
To appear in Proceedings, First IEEE International Symposium on Requirements Engineering, San
Diego, California, 4-6 January 1993

Domain Modelling with Hierarchies of Alternative Viewpoints

Steve Easterbrook

School of Cognitive and Computing Sciences, University of Sussex,
Falmer, Brighton, BN1 9QH, UK. <e-mail: Easterbrook@cogs.susx.ac.uk>

Abstract
Domain modelling can be used within requirements

engineering to reveal the conceptual models used by the
participants, and relate these to one another. However,
existing elicitation techniques used in AI adopt a purely
cognitive stance, in that they model a single problem-
solving agent, and ignore the social and organisational
context. This paper describes a framework for representing
alternative, conflicting viewpoints in a single domain
model. The framework is based on the development of a
hierarchy of viewpoint descriptions, where lower levels of
the hierarchy contain the conflicts. The hierarchies can be
viewed in a number of ways, and hence allow the
participants to develop an understanding of one another’s
perspective. The framework is supported by a set of tools
for developing and manipulating these hierarchies.

1 Introduction

Domain modelling has an important role in require-
ments engineering. A domain model can form the basis
for developing a specification, but more importantly, it
provides a focus for the analysts’ understanding of the
design task. There are a number of techniques for eliciting
conceptual models of a domain, many of which were
developed in AI. However, it is not clear how these tech-
niques might be adapted for requirements engineering.

There is clearly a relationship between domain models
and specifications. For example, it is common to talk of a
"knowledge level" description of an AI system, to abstract
away from the implementation. However, it is not this
relationship in which we are interested. Rather, we regard
domain modelling as an exercise in externalising concep-
tual models of the domain used by participants in the
software design process. By externalising these models,
participants share them with one another, and develop an
understanding of each other’s perspectives. This provides a
basis for communication between disparate communities,
while reducing the chance of misunderstandings.

This paper presents an approach that allows many
different viewpoints to be combined into a single domain
model without necessarily resolving conflicts between

them. Conflicts are treated an important part of the
domain, and need to be represented and understood.

1.1 A socio-cognitive stance

For a software engineering team to work together
effectively, careful co-ordination is required. This implies
that members of the team must have a degree of shared
understanding of the task. Achieving and maintaining this
shared understanding can be difficult, given the complexity
of the task. To a certain extent a shared understanding is
established through the production of key documents
during the software process, which define the task through
a series of publicly examinable specifications.

However, misunderstandings, breakdowns of co-
ordination, and conflicts still occur in the software
process. Part of the problem is dealing with the sheer
amount of information involved, and the changeability of
that information. A recent field study of the behavioural
aspects of software design [1] identified three major
problem areas: the thin spread of application domain
knowledge; fluctuating and conflicting requirements; and
breakdowns in communication and co-ordination.

Abstractions help the software team to cope, but also
introduce new problems. An abstraction represents a
particular perspective, suppressing detail that is irrelevant
to that perspective. If the assumptions on which an
abstraction is based are not articulated, it may be difficult
to understand and evaluate the abstraction. Robinson &
Bannon [10] suggest that disparities between designers’
goals and the way systems are used are often due to
‘ontological drift’: as abstractions pass through the
different sub-groups of an organisation they are interpreted
in terms of that particular community’s set of meanings,
which frequently do not map onto other groups’ sets of
meanings. Consequently, as the design progresses through
the organisation, it is subjected to differing analyses and
interpretations.

We argue that problems of ontological drift can be
tackled using a process of collaborative domain modelling
to develop shared understanding between communities. In
particular, we wish to apply the techniques developed in
knowledge acquisition for eliciting conceptual models.
However, there are some important differences between the

concerns of requirements engineering and knowledge
acquisition. Current research in the latter focuses on
models of problem solving behaviour, with the goal of
implementing systems that demonstrate such behaviour.
Emphasis is placed on imitation of an expert’s perfor-
mance. No attempt is made to model the social and organ-
isational setting in which the behaviour is embedded, as is
consistent with a purely cognitive stance. On the other
hand, much of software engineering deals with systems
that support human activities, and hence an understanding
of the social and organisation setting is crucial.

