
Volume 1, Number 2,}une, 1994
ISSN: 0928-8910

AUTOMATED
SOFTWARE

ENGINEERING
The International Journal of
Automated Reasoning and

Artificial Intelligence in
5Qftware Engineering

Editors-in-Chief

W. LEWIS JOHNSON
ANTHONY FINKELSTEIN

KLUWER ACADEMIC PUBLISHERS

Automated Software Engineering. 1. 177-203 (1994)
© J994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Domain-Oriented Design Environments

GERHARD FISCHER

Department ofComputer Science and /;,stituteof Cognitive Science,
University oj Colorado, Boulder. Colorado 80309

Abstract. The field of knowledge-based software engineering has been undergoing a shift in emphasis from
automatic programmingto human augmentation and empowerment. In our research work. we support this shift with
an approach that embeds human-computer cooperative problem-solving tools into domain-oriented. knowledge

based design environments. Domain orientation reduces the large conceptual distance between problem-domain
semantics and software artifacts. Integrated environments support the coevolution ofspecification and construction
while allowing designers to aCcess relevant knowledge at each stage within the software development process.

This paper argues that domain-oriented design environments (DODEs) are complementJu'y to the approaches
pursued with knowledge-based software assistant system.' (KBSAs). The DODE extends the KBSA framework by
emphasizing a human-centered and domain-oriented approach facilitating communication about evolving systems
among all stakeholders. The paper discusses the major challenges for software systems. develops a conceptual
framework to address these problems, illustrates DODE with two examples. and assesses the contributions of the
KBSA and DODE approaches toward solving these problems.

Keywords: automatic programming. cooperative problem solving. co-evolution of specification and construc
tion. critiquing. design. domain-oriented design environments. design rationale. end-user modifiability. evolution.
FRAMER, formal specifications, JANUS. knowledge-based software assistant, languages ofdoing. software reUse
and redesign. stak~llolders. upstream and downstream activities

1. Introduction

Software design is a challenging intellectual activity without a "silver bullet" (Brooks, 1987)

in sight. In order to make progress, we first have to understand what the most pressing prob

lems are. TIle field of knowledge-based software engineering has been undergoing a shift

in emphasis from automatic programming to human augmentation and empowerment. A

growing number of research efforts are using knowledge-based systems and new commu

nication paradigms to empower all stakeholderS in software design, not to replace them

(stakehoiders in a design process are all people who are affected by the design artifact and

who are involved in creating and evolving the design artifact). TIle idea of human augmen

tation, beginning with Engelbart (Engelbart and English, 1968), has been elaborated in the

last 25 years (e.g., Stefik, 1986; Simon, 1986; Hill, 1989; Fischer, 1990; Norman, 1993).

It has been applied to the domain of software design through projects such as the the Pro

grammer's Apprentice (Waters, 1985), the Software Designer's Associate (Kishida et aI.,

1988), the Knowledge Base Designer's Assistant (Schoen, Smith, and Buchanan, 1988),

the Knowledge-Based Software Assistant (White, 1991), LASSIE (Devanbu et aI., 1991),

ARIES (Johnson, Feather, and Harris, 1991), and earlier systems described by Barstow.

Shrobe, and Sandewall (1984).

Design in the context of this paper refers to the broad endeavor of creating artifacts (as

exercised by architects, industrial designers, curriculum developers, composers, etc., and

178 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS
179

Figure 1. Upstream versus downstream activities.

Problem T Specification T Implementation

Upstream Downstream

as defined and characterized, for example, by Simon (1981), Schoen (1983), Ehn (1988),

rather than to a specific step in a software engineering life-cycle model (located between
requirements and implementation (Royce, 1987».

DODEs are computational environments whose value is not restricted to the design of

software artifacts. They have been used for the design of software artifacts such as user

interfaces, voice dialog systems and COBOL programs, and they have served equally well

for the design ofkitchens, lunar habitats, and computer networks. My thesis is that domain

oriented design environments will become as valuable and as ubiquitous in the future as

compilers have been in the past, providing the design support most desirable and most

needed and serving as prototypes for other research efforts moving in the same direction

(e.g., ARPA's research program in domain-specific software architectures).

In this paper, I first present a brief description of major problems confronting software

design (drawn from the literature, from field studies, and from experience). A theoretical and

conceptual framework relevant to these problems will be developed in the following section.

This framework will be applied to assess the almost lO-year-old effort to develop knowledge

based software assistant systems (KBSAs) (Green et aI., 1983). Domain-oriented design

environments (DODEs) will be presented as an alternative to the KBSA approach and will

be illustrated by two prototype systems. The paper concludes with an assessment and

comparison between KBSAs and DODEs.

type of problem:

criteria to judge
solutions:

. primary source of
knowledge:

support environments:

interaction paradigm:

ill-defined problems

adequate, understandable,

enjoyable

domain workers

d o m a j n ~ o r i e n t e d

design environments

languages of

doing

well·defined problems

correct

software designers

knowledge-based

software assistants

lormal

specifications

2. Framing the Problem

Historically, software engineering research has been concerned with the transition from

specification to implementation ("downstream activities") rather than with the problem

of how faithfully specifications really addressed the problems to be solved ("upstream

activities") (Belady, 1985). Many methodologies and technologies were developed to

prevent implementation disasters (Sheil, 1983). The progress made to successfully reduce

implementation disasters (e.g., structured programming, information hiding, etc.) allowed

an equally relevant problem to surface: how to prevent design disasters (Sheil, 1983)

meaning that a correct implementation with respect to a given specification is of little value

if the specification does not adequately address the problem (Lee, 1992).

Upstream and downstream activities complement each other (Fischer et aI., 1991a) and

they need to be intertwined (Swartout and Balzer, 1982). But at the same time, they involve

different groups of people, and require different methodologies and support environments

(see Figure I). Following are major problems of software design that cannot be solved

without taking upstream activities into account.

Understanding the Problem Is the Problem

The predominant activity in designing complex systems is the participants teaching and

instructing each other (Curtis, Krasner, and Iscoe, 1988; Greenbaum and Kyng, 1991). Be

cause complex problems require more knowledge than any single person possesses, com

munication and collaboration among all the involved stakeholders are necessary. Domain

experts understand the practice and system designers know the technology. To overcome

this "symmetry of ignorance" (Rittel, 1984) (i.e., none of these carriers of knowledge can

guarantee that their knowledge is superior or more complete compared to other people's

knowledge), as much knowledge from as many stakeholders as possible should be activated

with the goal of achieving mutual education and shared understanding.

Integrating Problem Framing and Problem Solving

Design methodologists (e.g., Rittel, 1984; Schoen, 1983) demonstrate with their work the

strong interrelationship between problem framing and problem solving. They argue con

vincingly that (l) one cannot gather information meaningfully unless one has understood

the problem, but one cannot understand the problem without information about it; and

(2) professional practice has at least as much to do with defining a problem as with solving

a problem. New requirements emerge during development because they cannot be iden

tified until portions of the system have been designed or implemented. The conceptual

structures underlying complex software systems are too complicated to be specified accu

rately in advance, and too complex to be built faultlessly (Brooks, 1987). Specification and

implementation have to co-evolve (Swartout and Balzer, 1982), requiring the owners of the

problems to be present in the development.
If these observations and findings describe the state ofaffairs adequately, one has to wonder

why waterfall models (Royce, 1987) endure despite the overwhelming evidence that they

are not suited for most oftoday's software problems. Perhaps one reasonfor their survival is

that management likes the evaluative checkpoints possible in serial, orderly process models.

180
GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 181

Boehm (1988) analyses different process models and describes the spiral model providing

a risk-driven mix of specifying, prototyping and evolutionary development as an attempt

to overcome some of the shortcomings of earlier models such as waterfall models. While

the spiral model offers general guidelines to take users and domains seriously, it does not

emphasize domain-orientation techniques and methods to integrate problem framing and
problem solving.

Limitations ofFormal Specifications and CASE Tools

Many research efforts do not take into account the growing evidence that system require

ments are not so much analytically specified as they are collaboratively evolved through

an iterative process of consultation between end-users and software developers (CSTB,

1990). For example, CASE tools devise elaborate methods of insuring that software meets

its specification but hardly ever question whether there might be something wrong with the

specifications themselves. They provide support only after the problem has been solved. A

consequence of the thin spread ofapplication knowledge (Curtis, Krasner, and Iscoe, 1988)

is that specification errors often occur when designers do not have sufficient application do

main knowledge to interpret the customer's intentions from the requirement statements-a

communication breakdown based on a lack of shared understanding (Resnick, 1991).

The main objective offormal specifications is that they are "formal," which means thatthey

are manipulable by mathematics and logic and interpretable by computers. As such, these

representations are often couched in the language of the computational system. However,

such representations are typically foreign and unintelligible to end-users and get in the way

of trying to create a shared understanding between designers and their clients. Ehn (1988)

notes that languages of doing (such as prototypes, mock-ups, sketches, scenarios, or use

situations that can be experienced) are essential "objects-to-think-with" when creating such
an understanding.

The Needfor Change

Software systemsmodel parts of our world. Our world evolves in numerous dimensions

as new artifacts appear, new knowledge is discovered, and new ways of doing business

are developed. Successful software systems need to evolve. Maintaining and enhancing

systems need to become "first class design activities," extending system functionality in

response to the needs of its users. There are numerous fundamental reasons why systems

cannot be done "right." Designers are people, and people's imagination and knowledge are
limited.

Understanding People and Their Work

Nothing can be worse than designers who think everyone else is just like them (Greenbaum

and Kyng, 1991). In the early days of computing, almost all systems were developed and

used by computer professionals. Introspection by software designers served as a reasonable

source of knowledge at that time, but it has lost its power today for the development of sys

tems in application domains. Research in software engineering in the past has operated as an

overly prescriptive discipline, often postulating a "new human" (Simon, 1981) with interests

(e.g., detailed knowledge of low-level computer operation), knowledge (e.g., about work

procedures of an application domain), and motivations (e.g., to provide extensive amounts
of design rationale, or to deal with formal methods), which had little correspondence with

reality.

Reinventing the Wheel

Software design is a new design discipline relative to other more established disciplines.

I claim that software designers can learn a lot by studying other design disciplines such

as architectural design, engineering design, organizational design, musical composition,

and writing. For example, the limitations and failures of design approaches that rely on

directionality, causality, and a strict separation between analysis and synthesis have been

recognized in architecture for a long time (Rittel, 1984). A careful analysis of these failures

could have saved software engineering the effort expended in finding out that waterfall-type

models can at best be an impoverished and oversimplified model of real design activities.

Assessing the successes and failures of other design disciplines does not mean that they

have to be taken literally (because software artifacts are different from other artifacts), but

that they can be used as an initial framework for software design.

3. A Theoretical and Conceptual Frarnework

Beyond Automatic Programming: Cooperative Problem Solving

Until recently, many researchers believed (and maybe some still do) that the "the ultimate

goal ofartificial intelligence applied to software engineering is automatic programming"

(Rich and Waters, 1986). Rich and Waters (1988) modified their position when they argued

that the "cocktail party" description of automatic programming is based on a number of

faulty assumptions. Rather than "to get the human out of the loop," the direction should be

"to get the computer into the loop" (a goal explicitly articulated for KBSA (Green et aI.,

1983».

Automatic programming in its ultimate sense is not only not achievable (because the goals

need to be articulated by someone outside the automatic programming system), but it may

also be in particular situations not desirable, because humans enjoy "doing" and "deciding."

Automation is a two-sided sword. At one extreme, it can be regarded as a servant, relieving

humans of the tedium of low-level operations (e.g., compiling a program, computing the

d e p ~ n d e n c y graph between function calls, creating an index for a large document, etc.), and

thereby freeing them for higher cognitive functions. At the other extreme it can be viewed

as reducing the status of humans to "button pushers," and stripping work of its meaning

and satisfaction. In many situations humans enjoy the process, not just the product. They

182 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 183

want to take part in something. This is why they build model trains, why they plan their
vacations, and why they design their own kitchens.

Cooperative problem-solving approaches (Fischer, 1990) in which computational envi

ronments empower, augment, and complement human skills and knowledge are a more de

sirable and promising goal to pursue than is automatic programming. Cooperative problem

solving systems raise questions such as (a) which part of the responsibility can or should

be exercised by the human and which part by the computer, and (b) how do the human and

the intelligent system effectively communicate? Cooperative problem-solving approaches

do not deny the power of automation (Billings, 1991), but they focus our concerns on the

"right kind of automation" including interaction mechanisms designed for users rather than
for programs.

Communication and Coordination

Because designing complex systems is an activity involving many stakeholders, commu

nication and coordination are of crucial importance (Greenbaum and Kyng, 1991; Fischer

et aI., 1992a). The types of communication and coordination processes that can be differen

tiated are those between (1) designers and users/clients, (2) members of design teams, and

(3) designers and their computational knowledge-based design environment. Byemphasiz

ing design as a collaborative activity, domain-oriented design environments support three

types of collaboration: (l) collaboration between domain-oriented designers (e.g., profes

sional kitchen designers) and clients (owners of the kitchen to be built), (2) collaboration

between domain-oriented designers and design environment builders (software designers),

and (3) long-term indirect collaboration among designers (creating a virtual collaboration

.between past, present, and future designers). Design environments provide representations

that serve as languages ofdoing (Ehn, 1988) and therefore help increase the shared context
(Resnick, 1991) necessary for collaboration.

Domain-Orientation

In a conventional, domain-independent software environment, designers who produce new

software artifacts typically have to start with general programming constructs and method

ologies (Shaw, 1989). This forces them to focus on the raw materials necessary to implement

a solution rather than to try to understand the problem. Design environments need to support

human problem-domain communication (Fischer and Lemke, 1988) by providing compu

tational environments that model the basic abstractions of a domain (as pursued in efforts

in.domain modeling (Prieto-Diaz and Arango, 1991». They give designers the feeling that

they interact with a domain rather than with low-level computer abstractions. Two such

environments, FRAMER (Lemke and Fischer, 1990) and JANUS (Fischer, McCall, and

Moreh, 1989) are described in later parts of this paper. Domain-orientation allows humans

to take both the content and context of a problem into account, whereas the strength of for

mal representations is their independence of speciflc domains to make domain-independent
reasoning methods applicable (Norman, 1993).

Modern application needs are not satisfied by traditional programming languages, which

evolved in response to system programming needs (Shaw, 1989; Winograd, 1979). More

emphasis should be put on the creation of computational environments that fit the needs

of professionals of other disciplines outside the computer science community. The chief

risks of using ideas from programming language design and formal specification techniques

are in succumbing to the temptations of excess generality and in assuming that users and

domain experts think like software designers. The semantics ofDODEs are tuned to specific

domains of discourse. This involves support for different kinds of primitive entities, for

specification of properties other than computational functionality, and for computational

models that match the users' own models.

Evolution

There is growing agreement (and empirical data to support it) that the most critical software

problem is the cost of maintenance and evolution (CSTB, 1990). Studies of software

costs indicate that about two-thirds of the costs of a large system occur after the system

is delivered. Much of this cost is due to the fact that a considerable amount of essential

information (such as design rationale (Fischer et aI., 1991a; Fischer et aI., 1992b» is lost

during development and must be reconstructed by the designers who maintain and evolve

the system.

