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Abstract

The problem of domain generalization is to take knowl-

edge acquired from a number of related domains where

training data is available, and to then successfully apply

it to previously unseen domains. We propose a new fea-

ture learning algorithm, Multi-Task Autoencoder (MTAE),

that provides good generalization performance for cross-

domain object recognition.

Our algorithm extends the standard denoising autoen-

coder framework by substituting artificially induced cor-

ruption with naturally occurring inter-domain variability in

the appearance of objects. Instead of reconstructing images

from noisy versions, MTAE learns to transform the original

image into analogs in multiple related domains. It thereby

learns features that are robust to variations across domains.

The learnt features are then used as inputs to a classifier.

We evaluated the performance of the algorithm on

benchmark image recognition datasets, where the task is

to learn features from multiple datasets and to then predict

the image label from unseen datasets. We found that (de-

noising) MTAE outperforms alternative autoencoder-based

models as well as the current state-of-the-art algorithms for

domain generalization.

1. Introduction

Recent years have seen dramatic advances in object

recognition by deep learning algorithms [23, 11, 32]. Much

of the increased performance derives from applying large

networks to massive labeled datasets such as PASCAL

VOC [14] and ImageNet [22]. Unfortunately, dataset bias

– which can include factors such as backgrounds, camera

viewpoints and illumination – often causes algorithms to

generalize poorly across datasets [35] and significantly lim-

its their usefulness in practical applications. Developing

algorithms that are invariant to dataset bias is therefore a

compelling problem.

Problem definition. In object recognition, the “visual

world” can be considered as decomposing into views (e.g.

perspectives or lighting conditions) corresponding to do-

mains. For example, frontal-views and 45◦ rotated-views

correspond to two different domains. Alternatively, we can

associate views or domains with standard image datasets

such as PASCAL VOC2007 [14], and Office [31].

The problem of learning from multiple source domains

and testing on unseen target domains is referred to as do-

main generalization [6, 26]. A domain is a probability

distribution Pk from which samples {xi, yi}
Nk

i=1 are drawn.

Source domains provide training samples, whereas distinct

target domains are used for testing. In the standard super-

vised learning framework, it is assumed that the source and

target domains coincide. Dataset bias becomes a significant

problem when training and test domains differ: applying a

classifier trained on one dataset to images sampled from an-

other typically results in poor performance [35, 18]. The

goal of this paper is to learn features that improve general-

ization performance across domains.

Contribution. The challenge is to build a system that rec-

ognizes objects in previously unseen datasets, given one

or multiple training datasets. We introduce Multi-task Au-

toencoder (MTAE), a feature learning algorithm that uses a

multi-task strategy [8, 34] to learn unbiased object features,

where the task is the data reconstruction.

Autoencoders were introduced to address the problem

of ‘backpropagation without a teacher’ by using inputs as

labels – and learning to reconstruct them with minimal

distortion [28, 5]. Denoising autoencoders in particular

are a powerful basic circuit for unsupervised representation

learning [36]. Intuitively, corrupting inputs forces autoen-

coders to learn representations that are robust to noise.

This paper proposes a broader view: that autoencoders

are generic circuits for learning invariant features. The

main contribution is a new training strategy based on nat-

urally occurring transformations such as: rotations in view-

ing angle, dilations in apparent object size, and shifts in

lighting conditions. The resulting Multi-Task Autoencoder

learns features that are robust to real-world image variabil-

ity, and therefore generalize well across domains. Exten-

sive experiments show that MTAE with a denoising crite-

rion outperforms the prior state-of-the-art in domain gener-

alization over various cross-dataset recognition tasks.
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2. Related work

Domain generalization has recently attracted attention in

classification tasks, including automatic gating of flow cy-

tometry data [6, 26] and object recognition [16, 21, 38].

Khosla et al. [21] proposed a multi-task max-margin classi-

fier, which we refer to as Undo-Bias, that explicitly encodes

dataset-specific biases in feature space. These biases are

used to push the dataset-specific weights to be similar to the

global weights. Fang et al. [16] developed Unbiased Metric

Learning (UML) based on learning to rank framework. Val-

idated on weakly-labeled web images, UML produces a less

biased distance metric that provides good object recognition

performance. and validated on weakly-labeled web images.

More recently, Xu et al. [38] extended an exemplar-SVM to

domain generalization by adding a nuclear norm-based reg-

ularizer that captures the likelihoods of all positive samples.

The proposed model is denoted by LRE-SVM.

Other works in object recognition exist that address a

similar problem, in the sense of having unknown targets,

where the unseen dataset contains noisy images that are not

in the training set [17, 33]. However, these were designed

to be noise-specific and may suffer from dataset bias when

observing objects with different types of noise.

A closely related task to domain generalization is do-

main adaptation, where unlabeled samples from the target

dataset are available during training. Many domain adapta-

tion algorithms have been proposed for object recognition

(see, e.g., [2, 31]). Domain adaptation algorithms are not

readily applicable to domain generalization, since no infor-

mation is available about the target domain.

Our proposed algorithm is based on the feature learn-

ing approach. Feature learning has been of a great interest

in the machine learning community since the emergence of

deep learning (see [4] and references therein). Some feature

learning methods have been successfully applied to domain

adaptation or transfer learning applications [9, 13]. To our

best knowledge, there is no prior work along these lines on

the more difficult problem of domain generalization, i.e.,

to create useful representations without observing the target

domain.