We take a ‘socio-cognitive’ stance, by which we mean
we are interested in the interaction of cognitive and social
activities, including issues of shared understanding, and
the relationship of mental representations with their social
and cultural settings. Instead of modelling a single
problem solving agent, we are modelling an organisation.
Knowledge needs to be elicited from many different
sources, and hence we need to deal with many different
viewpoints, and the inevitable conflicts between them. In
effect, our domain model will encompass a number of
different conceptual models, representing different
viewpoints and different roles within an organisation.

2 Related Work

The need to deal with multiple views is central to
requirements engineering, and a number of approaches
have emerged. For example, CORE [13] introduced the
notion of viewpoints. These represent components of the
system and its environment, and can be organisational,
human, software, or hardware. Areas of authority for each
viewpoint are precisely defined. There is no redundancy,
and hence no overlaps between viewpoints. Differences
can remain in the expected interaction between view-
points, which are ironed out in later steps of the method.
Effectively, the viewpoints are not used to represent
different views of the world, but together represent a
single consistent view of the many agents in the world.

Our approach to requirements engineering demands that
we support alternative views, to be compared and merged
collaboratively. Fickas reviews some of the most promis-
ing approaches [5], including Gradual Elaboration [8], in
which a small number of types of step are available to
build a specification incrementally, Parallel Development
[4], in which partial specifications are developed separately
according to different development concerns, and merged at
a later stage, and Knowledge-Based Critiquing [6] in which
an intelligent model of the domain is used to debug a
specification. Of these, the parallel development approach
is the most successful at supporting collaboration, with
the merge process acting as a focus for conflict resolution,
forcing the analyst to document the interaction between

different aspects of the specification. However, it is not
clear how the merge operations should best be carried out.

One approach to easing the integration of separate
specification components is through tools that support
negotiation. Robinson [11] uses a single arbitrator to
evaluate preferences expressed by various perspectives, and
to guide the search for new solutions. A single domain
model is used, in which needs are expressed as goals, and
perspectives associate different values with these goals.
Integration involves searching for novel combinations of
proposals, which increase the satisfaction of all perspec-
tives. A joint outcome space is used to identify an ideal,
but probably unachievable combination of perspectives, to
stimulate consideration of other combinations that come
close to this ideal. By contrast, Easterbrook [3] presents a
domain-independent technique for resolving conflicts
through a process of finding and classifying correspon-
dences between alternative domain descriptions.

Finkelstein has formalised the notion of a viewpoint as
having the following components [7]:

– a style, which is the representation scheme used;
– an area of concern, or domain;
– a specification, which is the set of statements in the

viewpoint’s style describing the area of concern;
– a work plan, which describes how the specification

can be changed, and any constraints on it;
– a work record, which describes how the specification

developed, and its current status.
This definition abstracts away from the people involved,
allowing one person to have several viewpoints (i.e.
several areas of concern), and one viewpoint to represent
several people (i.e. where people share an area of concern).

These approaches all provide the ability to model
different viewpoints. Further work is needed to clarify how
conflicts can be represented. A major issue is the need to
establish common ground between viewpoints. The
participants must have enough common ground to
communicate; such common ground is needed before
conflict can be expressed and recognised. In many of the
above models, the common ground is assumed: in parallel
elaboration the common ground is the initial specification
from which the separate developments proceed; in
Robinson’s approach, it is the shared domain model. The
formalised viewpoints model makes no assumptions about
common ground, and even allows different representation
schemes to be used. However, it is not yet clear how
correspondences can be found between viewpoints.