In order to make maintenance and enhancements "first class" activities in the lifetime of

an artifact, (l) the reality of change needs to be accepted explicitly and (2) increased up

front costs have to be acknowledged and dealt with. We learned the first point in our work

on end-user modiflability (Fischer and Girgensohn, 1990), which demonstrated that there is

no way to modify a system without detailed programming knowledge unless modifiability

was an explicit goal in the original design of the system. The second point results from

the fact that "design for redesign" requires efforts beyond designing for what is desired and

known at the moment. It requires that changes be anticipated and structures be created that

will support these changes.

The evolution of a software system is driven by breakdowns (Petroski, 1985; Fischer and

Nakakoji, 1992) experienced by the users of a system. In order to support evolutionary

processes, domain designers need to be able, willing, and rewarded to. change systems,

thereby providing a potential solution to the maintenance and enhancement problems in

software design. Users of a system are knowledgeable in the application domain and know

best which enhancements are needed. An end-user modification component supports users

in adding enhancements to the system without the help of the system developers. End

user modiflable systems will take away from system developers some of the burden of

anticipating all potential uses at the original design time (Henderson and Kyng, 1991).

Language~ ofDoing

The development of complex systems is difficult, not because of the complexity of techni

cal problems, but because of communication and coordination problems' and the need for

184 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS
185

shared understanding and mutual education about ill-defined problems (Greenbaum and

Kyng, 1991). Downstream activities are centered around the manipulation and implemen

tation of given specifications, but they do not help create a shared understanding among

all stakeholders. Environments must serve as languages ofdoing (Ehn, 1988) that (I) are

familiar to all participants, (2) use the practice of the users as a starting point, (3) allow the

envisioning of work situations supported by the new systems, and (4) enhance incremental
mutual learning and shared understanding among the participants.

Communication between clients and designers is difficult because designers and clients

use different languages. Explicit representations ground collaborative design by providing

a context for communication. These representations (used as languages of doing) help to

detect communication breakdowns caused by unfamiliar terminology and tacit background

assumptions, and turn breakdowns into opportunities for creating a shared understanding

(Fischer and Nakakoji, 1992).

An important component of shared understanding is the intent of the COllaborators. Un

derstanding intent enhances mutual intelligibility by serving as a resource for assessing the

relevance of information within the context of collaboration. In everyday communication

between people, intent is often implicitly communicated against a rich background ofshared

experience and circumstances. Machines, however, have a limited notion of background,

and this limits their ability to infer the intent of users (Suchman, 1987).

4. An Assessment of the "Classical" Model of Knowledge-Based Software Assistant

Systems

KBSA (Green et al., 1983) was originally envisioned to employ Artificial Intelligence tech

niques to support all phases of the software development process. The scope of this research

effort was broadened in 1991 as the associated conference was renamed Knowledge-Based

Software Engineering (KBSE) to recognize the need to broaden the focus and to indicate that

the community was moving away from the notion of a super-intelligent computer assistant

toward the idea of a human-computer partnership (Fischer, 1990; Billings, 1991; Norman,

1993). Rather than to enumerate and discuss the achievements of KBSA efforts here (for

examples and discussion, see DeBellis, Sasso, and Cabral (1991); Johnson, Feather, and

Harris (1991); and White (1991), I would like to focus on what I consider shortcomings

and questionable goals in order to contribute to an agenda for future research themes.

Understandability ofSpecificatio1ls

Contrary to a basic assumption behind the KBSA effort, I claim that specification·based

descriptions of artifacts have a l1luch narrower scope and are more difficult to develop,

maintain, and mutually understand than artifacts supported by languages of doing. As

argued before, formal and decontextualized descriptions may serve well for formal manip

ulations, but they are not well suited for communication between humans (except for the

verification of complicated algorithms and theorems). This claim is supported by W. Wulf

(CSTB, 1988): "[am skeptical that classical mathematics is an appropriate tool for our

purposes: witness the fact that most formal speCifications are as large, as buggy as, and

usually more difficult to understand than the programs they purport to specify. [don't think
the problem is to make programming 'more like mathematics'; it's quite the other way

around."

Lack ofDomain Orientation

The lack of domain orientation limits (1) the amount of support that a knowledge-based

system can provide, and (2) the shared understanding among stakeholders. By necessity, it

must focus primarily on downstream activities, which require minimal domain knowledge

(e.g., transformations within the formal system rather than correspondence between the

formal system and the world being modeled).

Lack ofAssessment Studies

Software design in general suffers from a lack of detailed analysis of failures and successes

of previous systems (Petroski, 1985; Lee, 1992). One of the few assessments of the ~SA

effort (DeBellis, Sasso, and Cabral, 1991) summarizes some of the critical shortcomings

of past KBSA research, namely lack of evidence for scalability, lack of experiments that

demonstrate its usability, and insufficient attention to reuse and evolution.

5. Don18in-Oriented Design Environments

In the last several years, numerous DODEs have been developed. Here luse two different

environments to illustrate the basic ideas and challenges of DODEs: FRAMER (Lemke and

Fischer, 1990) for user interface design, and JANUS (Fischer, McCall, and Morch, 1 ? ~ 9 ;
Fischer and Nakakoji, 1992) for kitchen design. Other examples of DODEs are: deCISIOn

support for water management (Lemke and Gance, 1991), computer network design (Fisc?er

et a!., 1992a), voice dialog design (Repenning and Sumner, 1992), COBOL programming

(Atwood et a!., 1991), graphics programming (Fischer et a!., 1992b», and lunar habitat

design (Stahl, 1993).

5.1. FRAMER: A DODEfor User Interface Design

FRAMER (Lemke and Fischer, 1990) is a knowledge-based design environment for program

frameworks, which are high-level building blocks used for constructing window-based user

interfaces (Figure 2). Program frameworks consist of (1) a window frame ofnonoverla~ping

panes, (2) an eve.nt loop for processing mouse clicks, (3) keyboard input, and (4) other Input

events. The program frameworks also manage the update of information displayed on the

screen. FRAMER and its architecture is the result of an iterative development process that

has gone through three major stages: tool kits, construction kits, and knowledge-based

design environments.

186

Tool Kits

GERHARD HSCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS
187

The first stage, tool kits, simply provides domain-oriented building blocks. FRAMER

provides designers with components such as windows and menus. Examples of tool kits for

the domain of user interface design are Xlib, NextStep, and the Macintosh toolbox. Tool

kits enable designers to work in terms of concepts of their domain of expertise rather than

at the level of a general-purpose programming language.

Construction Kits

Tool kits provide domain-oriented building blocks, but they do not support the processes

of finding and combining the blocks-designers have to know what blocks exist and how

they should be used. Construction kits address this problem by providing a palette and

a work area (see Figure 2). The palette displays representations of the building blocks

and thus shows what they are and makes them easily accessible. The work area is the

principal medium for design and construction in the FRAMER design environment. This

is where the designer builds a window layout by assembling building blocks taken from the

palette. Examples of user interface construction kits are the Symbolics FrameUp system,

MENULAY (Buxton et aI., 1983), the NeXt user interface builder, and WIDES and TRIKIT

(Fischer and Lemke, 1988).

Frarner2 Version 4.0

hac 1St

[2] (Init,a' pogr...... fr ..."euork)

[2](PrOsr.!ln n.l!lne)

o (Invoking this progra...)

OCArr""genentofpl'lne.e)

fZl (Con",,,nd loop function)

""0 (Type.5 of input)

[J (Code G.wer-ation)

o Area

p , o ~ , . m f,om.work n..mod HS

,;,I.-p.no nomod TlTU

dl,ploy'pu, nUMd [}ATA

Design Environments
thu 13 Jul 2:Bl:e3 Screen HardcoPY CL USER. ~Input

Knowledge-based design environments address shortcomings that we have found in con

struction kits. Construction kits support design at a syntactic level only. Our experience

with this class ofsystems has shown that although it is easy to create a functioning interface,

creating a good interface requires a great deal of additional knowledge that is not provided

by construction kits. Design environments provide additional design knowledge through

critics, specification sheets, and checklists (see Figure 2).

Critics

Critics (Fickas and Nagarajan, 1988; Fischer et aI., 1991b; Fischer et aI., 1993) are demons

that evaluate the evolving artifact. When the system detects a suboptimal aspect of the

artifact, it displays a message that describes the shortcoming in the critic window, which is

entitled "Things to take care of" (Figure 2).

Figure 3 shows a typical critic rule. This rule contains knowledge about the relationship

of the selected interaction mode and the configuration of window panes in the interface. If

the mouse-and-keyboard interaction mode is selected, then the rule suggests adding a

dialog pane. A Remedy action is also defined. Invoking the Remedy operation associated

with this rule causes the system to add a listener pane at the bottom of the window frame.

Figure 2. FRAMER: A DODE for user inlerface design. In the situation shown in the figure. the designer makes a

decision about what types of user input should be supported in the interface. The system responds to thIS decIsiOll

by displaying a critic message in the critic window entitled "Things to take care of." The message IdentIfies

a discrepancy between the specification sheet (entitled "What you can do") and the work The deSIgner can

either modify the window layout in the work area or change the specificatioll sheet.

Specification Sheets

The window layout of an interface has a natural graphical representation as shown i ~ the

work area. However, this is not true of all characteristics of an interface. BehaVIOral

characteristics, for instance, must be described in a different way. In the FRAMER system,

these other characteristics are described in a symbolic way as fillers in the fields of a

specification sh;et (see the "What you can do" window in Figure 2). Through the sheet,

the system brings design issues and their possible answers to the us.er's atte~t1o? and allows

users to articulate a partial specification. Associated text explams the stgmficance and

consequences of the different design choices.

188 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS
189

;; A critic rule named need-dialog-pane. The rule applies to program frameworks.

(define-critic-rule need-dialog-pane program-framework
;; AQplicability condition. This rule is applicable if the interaction mode is
" mo~se-a.nd~keyboard. Dialog is conducted either with listener or interactor panes.
: a p p l ~ c a b ~ l ~ t y (equal $interaction-mode mouse-and-keyboard)

;; The rule is violated if there is no pane of type dialog-pane in
;; the set on inferiors of a program framework.
:condition (not (exists x (type x dialog-pane»)

;; The Remedy operation adds a li13tener-pane.
:remedy (let «pane (make-instance 'listener-pane :x (+ x 20)

:y (+ y 184) :superior self»)
(add-inferior self pane)
(display-icon pane»

" Text of .the suggestion made to the user if critic is applicable.
: s u g g e s t ~ o n "Add a listener or interactor pane or set the

interaction mode to mouse-only." '

;; Text for Praise command.
:praise "There is a listener or interactor pane."

;; Text for Explain command.
:explanation " S ~ n c e the interaction mode is mouse-and-keyboard,

a d~alog pane is required for typing in commands.")

Figure 3. An example of a critic rule. This is a slightly paraphrased FRAMER critic rule that applies

to program frameworks. The rule suggests adding a listener or interactor pane if the interaction mode

"mouse-and-keyboard" was specified.

Checklists

The checklist in FRAMER provides an explicit problem decomposition for designers who

are unable to decide what steps to take to create a complete functional program framework

(thereby supporting the software process (Osterweil, 1987)). The checklist indicates to

designers how to decompose the problem of designing a program framework, and it helps

to ensure that designers attend to all necessary issues, even if they do not know about

them in advance. Each item in the checklist is one subproblem within the overall design

process. By selecting a checklist item, designers inform the system of their current focus of

attention in the design process. When the designer selects a SUbproblem in the checklist, the

system responds by displaying the corresponding options in the specification sheet shown

in the neighboring "What you can do" window and, thus, provides further details about the

subproblem. The critics are grouped according to the checklist items. The critic pane always

displays exactly those critic messages that are related to the currently selected checklist item.

The set of checklist items displayed depends on the designer's previous design decisions.

The system displays only those items that are currently relevant (it is context-sensitive; for

example, the prompt item is displayed only if command-based interaction is specified; see

Figure 2).

Code Generators

The ultimate goal of user interface design is the generation of an executable program code,

and the design activity supported by FRAMER can be viewed as creating a specification

for the code. The code generator component of FRAMER is a formal knowledge source

that takes care of creating syntactically correct, executable code (the details of the code

generation process are discussed by Lemke (1989)).

5.2. JANUS: A DODE for Kitchen Design

JANUS supports kitchen designers in the development of floor plans. JANUS"CONSTRUC

TION (see Figure 4) is the construction kit for the system. The palette of the construction kit

contains domain-oriented building blocks such as sinks, stoves, and refrigerators. Designers

construct kitchens by selecting design units from the palette and placing them into the work

area. In addition to design by composition (using the palette for constructing an artifact from

scratch), JANUS-CONSTRUCTION also supports design by modification (by choosing

existing designs from the catalog and modifying them in the work area).

The critics in JANUS-CONSTRUCTION identify potential problems in the artifact being

designed. Their knowledge about kitchen design includes design principles based on build

ing codes, safety standards, and functional preferences. When a design principle (such as

"the length of the work triangle should be no greater than 23 feet") is violated, a critic will

fire and display a critique in the messages pane (Figure 4) identifying a possibly problematic

breakdown situation (Fischer and Nakakoji, 1992), and prompting the designer to reflect

on it.
Our original assumption was that designers would have no difficulty understanding these

critic messages. User experiments with FRAMER and early versions of JANUS demon

strated that the short messages the critics present to designers do not reflect the complex

reasoning behind the corresponding design issues. To overcome this shortcoming, we ini

tially developed a static explanation component for the critic messages (Lemke and Fischer,

1990) based on the assumption that there is a "right" answer to a problem (see Figure 2).

But the explanation component proved unable to account for the deliberative nature of de

sign problems (Rittel, 1984). Therefore, argumentation that discusses the pros and cons

of issues raised by critics must be supported, and argumentation must be integrated into

the context of construction. JANUS-ARGUMENTATION (see Figure 5) is the argumen

tation component of JANUS (Fischer et a!., 199Ia). It is an argumentative hypermedia

system that offers a domain-oriented issue base about how to construct kitchens. With

JANUS-ARGUMENTATION, designers explore issues, answers, and arguments by navi

gating through the issue base. The starting point for the navigation is the argumentative

context triggered by a critic message in JANUS-CONSTRUCTION. By combining con-

190 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 191

Example

less than 16 teet.

Janus-Argumentation

Ar·gument (Small Room)

In small kitchens where the work trianqle

Figure 10: the ,work triangle

Answer (f1efrlgerator. Sink, Stove)

The distancB between sink, stove and refrigerator. the worA trlengle,

'-'l1oukl be less than 23 feet.

o
Viewer: Default Vlewtlr• ingle-Door-Refrigerator-l is not near F o u r - E l e m e n t - S t o v ~ - l •

Clear Work Area
Load Catalog

••
••

WorJr. Area

I
,e eng! 0 t e wor tt ang e ou e- ow n ,our- ement- tove- >

Sin l e ~ D o o r - R e f r i erator-1 Is reater than 23 f e e t . ~

Commands

I
... Critique RZl
~ .