3. The Proposed Approach

Our goal is to learn features that provide good domain

generalization. To do so, we extend the autoencoder [7]

into a model that jointly learns multiple data-reconstruction

tasks taken from related domains. Our strategy is moti-

vated by prior work demonstrating that learning from mul-

tiple related tasks can improve performance on a novel,

yet related, task – relative to methods trained on a single-

task [1, 3, 8, 34].

3.1. Autoencoders

Autoencoders (AE) have become established as a pre-

training model for deep learning [5]. The autoencoder train-

ing consists of two stages: 1) encoding and 2) decoding.

Given an unlabeled input x ∈ R
dx , a single hidden layer

autoencoder fΘ(x) : Rdx → R
dx can be formulated as

h = σenc(W
⊤
x)

x̂ = σdec(V
⊤
h) = fΘ(x), (1)

where W ∈ R
dx×dy , V ∈ R

dy×dx are input-

to-hidden and hidden-to-output connection weights1 re-

spectively, h ∈ R
dh is the hidden node vector,

and σenc(·) = [senc(z1), ..., senc(zdh
)]⊤, σdec(·) =

[sdec(z1), ..., sdec(zdx
)]⊤ are element-wise non-linear acti-

vation functions, and senc and sdec are not necessarily iden-

tical. Popular choices for the activation function s(·) are,

e.g., the sigmoid s(a) = (1+ exp(−a))−1 and the rectified

linear (ReLU) s(a) = max(0, a).

Let Θ = {W,V} be the autoencoder parameters and

{xi}
N
i=1 be a set of N input data. Learning corresponds to

minimizing the following objective

Θ̂ := argmin
Θ

N
∑

i=1

L (fΘ(xi),xi) + ηR (Θ) , (2)

where L(·, ·) is the loss function, usually in the form of least

square or cross-entropy loss, and R(·) is a regularization

term used to avoid overfitting. The objective (2) can be op-

timized by the backpropagation algorithm [29]. If we ap-

ply autoencoders to raw pixels of visual object images, the

weights W usually form visually meaningful “filters” that

can be interpreted qualitatively.

To create a discriminative model using the learnt autoen-

coder model, either of the following options can be consid-

ered: 1) the feature map φ(x) := σenc(Ŵ
⊤
x) is extracted

and used as an input to supervised learning algorithms while

keeping the weight matrix Ŵ fixed; 2) the learnt weight ma-

trix Ŵ is used to initialize a neural network model and is

updated during the supervised neural network training (fine-

tuning).

Recently, several variants such as denoising au-

toencoders (DAE) [37] and contractive autoencoders

(CAE) [27] have been proposed to extract features that are

more robust to small changes of the input. In DAEs, the ob-

jective is to reconstruct a clean input x given its corrupted

counterpart x̃ ∼ Q(x̃|x). Commonly used types of corrup-

tion are zero-masking, Gaussian, and salt-and-pepper noise.

Features extracted by DAE have been proven to be more

discriminative than ones extracted by AE [37].

1While the bias terms are incorporated in our experiments, they are

intentionally omitted from equations for the sake of simplicity.
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Figure 1. The Multi-task Autoencoder (MTAE) architecture,

which consists of three layers with multiple separated outputs;

each output corresponds to one task/domain.

3.2. Multi­task Autoencoders

We refer to our proposed domain generalization algo-

rithm as Multi-task Autoencoder (MTAE). From an archi-

tectural viewpoint, MTAE is an autoencoder with multiple

output layers, see Fig. 1. The input-hidden weights repre-

sent shared parameters and the hidden-output weights rep-

resent domain-specific parameters. The architecture is sim-

ilar to the supervised multi-task neural networks proposed

by Caruana [8]. The main difference is that the output layers

of MTAE correspond to different domains instead of differ-

ent class labels.

The most important component of MTAE is the training

strategy, which constructs a generalized denoising autoen-

coder that learns invariances to naturally occurring trans-

formations. Denoising autoencoders focus on the special

case where the transformation is simply noise. In contrast,

MTAE training treats a specific perspective on an object as

the “corrupted” counterpart of another perspective (e.g., a

rotated digit 6 is the noisy pair of the original digit). The au-

toencoder objective is then reformulated along the lines of

multi-task learning: the model aims to jointly achieve good

reconstruction of all source views given a particular view.

For example, applying the strategy to handwritten digit im-

ages with several views, MTAE learns representations that

are invariant across the source views, see Section 4.

Two types of reconstruction tasks are performed dur-

ing MTAE training: 1) self-domain reconstruction and 2)

between-domain reconstruction. Given M source domains,

there are M ×M reconstruction tasks, of which M task are

self-domain reconstructions and the remaining M×(M−1)
tasks are between-domain reconstructions. Note that the

self-domain reconstruction is identical to the standard au-

toencoder reconstruction (1).

Formal description. Let {xl
i}

nl

i=1, be a set of dx-

dimensional data points in the lth domain, where l ∈
{1, ...,M}. Each domain’s data points are combined into

a matrix X
l ∈ R

nl×dx , where x
l⊤
i is its ith row, such

that (x1
i ,x

2
i , . . .x

M
i ) form a category-level correspondence.

