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Within the integral equation approach we study the dependence of the solution to the electromagnetic 
scattering problem from a perfect conductor with respect to the obstacle. We study the differentiability 
properties of strongly singular and vector valued boundary integral operators in Holder spaces. We prove 
that the solution to the scattering problem depends infinitely differentiable on the boundary of the obstacle. 
We give a characterization of the first derivative as a solution to a boundary value problem. 

1. Introduction 

In this paper we deal with the time harmonic electromagnetic scattering problem 
from a perfect conductor. This problem is one of the standard problems of mathemat- 
ical physics and of practical interest in many fields of applied mathematics, as for 
example geophysical exploration, radar or biomedical imaging. 

Consider a bounded obstacle D in R 3  with sufficiently smooth boundary aD. Let the 
scattering operator Y map the domain D onto the scattered field Es  for a fixed incident 
electromagnetic field E'". Especially in the framework of inverse problems it is interest- 
ing to study the solutions to the scattering problems in dependence of the domain of the 
scatterer. The inverse problem consists of looking for a solution of 

Es = Y ( D )  (1) 

given the scattered field Es on an exterior domain or the farfield E m  of E'. Y is 
non-linear and equation (1) is ill-posed, which causes the well known difficulties which 
arise in the solution of ill-posed problems as they are described for example in 
[l, 5,121. Here we deal with the diferentiability properties of the mapping (1) and with 
the computation of the derivatives. 

Using boundary integral equation methods to solve the scattering problem follow- 
ing Colton and Kress (cf. [ S ] )  it is possible to derive a representation of Y consisting 
of vector potentials on the boundary all and of weakly and strongly singular 
boundary integral operators. We briefly recall this method in section 2. We use section 
3 to prove the infinite Frechet diferentiability and write down the FrCchet derivatives 
of the integral operators used in section 2 in dependence of the domain. They are 
considered as operators between the spaces of continuous, Holder continuous and 
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Holder continuously differentiable functions on aD. Using well known properties of 
the Frtchet derivative (mainly the chain rule and an inversion rule) it is then possible 
to obtain the infinite FrCchet differentiability and the FrBchet derivatives of the 
scattering operator 9'. 

This work substantially extends a method which was introduced by the author to 
prove differentiability properties of acoustic obstacle scattering problems (cf. [17,19]). 
These ideas have also been adopted by Kress to solve the inverse scattering problem 
from a crack [9] and by Charalambopoulos to deal with the elastic scattering problem 
[3]. In section 4 we give a characterization of the derivative of E'. The derivative is 
shown to be a solution of a special boundary value problem. The arguments are 
presented in a way that will give us the possibility to characterize higher derivatives in 
a subsequent paper, when the differentiability properties of integral operators in 
Holder spaces of higher order are available [20]. 

The results can be considered to be the first step to apply Newton's method and 
Quasi-Newton methods to solve the inverse problem, but they seem to be interesting on 
their own right. 

2. The solution to the scattering problem 

We consider the scattering of a time-harmonic electromagnetic wave by a bounded 
obstacle D surrounded by a homogeneous medium with vanishing conductivity B = 0. 
The obstacle is assumed to be perfectly conducting. In the following analysis we 
consider only the space dependent parts of the electric and magnetic fields which we 
consider to be normed in a suitable way. For a derivation of this approach from the 
full Maxwell equations we refer to [S, Part 61. 

Consider the scattering of a given incoming wave Ein, Hi". We denote the scattered 
wave by Es,HH". Then the total wave E = E'" + Es,  H = Hi" + H6 must satisfy the 
reduced Maxwell equations 

curl E - ikH = 0, curlH,+ ikE = 0 (2) 
in the open exterior R 3 \ 6  of I) and the perfect conductor boundary condition 

V X E = O  (3) 

on the boundary aD, where v denotes the unit outer normal vector to the boundary 
aD. Here the wave number k is a constant given by 

with the electric permittivity E, the magnetic permeability p, the electric conductivity 
D and the frequency w > 0 of the time harmonic waves. Since we are only interested in 
the time harmonic case we will leave out in general the supplement reduced. A solution 
E , H  to the Maxwell equations whose domain of definition contains the exterior of 
some sphere is called radiating if it satisfies one of the Silver-Muller radiation 
conditions 

l i m ( H x x - r E ) = O  
r+ m 

( 5 )  
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or 

lim ( E x x  + rH)  = 0, 
r* m 

where r = I x I and where the limit is assumed to hold uniformly in all directions x / l x  I. 
BY 

we denote the fundamental solution of the Helmholtz equation 

AU + k2u = 0. (7) 