=:::::::0

Janus-Construction

~ C a t a / o g

!i ••

••

r~-~
ODDJ

Figure 4. JANUS-CONSTRUCTION: The work triangle critic. JANUS-CONSTRUCTION is the construction

part of JANUS. Building blocks (design units) are selected from the Palette and moved to desired locations inside

the Work Area. Designers can reuse and redesign complete floor plans from the Catalog. The Messages pane

displays critic messages after each design change that triggers a critic. Clicking with the mouse on a message

activates JANUS-ARGUMENTATION (see Figure 5) and displays the argumentaIion related to that message.

Figure 5. JANUS-ARGUMENTATION: Rationale for the work triangle rule. JANUS-ARGUMENTATION is an

argumentative hypermedia system. The Viewer pane shows a diagram of the work triangle;concept and arguments

for and against a work triangle answer. The top right pane shows an example illustrating the answer in response

to the request "Show Exanlple (Refrigerator, Sink, Stove)."

Components

struction and argumentation, JANUS was developed into an integrated design environment

that supports "reflection-in-action" as a fundamental process underlying design activities

(Schoen, 1983; Fischer and Nakakoji, 1992).

The major components are:

• A construction kit (Figure 4) is the principal medium for modeling a design. It provides

a palette of domain concepts and supports construction using direct manipulation and

electronic forms. The primary design activity supported by it is design by composition.

5.3, A Domain-Independent, Multi-Faceted Architecture for DODEs • An argumentative hypermedia system (Figure 5) contains issues, answers, and argu

ments about the design domain.

Based on the numerous design efforts creating domain-oriented design environments as well

as on an analysis of the shortcomings of previous efforts, we have developed the domain

independent architecture shown in Figure 6 to serve as a starting point and organizing

framework in the creation of specific DODEs. The individual components as well as the

integration mechanisms of this architecture are briefly described below and illustrated with

screen images of the JANUS system.

• A catalog (Figure 4) is a collection of prestored designs that illustrate the space of

possible designs in the domain and support reuse and case-based reasoning. The primary

design activity supported by it is design by modification.

• A specification component (Figure 7) supports the interaction between clients and de

signers to describe characteristics of the design they have in mind (Nakakoji, 1993).

192 GERHARD FISCHER DOMAIN-ORJENTED DESIGN ENVIRONMENTS 193

~ : , t : ~ O , , 9 ~ : ~ ~ ~ ~ ~ : t j O f l
Q ... ic~ Argument

Commands

~ l l i t : : b Q " ~ ~ ~ ~ ~ ; l Y SU9Puud sinpl

ir i~* $hol.' Rrf)UJ'Iliints t;ype-of-s

i I ... Select Issue Fron. Rr!JUJ'Ie
!Int i!-you-often-ent
i i lopgle Rns"er yes
q I

'i!!lt>g le boul ~ i n k

'Single-8oul-Slnk-Exi$t>5(Jc' :l.Iho]e-Del'llgn)·
.. (.) If you h./lve" I'H',a]] f./l",ily, you nay need

jU>5t ./I single-bovJ sink. (H a l < ~ " j i , K..... iyo;

'double bOloll :sink
• Doub 1e-8owl-S j nk-I;:>< j $t~(,Jc: :Who Ie-Design)'
(.) If YOW often enter-t"in. e double bowl sink

i ~ prefarable. t " , " , , ~ " j ; . K""'iyo.l
11'1/121'9\11'1,26'<18)

pee Icat,Qns or:
kitchen None: joe-kitchen

Vhith type of sink do you need?

rgumentat on or

One [.sp.r<:lfld)

sink na need 'ust a sin le-bowJ. sink.

- Do you need <21 eating space?
'yes

• Children's Hangout?
'yes
'no

- Other Kitchen Rctivities

• Type of kitchen?
'contenporary
-Tradition.,1
• Country

- Pl"eferenc/!:!5

••SO] en type 0

... Size of rani ly?

Specification

ata uestlOos

o ,Etltert"inncnt~

'1M
'OCC<'!ll:\lon",11"

'Seldol"l
'Not at all

ConSl ere uestionsl
1 Entertoinnent

requirenent?

2 "hieh typo of .ink "
do you need?

3 II:I the prinary cook
right-handed or
left-hl:lnded?

4 Ho... non>, cooks

u ~ u o 11 y use the k i tenen i

at once?
6 Sile of r ...nily?
6 Kit.chen

Specific",tion

• Do usu<l11y u.s/!: a ",;crow"we?

S " ' 9 9 . , ~ t e d :

Argumentation

lIIustrator

IArgumentatiOil]

t

\
I Catalog
'-------'=--.....Jj--

Construction Analyzer

'"

Catalog

Explorer

Construction I

"

Figure 6. A domain-independent multifaceted architecture.
...!:!:.:!...2:1...Fel? 18:32:54] .kul1iyo Cl SPEC: User Input

The specifications are expected to be modified and augmented during the design pro

cess, rather than fully articulated at the beginning. They are used to retrieve de

sign objects from the catalog and to filter information in the hypermedia information

space.

Figure 7. JANUS-SPECIFICATION: Articulation of information about a specific design task. Designers can

select answers presented in the Questions window. The summary of currently selected answers appears in the

Current Specification window. Each answer is accompanied with a slider (upper right pane) that allows designers

to assign a weight representing the relative importance of the answer. Weights are used to prioritize and resolve

conflicts between answers (for details see (Nakakoji, 1993».

• A simulation component allows designers to carry out "what-if" games to simulate

various usage scenarios involving the artifact being designed.

Integration

The multi-faceted architecture derives its essential value from the integration of its compo

nents. Used individually, the components are unable to achieve their full potential. Used

in combination, each component augments the values of the others, fonning a synergistic

whole, At each stage in the design process, the partial design embedded in the design

environment serves as a stimulus to users, and suggests what they should attend to next.

Links among the components of the architecture are supported by various mechanisms (see

Figure 6):

• The CONSTRUCTION-ANALYZER is a critiquing system (Fischer:et aI., 1991b) that

provides access to relevant information in the argumentative issue base. The firing of

a critic signals a breakdown to users and provides them with an entry into the exact

place in the argumentative hypermedia system where the corresponding argumentation

is located.

• The explanation given in argumentation is often highly abstract and very conceptual.

Concrete design examples that match the explanation help users to understand the

194 GERHARD FISCHER DOMAIN·ORIENTED DESIGN ENVIRONMENTS 195

------~------~---:---------_ .. 'rime

Figure 8. Seeds, evolutionary growth, and reseeding: A process model for DODEs. During seeding, environment

developers and domain designers collaborate to create a design environment seed that captures an application

domain (e.g., FRAMER or JANUS). During evolutionary growth, domain designers (I.e, professional kitchen

designers) create specific artifacts. Breakdowns (e.g., the lack of support for specific designs, the ongoing

occurrence of new components and new knowledge) experienced by the domain designers leads to the addition

of new domain knowledge to the seed. In the reseeding phase, environment developers again collaborate with
domain designers to organize, formalize, and generalize new knowledge.

concept. The ARGUMENTATION-ILLUSTRATOR (Fischer et aL, 1991a) helps users

to understand the information given in the argumentative hypermedia by finding a

catalog example that illustrates the concept (see upper right pane in Figure 5).

• The CATALOG-EXPLORER helps users to search the catalog space according to the

task at hand (Fischer and Nakakoji, 1992). It retrieves design examples similar to the

current construction situation, and orders a set of examples by their appropriateness to
the current specification.

6. Assessment of DODEs

into all components of the architecture. But any amount of design knowledge embedded in

design environments will never be complete because (I) real-world situations are complex,

unique, uncertain, conflicted, and instable; and (2) knowledge is tacit (i.e., competent prac

titioners know more than they can say (Polanyi, 1966», implying that additionalknowledge

is triggered and activated only by experiencing breakdowns in the context of specific use

situations.

. Evolutionary growth takes place as domain experts use the seeded environment to under

take specific projects for clients. During these design efforts, new requirements may surface

(e.g., the design of a kitchen for people who are blind or in wheelchairs), new components

may come into existence (e.g., microwaves) and additional design knowledge not contained

in the seed may be articulated (e.g., that appliances should be against the wall unless we

have an island kitchen). During the evolutionary growth phase, the software designers are

not present. Therefore it is highly desirable that the new design knowledge can be added by

the domain expert requiring computational mechanisms that support end·user modifiability

(Fischer and Girgensohn, 1990), and end-user programming (Eisenberg, 1991; Gantt and

Nardi, 1992).

Reseeding, a deliberate effort at revision and coordination of information and functional

ity, brings the software designers back in to collaborate with domain designers to organize,

formalize, and generalize knowledge added during the evolutionary growth phases. Orga

nizational concerns (Terveen, Selfridge, and Long, 1993) playa crucial role in this phase.

For example, decisions have to be made as to which of the extensions created in the context

of specific design projects should be incorporated in future versions of the generic design

environment.

After the initial seeding, the use and reseeding phases alternate continuously. Evidence for

the adequacy and relevance for this approach can be derived from numerous developments

oflarge-scale software systems that have evolved over time, such as Symbolic's Genera and

the X-Window System. In such systems, users develop new techniques and extend the func

tionality of the system to solve problems that were not anticipated by the.system's authors,

and distribute them through users' groups. New releases of the system will then incorporate

the ideas and code produced by users and found relevant to the community as a whole.

Environment Domain

Developers Designers

~ - ~
ReSeeding'\._

~ i l J - - - ~
New Domain Knowledge

Evolutionary Growth
of oe119" Environment

Environment Demain

Developers Designers

' : i ~ .
&J

ri---+--~---+-~

5.4. Seeding, Evolutionary Growth, and Reseeding: A Process Model for DODEs

To account for the evolutionary nature of complex environments that model real-world

systems, we have developed a process model for DODE that relies on three major phases:

seeding, evolutionary growth, and reseeding (see Figure 8).

A seed fora domain-oriented design environment is created through a participatory design

process between software designers and domain experts by incorporating domain-specific

knowledge into the domain-independent multi-faceted architecture underlying the design

environment (see Figure 6). Seeding entails embedding as much knowledge as possible

Analogous to the assessment of KBSAs, this section assesses DODEs by comparing and

contrasting them with related efforts (software synthesis and requirements engineering) and

by describing some of the current limitations and future implications of nODEs. Figure 9

presents a high-level comparison between KBSA and DODE and indicates how they com

plement each other as KBSAs focus on downstream and DODEs on upstream activities.

Software Synthesis

Research efforts focused around the goal ofautomatically synthesizing software from higher

level specifications and reusable components represent an important idea (compilers rep-

196
GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 197

Requirements Engineering

resenting an early success story of these efforts) to increase software productivity. The

SINAPSE system (Kant, 1992, 1993) is a system sharing many goals with our systems

(e.g., domain-orientation, visualization), but it primarily supports downstream activities

(e.g., code generation, optimization), thereby instantiating a number of the goals of the

KBSA paradigm and complementing our approach. The different emphasis is mostly due

to the fact that the mathematical knowledge is relatively well defined, and formally spec

ified, and the support needed is to empower mathematicians to do their modeling in an

environment closer to their world than FORTRAN. New knowledge to SINAPSE is added

by the software designer and not by the domain experts (contrary to the view taken by

DODEs, as illustrated in Figure 8).

Figure 9. A comparison between KBSA and DODE.

emphasis

primary
support

methodology

user groups

communication
metaphor

KBSA

downstream

computation-centered

automation

generic

formal specifications

knowledge acquisition from
domain experts

primarily software designers

human-computer
communication

DODE

upstream

human-centered

cooperative problem solving

domain-orientation

languages of doing (supported
by all components of the DODE)

knOWledge construction and
mutual education driven by
breakdowns and collaboration

all stakeholders

human problem-domain
communication

understanding domain abstractions, but it lacks the linkage between a construction situation

and the catalog as provided by the CATALOG-EXPLORER (see Figure 6). The computer

based critic embedded in the Kate system (Fickas and Nagarajan, 1988) differs from our

critiquing systems as used in the CONSTRUCTION-ANALYZER (Fischer et aI., 1991b)

in that it analyzes formal specifications rather than construction situations.

Current Limitations and Research Issues jor DODEs

The appeal of the DODE approach lies in its compatibility with an emerging methodol

ogy for design (Cross, 1984; Ehn, 1988; Schoen, 1983; Simon, 1981), with views of the

future as articulated by practicing software engineering experts (CSTB, 1990), with reflec

tions about the myth of automatic programming (Rich and Waters, 1988), with findings

of empirical studies (Curtis, Krasner, and Iscoe, 1988), and with the integration of many

recent efforts to tackle specific issues in software design (e.g., recording design rationale

(Fischer et a!., 199Ia), supporting case-based reasoning (Redmiles, 1992), creating artifact

memories (Terveen, Selfridge, and Long, 1993), and so forth). We are further encouraged

by the excitement and widespread interest of DODEs and the numerous prototypes being

constructed, used and evaluated in the last few years. Many of our current systems (such as

FRAMER and JANUS) rely heavily on a spatial metaphor, but we have also explored other

domains in which different properties (such as time in the voice dialog design environment

(Repenning and Sumner, 1992) or programming knowledge in the Cobol (Atwood et aI.,

1991) and graphic design environments (Fischer et aI., I992b» need to be supported.

DODEs raise numerous research issues. Creating seeds for a variety ofdifferent.domains

will require substantial resources and the willingness of people from different disciplines to

collaborate. The necessity to invest in long-term benefits must be taken seriously. Designers

who do the work (e.g., providing design rationale) without directly benefiting from their

efforts (Fischer et aI., 1992a) must be rewarded. Evolving seeds overtime will require

more involvement of users, a willingness to acquire additional and different qualifications,

as well as different organizational commitments (Nardi, 1993).

By being high-functionality systems, DODEs create a tool mastery burden. Our experi

ence has shown that the costs of learning a programming language are modest compared

to those of learning a full-fledged design environment. New tools (e;g., support for a

location/comprehension/modification cycle (Fischer et aI., 1992b), critics (Fischer et aI.,

1991 b), and support mechanisms for learning on demand (Fischer, are needed to

address these problems.

Requirements engineering (Proceedings, 1993) shares many research goals with our efforts

on DODEs. It brings together informal system analysis methods as explored in the CSCW

community and as used in DODEs in the argumentation component (see Figure 6) with

formal methods as explored in KBSA efforts. The Requirements Apprentice (Reubenstein

and Waters, 1991) explores the formalization phases that bridge the gap between an informal

and formal specification, but provides little support for the incremental construction of the

informal specifications during the problem-framing process. The Advisor for Intelligent

Reuse (ARI) (Maiden and Sutcliffe, 1992) assists software designers in identifying and

New Classes ojComputer Users

There are numerous reasons that a DODE approach will not be readily accepted. Software

designers often have diffic;ulties with the idea that they do not create "universal solutions"

that make everyone happy. They have difficulties in sacrificing generality for increased

domain-specific support. DODEs replace the clean and controllable waterfall model with

198 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 199

Emphasis on Humans Rather than on Automation

Programming
Languages

Design
Environments

Increase in Shared Understanding

Rather than "getting the human out of the loop," we should empower designers and users to

create and evolve artifacts fitting their needs and desires. Human-centered communication

and collaboration technologies (such as languages of doing) should assist all stakeholders

to create shared knowledge and support mutual education.