This configuration enforces the number of samples in a cat-

egory to be the same in every domain. Note that such a con-

figuration is necessary to ensure that the between-domain

reconstruction works (we will discuss how to handle the

case with unbalanced samples in Section 3.3). The input

and output pairs used to train MTAE can then be written as

concatenated matrices

X̄ = [X1;X2; ...;XM ],

X̄
l = [Xl;Xl; ...;Xl] (3)

where X̄, X̄l ∈ R
N×dx and N =

∑M
l=1 nl. In words, X̄ is

the matrix of data points taken from all domains and X̄
l is

the matrix of replicated data sets taken from the lth domain.

The replication imposed in X̄
l constructs input-output pairs

for the autoencoder learning algorithm. In practice, the al-

gorithm can be implemented efficiently – without replicat-

ing the matrix in memory.

We now describe MTAE more formally. Let x̄⊤

i and x̄
l⊤
i

be the ith row of matrices X̄ and X̄
l, respectively, the feed-

forward MTAE reconstruction is

hi = σenc(W
⊤
x̄i),

f
Θ(l)(x̄i) = σdec(V

(l)⊤
hi), (4)

where Θ
(l) = {W,V(l)} contains the matrices of shared

and individual weights, respectively.

The MTAE training is achieved as follows. Let us define

the loss function summed over the datapoints

J(Θ(l)) =
N
∑

i=1

L
(

f
Θ(l)(x̄i), x̄

l
i

)

. (5)

Given M domains, training MTAE corresponds to minimiz-

ing the objective

Θ̂
(l)

:= argmin
Θ(l)

M
∑

l=1

J(Θ(l)) + ηR(Θ(l)), (6)

where R(Θ(l)) is a regularization term. In this work,

we use the standard l2-norm weight penalty R(Θ(l)) =
‖W‖22+ ‖V(l)‖22. Stochastic gradient descent is applied on

each reconstruction task to achieve the objective (6). Once

training is completed, the optimal shared weights Ŵ are

obtained. The stopping criterion is empirically determined

by monitoring the average loss over all reconstruction tasks

during training – the process is stopped when the average

loss stabilizes. The detailed steps of MTAE training is sum-

marized in Algorithm 1.

The training protocol can be supplemented with a de-

noising criterion as in [37] to induce more robust-to-noise

features. To do so, simply replace x̄i in (4) with its cor-

rupted counterpart ˜̄xi ∼ Q(˜̄xi|x̄i). We name the MTAE

model after applying the denoising criterion the Denoising

Multi-task Autoencoder (D-MTAE).
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Algorithm 1 The MTAE feature learning algorithm.

Input:

• Data matrices based on (3): X̄ and X̄
l, ∀l ∈ {1, ...,M};

• Source labels: {yli}
nl
i=1, ∀l ∈ {1, ...,M};

• The learning rate: α;

1: Initialize W ∈ R
dx×dh and V

(l) ∈ R
dh×dx , ∀l ∈ {1, ...,M}

with small random real values;

2: while not end of epoch do

3: Do RAND-SEL as described in Section 3.3 to balance the number

of samples per categories in X̄ and X̄
l;

4: for l = 1 to M do

5: for all row of X̃ do

6: Do a forward pass based on (4);

7: Update W and V
(l) to achieve the objective (6) with respect

to the following rules

V
(l)
ij ← V

(l)
ij − α

∂J({W,V(l)})

∂V
(l)
ij

,

Wij ← Wij − α
∂J({W,V(l)})

∂Wij

;

8: end for

9: end for

10: end while

Output:

• MTAE learnt weights: Ŵ ∀l ∈ {1, ...,M};

3.3. Handling unbalanced samples per category

MTAE requires that every instance in a particular domain

has a category-level corresponding pair in every other do-

main. MTAE’s apparent applicability is therefore limited to

situations where the number of source samples per category

is the same in every domain. However, unbalanced samples

per category occur frequently in applications. To overcome

this issue, we propose a simple random selection procedure

applied in the between-domain reconstructions, denoted by

RAND-SEL, which is simply balancing the samples per cat-

egory while keeping their category-level correspondence.

In detail, the RAND-SEL strategy is as follows. Let mc be

the number of subsamples in the c-th category, where mc =
min(n1c, n2c, . . . , nMc) and nlc is the number of samples

in the c-th category of domain l ∈ {1, . . . ,M}. For each

category c and each domain l, select mc samples randomly

such that nlc = n2c = . . . nMc = mc. This procedure is

executed in every iteration of the MTAE algorithm, see Line

3 of Algorithm 1.

4. Experiments and Results

We conducted experiments on several real world ob-

ject datasets to evaluate the domain generalization abil-

ity of our proposed system. In Section 4.1, we investi-

gate the behaviour of MTAE in comparison to standard

single-task autoencoder models on raw pixels as proof-of-

principle. In Section 4.2, we evaluate the performance of

MTAE against several state-of-the-art algorithms on mod-

ern object datasets such as the Office [31], Caltech [20],

PASCAL VOC2007 [14], LabelMe [30], and SUN09 [10].

4.1. Cross­recognition on the MNIST and ETH­80
datasets

In this part, we aim to understand MTAE’s behavior

when learning from multiple domains that form physically

reasonable object transformations such as roll, pitch rota-

tion, and dilation. The task is to categorize objects in views

(domains) that were not presented during training. We eval-

uate MTAE against several autoencoder models. To per-

form the evaluation, a variety of object views were con-

structed from the MNIST handwritten digit [24] and ETH-

80 object [25] datasets.