We use the notations CT(aD) and CTosa(aD), 0 < a < 1 for the spaces of all continu- 
ous and uniformly Holder continuous tangential fields equipped with the supremum 
norm and the Holder norm, respectively. Let us consider the electromagnetic obstacle 
scattering problem: given a solution Ei", Hi" to the Maxwell equations in R3 represent- 
ing an incident electromagnetic field, find a solution Es, H' E C'(!R3\a) to the Max- 
well equations such that the scattered field Es,  H' satisfies the Silver-Muller radiation 
condition and the total electric field E = E'" + Es satisfies the boundary condition 
v x E  = 0 on aD. Following Colton and Kress [5, Theorem 6.193 we look for 
a solution to the electromagnetic obstacle scattering problem using the combined 
magnetic and electric dipole distribution 

Es(x)  = curl a ( y ) @ ( x ,  y )  ds(y) 
Jm 

+ iqcurlcurl v ( y )  x ( S i a ) ( y ) @ ( x , y ) d s ( y ) ,  I. 
1 

H s ( x )  = 7 ik curl Es(x) ,  x E R3\aD, 

with a density a E T?"(aD) := { a  E CTo+(aD): Diva E Cosa(aD)}  and a real coupling 
parameter q # 0. Here the operator So is the acoustic single layer operator 

in the potential theoretic case where k = 0. Using the jump relations for vector 
potentials [4, section 2.61 we see that E', Hs solves the electromagnetic obstacle 
scattering problem provided the density solves the integral equation 

( I  + M + iqNSi)a = -2v x E'". (10) 
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The operator 

is bounded from CT(BD) into CT""(aD), 

(Nb) (x )  := 2v(x) x curlcurl v ( y )  x b ( y ) @ ( x ,  y)ds(y), x E aD, (12) 
L D  

is bounded from C1pa(aD,R3) into CTo>"(aD), S o  is bounded from C(aD,R3) into 
C0*"(aD,R3) and So is also bounded from C0*"(aD,R3) into C'*@(aD,R3) (cf. [4] or 
[7]). Colton and Kress establish in [S] the existence and the boundedness of the 
inverse of the operator ( I  + M + iqNSi) in T2"(aD) using the Riesz-Fredholm 
theory. With the same arguments using the mapping properties given above we obtain 
its invertibility and the boundedness of the inverse in CT(aD). We are interested in the 
values of the scattered field on a set G c R3\D, where we assume G to have an 
arbitrary positive distance from the domain D. We combine the potential (8) with the 
restriction operator to a linear bounded mapping Q :  CT(aD) -+ C(G). Define 
(Ra)(x) := v ( x )  x a(x), x E aD for continuous vector fields a defined on aD to obtain the 
representation 

E"(x) = -2Q(I + M + iqNSi)-'RE'" X E G ,  

1 
ik 

H'(x) = - curl Es((x), x E G, 

for the solution to the scattering problem. 
We want to study the properties of the mapping 9 : D -, FIG. For this we have to 

introduce a norm on a suitable set of domains. Let Do c R3 be a fixed and bounded 
reference domain with boundary of class Cz and let p be a sufficiently small real 
parameter. Then for a vector field r E C2(aD, R3) with norm 11 r Ilc2(aD,w,) c p the set 
aD, := { x  + r (x) ,  x E aD,} is again the boundary of class C2 of a bounded domain D,. 
Therefore on the ball Bt := { r  E CZ(aD, R3), )I r IIcz(aD,R,) < p }  the mapping r H Y ( D , )  
is well defined. Note that there may be different vector fields r l  and r2  which define the 
same domain DrI = Dr2.  We consider the mapping r H Y ( D , )  as an extension of the 
mapping Y to the set of vector fields and denote this mapping by 9'''. In the last 
section we also will use the notation Ba(" := { r  E C2."(aD, R3), ( 1  r I l c~ . .caD,Rs)  < p }  for the 
ball with radius p in the space of vector fields C2'"(aD, R3). 