Solving ill-defined problems requires the intertwining of problem framing and problem

solving. "Understanding the problem is the problem"-which is impossible without an

understanding of the problem domain. The role of domain Imowledge is critical. Designers

do not reason from first-order principles, but they rely on experience with similar problems.

Design in use (achieved by end-user modifiability) is inevitable in a changing world. To

make it feasible, end"users require access to the rationale behind the artifact.

A Deeper Understanding ofDesign

Problem
Domains

,,,, , ,,, ,,,

, ,
-~,-- , ,

""""Assembly
Languages

Figure 10. Layered architectures in DODEs. In the 1950s. programmers had to map problems directly to

assembly languages and the assembly programs retained basically no semantics of the problems to be solved. In

the 1960s, general purpose high-level programming languages reduced the transformation distance. which allowed

programs to retain some problem semantics and the programming profession was specialized into compiler writers

and programmers who developed programs in high-level programming languages. Design environments further

reduce the gap between problems and their descriptions as computational artifacts by introducing additional,

increasingly domain-oriented layers. This approach leads to a layered architecture that underlies all complex

systems (Dawkins, 1987).

Domain-oriented design environments increase shared understanding in three ways: (I) the

domain orientation allows a default intent to be assumed, namely, the creation of an artifact

in the given domain; (2) the construction situation is accessible and can be "parsed" by the

system, providing the system with information about the artifact under construction; and

(3) the specification component allows one to explicitly communicate high-level design

intentions to the system.

Empirical Foundations Through Assessmellt Studies in Naturalistic Settings

a much more interactive situation in which the search for "correct" solutions is limited to

downstream activities.

DODEs (see Figure 10) will lead to further specialization of computer users into envi

ronment developers who create (in cooperation with domain experts) the seeds for design

environments, and of domain experts who solve problems by exploiting the resources of the

design environments (Gantt and Nardi, 1992). Support for end-user modifiability allows

domain experts to extend the functionality of the design environment over time (Fischer

and Girgensohn, 1990).

The times of purely prescriptive design methodologies in software engineering belong to

the past. "Arm-chair" design and supply-side computing are not sufficient to solve real

world problems (Thomas and Kellogg, 1989). Software is created in the real world; deals

with real tasks; and involves human beings with different interests, skills, and knowledge.

To make future computing systems succeed requires more than concern for technology-it

requires concern/or human beings, their tasks, and their organizations.

Acknowledgments

7. Conclusions

In conclusion, I want to briefly summarize the main issues of the "message" derived from

a DODE perspective.

This paper is an extended and revised version of a shorter paper published.in the Proceed

ings of the 7th Annual Knowledge-Based Software Engineering (KBSE-92) Conference.

Numerous people have taken the time to discuss and critique the ideas underlying this pa

per. I would like to thank especially Stephen Fickas, Dennis Heimbigner, Lewis Johnson,

Elaine Kant, Peter Selfridge, and Loren Terveen, who helped me with important ideas and

criticism. This work would have been impossible without the numerous contributions ofthe

200 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVJRONMENTS 201

members of the Human-Computer Communication group at the University of Colorado,

who contributed to the conceptual framework and the systems discussed in this article_

Kumiyo Nakakoji, Jonathan Ostwald, David Redrniles, and Tamara Sumner have provided

critical feedback on earlier versions of this article. I would also like to thank the anonymous

reviewers of the article, who provided valuable comments and suggestions for improvement-

The research was supported in part by (I) the National Science Foundation under grants

No. IRI-901544 I and MDR-9253245, (2) NYNEX Science and Technology Center (White

Plains, RY), (3) Software Research Associates, Inc. (Tokyo, Japan), (4) the SDA project,

and (5) the Colorado Advanced Software Institute.

References

Atwood, M. E., Bnrns, B., Gray, W D., Morch. A. 1., Radlinski, E. R., and Turner, A. 199/. nIt Grace IllIegrated

Learnin/i Environment-A Pro/iress Report. Proceedings ofthe Fourth International Conference on Industrial &

Engineerin/i Applications ofArtijiciallntelligence & Expert !>'ystems (fEMAlE 91), ACM. June 1991, pp. 741

745.

Barstow, D. R., Shrobe, H. E., and Sandewall, E. (cds.) 1984. Interactive Pro/irarnming Environments. New

York: McGraw-Hili Book Company.

Belady, L. 1985. MCC: Planning the revolution in software, IEEE Software, November: 68-73.

Billings, C E. 1991. Human-Centered Aircraji Automation: A Concept and Guidelines. NASA Technical

Memorandum 103885, NASA Ames Research Center, Moffett Field, CA.

Boehm, B. W 1988. A spiral model of software development and enhancement. IEEE Computer, 21 (5):61-72.

Brooks, F. P, Jr. 1987. No silver bullet: Essence and accidents of software engineering. IEEE Computer,

20(4):10-19.

Buxton, W A. S., Lamb, M. R., Sherman, D., and Smith, K. C 1983. Towards a comprehensive user interface

management system. Computer Graphics, 17(3):35-42.

Cross, N. 1984. Developments in Desi/in Methodology. New York: John Wiley & Sons.

Computer Science and Technology Board. 1988. Scalin/i Up: A Research A/ienda jiJl' Sojiware Engineering.

Washington, DC: National Academy Press.

Computer Science and Technology Board. 1990. Scaling up: A research agenda for software engineering.

Communications o{the ACM, 33(3):281-293.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A Iield study of the software design process for large systems.

Communications oI the ACM, 31(11): 1268-1287.

Dawkins, R. 1987. The Blind Watchmaker. New York: WW Norton and Company.

DeBellis, M., Sasso, W C, and Cabral, G. 1991. Directions for future KBSA research. In Proceedings of the

6th Annual Knowledge-Based Software En/iineerin/i (KBSE-91) Conjerence (Syracuse, NY). Rome Laboratory,

New York, September 1991, pp. 138-142.

Devanbu, P, Brachman. R. J., Sefridge, P. G., and Ballard, B. W. 1991. LaSSIE: A knowledge-based software

information system. Communications of the ACM, 34(5):34-49.

Ehn, P. 1988. Work-Oriented Design of Computer Artifacts. Stockholm, Sweden: Almquist & Wiksellinterna

tional.

Eisenberg, M. 1991. Pro/irammable Applications: Interpreter Meets Interjilce. Technical Report 1325, Depart

ment of Electrical Engineering and Computer Science, MIT.

Engel bart, D, C, and English, W. K. 1968. A research center for augmenting human intellect. In Proceedings oI

the AFlPS Fall Joint Computer Conference, The Thompson Book Company, Washington, D.C, pp. 395-410.

Fickus, S., and Nagarajan. P 1988. Critiquing software specifications. IEEE Sojiware, 5(6):37-47.

Fischer, G. 1990. Communications requirements for cooperative problem solving systems. The International

Journal oIlriformation Systems (Special Issue on Knowledge Engineering), 15(1):21-36.

Fischer, G. 1991. Supporting learning on demand with design environments, In Proceedings oIthe International

Conference on the Learnin/i Sciences 1991 (Evanston, IL), edited by Lawrence Birnbaum, Association for the

Advancement of Computing in Education, Charlottesville, VA, August, pp. 165-172.

Fischer, G., Lemke. A. C, McCall, R., and March, A. 1991 a. Making argumentation serve design. Human

Computer Interaction, 6(3--4):393-419.

Fischer. G .• Lemke. A. C, Mastaglio, T.. and Morch, A. 1991b. The role of critiquing in cooperative problem

solving. ACM Transactions Oil Informafion Systems, 9(2):123-151.

Fischer, G., Grudin, J.. Lemke, A. C, McCall. R., Ostwald. J., Reeves, B. N., and Shipman, F. I992a. Sup

porting in(lirect. collaborative design with integrated knowledge-based design environments. Human Computer

Interaction, Special Issue on Compmer Supported Cooperative Work, 7(3):281-314.

Fischer. G., Girgensohn,A., Nakakoji. K.. and Redmiles, D. 1992b. Supporting software designers with integrated,

domain-oriented design environments. IEEE Transacfiofls Oll..)'o!ovare Enl{ineering, Special Issue on Knowledge

Representation and Reasoning in Software Engineering, 18(6):511-522.

Fischer, G .. Nakakoji, K., Ostwald, J.. Stahl, G., and Sumner, T 1993. Embedding computer-based critics in

the contexts of design. Human Factors ill Computill/i Systems. INTLRCHf'93 COlljerence Proceedin/is. ACM,

pp. 157-164.

Fischer, G., and Girgensohn, A. 1990. End-user modiliability in design environments. In Human Facwrs in

Computing Systems, CIII'90 Conjerence Proceeding' (Seallle, WAY, ACM, New York, April, pp. 183-191.

Fischer, G., and Lemke, A. C 1988. Construction kits and design environments: Steps toward human problem

domain communication. Human-Computer Interaction, 3(3): 179-222.

Fischer, G., McCall, R., and Morch, A. 1989 JANUS: Integrating hypertext with a knowledge-based design

environment. In Pmceeding, "tHypertexr'89 (Pittsbur/ih, PAY. ACM, New York, November, pp. 105-117.

Fischer. G., and Nakakoji, K. 1992. Beyond the macho approach of artificial intelligence: Empower human

d e s i g n e r s - ~ D o not replace them. Knowledge·Based ,I)stems Journal, 5(I): 15-30.

Gantt, M., and Nardi, B. A. 1992. Gardeners and gurus: Patterns of cooperation among CAD users. In I1uman

Factors in Computing Systems. CHI'92 Conjerence Proceeding" (Monterrey, CAY, ACM, May, pp. 107-117.

Green, C. Luekham, D., Balzer, R., Cheatham, T., and Rich, C 1983. Report on a KnOlvled/ie-Based Sojiware

Assistant. Technical Report RADC-TR-83-195, Rome Air Development Center, August 1983. Reprinted in

Readings in Artijiciallntelli/ietlce lind Sofiware Engineerin/i, edited by C H. Rich and R. Waters, pp. 377-428.

Los Altos, CA: Morgan Kaufmann Publishers. 1986.

Greenbaum, J., and Kyng. M. (cds.) 1991. Desi/ill at Work: Cooperative DesipI oI Computer Systems. Hillsdale,

NJ: Lawrence Erlbaum Associates.

Henderson, A., and Kyng, M. 1991. There's no place like home: Continuing design in use. In Desi/in at \t(Jrk:

Cooperelti"e Desi/in of Computer Systems, edited by J. Greenbaum and M. Kyng, pp. 219-240. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Hill, W. C 1989. The mind at AI'. Horseless carriage to clock. AI Ma/iinine, 10(2):29-41.

Johnson, W L, Feather, M. S., and Harris, D. R. 1991. The KBSA requirements/specilieation f:lcet: ARIES. In

Proceedin/is of the 6th Annual Knowledf',e-Based Software En/iineerin/i (KBSE-91) ConIerence (Syracuse, NY),

Rome Laboratory, New York. September, pp. 53-64.

Kant, E. 1992. Knowledge-based support for scientific programming. In Proceeding, "tthe 7th Annual

Knowledge-Based Sl!fiware Engineering (KBSE·92) Conference (McLean VA), IEEE Computer Society Press.

Los Alamitos, CA, September, pp. 2-4.

Kant, E. 1993. Synthesis of mathematical modeling software. IEEE Software, May: 30-4 I.

Kishida, K., Katayama, T., Matsuo, M., Miyamoto, L, Ochimizu, K., Saito, N., Sayler,J. H., Torii, K.. and Williams,

L. G. 1988. SDA: A novel approach to software environment design and construction. In Proceedin/is oIthe 10th

Intenwtional Conjerence lin Sojlware Enf',ineerin/i (Sin/iapore), IEEE Computer Society Press, Washington, DC,

April, pp. 69-79.

Lee. L. 1992. Tbe Day The Phones Swpped. New York: Donald I. Fine.

Lemke, A. C 1989. Desi/in EnvironmentsIor Hi/ih-Functionality Computer Systems. Unpublished Ph.D. Disser

tation, Department of Computer Science, University of Colorado. July.

Lemke, A. C, and Fischer, G. 1990. A cooperative problem solving system for user intertace design. In

Pmceeding, 0tAAAI-90. Ei/ihth National Conjerence on Artijiciallntelli/ience, AAAI Pressrrhe MIT Press,

Cambridge, MA, August, pp. 479-484.

Lemke, A. C, and Gance. S. 1991. End-pse,. Modijiability in a Water Mana/iement Application. Technical Report

CU-CS-541-91, Department of Computer Science, University of Colorado.

Maiden, N., and Sutcliffe, A. 1992. Domain abstractions in requirements engineering: An exemplar approach? In

Proceeding, of the 7th Annual Knowled/ie-Based Sofiware Engineerinf', (KBSE-92) Conference (McLean. VA),

IEEE Computer Society Press, Los Alamitos, CA, September, pp. 1/2-121.

202 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 203

Nakakoji, K. 1993. Increasing Shared Understanding of a Design Task Between Designers and Design Envi

ronments: The Role ofa Specification Component. Unpublished Ph.D. Dissertation, Department of Computer

Science, University of Colorado. Also available as Technical Report CU-CS-65 1-93.

Nardi, B. A. 1993. A Small Matter ofProgramming. Cambridge, MA; The MIT Press.

Nonnan, D. A. 1993. Things That Make Us Smart. Reading, MA: Addison-Wesley Publishing Company.

Osterweil, L. 1987. Software processes are software too. In Proceedings of the 9th International Conference on

Software Engineering (Monterey, CAl, IEEE Computer Society, Washington, DC, March, pp. 2-13.

Petroski, H. 1985. To Engineer Is Human: The Role (if Failure in Successful Design. New York: St. Martin's
Press.

Polanyi, M. 1966. The Tacit Dimension. Garden City, NY: Doubleday.

Prieto-Diaz, R., and Arango, G. 1991. Domain Analysis and Software Systems Modeling. Los Alamitos, CA;

IEEE Computer Society Press.

Proceedings of IEEE Internatio/1al Symposium on Requirements Engineering, 1993, IEEE Computer Society,

IEEE Computer Society Press, Los Alamitos, CA, January.

Redmiles, D. F 1992. From Programming Tasks to Solutions-Bridging the Gal' Through the Explanation (if

Examples. Ph.D. Dissertation, Department of Computer Science, University of Colorado, Boulder, CO. Also

available as Technical Report CU-CS-629-92. .

Repenning, A., and Sumner, T. 1992. Using Agentsheets to create a voice dialog design environment. In

Proceedings of the 1992 ACMISIGAPP Symposium on Applied Computing, ACM Press, pp. 1199-1207.

Resnick, L. B. 1991. Shared cognition; Thinking as social practice. In Perspectives on Socially Shared Cognition,

edited by L. B. Resnick, J. M. Levine, and S. D. Teasley, American Psychological Association, Washington,

DC, pp. 1-20, ch. I.

Reubenstein, H. B., and Waters, R. C. 1991. The requirements apprentice: Automated assistance for requirements

acquisition. In IEEE Transactions on Software Engineering, 17(3):226-240.