Data setup. We created four new datasets from MNIST

and ETH-80 images: 1) MNIST-r, 2) MNIST-s, 3) ETH80-

p, and 4) ETH80-y. These new sets contain multiple do-

mains so that every instance in one domain has a pair in

another domain. The detailed setting for each dataset is as

follows.

MNIST-r contains six domains, each corresponding to

a degree of roll rotation. We randomly chose 1000 digit

images of ten classes from the original MNIST training set

to represent the basic view, i.e., 0 degree of rotation;2 each

class has 100 images. Each image was subsampled to a

16 × 16 representation to simplify the computation. This

subset of 1000 images is denoted by M . We then created 5

rotated views from M with 15◦ difference in counterclock-

wise direction, denoted by M15◦ , M30◦ . M45◦ , M60◦ , and

M75◦ . The MNIST-s is the counterpart of MNIST-r, where

each domain corresponds to a dilation factor. The views are

denoted by M , M∗0.9, M∗0.8, M∗0.7, and M∗0.6, where the

subscripts represent the dilation factors with respect to M .

The ETH80-p consists of eight object classes with 10

subcategories for each class. In each subcategory, there are

41 different views with respect to pose angles. We took

five views from each class denoted by Ep0◦ , Ep22◦ , Ep45◦ ,

Ep68◦ , and Ep90◦ , which represent the horizontal poses, i.e.,

pitch-rotated views starting from the top view to the side

view. This makes the number of instances only 80 for each

view. We then greyscaled and subsampled the images to

28 × 28. The ETH80-y contains five views of the ETH-80

representing the vertical poses, i.e., yaw-rotated views start-

ing from the right-side view to the left-side view denoted

by E+y90◦ , E+y45◦ , Ey0◦ , E−y45◦ , and E−y90◦ . Other set-

tings such as the image dimensionality and preprocessing

stage are similar to ETH80-p. Examples of the resulting

views are depicted in Fig. 2.

Baselines. We compared the classification performance

of our models with several single-task autoencoder mod-

2Note that the rotation angle of the basic view is not perfectly 0
◦ since

the original MNIST images have varying appearances.
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Table 1. The leave-one-domain-out classification accuracies % on the MNIST-r and MNIST-s. Bold-red and bold-black indicate the best

and second best performance.
Source Target Raw AE DAE CAE uDICA MTAE D-MTAE

MNIST-r leave-one-roll-rotation-out

M15◦ , M30◦ , M45◦ , M60◦ , M75◦ M 52.40 74.20 76.90 72.10 67.20 77.90 82.50

M , M30◦ , M45◦ , M60◦ , M75◦ M15◦ 74.10 93.20 93.20 95.30 87.80 95.70 96.30

M , M15◦ , M45◦ , M60◦ , M75◦ M30◦ 71.40 89.90 91.30 92.60 88.80 91.20 93.40

M , M15◦ , M30◦ , M60◦ , M75◦ M45◦ 61.40 82.20 81.10 81.50 77.80 77.30 78.60
M , M15◦ , M30◦ , M45◦ , M75◦ M60◦ 67.40 90.00 92.80 92.70 84.20 92.40 94.20

M , M15◦ , M30◦ , M45◦ , M60◦ M75◦ 55.40 73.80 76.50 79.30 69.50 79.90 80.50

Average 63.68 83.88 85.30 85.58 79.22 85.73 87.58

MNIST-s leave-one-dilation-out

M∗0.9, M∗0.8, M∗0.7, M∗0.6 M 54.00 67.50 71.80 75.80 75.80 74.50 76.00

M , M∗0.8, M∗0.7, M∗0.6 M∗0.9 80.40 95.10 94.00 94.90 88.60 97.80 98.00

M , M∗0.9, M∗0.7, M∗0.6 M∗0.8 82.60 94.60 92.90 94.90 86.60 96.30 96.40

M , M∗0.9, M∗0.8, M∗0.6 M∗0.7 78.20 93.70 91.60 92.50 87.40 95.80 94.90

M , M∗0.9, M∗0.8, M∗0.7 M∗0.6 64.70 74.80 76.10 77.50 75.30 78.00 78.30

Average 71.98 85.14 85.28 87.12 82.74 88.48 88.72

(a) M (b) M15◦ (c) M30◦ (d) M45◦ (e) M60◦ (f) M75◦

(g) M (h) M∗0.9 (i) M∗0.8 (j) M∗0.7 (k) M∗0.6

(l) Ep0◦ (m) Ep22◦ (n) Ep45◦ (o) Ep68◦ (p) Ep90◦

Figure 2. Some image examples from the MNIST-r, MNIST-s, and

ETH80-p .

els: Descriptions of the methods and their hyperparameter

settings are provided below.

• AE [5]: the standard autoencoder model trained by

stochastic gradient descent, where all object views

were concatenated as one set of inputs. The number of

hidden nodes was fixed at 500 on the MNIST dataset

and at 1000 on the ETH-80 dataset. The learning rate,

weight decay penalty, and number of iterations were

empirically determined at 0.1, 3 × 10−4, and 100, re-

spectively.