3 Representing Multiple Viewpoints

In [2], we describe a model of requirements elicitation
from multiple viewpoints, where a viewpoint is a self-
consistent description of an area of knowledge with an

(a)

maximise(circulation)
maximise(circulation) -> lending_li

lending_limits -> fines

(b)

maximise(circulation)

maximise(circulation) -> lending_li
lending_limits -> fines
not(fines)

(c)

maximise(circulation)
maximise(circulation) -> lending_li

lending_limits->fin not(fines

Figure 1: Evolving viewpoints. (a) A view-
point representing a librarian. (b) The
librarian adds the assertion ‘not(fines)’. (c)
A family of viewpoints is created, to handle
the inconsistency.

identifiable originator. Here we concentrate on problems
of identifying and distinguishing separate viewpoints, and
building viewpoints to represent them. We present
Analyser, an object-oriented tool for manipulating
hierarchies of related viewpoints, where descendant view-
points represent areas of uncertainty and conflict.

Analyser does not provide a method for elicitation of
requirements, but simply provides an environment in
which the elicited knowledge can be represented and
manipulated. The viewpoints use any suitable formalism,
and have no internal structure other than that provided by
the formalism. As such, they capture partial descriptions
of the world (‘perspectives’), without prescribing the
components of those descriptions. The system makes no
prescription for the requirements specification, but
concentrates on the domain modelling aspects of
requirements engineering.

4 Identifying Viewpoints

Before the acquisition process begins, there is little
indication of what the relevant viewpoints are, and yet it
is desirable to know which viewpoint an item belongs to
when it is elicited. Most attempts to provide intelligent
support for requirements definition make use of a pre-
existing domain knowledge base (e.g. [9]). In general,
however, the prior existence of such a knowledge base
cannot be assumed: requirements elicitation is the initial
exploration of a new application. The knowledge needed to
distinguish viewpoints is unlikely to be available prior to
elicitation of the knowledge embodied in the viewpoints.

Furthermore, distinctions between viewpoints might
only become apparent in retrospect. Our viewpoints do
not correspond to people. We regard a viewpoint as a
description of the world from a particular angle. More
precisely, it represents the context in which a role is
performed. Not only is it not always clear which
viewpoint a person is using at any one time, but
viewpoints can be shared by groups of people or
organisations. This can make it difficult to identify an
appropriate viewpoint for any particular item.

4.1 Evolving Viewpoints

Rather than create an extensive set of viewpoints
beforehand, the analyst evolves them as distinctions
between them become clear. The support environment
must allow a degree of fluidity in the representation of
viewpoints, so that the descriptions can be re-organised
into new viewpoints when new distinctions are discovered.

As a starting point, an initial set of viewpoints corre-
sponding to the people with whom the analyst interacts is
used. All assertions that a particular person makes are

collected as a viewpoint, to represent that person’s
conceptual model. As an example, for a library system,
the analyst may initially talk to two people: a librarian
and a user. Two viewpoints would be created, to keep their
contributions apart. As the elicitation continues, other
people may need to be interviewed, and new viewpoints
are added to represent them.

We noted that viewpoints do not correspond to people.
If an inconsistency arises within a viewpoint, then either a
mistake has been made, or the originator has been using
several incompatible perspectives. In this case the view-
point is split into several viewpoints to represent these
separate perspectives, as our definition of a viewpoint
specified that it be a self-consistent description. There are
several situations in which the need for such a split
becomes clear; these are discussed in more detail below. In
general, a viewpoint will need to be split if it contains
conflicting knowledge, or if a different representation is
needed for some part of the knowledge.

The Analyser system copes with conflicts by creating
families of viewpoints to handle them. New viewpoints
are descendants of the original viewpoint, so that they
inherit the original description. Conflicting items are
placed in different descendants, so that individually, each
remains self-consistent. Any items that are consistent
with both descendants remain in the original viewpoint, to
be inherited. The process is illustrated in figure 1.