Rich, C H., and Waters, R. (eds.) 1986. Readings in Artificial Intelligence and Software Engineering. Los Altos,

CA: Morgan Kaufmann Publishers.

Rich, C H., and Waters, R. C 1988. Automatic programming; Myths and prospects. Computer, 21(8):40-51.

Rittel, H. W. J. 1984. Second-generation design methods. In Developments in Design Methodology, edited by

N. Cross, pp. 317-327. New York; John Wiley & Sons.

Royce, W. W. 1987. Managing the development of large software systems; Concepts and techniques. In Pro

ceedings (if the 9th International Conference on Software Engineering (Monterey, CAl, IEEE Computer Society,

Washington, DC, pp. 328-338 (reprint of a paper originally published in 1970).

Schoen, D. A. 1983. 71,e Reflective Practitioner: How Professionals Think in Action. New York: Basic Books.

Schoen, E., Smith, R. G., and Buchanan, B. G. 1988. Design of knowledge-based systems with a knowledge-based

assistant. IEEE Transactions OIl SOftware Engineering, SE-14(12): 177/-1791.

Shaw, M. 1989. Maybe your next programming language shouldn't be a programming language. In Scaling Up: A

Research Agendafor Software Engineering, edited by the Computer Science and Technology Board, pp. 75-82.

Washington, DC: National Academy Press.

Sheil, B. A. 1983. Power tools for programmers. Datamation, February: 13/-143.

Simon, H. A. 1981. The Sciences (if the Artificial. Cambridge, MA: The MIT Press.

Simon, H. A. 1986. Whether software engineering needs to be artificially intelligent. IEEE Transactions on

S(iftware Engineering, SE-12(7):726-732.

Stahl, G. 1993. Interpretation in Design: The Problem ".fTacit and Explicit Understanding in Computer Support

ofCooperative Design. Ph.D. Dissertation, Department of Computer Science, University of Colorado, Boulder,

CO.

Stefik, M. J. 1986. The next knowledge medium. Al Magazine, 7(I):34-46.

Suchman, L. A. 1987. Plans and Situated Action.'. Cambridge, UK; Cambridge University Press.

Swartout, W. R., and Balzer, R. 1982. On the inevitable intertwining of specification and implementation.

Communications of the ACM, 25(7):438-439.

Terveen, L. G., Selfridge, P. G., and Long, M. D. 1993. From folklore to living design memory. In Human Factors

in Computing Systems, INTERCHl'93 Conference Proceedings, ACM, April, pp. 15-22.

Thomas, J. C, and Kellogg, W. A. 1989. Minimizing ecological gaps in interface design. In IEEE Software, 6

(January); 78-86,

Waters, R. C. 1985. The programmer's apprentice: A session with KBEmacs. IEEE Transactions on S(iftware

Engineering, SE-II(lI);1296-1320.

White, D. A. 1991. The knowledge-based software assistant: A program summary. In Proceedings of the 6th

Annual Knowledge-Based Software Engineering (KBSE-91) ConFerence (Syracuse. NY), Rome Laboratory, New

York, September, pp. vi-xiii.

Winograd, T. 1979. Beyond programming languages. Communications of the ACM, 22(});391..c401.

Automated Software Engineering, I, 205-208 (1994)

© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Commentary on 'Domain Oriented Design.

Environments' by Gerhard Fischer

ALISTAIR SUTCLIFFE

City University

'the basic message of this paper, that software engineering needs to become more people

centric is one which I am sympathetic to. The paper is written in a crusading style and

readers unfamiliar with the area may be persuaded that they are witnessing a paradigm

shift (in the Kuhn's, 1970, sense) in software engineering from automation to cooperative

support. It is this dichotomy which I shall investigate a little further.

Very little attention has been paid to the early stages of software engineering and Fis

cher quite correctly draws our attention to the fact that the subject, now becoming titled

'requirements engineering', involves complex activities of problem framing, analysis and

problem solving. These activities have been familiar to cognitive scientists for many years

and several studies have explored problemsolving in programming (see Pennington, 1987;

Gilmore and Green, 1988), and less frequently in system analysis (Sutcliffe and Maiden,

1991; Guidon and Curtis, 1988), The surprising fact is that little or none of this work

has had an impact on the design of CASE tools. The explanation is Ihat technology has

outpaced science and only now is the industry waking up to Ihe manifesl deficiencies in

computer support for software engineering. It is a message which the automaled sofIware

engineering communily would be wise 10 heed, and Fischer makes Ihis point with reference

to CASE and in comparison with support tools for other design domains.

One of the tensions between the automatic programming and nascent design environment

tradition is in the nature of the problem. Automatic programming research invariably fo

cuses on small, well-structured problems in engineering and real time, type domains. For

such problems, formal specification, automatable transformations, and development by reo.

finement may well lead to success. Indeed for safety critical domains formal approaches

and automatic programming is not only desirable but essentiaL However, Fischer reminds

us that many problems do not fall into this class, Only too often applications start out as ill

defined, requirements are vague, change over time, and are a matter of negotiation. Commu

nication, cooperation and iterative development become more important than formalism.

The changing nature of software is not new, (see Lehman, 1971) and forth generation

languages can be seen as a partial answer to Fischer's assertion that 'modern application

needs' are not served by 'traditional programming languages', So is domain orientation the

ansWer?

The problem with domain centred design is twofold. First there is no sound theory, or even

a partial rationale, about what a 'domain' is. Hence domain oriented design environments

(DODEs) are build on ad hoc intuition about how large a particular problem is perceived

206 ALISTAIR SUTCLIFFE COMMENTARY ON FISCHER 207

of payback in increased design quality for effort in customising and configuring a generic

architecture. To go through the components listed in section 5.3:

While the concept looks attractive, considerable customisation will be necessary to build

a DODE from such a toolkit. Furthermore there appear to be several. fairly fundamental

research questions that have to be answered on the way.

DODEs are envisaged as evolving environments (section 5.4) with gradual acquisition

of domain and design knowledge. Unfortunately this brings with it the; danger of integrity

maintenance. Updating knowledge ba,es is a hazardous business even with good controls.

One designer's rule may well clash with another'S, and constructing an environment which

can rigorously check for rule inconsistencies is difficult especially as the size of the domain

knowledge base grows.

If DODEs can be delivered within the bounds of reasonable effort, there is good reason

to expect that designed products may have a better quality. Requirements capture and

validation should be improved. However, there is little in Fischer's paperaboutimprovement

in reliability of software products. Surely DODEs should attempt to ensure that the resulting

designs are specified so that the resulting code is reliable and even maintainable? This

implies that DODEs need to have specification formalisms and code generation by automatic

programming built into them, a synthesis indicated in the paper. The link that is not made

by Fischer is that formalism itself enables reasoning about specifications and hence can feed

to be. Note the perceived, problems will change in size and nature as they are explored,

a point already made in Fischer's paper. Secondly there is the generic trap. If a DODE

is constructed for a particular domain then can it be any use in another domain? If not,

then this approach leads to a pessimistic conclusion about enhancing software engineering

productivity. Every domain will have to have its own purpose-built environment.

Generalisation, and inter alia abstraction, is one of the core concerns of software engi
neenng. thiS problem has surfaced in reuse research where templates or generic models

have been proposed in an attempt to reuse domain knowledge (Reubenstein, 1990; Maiden

and Sutcliffe, 1991). However the commercial reality of software reuse is that success has

only been found in modest domain specific libraries (Arango et aI., 1993). This argues that

domain oriented approached may be the way forward but it still leaves open the question

of how large or small, general or specific, a domain should be. DODEs may be able to

deliver modest evolutionary/ within domain reuse but nothing more. However we should

also judge them on other criteria in which they claim strength namely requirements analysis

and validation and ones in which they are somewhat silent; the reliability and quality of the

designed product.

Fischer advocates 'languages for doing' for design, however, it is not entirely clear what

constitutes such as language. Some of the examples appear to be close to visual program

ming (e.g. FRAMER) while others are constraint based graphical editors (e.g. JANUS) in

the Thinglab and ARK tradition (Smith, 1987). Exploration of design ideas could be either

restricted by a system which does not allow freedom of action by the designer; alterna

tively, an overpermissive system could just encourage poor design. The problem here is

the lack of any theoretical basis for cooperation. Models of cooperation are still in their

infancy in Human Computer Interaction and Knowledge Based Systems, yet such models

are necessary to decide what support should be automated in a DODE and furthennore how

the dynamic process of cooperation should be managed in a dialogue. At present it appears

that cooperation in Fischer's systems takes a safe line of leaving initiative with the user,

although we have no way of know how optimal, or sub optimal, this strategy is.

Critique is a key component of DODEs, so design proceeds more by human creation

and machine review rather than machine automation and guidance as in the intelligent

CASE assistant tradition (e.g. Punchello et aI., 1988; Johnson et aI., 1991). Unfortunately

the penalty of domain specific knowledge means that the value of the critiquer tool is a

function of the knowledge acquisition effort in the domain, to say nothing of the knowledge

representation and dialogue design. As knowledge acquisition is an acknowledged bottle

neck in KBS development, the outlook for intelligent critiquers is pessimistic. Every

domain will have to have an exhaustive analysis to find all the principles, rules, guidelines

etc for good design and then worse still, collection of 'buggy rules' to detect poor practice.

Domain analysis has had a poor track record of price performance payback in reuse (see

the DRACO project, Neighbours, 1989), moreover buggy rules have proved hard to collect

in Intelligent Tutoring Systems. This raises a further question, how far does a DODE go

in its intelligence? Clearly there is a stopping problem as a critiquers could soon become a

complete ITS with pedagogical and diagnostic modules.

One riposte which Fischer can make to the domain specific limitation, is that his work

produces domain independent architecture. While this is true, the question becomes one

•

•

•

•

•

The construction kit; considerable effort will be necessary to turn a 'palette of domain

concepts' into support for construction by direct manipulation. A graphical composition

grammar will have to be designed and mapped to the underlying semantics ofthe objects,

relationships, etc., in the domain. Work by Sommerville et al. (1987) on generic CASE
environments may be helpful here. TIle construction kit should provide customisable

languages for design support.

An argumentation hypermedia system; this is a good idea but why not use well known

systems such as gIBIS?

A catalogue of prestored designs; another fine idea but what happens when the library

scales up? This encounters the retrieval for reuse problem. Experience suggests that

beyond 1-2000 designed components, people have problems using libraries without re

trieval support, be that by faceted classification schemes or intelligent retrieval engines.

A specification component; this is probably the most difficult part, models of coopera

tion are necessary, and the domain knowledge bottleneck makes the:critiquer expensive

to build. Further problems are how to link argumentation structures to evolving de

signs, to say nothing of supporting other facets of design known from cognitive studies,

such as maintenance of multiple hypotheses (alternative workspaces), and support for

working memory (designer's note pads).

Simulation component; it is essential to be able to animate and run various designs,

although can different views be incorporated, how can scripts and scenarios be run

against a design? Can scripts of people moving and cooking in kitchens be run in

JANUS simulations?

208 ALISTAIR SUTCLIFFE
Automated Software Engineering, I, 209-213 (1994)

© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

into design critiques. Formal software engineering tools and design environments may have

a symbiotic relationship rather than the more separate 'upper and lower' CASE modeL

Finally to return to the crusade. Are DODEs are paradigm shift from formal software

engineering tools and indeed pragmatic structured methods? I will not venture a verdict,

but I do suggest that the conception of cooperation, designer/user centricity and domain

orientation is growing in a number of research communities including automatic program
ming and formal methods. Design environments may synthesise research on simulation,

cooperative assistants, domain analysis and reuse into a new coherent direction for CASE;

although the benefits of formal software engineering need to be integrated into the vision.

Gerhard Fischer has made a good case for this vision, although some of the problems in

herent in realising design environments have been finessed. Considerable theoretical and

applied research is necessary to turn DODEs from application specific demonstrators into

a general engineering technology.

References

Arango, G., Schoen, E., and Pettengill, R. 1993. Design as evolution and reuse. In Proceedings ofAdvances in

SoJiware Reuse, Proceedings of 2nd International Workshop in SoJiware Reuse, edited by R. Preito Diaz and

w. B. Frakes. IEEE Computer Society Press.

Gilmore, D. J., and Green. T. R. G. 1988. Programming plans and programming experience. The Quarterly

Journal of Experimental Psychology, 40A:423-442.

Guindon, R., and Curtis, B. 1988. Control of cognitive processes during software design: What tools are needed?

In Proceedings of CHI '88 Conference: Human Factors in Computer Systems, edited by E. Soloway, D. Frye,

and S. B. Sheppard, pp. 263-269. ACM Press.

Johnson, W. L., Feather, M. S., and Harris, D. R. 1991. The KBSA requirements/specification facet: ARIES. In

Proceedings of6th annual Knowledge based software engineering conference (KBSE-91), Syracuse NY, 53--64.

Kuhn, T., 1970. The Structure ofScientific Revolutions, 2nd, Chicago.

Lehman, M. M., 1991. Software Engineering, the software process and their support tools. Software Engineering

Journal, VoL 6(5), pp. 243-258.

Maiden, N. A. M., and Sutcliffe, A. G. 1992. Exploiting reusable specification through analogy. Communications

of the ACM, 35(4):55--64.

Neighbours, J. M. f989. Draco, A method for engineering reusable software systems. In Software Reusability,

edited by T. Biggerstaff and A. Perlis. ACM Press.

Pennington, N. 1987. Stimulus structures and mental representations in expert comprehension of computer

programs. Cognitive Psychology, 19:295-341.

Punchello, P. P., Torrigiani, P., Pietri, E, Burion, R., Cardile, B., and Conit, M. 1988. ASPIS, a knowledge based

CASE environment. IEEE SoJiware, March: 58-65.

Reubenstein, H. B. 1990. Automated Acquisition {dEvolving hrfonnal Descriptions. Ph.D. Dissertation (A.I.T.R.

No. 1205), Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

Sommerville, L, Weiland, R., and Beer, S. 1987. Describing software design methodologies. Computer Journal,

30(2): 128-133.

Smith, R. 1987. Experiences with the alternate reality kit: An example of the tension between literalism and magic.

In Hun;wn Computer Interaction, Proceedings o f C H I ~ 8 7 , edited by J. M. Carroll and P. Tanner, pp. 61-68. ACM

Press.

Sutcliffe, A. G., and Maiden, N. A. M. 1991. Analogical software reuse; Empirical investigations of analogy

based reuse and software engineering practices. Acta Psychologica, 78(1-3): 173-197.

Birds of a Feather: The DODE and Domain-Specific

Software Synthesis Systems

DOROTHY E. SETLIfF

University ofPittsburgh

1. Introduction

Fischer, in his paper "Domain-Oriented Design Environments", introduces DODEs as a

new design process, The fundamental characteristics of the DODE are the incorporation of

domain-specific knowledge, the separation into synthesis, analysis, and simulation design

components, and an emphasis on stakeholder and synthesis cooperation, Fischer contrasts

the DODE against current knowledge based software engineering techniques, which he

claims emphasizes the replacement of humans in design [Section 1]. Fischer claims that

the ultimate goal of these techniques is automatic programming [Section 1]. Fischer char

acterizes automatic programming as being 'unachievable' [Section 3] and the antithesis of

the DODE design process.