• DAE [37]: the denoising autoencoder with zero-

masking noise, where all object views were concate-

nated as one set of input data. The corruption level

was fixed at 30% for all cases. Other hyper-parameter

values were identical to AE.

• CAE [27]: the autoencoder model with the Jacobian

matrix norm regularization referred to as the contrac-

tive autoencoder. The corresponding regularization

constant λ was set at 0.1.

• MTAE: our proposed multi-task autoencoder with

identical learning settings as AE, except for the learn-

ing rate set at 0.03, which was also chosen empirically.

This value provides a lower reconstruction error for

each task and visually clearer first layer weights.

• D-MTAE: MTAE with a denoising criterion. The

learning rate was set the same as MTAE; other hyper-

parameters followed DAE.

• uDICA: the unsupervised Domain-Invariant Compo-

nent Analysis [26].

We also did experiments using the supervised variant,

DICA. Surprisingly, the peak performance of uDICA is

consistently higher than DICA. A possible explanation is

that the Dirac kernel function measuring the label similarity

is less appropriate in this application.

We normalized the raw pixels to a range of [0, 1] for

autoencoder-based models and l2-unit ball for uDICA. We

evaluated the classification accuracies of the learnt features

using multi-class SVM with linear kernel (L-SVM) [12].

Using a linear kernel keeps the classifier simple – since our

main focus is on the feature extraction process. The LIB-

LINEAR package [15] was used to run the L-SVM.

Cross-domain recognition results. We evaluated the ob-

ject classification accuracies of each algorithm by leave-

one-domain-out test, i.e., taking one domain as the test

set and the remaining domains as the training set. For all

autoencoder-based algorithms, we repeated the experiments

on each leave-one-domain-out case 30 times and reported

the average accuracies. The standard deviations are not re-

ported since they are small (±0.1).

The detailed results on the MNIST-r and MNIST-s can

be seen in Table 1. On average, MTAE has the second

best classification accuracies, and in particular outperforms
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single-task autoencoder models. This indicates that the

multi-task feature learning strategy can provide better dis-

criminative features than the single-task feature learning

w.r.t. unseen object views.

The algorithm with the best performance is on these

datasets is D-MTAE. Specifically, D-MTAE performs best

on average and also on 9 out of 11 individual cross-domain

cases of the MNIST-r and MNIST-s. The closest single-task

feature learning competitor to D-MTAE is CAE. This sug-

gests that the denoising criterion strongly benefits domain

generalization. The denoising criterion is also useful for

single-task feature learning although it does not yield com-

petitive accuracies, see AE and DAE performance.

We also obtain a consistent trend on the ETH80-p and

ETH80-y datasets, i.e., D-MTAE and MTAE are the best

and second best models. In detail, D-MTAE and MTAE

produce the average accuracies of 87.85% and 87.50% on

the ETH80-p, and 97% and 96.50% on the ETH80-y.

Observe that there is an anomaly in the MNIST-r dataset:

the performance on M45◦ is worse than its neighbors

(M30◦ ,M60◦ ). This anomaly appears to be related to the ge-

ometry of the MNIST-r digits. We found that the most fre-

quently misclassified digits are 4, 6, and 9 on M45◦ , which

rarely occurs on other MNIST-r’s domains – typically 4 as

9, 6 as 4, and 9 as 8.

Weight visualization. Useful insight is obtained from

considering the qualitative outcome of the MTAE training

by visualizing the first layer weights. Figure 4 depicts the

weights of some autoencoder models, including ours, on the

MNIST-r dataset. Both MTAE and D-MTAE’s weights form

“filters” that tend to capture the underlying transformation

across the MNIST-r views, which is the rotation. This effect

is unseen in AE and DAE, the filters of which only explain

the contents of handwritten digits in the form of Fourier

component-like descriptors such as local blob detectors and

stroke detectors [37]. This might be a reason that MTAE

and D-MTAE features can provide better domain general-

ization than AE and DAE, since they implicitly capture the

relationship among the source domains.

Next we discuss the difference between MTAE and D-

MTAE filters. The D-MTAE filters not only capture the ob-

ject transformation, but also produce features that describe

the object contents more distinctively. These filters basi-

cally combine both properties of the DAE and MTAE filters

that might benefit the domain generalization.

Invariance analysis. A possible explanation for the ef-

fectiveness of MTAE relates to the dimensionality of

the manifold in feature space where samples concentrate.

We hypothesize that if features concentrate near a low-

dimensional submanifold, then the algorithm has found

simple invariant features and will generalize well.

To test the hypothesis, we examine the singular value

Figure 3. The average singular value spectrum of the Jacobian ma-

trix over the MNIST-r and MNIST-s datasets.

spectrum of the Jacobian matrix Jx(z) =
[

∂zi
∂xj

]

ij
, where

x and z are the input and feature vectors respectively [27].

The spectrum describes the local dimensionality of the man-

ifold around which samples concentrate. If the spectrum de-

cays rapidly, then the manifold is locally of low dimension.

Figure 3 depicts the average singular value spectrum on

test samples from MNIST-r and MNIST-s. The spectrum

of D-MTAE decays the most rapidly, followed by MTAE

and then DAE (with similar rates), and AE decaying the

slowest. The ranking of decay rates of the four algorithms

matches their ranking in terms of empirical performance in

Table 1. Figure 3 thus provides partial confirmation for our

hypothesis. However, a more detailed analysis is necessary

before drawing strong conclusions.