When choosing which items to move to the descen-
dants to isolate the conflict, there are often several combi-
nations to choose from. For example, in figure 1 it would

Viewpoint Splitting Algorithm
1) Test for inconsistencies if the new item (A) were added to
a viewpoint. However, A is not added to the viewpoint yet.
2) If there are no inconsistencies, add A to the viewpoint.
3) If there is an inconsistency, then:

i) Create a descendant, X , to contain A . A is the
motivating statement for X.

ii) Create another descendant, Y.
iii) If not(A) is in the original viewpoint, then move it

to Y . Record not(A) as the motivating statement for Y ,
whether or not Y contains it.

iv) If any items in the original viewpoint are inconsistent
with Y, move them to X.

v) If any items in the original viewpoint are inconsistent
with X, move them to Y.

Figure 2: The algorithm for splitting
viewpoints.

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc...

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc... borrowing
curtailed

borrowing
restricted

Figure 3: A possible hierarchy of librarian
viewpoints, concerning the question of
fines. The diagram shows two possible sets
of active viewpoints.

be sufficient to separate any pair of statements. As the
viewpoint was (by definition) consistent before the newest
item was added, the new item can be considered to have
caused the inconsistency. Hence the newest item is always
chosen for one descendant, and the system attempts to
identify the closest conflicting item for the other. In this
case it is the last step in the inference chain which
generated the inconsistency. The new item that caused the
inconsistency, and its negation, are the motivating
statements of the two descendants respectively. The
algorithm for splitting viewpoints is given in figure 2.

There are several ways of viewing the resulting family
of viewpoints. The original viewpoint still exists as far as
the analyst is concerned, and can be seen to contain
competing descriptions of some particular sub-topic. At
some later date, a choice might be made, and the
descendants merged into a single consistent description.
The remainder of the viewpoint remains consistent, and
can still be used for inference. An alternative interpretation
is that there are now two separate viewpoints that happen
to share some areas of description: each is composed of
the union of one descendant with the parent viewpoint.

The process of refinement will eventually turn the
original set of viewpoints based on people into a hierarchy
of viewpoints, where each inherits the contents of its
ancestors. In particular, all viewpoints can be regarded as
having a single global ancestor, which holds any
consensus information. This global viewpoint can be
regarded as shared knowledge.

4.2 Viewpoint Hierarchies

Given the procedure described above, hierarchies of
viewpoints will develop as the elicitation proceeds. These
hierarchies are unlimited in depth, as descendants them-
selves may contain conflicts. The process can be regarded
as exploration of possibilities: if each split represents a

conflict requiring a decision, then each choice can be
explored in more detail, uncovering further conflicts. For
example, consider the librarian viewpoint. There may be
disagreement over whether fines are needed, and so two
descendants are created to represent these positions. The
viewpoint that advocates fines might itself be divided over
the type of fine needed (e.g. fixed or incremental), and then
further divided when the actual level of fine is considered
(see figure 3). The discussion of these latter issues does
not pre-suppose a decision has been taken about whether
to have fines, and the viewpoint that excludes fines is still
part of the model.

This example also serves to illustrate that the set of
relevant viewpoints varies depending on how the system
is viewed, and the hierarchies can be used for information
hiding. In the above example, when concentrating on
another part of the domain, we may wish to ignore the
conflict over fines, and consider there to be a single
librarian viewpoint (i.e. the common ancestor in figure 3).
At some point, another part of the model may depend on
whether we have fines, and so it would be useful to
consider there to be two librarian viewpoints, one that
wants fines and one that doesn’t. At a greater level of
detail still, we might consider there to be several
viewpoints, representing the different types of fines.
Clearly the set of relevant viewpoints varies according to
the level of detail needed (Figure 3).

Analyser supports this process of information hiding

LLLLiiiibbbbrrrraaaarrrriiiiaaaannnn ssss

VVVViiiieeeewwwwppppooooiiiinnnntttt

DDDDeeeessssccccrrrriiiippppttttiiiioooonnnn

Area of

dispute

Competing

alternative

fines

¬ D

D

?fines?