This author disagrees with Fischer's characterization of automatic programming, and

believes that Fischer's DODE design process is virtually identical to ~hat seen in current

automatic programming/software synthesis design systems. While Fischer does not provide

much in the way of algorithm or technique suggestions to implement the DODE design

process, this author believes that current software synthesis techniques can be used to

instantiate much of the DODE design process, The remainder of this paper presents a more

current definition of automatic programming and software synthesis and investigates the

similarity between current software synthesis systems and Fischer's DODE design process.

Given this similarity, this author believes that the crusade to empower, rather than replace,

humans is already a point in fact and that the DODE design process is not a totally new

idea. The organization of ideas presented in Fischer's paper does cover in one place the

major areas of research needed to fully implement the DODE. Current software synthesis

systems represent steps in that direction.

2. Automatic Programming Today

Automatic programming, more currently called software synthesis, focuses on the tools

and techniques needed to synthesize a specific type of design object, namely, software,

Software has proven to be quite difficult to design automatically. This is because software

as adesign object is so easily modifiable and quite often the 'glue' tying together a multitude

of different design objects (e,g., hardware) (Royce, 1993), Early automatic progralrtming

efforts centered On generic (i.e" domain-independent) techniques and On the software coding

process (Biermann, 1976; Schonberg et aI., 1981), rather than on the software design

210 DOROTHY E. SETLIFF BIRDS OF A FEATHER 211

process. Several efforts included domain-specific knowledge (Barstow, 1979), but these

resulted in application-specific code generators, and were without a good abstraction of

the design architecture. Unfortunately, the limitations of these early efforts soured many

researchers on the applicability and likely success of software synthesis. It is the limitations

of these early efforts that drives Fischer's characterization of automatic programming.

Fortunately, software synthesis has progressed past these first beginnings. The realization

that design, defined by Dym as "the act of translating requirements into specifications and

constraints" (Dym, 1993), is the real problem, not implementation. Thus, software synthe

sis turned its focus to software design issues (Setliff et aI., 1993). The recognition that the

domain affects design and vice versa is one that Fischer specifically incorporates in his DO

DEs and can be seen in current software synthesis and engineering systems (Lowry, 1991).

One design field that has shown startling synthesis success is VLSI CAD design. The

combination of domain-independent synthesis algorithms and domain-specific knowledge

successfully synthesizes VLSI CAD designs. Three characteristics serve to make VLSI

CAD highly synthesizable: the specification of a specific target solution architecture, the

restriction to a set ofknown design components, and high reusability. Current software syn

thesis approaches seek to mirror the success of VLSI CAD design synthesis by making the

same set ofdesign style restrictions and using the same combination ofdomain-independent

synthesis algorithms and domain-specific knowledge (Setliff and Rutenbar, 1992; Smith

and Setliff, 1993; Keller and Rimon, 1992).

The success of domain-specific software synthesis has not been noted in many circles.

Software synthesis has successfully produced systems targeting a specific design architec

ture in a given domain (Smith and Setliff, 1993; Jullig and Pressburger, 1993; Eriksson and

Musen, 1993; Kant, 1993; Abbott et aI., 1993). This allows for greater domain breadth and

insights into how to transfer this success into other related domains. Work is continuing

on design style abstractions so that synthesis can evaluate the relative merits of different

design architecture styles.

Fischer is incorrect in believing that software synthesis seeks to replace the human in de

sign [Section 3]. Rather, software synthesis seeks to tailor the design process (consisting of

synthesis, analysis, and simulation activities) according to what the designer believes is an

essential human design activity in accordance with the maturity of the target domain. This

is identical to the design needs that Fischer claims are met by DODEs. It is when the human

performs repetitive actions that the human becomes a 'button-pusher' [Section 3], not when

automation is provided. Synthesis focuses on activities that the human has no real desire

to participate in because they are repetitive, even when those activities are software design

activities. The most likely repetitive design activities are in well-known domains. While

most domains are not well-known at this point, allowing synthesis to perform design activ

ities allows the designer to quickly evaluate the repercussions of different options. Humans

prefer to evaluate the effectiveness of decisions. It is this facility that synthesis provides.

3. A Comparison of Software Synthesis Systems and the DODE

It is this author's contention that both Fischer's DODE andcurrent software synthesis sys

tems seek to empower the human, incorporate domain knowledge where necessary, and

separate the design process into synthesis, analysis and simulation components. Fischer

lists five main components in the generic DODE architecture. Iteration is made explicit

through an integration of these components. Each of these five main components has a cor

responding component in most software synthesis systems. The following list summarizes

Fischer's DODE component description, describes the corresponding software synthesis

system component, and highlights their similarities and differences.

• Construction kit:

Fischer describes this component as a 'palette of domain concepts' that supports 'design

by composition.' This component supports synthesis activities. A number of software

synthesis architectures duplicate the functionality of this component by incorporating

templates of various abstraction levels (Graves et aI., 1992; Kant, 1993; Keller and

Rimon, 1992). These templates act as design knowledge supporting synthesis oper

ations. Keller and Rimon (1992) use templates of mathematical behaviors to derive

complex mathematical design functions. Setliff and Rutenbar (1992) use design tem

plates much as does Janus [Section 5.1] to modify initial designs to meet the evolving

routing specification. Software synthesis architectures demonstrate the utility of ' d e ~

sign by composition', especially in rapidly changing domains (Setliff and Rutenbar,

1992).

• Argumentative hypermedia system:

Fischer expounds the use of visual techniques to provide analysis functions. This com

ponent acts as an enabling user interface for database technologies. The goal of this

component is provide a domain-specific user interface while supporting explanation

based design (i.e., human/computer cooperation). While no software synthesis system

has explicitly detailed the need for this type of visual interaction, Kant (1993) has ex

plored the use of history keeping to explain design decisions. Jullig (1993) supports

combined explanation and simulation activities. Abbott et aI. (1993) provides a visual

domain-specific specification user interface. Thus, current software! synthesis architec

tures support parts of this component. Fischer makes a good point that user interactions

should be in terms of the domain. Successful software synthesis architectures have

domain-specific user interfaces.

411 Catalog:

Fischer describes the catalog as 'a collection of pre-stored designs that illustrate the

space of possible designs' and as a support for 'design for modification' [Section 5].

This component is primarily a database supporting the activities in the construction kit.

Indeed, in most software synthesis architectures, this component is contained within

the construction kit (using Fischer's terminology) (Setliff and Rutenbar, 1992; Smith

and Setliff, 1993; Kant, 1993; Keller and Rimon, 1992). Thus, the combination of the

catalog and construction kit (and in part the specification component below) perform

synthesis and analysis activities in software synthesis architectures.

212 DORafHY E. SETLIFF BIRDS OF A FEATHER 213

• Specification:

Fischer argues for domain-specific specification interfaces and languages (languages for

doing). The specification is expected to be modified as a function of performing design.

Domain-specific software architectures have embraced domain-specific specifications.

Keller and Rimon (1992) use visual data flow graphs to succinctly capture physical

to mathematical relationships. Smith and Setliff (1993) use simple tables common in

use by systems analysts. Abbot et al. (1993) use graphical editors to capture synthesis

for parallel process. Software synthesis architectures embrace the use of domain

specific user interfaces and typically incorporate Fischer's specification component

into Fischer's argumentative hypermedia system component.

• Simulation:

Fischer specifically incorporates the necessity ofsimulation to play 'what if' games dur

ing the design process. Simulation is supported by Jullig (1993), Abbott et a!. (1993),

and Keller and Rimon (1992). Simulation is provided at different abstraction levels:

design, functionality, and implementation. Effective simulation requires efficient anal

ysis of the end-result, software. Software synthesis techniques are uniquely suited for

effective simulation and can be used in DODEs to provide analysis of the design space.

Current software synthesis architectures, '.vhile not split precisely into Fischer's five

components, generally support the 'gist' of Fischer's design process. Software synthesis

does have an emphasis on abstraction levels (due to a philosophical difference on what is

automatable) not present in Fischer's discussion of DODEs.

4. Conclusions

Software synthesis techniques provide most, but not all, of the functionality in Fischer's

DODE. Software synthesis is achievable and is best at the automation of repetitive activities,

even when these activities are design. Software synthesis performs analysis and synthesis

activities automatically in well-known domains, while in less well-known domains, soft

ware synthesis supports simulation activities for human cooperation. Software synthesis

techniques support human cooperation by effectively evaluating different options within

the design space. Current software synthesis architectures are well on their way towards

instantiating Fischer's DODE design process.

References

Abbott, B., Bapty, T, Biegl, c., Karsai, G., and Sztipanovits, J. 1993. MOdel-based software synthesis. IEEE

Software, May: 42-52. Los Alamitos, CA: IEEE Computer Society.

Barstow, D. 1979. An experiment in knowledge based automatic programming. ArtijicialIntelligence, 12:73-119.

Biermann, A. W. 1976. Approaches to automatic programming. [n Advances in Computers, edited by M. Rubin

and M. C. Yovits, Vol. 15, pp. 1-63. New York: Academic Press.

Biggerstaff, T. J., and Perlis, A. J. [989. Software reusability. [n Concepts and Models, Vol. I. ACM Press.

Dym, C. 1993. Teaching Design. Presentation at NSF Workshop on the Freshman Engineering Experience,

Colorado State lJniversity, July.
Eriksson, H., and Musen, M. 1993. Metatools for knowledge acquisition. IEEE Sojiware, May: 23-29. Los

Alamitos, CA: IEEE Computer Society.
Graves, H., Louie, J., and Mullen, T 1992. A code synthesis experiment. In Proceedings of the 7th Knowledge

Based Software Engineering Conference, pp. 6-17, IEEE Computer Society Press, Washington DC, September

1992.
Jullig, R., and Pressburger, T 1993. Applying formal software synthesis. IEEE Sojiware, May: 11-22. Los

Alamitos. CA: IEEE Computer Society.
Kant, E. 1993. Synthesis of mathematical-modeling software. IEEE Sojtware, May: 30-41. Los Alamitos, CA:

IEEE Computer Society.
Keller, R. M., and Rimon, M. 1992. A knowledge-based software development environment for scientific model

building. In Proceedings of the 7th Knowledge-Based Software Engineering Conference, pp. 192-201, IEEE

Computer Society Press, Washington DC, September.
Lowry, M. 1991. Software engineering in the twenty first century. In Automating Software Design, Chapter24,

edited by M. R. Lowry and R. D. McCartney. AAAI Press.

Royce, W. 1993. Why software costs so much. IEEE Sojiware, May: 90-91. Los Alamos, CA: IEEE Computer

Society.
Schonberg, E., Schwartz, J., and Sharir, M. 1981. An automatic technique for the selection of data representations

in SETL programs. ACM Transactions on Programming Languages and Systems, 3:126-143.

Setliff, D. E., Kant, E., and Cain. J. T 1993. Practical software synthesis. IEEE Software, May: 6-10. Los

Alamitos, CA: IEEE Computer Society.
Setliff, D. E., and Rutenbar, R. A. 1992. Knowledge representation and reasoning in a software synthesis

architecture. IEEE Transactions on Software Engineering, 18(6):523-533.

Smith, T E., and Setliff, D. E. 1993. Towards design phase synthesis. In PI"()ceeding,' ofth~ 8th Knowledge-Based

Software Engineering Conference, IEEE Computer Society, Chicago IL, September.

Automated Software Engineering, 1,215-218 (1994)

© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Developing Domain-Oriented Design

Environments-The Question is How, not Why

JIM Q. NING

Center for Strategic Technology Research (CS711R), Andersen Consulting, 100 South Wacker Drive,

Chicago, Illinois 60606

I share many of the claims and ideas expressed in the paper, "Domain-Oriented Design

Environments" (DODEs) by Gerhard Fischer. Especially, I strongly agree with the following

two points:

1, Human-Centered Design Paradigm. According to the author, this means the "em

powering and augmenting of all stakeholders in design processes; to create more ade

quate, more understandable, and more enjoyable systems." The state of commercial

acceptance of the Computer-Aided Software Engineering (CASE) tools, let alone the

Knowledge-Based Software Engineering (KBSE) tools, has been disappointing. A

primary reason, as pointed out by Fischer, is that the existing tools and approaches

fail to emphasize active user involvement and cooperation in the software design and

development process.

2. Domain Orientation. The existing tools may contain generic knowledge concerning

computing and programming domains. Some commercial CASE tools, for example,

may automatically verify structural and dataflow design constraints. More advanced

tools or prototypes may use programming knowledge to automate the generation of

executable and/or efficient code from high level specifications (Johnson and Feather,

1990; Kant, 1993). But typically, they do not provide problem solving support specific

to the application domains for which the systems are developed.

It should be pointed out, however, that the problems raised by Fischer have long been

recognized in the software engineering community. There has been on-going work in the

general areas ofDomain Modeling and Analysis (Arango, 1989; Devanbu et a!., 1991; Iscoe,

Williams, and Arango, 1989; Prieto-Diaz, 1990), Software Architectures (Garlan and Shaw,

1993), Application Generators (Neighbors, 1984; Batory, 1988), Fram(!works (Johnson and

Russo, 1991), Megaprogramming (Beohm and Scherlis, 1992; Wiederhold, Wegner, and

Ceri, 1992), Domain Specific Environments (Griss, 1993; Ning, Miriyala, and Kozaczynski,

1994), etc. The ARPA Domain-Specific Software Architecture (DSSA) program (Mettala

and Graham, 1992; Proceedings, 1990), in particular, exemplifies)a coordinated effort

towards developing domain-specific software tools. Despite the active research, the DODEs

developed so far have not been able to scale up to demonstrate practical utility.

A large portion of Fischer's paper was contributed to argue why we should develop

DODEs, which I do not consider to be a significant question any The real question

216 JIMQ.NING DEVELOPING DOMAIN-ORIENTED DESIGN ENVIRONMENTS 217

today is how to develop. There are many constraints and difficulties involved in developing

DODEs, including:

I. Knowledge Engineering. Knowledge engineering or knowledge acquisition has long

been recognized as a bottleneck in the application of AI and knowledge-based tech

niques. An effective DODE would require a large amount and a wide variety ofdomain

specific knowledge possibly including architectures, design frameworks, interface and.

interconnection standards, principles, constraints, heuristics, critics, reusable compo

nents, etc. Where does this knowledge come from? Obviously, the DODE developers

cannot do it alone who typically do not possess sufficient domain knowledge. They

will have to cooperate with the target users of the DODEs to conduct domain analysis.

Domain analysis is known to be a hard, tedious, and time-consuming activity. What are

the incentives that could potentially justify the high investment involved in the DODE

knowledge engineering activities long before the developers could benefit from selling

them and the users could benefit from using them?

2. Domain Maturity. Even with high commitment, it is difficult to imagine that DODEs can

be built for those domains in which we have not developed many application systems and

thus do not have good understanding. DODEs encapsulate domain-specific application

development experiencelknowledge accumulated in the past. The form and content of

this development knowledge will keep evolving for a long period of time as a large num

ber of applications are developed in a particular domain. A good DODE must be based

on a relatively stable understanding of a domain. It should also be pointed out that even

for mature domains, it would still be very hard to construct DODEs because of the lack

of sound domain theories and systematic methods for domain analysis and modeling.