To study the mapping 9'' : B; -+ C(G), r H E' = Y'"(r)  we transform the potential 
and the boundary integral operators onto the reference boundary allo.  A vector field 
d E C(aD,, R3) is transformed into a := Fc? E C(aDo, R3) by 

( Y d ) ( x )  := d ( x  + r(x)), x E aD. 

Note that for this transformation we have to know the vector field r rather than only 
the set aD,. Integral operators of the form 

( R G ) ( X )  = jaD, ~(X,y)~(y)ds(y),  x E aDr 
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are transformed into K by 

(KU)(X) := s ( R ( s - l a ) ) ( ~ )  x E ao 

= 1." k(r ,x ,y )a(y)J , ( r ,y )ds(y) ,  x 

where JT(r, y) denotes the Jacobian of the mapping x H x + r ( x )  and where we define 
k ( r , x ,  y) := k(x + r (x ) ,  y + r(y)). By v(r,x), x E aD, we denote the unit outer normal 
vector to the boundary aD, in the point x + r(x) .  We use the abbreviations D = Do 
and v ( x )  = v(0, x). In the following we use the same notation for the original and for 
the transformed functions and operators. Hence for the representation of Yex we 
obtain 

Y e x ( r )  = -2Q(r) (I  + M(r)  + i?N(r)So(r)')-lR(r)Ei", x E G.  (14) 

By BL(X, Y )  we denote the space of all bounded linear operators mapping a normed 
space X into a normed space Y .  Our goal is to study the differentiability properties of 
the mapping Y e x : B i  H C(G). For this we study each of the operators Q, M ,  N ,  
So and T in suitable operator spaces and then use functional analytic arguments to 
prove the infinite differentiability of Yex. To proceed in this way we have to modify the 
representation (14) for the following reason. For continuous tangential densities a we 
have for the kernel of the operator M 

v(x) x curlx{W,Y)a(Y)) = gradx@(x,y)(v(x) - V(Y),4Y)) 

Therefore the operator M considered on the space of continuous tangential densities 
a has the same regularity properties as the kernel of the double layer potential. Since 
R(r)E'" E CT(aD,) for the solution of the scattering problem the operator M can be 
considered in the space of tangential fields. But if we differentiate the operator R with 
respect to r, the derivative (aR/ar)E'" is no longer tangential to aD,. To handle this we 
consider the projection operator 

Pob := (V x b )  x v = b - (v, b )  V. (15) 

The operator Po stands for the orthogonal projection of a vector field b defined on aD 
onto the tangent plane of aD = aDo. The inverse P2 of the restriction of the operator 
Po to the space CT(aD,) is given by 

The operator Pz can be extended in an obvious way as a projection operator 
C(aD, R3) + CT(aD,). Define the operator f i ( r )  := M(r)P2(r) .  Then the operator fi is 
well defined for all continuous vector fields on the boundary aD. Consider an operator 
A : CT(QD,) -+ CT(aD,) such that I + A is invertible. Then we have 

(P,(I + A ) - ' P z )  = (Po(I + A ) P z ) - '  

= (I + PoAP,)-' 
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on CT(BD). Therefore inserting the identity ZcT(ao,) = P2P0 and using the operator 
M we derive from (14) the representation 

Y e x ( r )  = -2Q(r)P2(r)(Z + P o & f ( r )  + iqPo~(r)so(r)2P~(r))-'PoR(r)Ei". (17) 

We will study the differentiability properties of the mappings 

B,' + BL(CT(BD), C ( M ) )  : r H Q(r)P2(r) ,  
8: + BL(CT(aD),CT(aD)): r H (I + P o f i ( r )  + i q P o N ( r ) S o ( r ) 2 P 2 ( r ) ) - 1 ,  (18) 
B,' + CT(BD) : r H PoR(r)Ei" 

in the next section. 

3. Differentiability properties of the integral operators and of the scattering problem 

For the properties of the Frechet derivative of a non-linear mapping we refer to [2]. 
We just give a summary of our notations. 