D??
C??

C ¬ C

not
fines

Figure 4: A single viewpoint may contain
several areas of uncertainty. The alterna-
tives are the descendants of the viewpoint.

by keeping track of which set of viewpoints are active.
Active viewpoints are displayed in full. Inactive
viewpoints are not displayed, but their presence is
indicated by flagging the disputed part of their parent
viewpoint. By selecting this flagged part, the user can ask
to view the descendants, and add them to the list of active
viewpoints. Making descendants active in this way can be
regarded as instantiating what the entire viewpoint would
look like if each of the descendants were chosen to resolve
the conflict. This can be useful for exploring consequences
of decisions. When descendants become active, their
common parent is no longer considered as a single
viewpoint, and so is no longer active. Once active,
viewpoints can be de-activated in favour of their parent.

The inheritance structure implies that the higher an
item in the hierarchy, the more widely agreed it is.
However, the hierarchies are developed as distinctions
between viewpoints are discovered. There is no guarantee
that the more fundamental distinctions will be recognised
earlier than those concerned with detail, even though the
former ought to appear higher in the hierarchy. While
interviews with originators naturally tend to start with
general concepts, and gradually focus in on details, funda-
mental disagreements are often not discovered until the
details are explored. For example, in figure 3, the
hierarchy should probably be arranged with the question of
sanctions higher than the question of fines, as fines are a
form of sanction. However, the question of fines occurred
early in the discussions, and discussion about sanctions
only occurred when considering what would happen if
there were no fines. In fact, the hierarchy will not always
develop by expansion of the leaves; there may
occasionally be a need to rearrange things higher up. In

the next section we discuss how to determine at what level
in the hierarchy a split should occur.

There are many ways to structure the set of viewpoints
into hierarchies. The example in figure 1 illustrated that it
can be hard to determine which item(s) are in dispute. It is
correspondingly hard to determine how viewpoint splits
might interact. In many cases a split only affects a small
part of the viewpoint, so that the new descendants inherit
a large body of common material. A future split in a
different area of this common description might be
entirely independent of the first split. Hence, a viewpoint
may be split in several different places, and have several
different sets of descendants.

A viewpoint description with several different sets of
descendants can be regarded as a description containing
several areas of uncertainty. For each of those areas,
several options might exist (see figure 4). Furthermore,
some options might also contain areas of uncertainty.
This view of the situation applies when the original agent
is active. However, if we make some of its descendants
active, the case isn’t quite so simple. As each descendant
inherits the whole of the parent description, it inherits any
other areas of uncertainty within that description. Hence if
one set of descendants are activated, any other descendants
of the parent viewpoint appear to be descendants of each of
the newly activated viewpoints (figure 5).

4.3 Placing Items

Initially, when the viewpoints represent people, there
is no difficulty determining to which viewpoint each piece
of information belongs. However, as the viewpoint hierar-
chies develop, the simple relationship between people and
viewpoints breaks down. While each viewpoint has a
specific originator, an originator may be represented by
several viewpoints. When a person is describing some area
of knowledge, it may not be clear which perspective that
person is using, and hence which viewpoint to place the
description in.

All the viewpoints corresponding to a particular
originator will be in a single hierarchy, having a single
ancestor. The viewpoints in the hierarchy all inherit from
this ancestor, and so any new item by that originator
could be placed in this top-level viewpoint. If the new
item is consistent with all previous items from the same
originator, the new item does belong in this viewpoint.
Unfortunately, checking consistency with all the
descendant viewpoints is computationally expensive: one
of the aims of using viewpoints was to reduce the need for
consistency checks.