3. Domain Specificity. So far, DODEs have only been successfully developed for a lim

ited number of "low-level", generic domains, such as graphical user interface (GUl)

building and database generation. It may not even make sense attempting to construct

DODEs for arbitrary domains. DODEs are expensive to construct. It would not justify

the effort for narrow domains in which very few applications will ever need to be built.

Besides, certain domains may not fit the cooperative, user-oriented, graphics-based

design style suggested by Fischer's paper. For example, it would not be intuitive, if

not totally impossible, to present domain problems visually that involve mainly com

plex computation but have little to do with interfaces and interconnections. For such

problems, a formal, automatic programming approach could be superior.

It does not seem to me that Gerhard Fischer's paper provides a satisfactory answer to the

how question, i.e., how to construct DODEs given the above difficulties. Section 3 of the

paper, "A Theoretical and Conceptual Framework," only lists some guidelines or principles

of what a DODE should look like. Section 5, "DomaincOriented Design Environments

(DODEs)," is a main section and was obviously intended to exemplify the basic ideas of

the paper. This section provides two examples. The first one (FRAMER) supports the

user interface design domain. But this domain is relatively mature and well-known. Many

commercialized tools (GUl builders) are already widely used today. It is not necessary any

more to justify the utility of DODEs in this particular domain. On the other hand, it is

not sufficient using this example alone to show that a DODE approach would be equally

effective in other, more business-oriented domains.

The second example (JANUS) is about kitchen design. This example; is not only over

simplifying but also misleading because it does not address software design. DODEs

are supposed to be environments for designing and generating software systems, which

in turn will be used to solve domain-specific problems. It is totally irrelevant whether

the domain problems are design problems (e.g., the kitchen design problem) or any other

problems. JANUS is just a particular software system for developing kitchen designs. A

more convincing example should be a DODE for room configuration domain applications,

from which a kitchen design tool such as JANUS can be generated. Otherwise, what are

called Computer-Aided Design (CAD) tools that support, for a few exa.mples, hardware

board/chip design, mechanical component design, scheduling, etc., would all be classified

as DODEs.

To establish some relevance of this kitchen design example with the main topic of the

paper, I have to assume that the author was using it as an analogy to illustrate the ideas of

what a real DODE should look like. But this analogy is weak because software systems can

be fundamentally different from hardware! physical systems. For example, it may not be as

meaningful to show software components, which do not have any physical '.'look" or"shape"

(except possibly GUl-type components), graphically. In addition, interfaces of software

systems are typically loosely defined. Plugging two systems together is far more complex

than, for example, putting a refrigerator next to a stove. Furthermore, many physical

principles (e.g., no refrigerators on the ceiling) do not apply to software components. A

simple adaptation of design frameworks successfully used in other engineering domains

may not work in software engineering.

I also find some conflicting arguments in the paper. On one hand, this paper indicates that

the described DODE work is complementary to the approaches pursued by KBSA research

(Green et aI., 1983). This is quite understandable because the existing iKBSA work has

mainly focused on downstream activities along the software lifecycle, as pointed out by

Fischer. The DODE work obviously covers more upstream activities. If this is the case, then

it is unfair to blame the KBSA work later on in Fischer's paper for its lack of emphasis on

human involvement and domain orientation, which are by nature characteristics of upstream

activities. The author also failed to point out that the KBSA community ;has been making

conscious efforts recently to address issues related to collaboration support and domain

orientation. Its Advanced Development Model (ADM, Andersen Consulting, 1992) project

is a good example.

In general, I found the DODE paper very interesting to read. It identilfied some funda

mental problems with the existing software engineering research and argued why a more

human-centered and domain-oriented approach would be desirable. But the paper came up

short explaining how the DODEs should be constructed.

References

Andersen Consulting. 1992. Knowledge-Based Software Assistant Advanced Development Model. Technical

Proposal. July.

218 JIM Q.NING
. Automated Software Engineering, 1,219-222 (1994)

© 1994 Kluwer Academic Publishers, Boston. ManufactUl'ed in The Netherlands.

Arango, G. 1989. Domain Analysis: From Art to Engineering Discipline. Proceedings of the Fifth International

Workshop on Software Specijication and Design, Pittsburgh, PA, May.

Beohm, B., and Scherlis, B. 1992. Megaprogramming. Proceedings of the DARPA Software Technology Confer

ence.

Batory, D. 1988. Concepts for a DBMS Symhesizer, Proceedings of ACM Principles ofDatabase Systems Con

ference.

Devanbu, P., Brachman, R., Selfridge, P. G., and Ballard, B. W 1991. LaSSIE: A knowledge-based software

information system. Communications ofthe ACM, 39(5).

Green, C, Luckham, D., Balzer, R., Cheatham, T., and Rich, C. 1983. Report on a Knowledge-Based Software

Assistant. Technical Report RADC-TR-83-195, Rome Air Development Center, August.

Griss, M. L. 1993. Software reuse: From library to factory. IBM Systems Journal, 32(4).

Garlan, D., and Shaw, M. 1993. An Introduction to Software Architectures, Advances in Software Engineering

and Knowledge Engineering, Vol. I. World Scientific Publishing Company.

Griss, M. L., and Wentzel, K. D. 1994. Hybrid Domain·Specijic Kits for a Flexible Sojiware Factory. Proceedings

of the SAC'94, Phoenix, AZ, March.

Iscoe, N., Williams, G., and Arango, G., (eds.) 1989. Domain Modeling for Software Engineering. Austin, TX:

Domain-Modeling Workshop.

Johnson, W. L., and Feather, M. S. 1990. Building an Evolution Transformation Library, Proceedings of the 12th

International Conference 011 Software Engineering, March.

Johnson, R. E., and Russo, V. F. 1991. Reusing Object-Oriemed Designs. Technical Report U1UCDCS 91-1696,

University of Illinois at Urbana-Champaign, May.

Kant, E. 1993. Synthesis of mathematical modeling software. IEEE Software, May.

Mettala, E., and Graham, M. H. (eds.) 1992. The Domain-Specific Software Architecture Program. Technical

Report CMU/SEI-92-SR-9, Carnegie Mellon University, June.

Neighbors, J. M. 1984. The Draco approach to constructing software from reusable components. IEEE Transac

tions on Software Engineering, September.

Ning, J. Q., Miriyala, K., and Kozaczynski, W 1994. An architecture-driven, business-specific, and component-

based approach to software engineering. International Conference on Software Reuse, submitted.

Prieto-Diaz, R. 1990. Domain analysis: An introduction. ACM SIGSOFT Software Engineering Notes, 15(2).

Proceedings of the Workshop on Domain-Specific Software Architectures, Hidden Valley, PA, July 1990.

Wiederhold, G., Wegner, P., and Ceri, S. 1992. Toward megaprogramming. Communications of the ACM,

35(11):89-99.

Commentary on "Domain-Oriented Design

Environments" by Gerhard Fischer

PETER G. SELFRIDGE

AT&T Bell Laboratories. Room 28-425, Murray Hill, NJ 07974

Introduction

"Domain-Oriented Design Environments", by Gerhard Fischer, makes a number of in

sightful points about thc process of software design, advocates a particular style of research

described as embedding "human-computer cooperative problem-solving tools into domain

oriented, knowledge-based design environments", and contrasts this approach with that

emphasized by the Rome Laboratory Knowledge-Based Software Assistant (KBSA) pro

gram. The most important distinction is the focus on the "upstream" aqtivities of problem

understanding, as opposed to problem solving. This distinction leads relatively naturally to

an approach of providing the "problem understanders" with a domain-oriented tool or set of

tools, where underlying constraints, interactions, and domain knowledge can be represented

explicitly. It also leads naturally to an emphasis on supporting the understanding process

among a group of individuals, in the CSCW sense.

The points made in this paper are illustrated with two examples drawn from the large

amount of excellent work coming from Fischer's group at the University of Colorado at

Boulder. The first system, FRAMER, is a domain-oriented design environment (DODE)

for user interface design. This general domain, the subject of numerous reports on GUI's,

UIMS's, etc., is clearly a natural one for Fischer's general approach. The components of

the underlying domain, graphical user interfaces, can be directly represented in a computer

based tool and a variety of supporting aids can be investigated. Fischer has examined the

notion of a domain-oriented "tool kit", what he calls a "construction kit" which adds the

idea of a graphical workspace, and finally, a "design environment" where additional design

knowledge is provided through critics, specification sheets, and checklists. The second

example system is JANUS, a DODE for kitchen design. Again, this domain is a good fit

for Fischer's ideas because it maps so well onto a 2D display and the design components

interact with each other primarily spatially. Still, the domain is rich in constraints that are

derived from how the components will be used in the real-world, and JANUS provides

various techniques for identifying and resolving design issues.

As a researcher at AT&T Bell Laboratories, I have been involved with several collabora

tions with a very large (> 2000 people) software organization, and my remarks are derived

from this experience. In general, I am extremely sympathetic with Fischer's general ap

proach, and agree with many of his specifics. However, I offer the following observations,

and discuss the implications of these observations for Fischer's remarks and possible future

areas of research.

220 PETER G. SELFRIDGE COMMENTARY ON FISCHER 221

Four Observations

Observation #1: Software Developers Spend Little Time Understanding Requirements or

Writing Code. This observation has a number of implications for supporting software

development. First of all, the need for improved coding tools and environments, while

real, is just not a bottleneck in the organization I'm familiar with. Second, one has to ask

how software developers do spend their time. In this organization software design takes

place after a specification document is approved. This document describes in great detail

the operation of a telecommunications feature from a customer perspective. Understanding

this document is usually straightforward, although perhaps tedious. The software developer

then begins to construct a design, embodied in a design document, which may undergo an

interactive process of review and refinement. After the design document is approved, the

coding process begins and is usually relatively straightforward.

So, what can we say about the actual design process? What is hard about it? In our

experience, effective software design involves becoming aware of the appropriate body of

"folklore" knowledge-informal knowledge in the organization about switching hardware,

real-time constraints, local programming conventions, different people's areas of expertise,

etc. TypicaIly, the software designer spends a great deal of time becoming aware of this

information and the most effective developers are those with the most extensive network

of information sources, i.e., other people. Our work on the Designer Assistant (Selfridge,

Terveen, and Long, 1992; Terveen, Selfridge, and Long, 1993, in press) has emphasized

capturing and maintaining this kind of information in a computer-based tool and integrating

this tool with the organizational process.

Observation #2: Software Design Doesn't Match the Visual Metaphor Very Well. While

one can imagine a DODE for software design of telecommunications features, it is not clear

what such a DODE would look like and exactly what benefit it might provide. Again, in my

experience, designing telecommunications software is not particularly visual. Some visual

notations are used, such as finite-state diagrams to represent message handling and other

state-based computation, and tools are used to validate such representations. However, the

majority of design work doesn't seem to require a graphical workspace approach.

There are two responses to this line of thinking. First, it could be argued that if we un

derstood the notion of a telecommunications feature and were more rigorous with formally

describing such (Zave, 1993), the idea of a DODE for designing telecommunications fea

tures would be much natural. I have little to say about this possibility beyond its plausibility.

Second, it could be that a DODE for this purpose could provide more generic CSCW benefit

by facilitating issue generation and resolution among groups of designers. This could be

a very valuable line of inquiry; however, it doesn't reaIly match the idea of a DaDE as

described by Fischer.

Observation #3: Legacy Systems Dominate Large Software Design and Impose Special

Challenges. In the organization I'm familiar with, design activity is dominated by two things.

The first is folklore knowledge, discussed above, and the second is the current software sys

tem. The design activity is essentiaIly to modify and add to the existing software structure to

implement the requirements while not breaking anything else. In addition, the modifications

should be as parsimonious as possible (however, time pressures usuaIly negate this goal).

The existence of very large legacy systems in the form of code (other inforrnation is rarely, if

ever, preserved) is a serious challenge to the DODE concept for this area. I{ow exactly might

information in these large systems get acquired and integrated into a design environment?

While various research in reverse engineering (Waters and Chikofsky, 1993) (including our

own work (Devanbu et aI., 1991; Selfridge, 1991) has illustrated the ability to derive some

information from old code, this information rarely captures meaningful ~ e m a n t i c s .

Observation #4: Organizational Process Maturity is Absolutely Critical to Providing

Effective Computer Support. Illis is an observation that I think Gerhard Fischer would

agree with completely. In our experience, understanding of organizational process and

ownership and measurement ofsuch processes are critical in improving them with or without

computer support. This has been observed by others as well (Royce, 1992). In our work on

the Designer Assistant, integrating the tool with t, integrating the tool with current practice

as prescribed by a process description was important in three ways. I First, it allowed

us to understand where and how such a tool could be useful. Second, it coerced, in an

acceptable way, users into actually using the tool at certain appropriate times, maximizing

the possibility that it would be useful. Finally, it aiiowed us to address the knowledge

maintenance problem is a disciplined way, by capturing disagreements with and desired

additions to the knowledge.
However, the issue of process maturity and technology transfer does raise serious issues

on how research into software design should take place. One extreme view is that academic

research in this area is destined to be irrelevant, since such research is not embedded in a

real "customer" organization. Of course, there is a spectrum of degrees to which academic

research can be coupled to real-world concerns, and Fischer's work often is done in various

sorts of collaboration with outside companies, and he always takes his inspiration from the

real world. He is also an outspoken advocate of empirical testing and user experimentation.

However, how effective his approach will be when tested in a real software development

organization is an open question.

Conclusions

Gerhard's vision of domain-oriented design environments, initially "seeded" by a special

startup effort but from then on "living and growing" through interaction in a work environ

ment is a compelling one. His positioning of this idea as complementary to more traditional

approaches like KBSA (which, by the way, are beginning to embrace many of the ideas he

espouses) is correct. Furthermore, I agree with this vision and with much of his work in

supporting human-centered design. However, as he himself admits, it remains to be tested

in the real world and such tests will force the vision, the technology, and the way people

work to evolve in mutually supportive way.

References

Devanbu. P., Brachman. R. 1.. Selfridge, P. G., and Ballard, B. W. 1991. LaSSIE: A knowledge-based software

information system. Communications of the ACM, 34:34-49.

Royce. W. 1992. Why industry often says "no thanks" to research. IEEE Software, November: 97-99.

222 PETER G, SELFRIDGE
Automated Software E n l g i n < ~ e r i n g , I, 223-229 (1994)

© 1994 KI uwer Academic Publishers, Boston, in The Netherlands,

Selfridge, P, G, 199 L Knowledge representation SUPPOIt for a software information system, In Proceedings of

the 7th IEEE COllference Oil AI Applications, pp, 134-140, Miami Beach, Florida

Selfridge, P, G" Terveen, L G" and Long, M, D, 1992, Managing design knowledge to provide assistance to large

scale software development In Proceedings ofthe Seventh Knowledge-Based Software Engineering Conference

(KBSE-92), pp, 163-170, Tyson's Comer, Virginia, September 22-25, Available from the IEEE Press,

Terveen, L G., Selfridge, P, G" and Long, M, D, 1993, From "Folklore" to "Living Design Memory", In

Proceedings of INTERCHl-93, pp, 15-22, Amsterdam, The Netherlands, April 24-29, Available from ACM,

Terveen, L G" Selfridge, P, G" and Long, M, D, (in press) Living Desigll Memory for Software Development:

Framework, System. Lessons Learned.