Let Y be a normed space, X be a Banach space and let U c Y be an open set. 
A mapping A :  U + X is called Frtchet differentiable in ro E U, if there is a bounded 
linear mapping 

such that for the mapping A R ( r O )  defined by 

for all sufficiently small h E Y there holds 

AJdh) = 4 II h II ). 
The mapping 

is called the (Frtchet) derivative of A. The chain rule and the product rule for the 
FrCchet derivative are valid analogously to the finite dimensional case. Higher 
derivatives are defined inductively. The mth derivative for m E N is a m-linear form on 
Y x a + +  x Y. We use the abbreviation 

a"A am A 
- ( r o ,  h )  := - (ro,  h, . . . , h) .  
arm arm 

We deal with the FrCchet differentiability of integral operators of the form 

(A(r)cp)(x) := jG, f ( r9x ,Y)cp(Y)d4Y) ,  x E G1, r E u. 
Here GI and G 2  are subsets of R", D denotes a a-finite measure on G2 and U c Y is 
a subset of a normed space Y .  We assume the integral to exist in the sense of a Cauchy 



Domain Derivatives in Electromagnetic Scattering 1163 

principal value. Let F, c C(G, )  and F2 c C(G2)  be normed linear spaces. For every 
fixed r E V and a suitable kernel A is a bounded linear operator F2 -, Fl. We 
consider A as a mapping U --t BL(F2,Fl ) .  The following theorem states that for 
suitable properties of the kernel f the differentiation of (20) can be done by the 
differentiation of the kernelf: The derivative of A is then given by the operator 

We use the notation AG := {(x ,y) ,  x = y,  x E G 1 ,  y E G 2 }  and denote for any space 
Z the Ball with radius E and centre x by Q(x) := { Y E  Z ,  IIx - y II < E } .  

Theorem 1. Let G, ,  G2 be subsets of R", a a (a-finite) measure on G 2 ,  and U c Y an 
open convex subset of a Banach space Y ,  9, c C ( G , )  and F2 c C ( G 2 )  normed linear 
subspaces. Take ro E U and let f :  U x ( (G ,  x G2)\AG) + C be a continuous function 
with the following properties: 

(1) For all fixed x E G,, y E G2,  x # y the function f ( . , x , y ) :  U -, C is two times 

(2)  f ( r , x , - ) : G 2 \ { x )  -+@ and 
continuously Frtchet diflerentiable. 

af ( ro ,  h , x ; ) :  Gz\{x} -+ C 
ar 

are integrable in the sense of a Cauchy principal value for all x E G, ,  r E U ,  h E Y .  
h )  given by (20) and (21) are elements of BL(F2,  F2) for all r E U ,  

h E Y.  W e  have ,4(')(r0, h )  = O( 1) h 11). 
(3)  A(r)  and 

(4) For the second derivative we have for all cp E F2, r E U ,  h E R1 (0) 

with a constant c, and the limit 

exists uniformly for r E U, h E 52, (0) c Y .  

Then A is Frtchet diflerentiable in ro considered as a mapping U -, BL(F2,F1) ,  
r H A(r)  and the derivative of A is given by 

aA - ( ro ,  h )  = A(' ) (r0 ,  h). 
ar 

Remark. The theorem covers the case G1 = G2 and weakly singular or singular f as 
well as G I  n G2 = 8 and continuousf: For 9, and F2 we can choose suitable Holder 
spaces CnL~'"(G1) and C " I , ~ ( G ~ )  or C(G, )  and C(G,). The theorem is an extension of 
Theorem 3 of [17], where only weakly singular operators in the spaces of continuous 
functions are considered. 
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Proof. For all sufficiently small h we can assume ro + th E U b't E [0,1]. Then there 
holds the decomposition: 

(24) 
a f  f(rO + h,x,y) =f(rO,x,Y) +G(rO,h,x,y) +fR(rO?htX,y) 

and we have for all (x, y) E G1 x G2)\AG 

Because of (22) and (23) with the help of Lebesgue's theorem we find 

G c II 40 IFl II h II 2. 

We know that all terms of equation (24) are integrable on G2 and all integrals are well 
defined operators P2 -, 2Fl. We can use the linearity of the integral to obtain 

( N o  + h)cp)(x) = f (ro + h,x>Y)cp(Y)d4Y) 
{Ga 

= (A(ro)cp)(x) + (A(lYro, h)cp)(x) + (AR(I0, h)cp)(x), 
where the operator AR fulfills 

l l ~ ~ R ~ ~ 0 ~ ~ ~ 4 0 ~ ~ ~ l l F 1  Cl l40 I lSa Ilh1I2. 
Therefore A is FrCchet differentiable in ro considered as a mapping U --* BL(2F2, Fl) 