The problem can be solved by the observation that new
knowledge is rarely elicited in isolation. During
elicitation, most items will be related to their immediate

(a)
fines no fines

reserve
collection

no reserve
collection

librarian
viewpoint

(b)

¬ F

F

R ¬ R

¬ F ¬ F

F

FR R¬ R ¬ R

Figure 5: A descendant inherits from its
parent other (unrelated) conflicts in that
parent. If the parent is active, it appears to
have several sets of descendants (a). If
one pair of descendants is active, each
member will inherit the other pair (b). The
two hierarchies in (b) are equivalent, but
are displayed differently.

a)

No lending
restrictions

Lending
restrictions
with fines

Incremental
fines

librarian
viewpoint

fixed
fines b)

fixed
fines

No lending
restrictions

Lending
restrictions
with fines

librarian
viewpoint

Incremental
fines

No
fines c)

librarian
viewpoint

Incremental
fines

Fixed
fines

No lending
restrictions

Lending
restrictions

With
fines

Without
fines

Figure 6: Splitting viewpoints within a hierarchy. The originator was elaborating the shaded
viewpoint in (a) when she reflected “of course, we may not need fines”. This conflicts with
“incremental fines”. If the shaded viewpoint was split (b), there would still be a conflict with
“lending restrictions with fines” inherited from above. The system works up the hierarchy,
to isolate the conflict. In this case the “lending restrictions” viewpoint is split (c).

predecessors; during validation, new information is added
in reaction to an existing viewpoint. The system records,
for each originator, which viewpoint was last accessed,
and uses this as a default for any new items.

The new item is checked for conflicts with the view-
point to which it is added. If there is no conflict, it can be
added directly. However, it is possible that the new item
may conflict with one of the descendants, as the descen-
dants contain more detail. Rather than check all the
descendants immediately, checking is deferred. As the
viewpoint to which the item was added is active, none of

its descendants can be. Hence, the descendants are flagged
as possibly inconsistent, to be checked when (and if) they
are made active.

If the new item conflicts with the viewpoint to which
it is added, then the viewpoint needs to be split. In fact, it
may not be appropriate to split the current viewpoint, as
the conflict might occur higher up the hierarchy. The
viewpoints at each level in the hierarchy contain less
detail than the ones below, so the system moves up the
hierarchy. The highest viewpoint with which the item
conflicts is the one that is split. Figure 6 illustrates this
process. Figure 7 describes what happens to existing
descendants of the viewpoint to which the item is added.

We noted that the item that caused a viewpoint to be
split is recorded as the motivating statement for the new
descendant. If it is retracted or modified, it may remove the
conflict, making it possible to re-unite the descendants.

4.4 Functionality of Viewpoint Creation
Tools

Analyser is a menu-based system for the creation and
manipulation of a set of viewpoints. All viewpoints
within the system are either added directly by the analyst,
or created by the system to handle conflicts. Viewpoints
added by the analyst are usually identified either by the
originator’s name, or the name of a role played by the
originator. Viewpoints that are created automatically are
identified by their motivating statements. These
viewpoints can be renamed by the analyst, if they appear
to represent identifiable perspectives.

Commands are provided to create and rename
viewpoints, list the active viewpoints and to display the
contents of a particular viewpoint. Active viewpoints can

Inheritance Rules for New Descendants
1) If no previous descendants exist, the usual algorithm
(figure 2) is used (a, b).
2) If the item is inconsistent with the viewpoint, then it
follows that it is inconsistent with all descendants. In this
case, two new descendants, X and Y are created. X will
contain the new item, while Y represents the status quo. Any
previous descendants become descendants of Y (c).
3) If the item is consistent with the viewpoint, it might be
inconsistent with some existing descendants. For each
family, test whether the new item is consistent with each
descendant. The following situations are possible:

i) The new item is consistent for all existing
descendants. In this case it can be added directly to the
original viewpoint (d).

ii) The new item is inconsistent with all existing
descendants. In this case rule 2 above applies (c)

iii) The new item is consistent with some descendants
and not others. If only one descendant in each pair is
inconsistent with the new item, it is placed in the alternative
to this descendant (e, f). Otherwise, two new descendants, X
and Y are created, as in rule 2. Pairs that are consistent with
the new item become descendants of X ; any that are both
inconsistent become descendants of Y (g).
Figure 7: Rules for creating descendants.
(Letters refer to the examples in figure 8).

