measured convergence rates. The

optimal convergence rate O
(

hp+1
)

(where p is the polynomial

order used and h the mesh elements size [13]) is recovered for

sufficiently fine meshes, which validates the implementation.

Solving the full problem in (1) or the DDM problem in (2)

and (3) is equivalent up to the iterative solver tolerance. It is

then worth motioning that, for the non-mixed cases, the same

solution accuracy was recorded when no DDM was used.
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Fig. 1. Relative error between analytic and FEM solution for different
discretization orders, when a zeroth order transmission condition is used.

TABLE I
CONVERGENCE RATE FOR NON-MIXED DDM.

FEM Order Measured convergence rate Optimal convergence rate

1 2.0 2
2 3.3 3
3 4.1 4
4 5.3 5

A decrease in the solution accuracy is observed on Fig. 1

for mixed-order cases, which can be explained by the low-pass

filtering introduced by the sub-discretization of g with respect

to e in the last equation of (2). In this situation, equation (1)

is no longer equivalent to equations (2) and (3) at the discrete

level. For each mixed-order, the relative error with respect to

the analytic solution is reported on Table II. For conciseness,

only the 8 mesh elements per wavelength case is considered.

If the error with respect to the non-mixed case is increased, it

still remains in an acceptable range.

The behavior of the optimized second order and the Padé-

localized transmissions conditions is fairly similar to the zeroth

order condition. For non-mixed orders, using higher order

transmission conditions does not change the solution accuracy

compared to the original problem (e.g., every order O{4, 4}
in Table II leads to the same accuracy). In the case of mixed

orders, for the two high order conditions, the solution accuracy

is reduced compared to the zeroth order one. However, as

for the zeroth order case, the solution error remains in an

acceptable range (see Table II).
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TABLE II
RELATIVE ERRORS AND ITERATION COUNTS FOR MIXED ORDERS

SIMULATIONS.

Condition Mesh size Order Error Iteration count

Zeroth 8

O{4, 1} 5.7× 10−3 71
O{4, 2} 2.9× 10−4 76
O{4, 3} 2.4× 10−5 81
O{4, 4} 1.9× 10−5 115

Second 8

O{4, 1} 3.9× 10−2 62
O{4, 2} 2.7× 10−3 53
O{4, 3} 1.3× 10−4 44
O{4, 4} 1.9× 10−5 39

Padé 8

O{4, 1} 8.4× 10−3 15
O{4, 2} 1.7× 10−4 15
O{4, 3} 7.2× 10−5 22
O{4, 4} 1.9× 10−5 31

B. Iteration count

Let us now study the iteration count of the DDM iterative

solver. Fig. 2 depicts the DDM iteration count for different

basis orders and transmission conditions. To complete this data

set, Table II reports some numerical values for a few mixed

order cases.

For the zeroth order and the Padé-localized square-root

conditions, mixed orders lead to a substantial decrease in the it-

eration count. On the other hand, mixed orders tend to increase

the iteration count for the optimized second order condition. In

the case of non-mixed orders, for the zeroth order condition,

we can notice a significant iteration count increase when high

order discretizations are used. On the other hand, for the higher

order transmission conditions, the discretization order increase

doesn’t seems to impact significantly the iteration count.

Alone, this last analysis is not sufficient to assess the

performance of high order DDM. Indeed, the problems solved

for the different test cases do not represent exactly the same

phenomenon, since different discretization orders are used.

In order to have a better comparison, let us now consider

simulations leading to an accuracy of same magnitude, as

shown on Table III. It is worth recalling that mixed order

discretizations lead to different errors, depending on the trans-

mission condition used. Thus, the iteration count cannot be

reported for the three conditions with the exact same accuracy.

Unavailable data are recorded by a dash.

For non-mixed simulations we observe that the iteration

counts, for a given transmission condition and accuracy, are

not significantly impacted by discretization order and mesh

size modifications. It is worth recalling that, in a first or-

der discretization context, the two higher order transmission

conditions are known to be robust with respect to the mesh

refinement. For the mixed order cases, as mentioned previ-

ously, the iteration count is substantially reduced, except for

the optimized second order case.

VI. ILLUSTRATIVE EXAMPLE

Let us now consider a less academic example: an open

segmented waveguide for photonics applications [14].

Basically, this waveguide consists in a chain of several

equispaced non-metallic cylinders in open space. For some
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Fig. 2. DDM iteration count for different discretization orders.

frequencies, the interference pattern between the cylinders may

lead to a guided wave, even if the system is open. Because of

the cylindrical nature of the geometry, curved mesh elements

are a natural choice. However, using this family of geometrical

elements require the use of high order discretization at the

FEM level.

Preliminary results are shown on Table IV. It is worth

noticing that the high iteration count is explained by the lack

of preconditioning of the iterative solver [15]. Without it, the

iteration count increases with the number of sub-domains. The

Padé-localized transmission condition was used on 24 sub-

domains with 10 order 2 mesh elements per wavelength. The

number of unknowns and the memory consumption are given

as the mean and standard deviation per sub-problems. Fig. 3

depicts the real part of the z-component (i.e., along the rods)

of ei.

As shown on Table IV, a ten million three dimensional

electromagnetic problem was simulated in a few hours with a
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TABLE III
COMPARISONS OF SIMULATIONS LEADING TO THE SAME ACCURACY.

Iteration count

Order Mesh size Accuracy Zeroth Second Padé

O{1, 1} 16 9.9× 10−2 115 48 41
O{2, 2} 4 9.8× 10−2 96 44 42
O{4, 3} 2 6.6× 10−2 61 – –

O{4, 3} 2 7.3× 10−2 – 41 –

O{4, 3} 2 6.7× 10−2 – – 18

O{2, 2} 16 7.7× 10−4 138 50 39
O{4, 4} 4 7.5× 10−4 114 44 37
O{4, 3} 4 8.2× 10−4 82 – –

O{4, 3} 4 1.6× 10−3 – 44 –

O{4, 3} 4 1.1× 10−3 – – 20

O{3, 3} 16 2.1× 10−5 125 43 34
O{4, 4} 8 1.9× 10−5 115 39 31

TABLE IV
PRELIMINARY RESULTS ON A SEGMENTED WAVEGUIDE.

Order Iteration count Memory Unknowns ei Time

O{3, 2} 297 17± 2 (GB) 422k± 31k 2 (h)
O{3, 3} 410 18± 2 (GB) 422k± 31k 4 (h)

high order FEM discretization. The high precision simulation

was prepared using mixed orders, thus enabling fast tests

with an acceptable accuracy. Finally, it is worth noticing the

excellent memory distribution across the computing nodes,

which is usually a serious limitation of direct solvers.

VII. CONCLUSIONS

In this paper, we analyzed, using numerical experiments,

the performance of different optimized domain decomposition

methods when used with high order FEM discretizations, in

terms of both solution accuracy and iteration count.

Two situations where considered for discretizing the phys-

ical unknowns ei and the interface unknowns g: i) the same

basis order is used (non-mixed order); ii) different basis orders

are used (mixed orders). We showed that, when the solution

accuracy is held constant, the DDM iteration count is not

significantly impacted by mesh size and discretization order

changes. We also showed that using mixed orders leads to

a significant iteration count improvement, but at an accuracy

decrease cost. These mixed orders are then suitable for pre-

liminary simulations with acceptable accuracy.

Overall, the combination of the optimized DDM (using

a process-based parallelism) with new efficient high-order

assembly methods (using a thread-based parallelism) leads to

a very precise, efficient and flexible simulation tool, suitable

for solving (very) large electromagnetic problems on high

performance heterogeneous computation platforms.
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