We now show that the mappings given by (18) at the end of section 2 are infinitely 
differentiable. The kernel of the operator Q (see equation (8)) is infinitely differentiable 

and the Frtchet derivative is given by A('), 
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in r and each derivative is again continuous and bounded on (x, y )  E G x aD. This can 
be seen by elementary calculations using the ingredients written down in [17], section 
4. So for a E C(aD, R3) the operators 

(Q(m)(r, h)a) (x)  

a m  
*- - (curlx(a(y)@fx, y r ) ) J T ( r , y ) }  (r, h)ds(y) .- I, arm 

a m  
-k iq i, @ {curlxcurlx(v(r,y) (S,2(r)a)(y)cD(x,yr))JT(r ,y)}  (r, h)ds(y), 

(26) 

x E G, where we replace the kernel of Q by its mth Frkchet derivative, is well defined. 
We can check the assumptions of Theorem 1 for the operator Q : B j  --* 
BL(CT(aD, R3), C(G)). We conclude that Q is Frechet differentiable and that the 
Frechet derivative of Q is given by Q(l). Inductively we derive with the help of 
Theorem 1 that Q is m times Frechet differentiable for arbitrary m E N and that the 
mth Frechet derivative of the operator Q is given by the operator Q(m). Because of the 
infinite differentiability of the normal vector the operator P2 is infinite differentiable 
and the derivative can be computed using the representation of [17] for the normal 
vector. The operator fi can be decomposed into 

x ~ a D .  Each of the integrals in (27) is weakly singular and so are the Frkchet 
derivatives of arbitrary order of the kernels. Analogously to Q we define the operators 
h(m) where the kernel of fi is replaced by its mth Frkchet derivative. In the same way 
as for the operators S and K in [17] we can see that a : B ;  +BL(CT(aD,R3), 
C(aD, R3) is Frtchet differentiable. Computing higher derivatives of the kernel by 
induction we obtain even the infinite differentiability of fi by repeating the arguments 
used to show the differentiability. The operator Po is a constant and therefore 
infinitely differentiable in 1. The infinite differentiability of R(r)E'" can be seen from 
the infinite differentiability of the normal vector v(r) and the analyticity of the incident 
field E'". 

In the following we will present the main part of the proof for the differentiability of 
the operator 

N :  B; H BL(c~-(~D, w), co*yao, ~ 3 ) ) .  (28) 
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+ 2v(r,x) x J DivT(v(r, y )  
aD 

The second integral is strongly singular and exists in the sense of a Cauchy principal 
value. Note that here we take the Cauchy principal value on the surface aD, not on 
aD,. It can be shown that for the operator N these limits are the same cf. [18]. For 
a Holder continuous function cp and for j = 1,2,3 define the operators 

r 

where Q0 denotes the fundamental solution @ in the potential theoretic case k = 0. 
The operators Tj contain the strongly singular part of N .  We can decompose N into 
a sum of integrals with weakly singular kernel and the operators Tj .  We will show the 
infinite differentiability of the operators 

(31) T j :  Bd t, BL(Co'"(aD, R3), Co*"(aD, R3)) 

and 

So : BZ H BL(C(BD), C0*"(8D)). (32) 

Lemma 2. The operators Tj  and So given by (31) and (32) are infinitely differentiable. 
The mth derivative of the operator T j  or So, respectively, is given by the operator TI"' or 
S;"', where we replace the kernel by its mth Frdchet derivative. 

Prooj Consider the operator T j .  Using again section 4 of [17] we derive that the 
kernel of Tj(r)  is infinite differentiable in r for fixed x ,  y E aD. By induction we compute 
the mth Frechet derivative of the kernel. We obtain a linear combination of terms of 
the form 

and 

x ( h ( x )  - h(yh &) - h(y ) )k3 ,  x # Y ,  X , Y  E aD, (34) 

where we have k l ,  ... , k 3  E No with k ,  - 2kz - 2k3 = 3 and j E { 1,2,3}. The kernels 
K are strongly singular. We have 
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Lemma 3. Take 9 E C"'(aD). Then the functions 

W&, h, x) := j w, h, x, Y)CP(Y) dS(Y), x E 
ao \n.w 

converge unformly for (r ,  h, x) E B,' x BI x aD towards a limit W (r, h, x). The functions 
W(r, h , . )  are Holder continuous on aD and we have 

II W(r, h , . )  IIcym) A II CP I l c o  qaD) (35) 
with a constant A independent of (r ,  h )  E B,' x B 1 .  