be selected to be de-activated, in favour of an ancestor. In
this case any siblings are also removed from the list (This
action is not available for top level viewpoints). When the
contents of an active viewpoint are displayed, any areas of
conflict are flagged with question marks. These can be
expanded by activating the descendant viewpoints. In this
case the original viewpoint is removed from the list of
active viewpoints. Note that when a viewpoint is
displayed, all the items inherited from ancestor viewpoints
are also shown.

5 Inference Rules and Conflict Detection

As the model makes no restrictions on the
representation schemes used for viewpoints, the type of
reasoning that can occur within the knowledge base can
vary. We assume that an inference engine is provided for
any representation languages used. Inference rules for each
representation are held as a separate viewpoint, from
which the viewpoints using that representation inherit.
This maintains the modularity of the environment, and
allows new representations to be introduced as necessary.

When we discussed splitting inconsistent viewpoints,
we didn’t clarify how conflicts are detected. A set of
routines to test for conflicts are needed for each
representation scheme, which are stored with the inference
rules. In this way, the kinds of conflict tested for in each
representation can be varied as desired. For example, the
rules for detection of conflict might be based on detection
of logical inconsistencies (as in the examples above),

a)
A

B

C

D

A

B

C aaaasssssssseeeerrrrtttt((((DDDD))))

b)

A

B

¬ D A

B

¬ DD

aaaasssssssseeeerrrrtttt((((DDDD))))

c)

A
B

¬ D

Z ¬ Z

A
B

¬ D D

Z ¬ Z

aaaasssssssseeeerrrrtttt((((DDDD))))

d)

A
B

Z ¬ Z

A
B

D

Z ¬ Z

aaaasssssssseeeerrrrtttt((((DDDD))))

e)

A
B

¬ D
¬ E E

A
B

¬ D
¬ E E

D

aaaasssssssseeeerrrrtttt((((DDDD))))

f)

aaaasssssssseeeerrrrtttt((((DDDD))))
A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D

A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D D

g)

aaaasssssssseeeerrrrtttt((((DDDD))))
A

B

¬ C Z ¬ ZC
¬ D¬ D

A

B

¬ C Z ¬ ZC

¬ D D

Figure 8: Examples of descendent
creation. Note that when a new item is
added to one descendant, all other families
automatically inherit the split that contains
the new addition, as shown in figure 5.

together with tests for clashes of terminology.
New representations can be added to the system by

adding a viewpoint containing inference rules, and a set of
rules for detection of conflicts. We have not attempted to
investigate the various mechanisms in detail, but assume
that inference rules have been developed elsewhere for each
representation scheme used. Currently Analyser supports
first order predicate calculus, dataflow diagrams, and state

transition diagrams. The predicate calculus is supported
with a simplified set of rules for detecting conflicts, by
generating contradictions through the application of rules
such as modus ponens. The graphical representations
include validity constraints in their conflict detection
rules. For example, in a state transition diagram, a state
with two identically labelled transitions from it is treated
as a conflict.

6 Discussion

We presented an approach to domain modelling which
facilitates the identification and elaboration of viewpoints,
and introduces a method of representing conflicting
knowledge explicitly, using hierarchies of viewpoints.
Each viewpoint contains a description in some suitable
representation, and has a unique originator. Each piece of
knowledge exists within the context of a viewpoint, and
this context provides extra information about the
reliability and applicability of the knowledge. Analyser
currently exists as a prototype implementation.