4.2. Cross­recognition on the Office, Caltech,
VOC2007, LabelMe, and SUN09 datasets

In the second set of experiments, we evaluated the cross-

recognition performance of the proposed algorithms on

modern object datasets. The aim is to show that MTAE

and D-MTAE are applicable and competitive in the more

general setting. We used the Office, Caltech, PASCAL

VOC2007, LabelMe, and SUN09 datasets from which we

formed two cross-domain datasets. Our general strategy is

to extend the generalization of features extracted from the

current best deep convolutional neural network [23].

Data Setup. The first cross-domain dataset consists

of images from PASCAL VOC2007 (V), LabelMe (L),

Caltech-101 (C), and SUN09 (S) datasets, each of which

represents one domain. C is an object-centric dataset, while

V, L, and S are scene-centric. This dataset, which we abbre-

viate as VLCS, shares five object categories: ‘bird’, ‘car’,

‘chair’, ‘dog’, and ‘person’. Each domain in the VLCS

dataset was divided into a training set (70%) and a test set

(30%) by random selection from the overall dataset. The
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(a) AE (b) DAE (c) MTAE (d) D-MTAE

Figure 4. The 2D visualization of 100 randomly chosen weights after pretraining on the MNIST-r dataset. Each patch corresponds to a row

of the learnt weight matrix W that represents a “filter”. The weight value wij ≥ 3 is depicted with white, wij ≤ −3 is depicted with

black, otherwise it is gray.

detailed training-test configuration for each domain is sum-

marized in Table 2. Instead of using the raw features di-

rectly, we employed the DeCAF6 features [13] as inputs to

the algorithms. These features have dimensionality of 4,096

and are publicly available.3

The second cross-domain dataset is referred to as the Of-

fice+Caltech [31, 19] dataset that contains four domains:

Amazon (A), Webcam (W), DSLR (D), and Caltech-256

(C), which share ten common categories. This dataset has

8 to 151 instances per category per domain, and 2,533 in-

stances in total. We also used the DeCAF6 features ex-

tracted from this dataset, which are also publicly available.4

Table 2. The number of training and test instances for each domain

in the VLCS dataset.
Domain VOC2007 LabelMe Caltech-101 SUN09

#training 2,363 1,859 991 2,297

#test 1,013 797 424 985

Table 3. The groundtruth L-SVM accuracies % on the standard

training-test evaluation. The left-most column indicates the train-

ing set, while the upper-most row indicates the test set.

Training/Test VOC2007 LabelMe Caltech-101 SUN09

VOC2007 66.34 34.50 65.09 52.49
LabelMe 44.03 68.76 43.87 41.02

Caltech-101 52.81 32.37 95.99 39.29
SUN09 52.42 42.03 40.33 74.21

Training protocol. On these datasets, we utilized the

MTAE or D-MTAE learning as pretraining for a fully-

connected neural network with one hidden layer (1HNN).

The number of hidden nodes was set at 2,000, which is less

than the input dimensionality. In the pretraining stage, the

number of output layers was the same as the number of

source domains – each corresponds to a particular source

domain. The sigmoid activation and linear activation func-

tions were used for σenc(·) and σdec(·).

3http://www.cs.dartmouth.edu/˜chenfang/proj_

page/FXR_iccv13/index.php
4http://vc.sce.ntu.edu.sg/transfer_learning_

domain_adaptation/

The MTAE pretraining was run with the learning rate

at 5 × 10−4, the number of epochs at 500, and the batch

size at 10, which were empirically determined w.r.t. the

smallest average reconstruction loss. D-MTAE has the

same hyper-parameter setting as MTAE except the addi-

tional zero-masking corruption level at 20%. After the pre-

training is completed, we then performed back-propagation

fine-tuning using 1HNN with softmax output, where the

first layer weights were initialized by either the MTAE

or D-MTAE learnt weights. The supervised learning

hyper-parameters were tuned using 10-fold cross validation

(10FCV) on source domains. We denote the overall models

by MTAE+1HNN and D-MTAE+1HNN.

Baselines. We compared our proposed models with six

baselines:

1. L-SVM: an SVM with linear kernel.

2. 1HNN: a single hidden layer neural network without

pretraining.

3. DAE+1HNN: a two-layer neural network with denois-

ing autoencoder pretraining (DAE+1HNN).

4. Undo-Bias [21]: a multi-task SVM-based algorithm

for undoing dataset bias. Three hyper-parameters

(λ,C1, C2) require tuning by 10FCV.

5. UML [16]: a structural metric learning-based algo-

rithm that aims to learn a less biased distance met-

ric for classification tasks. The initial tuning proposal

for this method was using a set of weakly-labeled data

retrieved from querying class labels to search engine.

However, here we tuned the hyperparameters using the

same strategy as others (10FCV) for a fair comparison.

6. LRE-SVM [38]: a non-linear exemplar-SVMs model

with a nuclear norm regularization to impose a

low-rank likelihood matrix. Four hyper-parameters

(λ1, λ2, C1, C2) were tuned using 10FCV.

The last three are the state-of-the-art domain generalization

algorithms for object recognition.
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Table 4. The cross-recognition accuracy % on the VLCS dataset.