The proof of Lemma 3 can be obtained by a slight modification of the proof of 
Theorem 4.2 of [13], it is carried out in detail in [MI. Then according to Lemma 3 we 
know that for each m E No we have Tj"'(r, h )  E BL(CQa(aD), Co*a(aD)) and Tj"'(r) = 
O( /I h (1 ") uniformly for r E B,'. We have established all assumptions of Theorem 1 for 
the operators Tj"', m E N, and therefore obtain the infinite differentiability of the 
operator T j .  

We now consider the operator S o .  The Frechet differentiability of the kernel is 
shown in [17], but in the same way easily its infinite differentiability can be proved. By 
induction we again compute the mth Frichet derivative of the kernel. We obtain 
a linear combination of terms of the form 

(h (x )  - h(y) ,h(x)  - h ( ~ ) ) ~ 1 ( x  + ~ ( x )  - Y - r (y ) ,h (x )  - h ( m k '  . ajJ, 
j (I, h, Y ) ,  I X  + ~ ( x )  - Y - wlk3 ar 

(36) 

x # y , x , y ~ a D  w i t h j < p , 2 k l + 2 k 2 - k 3 = - 1 ,  2 k l + k 2 = p - j .  All terms are 
weakly singular. By straightforward calculation we compute the estimates (2.13) and 
(2.14) of Theorem 2.7 in [4] for the terms (36) uniformly for (r,  h )  E Bd x Q, . Then from 
Theorem 2.7 of [4] we derive that Sb"'(r, h )  E BL(C(aD), Co,'(aD)) and Sr'(r ,  h )  = 
O( 11 h 11 ") uniformly for r E B:, We have established the assumptions of Theorem 1 for 
the operators Sr', rn E No, and obtain the infinite differentiability of So ,  which ends 

Lemma 4. The operator N defned by  (28) is injnitely differentiable. The mth derivative 
of N is given by the operator N'"' where the kernel is replaced by  its mth Frtchet 
derivative. 

Proof: In Lemma 2 we have treated the strongly singular part Tj  and one weakly 
singular part So which occur in a suitable decomposition of N .  We extend the surface 
divergence Div to the space C'+'(aD,) by composition with an orthogonal projection 
operator onto the tangent space of aD,. Then the infinite differentiability of the 
extended surface Divergence DivT(v x b )  as a mapping BZ + BL(C'*"(aD, R3), 
C0*"(aD)) can be obtained by elementary considerations with the help of the relation 
(6.38) of [S]. We do not want to present here the estimates for the other weakly 
singular parts of the operator N .  They are analogous to the calculations for S o .  0 

To complete our analysis of the integral operators of section 2 we have to study the 
mapping properties of 

the proof. 0 

So : B: 4 BL(Co*"(aD), C'*"(aD)), r H So@). (37) 
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Lemma 5. The operator So given by (37) is injinitely differentiable. The mth Frdchet 
derivative is given by the operator SL"'for m E N. 

ProoF We show that for all r E B:, h E CZ(aD, R3) and m E N o ,  the operator SLm'(r, h )  
is element of BL(Co*"(aD), C'*"(aD)) and the operator norm ( 1  Sc' (r ,  h )  11 is bounded for 
(r,  h )  E B," x B1. Then we can use Theorem 1 to derive the statement. In view of 
Lemma 2 we only have to derive bounds for the Holder norm of the surface gradient 
GradSr'cp on aD. First we show that for cp E Cos"(aD) the function Sbm'(r, h)cp is 
differentiable on aD. Denote the kernel of SL"' by K ( x ,  y )  and define 

Let z be a Holder continuous unit tangential vector field in a neighbourhood V of 
a point x .  Then estimating the differential quotient of We we obtain 

whsre dT denotes the line element of the curve aD n an&) and vo is the unit normal 
vector to this curve in aD. By straightforward calculation we show that the limit E + 0 
of the second integral vanishes. The kernel of the first integral in (39) can be written as 
a sum of products of Holder continuous functions depending on x with terms of the 
form (33) and (34). From Lemma 3 we derive that 

converges uniformly on aD towards a function 

aw 
- (4. aT 

Therefore the surface gradient of Sr'cp exists and it is a Holder continuous function 
on aD. An application of Theorem 1 with the help of the estimates in the proof of 

0 Lemma 2 for the Holder norm of S'"'cp yields the statement of the lemina. 

We now collect all statements and obtain by functional analytic arguments the 
differentiability properties of the scattering problem. 