6.1 Remaining Problems

One problem we have not addressed is how to recognise
and handle the use of different terminology. This is a
difficult problem when combining contributions from
many people [12]. There are, however, some mitigating
factors in Analyser. For instance, we assume that to a
certain extent participants will recognise instances of
mismatching terminology, either during translation into a
structured representation, or when the viewpoints are
presented back to them. Other features could be added to
ease the problem, for example, allowing viewpoints to
define synonyms. However, these techniques do not
constitute a satisfactory solution.

The problem of differing terminologies raises another
question. Interpretation of natural language utterances into
formal or semi-formal representations involves the formu-
lation of a suitable ontology. Different viewpoints will
use different terms to build their description, and there
might not be a simple correspondence between the sets of
terms. Certainly there is unlikely to be any pre-existing
common ontology. However, the viewpoints must use the
same terms, for comparisons, and to allow communi-
cation between participants. In fact, there does not need to
be a shared ontology, as long as correspondences between
terms can be found. The conflict resolution model
described in [3] addresses these problems in more detail.

Finally, we have glossed over the relationship between
inconsistency and conflict. Conflicts are detected if the
rules of a representation scheme are broken, or an
inconsistency is generated. However, there are conflicts

which might not surface in this way. For example,
Analyser is unable to detect conflicts between a person’s
goals unless they generate contradictions. Detection of
conflict is a difficult problem, and it is likely that a
collection of heuristics is needed. We have not attempted
to develop such heuristics.

References

[1] Curtis, B., H. Krasner, & N. Iscoe (1988) A Field Study of
the Software Design Process for Large Systems.
Communications of the ACM, 31 (11).

[2] Easterbrook, S. M. (1991a) Elicitation of Requirements
from Multiple Perspectives. PhD Thesis, University of
London.

[3] Easterbrook, S. M. (1991b) Resolving Conflicts Between
Domain Descriptions with Computer-Supported
Negotiation. Knowledge Acquisition: An International
Journal, Vol 3, pp 255-289.

[4] Feather, M. S. (1987) The Evolution of Composite
System Specifications. Proceedings, Fourth IEEE
International Workshop on Software Specification and
Design, Monterey, CA., April 3-4,1987.

[5] Fickas, S., (1987) Automating the Specification Process.
Technical Report No. CIS-TR-87-05, Dept of Computer
and Information Science, University of Oregon, Eugene,
OR.

[6] Fickas, S., & P. Nagarajan (1988) Being Suspicious:
Critiquing Problem Specifications. Proceedings, Seventh
AAAI National Conference on AI, p19-24.

[7] Finkelstein, A. C. W., M. Goedicke, J. Kramer, & C.
Niskier (1989) ViewPoint Oriented Software
Development: Methods and Viewpoints in Requirements
Engineering. Proceedings, Second Meteor Workshop on
Methods for Formal Specification, Springer-Verlag.

[8] Goldman, N. (1982) Three Dimensions of Design.
Proceedings, Second AAAI National Conference on AI.

[9] Reubenstein, H. B. (1990) Automated Acquisition of
Evolving Informal Descriptions. Ph.D. Thesis, Tech.
Report No AI-TR 1205, MIT Artificial Intelligence
Laboratory, Cambridge, MA.

[10] Robinson, M. & L. Bannon (1991) Questioning
Representations. In L. Bannon, M. Robinson & K.
Schmidt (eds) Proceedings of the Second European
Conference on Computer-Supported Cooperative Work:
ECSCW-91. Dordrecht: Kluwer.

[11] Robinson, W. N. (1990) Negotiation Behaviour During
Multiple Agent Specification: A Need for Automated
Conflict Resolution. Proceedings, International
Conference on Software Engineering.

[12] Shaw, M. L. G., & B. R. Gaines (1988) A Methodology
for Recognising Consensus, Correspondence, Conflict,
and Contrast in a Knowledge Acquisition System.
Proceedings, Third Knowledge Acquisition Workshop,
Banff, November 1988.

[13] Systems Designers (1985) CORE: the Method. CORE
manual issue 1.0, Systems Designers Scientific, Pembroke
House, Camberley, Surrey, UK