Source Target L-SVM 1HNN DAE+1HNN Undo-Bias UML LRE-SVM MTAE+1HNN D-MTAE+1HNN

L,C,S V 58.86 59.10 62.00 54.29 56.26 60.58 61.09 63.90

V,C,S L 52.49 58.20 59.23 58.09 58.50 59.74 59.24 60.13

V,L,S C 77.67 86.67 90.24 87.50 91.13 88.11 90.71 89.05
V,L,C S 49.09 57.86 57.45 54.21 58.49 54.88 60.20 61.33

Avg. 59.93 65.46 67.23 63.52 65.85 65.83 67.81 68.60

Table 5. The cross-recognition accuracy % on the Office+Caltech dataset.

Source Target L-SVM 1HNN DAE+1HNN Undo-Bias UML LRE-SVM MTAE+1HNN D-MTAE+1HNN

A,C D,W 82.08 83.41 82.05 80.49 82.29 84.59 84.23 85.35

D,W A,C 76.12 76.49 79.04 69.98 79.54 81.17 79.30 80.52

C,D,W A 90.61 92.13 92.02 90.98 91.02 91.87 92.20 93.13

A,W,D C 84.51 85.89 85.17 85.95 84.59 86.38 85.98 86.15

Avg. 83.33 84.48 84.70 81.85 84.36 86.00 85.43 86.29

We report the performance in terms of the classification

accuracy (%) following Xu et al. [38]. For all algorithms

that are optimized stochastically, we ran independent train-

ing processes using the best performing hyper-parameters

in 10 times and reported the average accuracies. Similar

to the previous experiment, we do not report the standard

deviations due to their small values (±0.2).

Results on the VLCS dataset. We first conducted the

standard training-test evaluation using L-SVM, i.e., learn-

ing the model on a training set from one domain and test-

ing it on a test set from another domain, to check the

groundtruth performance and also to identify the existence

of the dataset bias. The performance is summarized in Ta-

ble 3. We can see that the bias indeed exists in every domain

despite the use of DeCAF6, the sixth layer features of the

state-of-the-art deep convolutional neural network. The per-

formance gap between the best cross-domain performance

and the groundtruth is large, with ≥ 14% difference.

We then evaluated the domain generalization perfor-

mance of each algorithm. We conducted leave-one-domain-

out evaluation, which induces four cross-domain cases. Ta-

ble 4 summarizes the algorithms’ accuracy. In general, the

dataset bias can be reduced by all algorithms after learn-

ing from multiple source domains (compare, e.g., the min-

imum accuracy over L,C,S → V tasks in Table 4 with the

maximum cross-recognition accuracy over the VOC2007’s

column in Table 3). Caltech-101, which is object-centric,

appears to be the easiest dataset to recognize, consistent

with an investigation in [35]: scene-centric datasets tend to

generalize well over object-centric datasets. Surprisingly,

the performance of 1HNN has already achieved competitive

accuracy compared to more complicated state-of-the-art al-

gorithms, Undo-Bias, UML, and LRE-SVM. Furthermore,

D-MTAE outperforms other algorithms on three out of four

cross-domain cases and on average, while MTAE has the

second best performance on average.

Results on the Office+Caltech dataset. We report the

experiment results on the Office+Caltech dataset. Table 5

summarizes the recognition accuracies of each algorithm

over four cross-domain cases. D-MTAE+1HNN has the

best performance on two out of four cross-domain cases

and ranks second for the remaining cases. On average, D-

MTAE+1HNN has better performance than the prior state-

of-the-art on this dataset, LRE-SVM [38].

5. Conclusions

We have proposed a new approach to multi-task feature

learning that reduces dataset bias in object recognition. The

main idea is to extract features shared across domains via

a training protocol that, given an image from one domain,

learns to reconstruct analogs of that image for all domains.

The strategy yields two variants: the Multi-task Autoen-

coder (MTAE) and the Denoising MTAE which incorpo-

rates a denoising criterion. A comprehensive suite of cross-

domain object recognition evaluations shows that the algo-

rithms successfully learn domain-invariant features, yield-

ing state-of-the-art performance when predicting the labels

of objects from unseen target domains.

Our results suggest several directions for further study.

Firstly, it is worth investigating whether stacking MTAEs

improves performance. Secondly, more effective proce-

dures for handling unbalanced samples are required, since

these occur frequently in practice. Finally, a natural appli-

cation of MTAEs is to streaming data such as video, where

the appearance of objects transforms in real-time.

The problem of dataset bias remains far from solved: the

best model on the VLCS dataset achieved accuracies less

than 70% on average. A partial explanation for the poor

performance compared to supervised learning is insufficient

training data: the class-overlap across datasets is quite small

(only 5 classes are shared across VLCS). Further progress

in domain generalization requires larger datasets.

6. Acknowledgments

The authors would like to thank Chen Fang for sharing

the Unbiased Metric Learning code and useful discussions.

2558



References

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex Multi-Task

Feature Learning. Machine Learning, 73(3):243–272, 2008.

2

[2] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and

M. Salzmann. Domain Adaptation on the Statistical Man-

ifold. In CVPR, pages 2481–2488, 2014. 2

[3] J. Baxter. A Model of Inductive Bias Learning. Journal of

Artificial Intelligence Research, 12:149–198, 2000. 2

[4] Y. Bengio, A. C. Courville, and P. Vincent. Representa-

tion Learning: A Review and New Perspectives. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(8):1798–1828, 2013. 2

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.