Theorem 6. The solution to the electromagnetic scattering problem depends infinitely 
diferentiable on the boundary of the scatterer in the sense that the mapping 

Ye' : Bi 3 C(G), r H E'(r) 

is infinitely differentiable. The derivatives can be obtained by differentiating the repres- 
entation (1 7) using the product rule. 

Proof: We derive the infinite differentiability of the operators (QP,), ( I  + PoG + 
iqPoNSi P z )  and (Po TE'") with the help of the product rule from the Lemmas 2-5 and 
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the considerations after Theorem 1. From the inversion rule (Theorem 2 of [17]) we 
obtain the infinite differentiability of the inverse of the second operator. Now the 
infinite differentiability of the mapping (17) can be obtained by again using the 
product rule. 

4. Characterization of the first derivative of Yex 

We want to characterize the first Frechet derivative of Yx as a solution to 
a boundary value problem. For this we return to Theorem 6 and present the 
arguments in a slightly different form which can also be used to derive inductively 
characterizations of higher derivatives. For the characterization of higher derivative 
we need the differentiability properties of boundary integral operators in Holder 
spaces of higher order. These results and the characterizations for higher derivatives 
can be found in [20]. Here we restrict ourselves to the characterization of the first 
derivative. 

Theorem 7. Let the domain Do have a boundary of class C'.". Consider for each r E B,$" 
the solution E'(r),H'(r) to the exterior Maxwell problem for the domain D, with 
boundary values g(r) E CT'."(aD), i.e. Es(r),Hs(r) solve the Maxwell equations in the 
open exterior of D,, satisfy the Silver-Miiller radiation condition and the boundary 
condition v ( r )  x E'(r) = g(r)  on aD,. Assume that the mapping B,$" -+ C1."(aD), r H g(r) 
is Frkchet diferentiable. Then the mapping B:' --t C ( M ) ,  r H E*((r) is Frkchet differen- 
tiable. The Frkchet derivative 

in the point r = 0 solves the exterior Maxwell problem with boundary values 

given by 

) ( j : ;  ) a9 
g,(x) = P - (h, X) - P ar (h, X) x E'(x) - V(X) x 1 - (x). hj(x) , (40) 

x E aD, where P is the orthogonal projection into the tangent plane of aD. 

Remark. Note that for the computation of the boundary values of the derivative 
aEs/ar  of the scattered field we have to work with boundaries of class C',". 

Proof: Looking for the solution to the exterior Maxwell problem in the form 
(8) we proceed as described in section 2 and we obtain for the solution the 
represen tation 

E'(r) = 2Q(r)(I  + PoICi(r) + i ~ ~ ~ ~ ( r ) ~ * ( r ) 2 ~ ~ ( r ) ) - 1  Pog(r). (41) 
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The Frttchet differentiability of E s  is proved in the same way as the differentiability of 
Yex. For the derivative we compute 

The functions 

a w  1 aEs 
and - * - -  .- curl- aE' 

ar a r  ik Or 
- 

solve the Maxwell equations in R3\B, and satisfy the Silver Muller radiation condi- 
tions. This can be derived by elementary calculation from the potentials in (42). We 
want to compute the boundary values of aE*/ar .  For this we use x: := x + r(x) + 
v(r, x) . z and x* := x:. 

I. We compute the boundary values v x Q( . . . ) for the last term of (42) at the point 
r = 0. With 

lim v(x) x (2Q(Z + M + iqNS:)- 'P,]b)(x') = (P2b)(x), x E aD, (43) 
1- 0 

P2 Po = P2 and P = Po = P2(0) we obtain 

2Q(I + M + iqNSi)-'P2 acPog(r)' a r  (O,h))(x')  

x E aD. 