Greedy Layer-Wise Training of Deep Networks. In NIPS,

pages 153–160, 2007. 1, 2, 5

[6] G. Blanchard, G. Lee, and C. Scott. Generalizing from Sev-

eral Related Classification Tasks to a New Unlabeled Sam-

ple. In NIPS, volume 1, pages 2178–2186, 2011. 1, 2

[7] H. Bourlard and Y. Kamp. Auto-Association by Multilayer

Perceptrons and Singular Value Decomposition. Biological

Cybernetics, 59:291–294, 1988. 2

[8] R. Caruana. Multitask Learning. Machine Learning, 28:41–

75, 1997. 1, 2, 3

[9] M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized

Denoising Autoencoders for Domain Adaptation. In ICML,

pages 767–774, 2012. 2

[10] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Ex-

ploiting hierarchical context on a large database of object

categories. In CVPR, pages 129–136, 2010. 4

[11] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column

deep neural network for image classification. In CVPR,

pages 3642–3649, 2012. 1

[12] K. Crammer and Y. Singer. On the algorithmic implemen-

tation of multiclass kernel-based vector machines. JMLR,

2:265–292, 2001. 5

[13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. DeCAF: A Deep Convolutional

Activation Feature for Generic Visual Recognition. In ICML,

pages 647–655, 2014. 2, 7

[14] M. Everingham, L. Van-Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes Chal-

lenge 2007 (VOC2007) Results, 2007. 1, 4

[15] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. LIBLINEAR: A Library for Large Linear Classification.

JMLR, 9:1871–1874, 2008. 5

[16] C. Fang, Y. Xu, and D. N. Rockmore. Unbiased Metric

Learning: On the Utilization of Multiple Datasets and Web

Images for Softening Bias. In ICCV, pages 1657–1664,

2013. 2, 7

[17] M. Ghifary, W. B. Kleijn, and M. Zhang. Deep hybrid

networks with good out-of-sample object recognition. In

ICASSP, pages 5437–5441, 2014. 2

[18] B. Gong, K. Grauman, and F. Sha. Reshaping Visual

Datasets for Domain Adaptation. In NIPS, pages 1286–1294,

2013. 1

[19] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic Flow

Kernel for Unsupervised Domain Adaptation. In CVPR,

pages 2066–2073, 2012. 7

[20] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset. Technical report, California Inst. of Tech.,

2007. 4

[21] A. Khosla, T. Zhou, T. Malisiewicz, A. Efros, and A. Tor-

ralba. Undoing the Damage of Dataset Bias. In ECCV, vol-

ume I, pages 158–171, 2012. 2, 7

[22] A. Krizhevsky. Learning Multiple Layers of Features from

Tiny Images. Master’s thesis, Department of Computer Sci-

ence, University of Toronto, Apr. 2009. 1

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In

NIPS, volume 25, pages 1106–1114, 2012. 1, 6

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. In Proceed-

ings of the IEEE, volume 86, pages 2278–2324, 1998. 4

[25] B. Leibe and B. Schiele. Analyzing appearance and contour

based methods for object categorization. In CVPR, pages

409–415, 2003. 4

[26] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain Gen-

eralization via Invariant Feature Representation. In ICML,

pages 10–18, 2013. 1, 2, 5

[27] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio.

Contractive Auto-Encoders : Explicit Invariance During Fea-

ture Extraction. In ICML, number 1, pages 833–840, 2011.

2, 5, 6

[28] D. Rumelhart, G. Hinton, and R. Williams. Parallel Dis-

tributed Processing. I: Foundations. MIT Press, 1986. 1

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-

ing representations by back-propagating errors. Nature,

323:533–536, 1986. 2

[30] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-

man. LabelMe: A database and web-based tool for image

annotation. In IJCV, volume 77, pages 157–173. 2008. 4

[31] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting Vi-

sual Cateogry Models to New Domains. In ECCV, pages

213–226, 2010. 1, 2, 4, 7

[32] I. Sutskever, O. Vinyals, and Q. Le. Sequence to Sequence

Learning with Neural Networks. In NIPS, 2014. 1

[33] Y. Tang and C. Eliasmith. Deep networks for robust visual

recognition. In ICML, pages 1055–1062, 2010. 2

[34] S. Thrun. Is learning the n-th thing any easier than learning

the first? In NIPS, pages 640–646, 1996. 1, 2

[35] A. Torralba and A. Efros. Unbiased look at dataset bias. In

CVPR, pages 1521–1528, 2011. 1, 8

[36] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.

Extracting and Composing Robust Features with Denoising

Autoencoders. In ICML, 2008. 1

[37] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.

Manzagol. Stacked Denoising Autoencoders: Learning Use-

ful Representations in a Deep Network with a Local De-

noising Criterion. Journal of Machine Learning Research,

11:3371–3408, 2010. 2, 3, 5, 6

[38] Z. Xu, W. Li, L. Niu, and D. Xu. Exploiting Low-Rank

Structure from Latent Domains for Domain Generalization.

In ECCV, pages 628–643, 2014. 2, 7, 8

2559