11. Now we want to compute for the first two terms of equation (42) the limit 

(44) 

(45) 
a v  

= - P (z (h,  x) x E'(x) (x) * h j ( x ) )  , x E aD. 
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for all vector fields b E C(aD). We set b = 2P0(I + M + iqNSg)-'g, use E' = 
2Q(Z + M + iqNS;)-'g and obtain for the first term of (45) 

a 
~ ( x )  x {QP2b}(O, h, x') 

a 
ar 

= P-{v(r,x)x [QP2b](x:)}(0,h) - P 

- v(x)  x 1 - (XT) * h,(x) - v(x) x - (x*). - (0, h, x) . .) . (47) ( aE' axj ) ( j : ;  :: 
Using the results of [7] it is possible to show that the solution to the exterior 
Maxwell problem is in C'3"(R3\D) [18]. Therefore the limit of the last term of (47) 
for z -+ 0 vanishes. To show equation (45) now because of (47) we only have to 
verify 

We separately study the two parts Q = Q I  + iqQ2Sg of the potential Q given by 
equation (8). 

111. First we show 

{v(r,x) x [Q1P2b](x:)}(0,h) - 
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(50) 

2v(r, x) x [QI Pz b] (xi) = z(r,  z, x), x E aD, t > 0. (51) 

[ M P ~  b] (x) = Z(r,o,  x), x E ao .  (52)  

for T =- 0 and x E aD and obtain by elementary calculations 

The second part of (49) is given by the Frtchet derivative of (27). Now (27) reads 

We have to show the continuity of 

a 
Pz - { z ( r ,  T, x)} (0, h)  for T 3 0. ar 

For all terms we can proceed in the same way as in the parts I11 and IV of the 
proof of Theorem 11 of [19]. Here we do not want to write down all details but 
only give some hints for the treatment. The third term of z is treated in [19]. For 
the first two terms of z we again reach the aim with the help of 

a 
av grad,@= -grad,,@= -Grad,@-v-@, 

the use of U, defined in [19] and Lemma 3 of [17]. For the last term of z consider 
the decomposition 

The continuity of the Frkchet derivative of the last term of (53) is a consequence of 
Lemma 3 of [17]. We have P(v.2) = 0 for all A E R. If we use the Frechet 
differentiability of the first term of (53) we obtain 

Then collecting all statements we derive (49). 
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IV. Now we show 

{2v(r,x) x [ Q 2 S i P 2 b ] ( x : ) } ( 0 , h )  - (0,h)b 
ar 

For z 2 0 we define 

and 

u2(r ,  z, x) := 2v(r, x) 

With the help of (6.40) and Theorem 3.3 of [ 5 ]  we obtain 

v ( I , x ) x ( Q ~ S , Z P Z ~ ) ( X : ) = U ~ ( ~ , ~ , X )  + U ~ ( I , Z , X ) ,  x E a D  

for t > 0 and 

(NSiP ,b ) ( r ,x )  = u,(r ,O,x)  + uz(r ,O,x) ,  xEaD. 

We have to show the continuity 

a 
P z { u l ( r , ~ , x ) +  u 2 ( r , t , x ) } ( 0 , h )  for t-0. 

The continuity of the single layer part 

a 
- { w J , x ) } ( O , w  ar 

is shown in Part 111 of Theorem 7 of [17]. We decompose once more u2 = u3 + u4 
with 

03(r, t, X) := 2 DiVT(V(r) X (s:Pzb))(X)V(T, X) 

and 
r r  

04(1,t, X) := 2v(r, X) x J {DiVT(V(r) x (SiP,b))(y)  
aD 

The continuity 

a 
ar - {u4(r, z, x)} (r ,  h )  for t -, 0 
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can be obtained analogous to the first two terms of the expression z.  We have 

tf3(r, 7, X) = 2 Divdv(r) x (Si Pzb) ) (x )  (vfr, x ur(x:) + v(r, X) x K(x:), }, 
where Ur and V ,  are defined in Part I11 of Theorem 11 of [19]. The continuity of 

for z --t 0 has already been shown. We use 

to derive the continuity of 

a 
ar - {v(r, x) x V, (x : ) )  (0, h) for t -+ 0. 

Collecting all terms we now obtain (54), which ends the proof. 0 
Now we obtain the characterization of the Frechet derivative of the solution to the 

scattering problem. 

Corollary 8. Let the domain D have a boundary aD of class C'.". The Frtchet derivative 
of Yex at the point r = 0 with argument h E C2+(aD, W3) is a solution to the exterior 
Maxwell problem for  the domain D with boundary values 

xEaD, (57) 

where P denotes the orthogonal projection into the tangent plane and E = E'" + E s  is 
the solution to the original scattering problem for  the domain D. 

Proofi Take g ( r , x )  := -v(r,x) x E'"(x + r (x) ) ,  x E aD, in the preceding theorem. 0 
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