Waters, R, c., and Chikofsky, E, J, (eds,) 1993. Workillg CO'!ference on Reverse Engineering, Baltimore,

Maryland, May 21-23, Available from the IEEE Computer Society,

Zave, P 1993. Feature interactions and formal specifications in telecommunications1EEE Computer, 26:20-3 L

Domain-Oriented Design Environments:

Reply to Commentaries

GERHARD FISCHER

Department ofComputer Science and IllstilUte of Cognitive Science, University of Colorado,

Boulder, Colorado 80309

A. Sutcliffe, J, Ning, P. Selfridge and D. Setliff have commented on my article "Domain

Oriented Design Environments" and I would like to thank them for their insightful com

ments, One should not be surprised that researchers hold different views about an area as

complex and as volatile as Software Engineering, especially because my paper not only de

scribes some past achievements, but also outlines a research agenda for the future. I would

like to thank the editors of Automated Software Engineering who have granted me the priv

ilege of replying to the comments by A. Sutcliffe, J. Ning, P. Selfridg~, and D. Setliff. I

have organized my reply around themes, using the names of these individuals as references.

I have chosen often to use "we" instead of "I" to acknowledge the group of collaborators at

CD Boulder and elsewhere, who share with me the same view.

Design

Design is concerned with "how things ought to be in order to attain goals, and to function"

(Simon, 1981). Design understood this way is more than "the act of translating requirements

into specifications and constraints" (Setliff). Design complements the natural sciences,

whose primary goal is to analyze. Designers not only solve given proqlems by reasoning

about formal representations, but they (architects, industrial designers, curriculum design

ers, or software designers) have to get actively involved in framing problems, Designers are

not the sole owners ofproblems, They have to collaborate with all stakeholders (clients, cus

tomers, other designers) in a mutual education process to understand problems and construct

the knowledge for solving them. Design methods will be deeply influenced by the artifacts

developed. The design of computational artifacts to empower humans faces different issues

than the design of technical systems, such as VLSI CAD design (Setliff) or compilers.

Problems of Domain-Oriented Design Environments

What is a Domain?

Sutcliffe raises the issue that "there is no sound theory about what a 'dqmain' is." I agree

that domains cannot be precisely defined-they are part of the design activity themselves

224 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 225

(so they change when goals change). We try to define domains in our environments (such as

departments in universities, or professional societies), and they serve as useful constructs.

But at the same time, we call for interdisciplinary research to acknowledge that real world

problems do not fit into our preconceived domains. Domains and their boundaries will

undergo change as our world changes. This is specifically acknowledged in our work by

postulating our model of seeds, evolutionary growth and reseeding.
I disagree with the assertion that "it is difficult to imagine that DODEs can be built for

immature domains" (Ning). Our research has demonstrated that it can be a very fruitful

endeavor to create DODEs for immature domains (and we have done so for lunar habitat

design, for computer networks, etc.). By creating DODEs through intensive collaboration

with domain experts, we have shown that these efforts can make major contributions toward

deepening our understanding of a domain.

What is the Price of Working in a Domain?

Sutcliffe asserts that "DODE's domain-specific nature will limit application to a small set

of related problems, leaving only an outline architecture as a more general result." This is

an adequate characterization and it is supported by the results of our work. We are aware

of the tension and the design trade-off between the Turing Tar-Pit (as articulated by Alan

Pedis) "The Turing Tar Pit: everything is possible but nothing of interest is easy" and the

inverse of it "The over-specialized system: everything is easy, but nothing of interest is

possible." Referring back to human organizations and domain expertise again: our society

educates its members in domains, and switching from one domain to another is a non

trivial undertaking. So why should we expect that we will get DODEs for free? There

is growing wide spread recognition and a growing number of computational artifacts that

demonstrate that domain orientation will allow us to develop new generations of human

centered computational artifacts (e.g., Mathematica for mathematicians, spreadsheets for

planning and decision making, drawing and painting software for artists, etc.) by supporting

human problem-domain communication with the goal of narrowing the gap between subject

domain and computational substrate.

We are working on substrates and layered architectures to increase the sharing of com

ponents between DODEs in related domains. But without paying the price of working in

a domain, our computational environments will be severely limited in the amount (I) of

support they can provide (e.g., there would be no work-triangle critic without domain

knowledge), and (2) of end-user control and interest (e.g., end-users are not interested in

the computer per se, but in their tasks).

Knowledge Acquisition

Ning observes that "an effective DODE will require a large amount and a variety of domain

oriented knowledge." Our process model, based on seeds, evolutionary growth, and reseed

ing (Fischer et aI., 1994), is an important alternative to the conventional approaches of

knowledge acquisition as well as the futuristic approaches of machine learning pursued in

AI-oriented research efforts. Our model explicitly acknowledges the fact that (I) human

knowledge is tacit (Polanyi, 1966) (so the best we can hope for is a seed), (2) knowledge

changes over time (requiring support for evolutionary growth), (3) the breakdowns based on

lack of knowledge will be experienced by the domain designers and not by the environment

developer (making end-user modiflability a necessity rather than a luxury), and (4) social
incentives and rewards for providing and documenting this knowledge (e.g., in the form

of design rationale) may be more important than the particular formalism chosen for its

representation.

How, Not Why

Ning states "that the real question today is how to develop, rather than why we should

or should not develop DODEs." Our research prototypes (see references in my paper)

demonstrate that we have some understanding of "how" one goes abqut building DODEs.

Beyond that, we assisted others in developing DODEs and demonstrated the practical value

of some of our DODEs in industrial research environments (e.g., the voice dialog design

environment in use at USWest Advanced Technologies (Repenning and Sumner, 1992), the

service-provisioning environment in use at NYNEX (Ostwald, Burns, and Morch, 1992),

and the lunar habitat environment in use by a NASA contractor (Stahl, 1993».

An important aspect of DODEs is the possibility to construct them incrementally (e.g.,

the voice dialog design environment existed and was used by domain workers for more than

a year before a critiquing component was added), and to emphasize different components

for different domains (e.g., the simulation component is of great importance in the voice

dialog design environment).

Scaling Up

Scaling up is a critical issue for DODEs as it is for any other computational environment

Our work so far demonstrated (I) that the "seeds--evolutionary growth-reseeding" model

provides a good foundation for scaling up, and (2) that many of the integration components

assist users in dealing with information spaces that are too large to be t;1xplored by browsing

only. DODEs acquire a partial understanding of the task at hand by ~nalyzing the partial

construction and the partial specification. The CONSTRUCTION-ANALYZER and CATALOG·

EXPLORER exploit this partial understanding to locate relevant argumentation and catalog

examples for the user. Following Sutcliffe's observation that for large information spaces

"intelligent retrieval engines will be necessary," we have explored suchmechanisms for sev

eral years (Fischer, Henninger, and Redmiles, 1991) and incorporated them in our DODEs

(Nakakoji, 1993).

226

The Proper Role of Automation

GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS

Integrating KBSAs and DODEs

Understanding the Proper Role ofHumans and Computers in Joint Human-Computer

Systems

Even strong advocates of automated systems such as expert systems' researehers aeknowl

edge that "most knowledge-based systems are intended to be of assistanee to human en

deavor; they are almost never intended to be automatic agents. A human-machine interac

tion subsystem is therefore a necessity" (Feigenbaum and McCorduck, 1983). The proper

role of humans and computers has been explored in numerous areas (to name just a few

examples: in machine translation (Kay, 1980), in cockpit design (Billings, 1991), and in

the general foundations for tool and system design (Illich, 1973; Fischer, 1990». The

question of the proper role of automation is raised succinctly by Billings (1991): "During

the 1970's and early 1980's. ;. the concept of automating as much as possible was consid

ered appropriate. The expected benefits were a reduction in pilot workload and increased

safety. Although many of these benefits have been realized, serious questions have arisen

and incidents/accidents have occurred which question the underlying assumption that the

maximum available automation is always appropriate or that we understand howto design

automated systems so that they are fully compatible with the capabilities and limitations

of the humans in the system" (p. 4). Contrary to Sutcliffe's claim that "every domain will

have to have an exhaustive analysis to find all the principles, rules, guidelines etc., for good

design," critiquing components embedded in DODEs do not require any kind of complete

ness. While it is highly desirable that a substantial amount of critiquing knowledge gets

accumulated over time, a system with ajust a few critiquing rules can greatly increase the

usability of a DODE.

Lack ofany Theoretical Basis for Cooperation

Sutcliffe observes that "unless design of software tools is based on a sound analysis of how

the user and machine cooperate to achieve designs we run the risk of providing i n a p p r o ~

priate functionality which may either over-automate or under-support the designer's job."

Understanding cooperation is a critical challenge not only for KBSAs and DODEs, but

for all intellectual teamwork (Galegher, Kraut, and Egido, 1990). Our work on DODEs

should not and cannot wait until the theoretical basis for cooperation will exist, but we

attempt with our efforts to contribute to the creation of this basis. Our work is guided

by principles for collaboration, such as (I) all stakeholders must be involved (to account

for the "symmetry of ignorance" (Rittel, 1984», (2) to be involved, the stakeholders must

be informed in an understandable way (requiring that representations are developed that

can serve as "languages of doing" (Ehn, 1988», and (3) there must be shared knowledge

(including knowledge of each other's intent (Resnick, Levine, and Teasley, 1991).

In Setliff's view, "current software synthesis architectures are on their way toward

stantiating Fischer's DODE design process"-indicating that many recent research eft

emerging from the instantiation of the original KBSA effort moved toward some of

goals of DODEs. I see a natural symbiosis between the two research directions: KB
emphasize downstream activities and DODEs emphasize upstream activities. This vie

shared by Selfridge when he observes about our work: "The most important distinctic

the focus on the 'upstream' activities of problem understanding, as opposed to prot

solving." Obviously, either approach cannot ignore the other phase (e.g., we have built

eral computational substrates serving as lower layers in DODEs (Repenning and Sum

1992), and the KBSA efforts have pursued upstream activities in the context of reqt

ments engineering (Proceedings, 1993). But the different emphasis has led to a nun

of differences: KBSAs and DODEs investigated different classes problems, looked

different disciplines for help and ideas, and approached the role and assessn
studies from different angles.

Problems are Different

Sutcliffe observes that "for safety critical domains, formal approaches and automatic I

gramming is not only desirable but essential. However, Fischer reminds us that m

problems do not fall into this class." There is no doubt that we need correct and effic

programs (just as ~e need buildings that do not collapse), but what is the value of tl

programs if they are not relevant, suitable, adequate, or enjoyable to users in their

situation (just as houses are judged by more criteria than that they do not fall down

also claim that the scientific community needs a better understanding of the limitation

formal methods in safety critical systems (e.g., the accident in the Persian Gulf in wi

an airliner relying on the AEGIS system was shot down represertts a design disaster
formal methods would not have prevented (Lee, 1992».

Where Do We Lookfor Ideas and Help?

Historically, computer science has looked to mathematics and logic to create a four

tion (and these disciplines served well for improving "downstream" activities). But a

the foundations have been established, other disciplines may be more important, sue!

cognitive psychology (to better understand the human part), social, sciences (to underst

collaboration), evolution (to understand the nature of complex syStems), and architecl

(to understand design as an activity that needs to define and create contexts and not 0

operate in given contexts). In the long run, I think that " S o f t w a ~ e Engineering" may

the wrong term because it focuses on the medium rather than on the characterizatior

domains (in mature design domains, we do not speak of "steel" or "concrete" engineeri
but of "civil" or "electrical" engineering).

228 GERHARD FISCHER DOMAIN-ORIENTED DESIGN ENVIRONMENTS 2

Methodology, editel

design environment.

Press. pp. 1199-1207.

Socially Shared Cognil

Do Not Postulate a New Humqn

Simon (1981) acclaims the framers of the U.S. Constitution by noting that "they did not

postulate a new man to be produced by the new institutions but accepted as one of their

design constraints the psychological characteristics of men and women as they knew them,

their selfishness as well as their common sense" (p. 163). It may be that what is wrong

with the logical and mathematical design methods is that they are the product of a mode of

reasoning alien to design (Rittel, 1984). A human-centered view toward design should take

into account that "logic is most definitely not a good model of human cognition. Humans

take into account both the content and the context of the problem, whereas the strength

of logic and formal symbolic representations is that the content and context are irrelevant.

Taking content into account means interpreting the problem in concrete terms, mapping it

back onto the known world of real actions and interactions" (Norman, 1993) (p. 228). This

and other observations such as (I) humans enjoy doing and deciding, (2) humans act until

breakdowns occur, (3) humans operate by using information in the world as an important

resource, and (4) domain-orientation preserves content and context, have served as guiding

principles for our work on,DODEs to complement the more formal approaches pursued in

the KBSA communities.

References

Billings, C. E. 1991. Human-Centered Aircraji Automation: A Concept and Guidelines. NASA Technical

Memorandum 103885, NASA Ames Research Center, Moffett Field, CA, August.

Ehn, P. 1988. Work·Orie1!led Design of Computer Artifacts. Stockholm, Sweden: Almquist & Wiksell Interna

tional.

Feigenbaum, E. A., and McCorduck,P. 1983. The Fifth Generation. Artificialllllelligence and Japan's Computer

Challenge to the World. Reading, MA: Addison·Wesley Publishing Company.

Fischer, G. 1990. Communications requirements for cooperative problem solving systems. The Intonational

Journal oflnj'''mation Systems (Special Issue on Knowledge Engineering), 15(l):21-36.

Fischer, G., McCall, R., Ostwald, J., Reeves, B., and Shipman, P. (in press). Seeding, evolutionary growth and

reseeding: Supporting incremental development of design environments. In Human Factors in Computing

Systems, CHl'94 Conference Proceedings (Bo"ton, MA).

Fischer, G., Henninger, S. R., and Redmiles, D. P. 1991. Cognitive tools for locating and comprehending software

objects for reuse. In Thirteenth International Conference on Software Engineering (Austin, TX), IEEE Computer

Society Press, ACM, IEEE, Los Alamitos, CA, pp. 318-328.

Galegher, Poo Kraut, R., and Egido, C. (eds.) 1990. Intellectual Teamwork. Hillsdale, NJ: Lawrence Erlbaum

Associates.

lllich, I. t973. Toolsfor Conviviality. New York: Harper and Row.

Kay, M. 1980. 71u Proper Place of Men and Machines in Language Translation. Technical Report CSL-80-11,

Xerox Palo Alto Research Center, October.

Lee, L. 1992. The Day 71le Phones Stopped. New York: Donald I. Fine, Inc.

Nakakoji, K. 1993. Increasing Shared Understanding (if a Design Task Between Designers and Design Envi·

ronments: The Role ofa Specification Component. Unpublished Ph.D. Dissertation, Department of Computer

Science, University of Colorado. Also available as Technical Report CU·CS-651·93.

Nornlan, D. A. 1993. Things That Make Us Smart. Reading, MA: Addison-Wesley Publishing Company.

Ostwald, J., Burns, B.• and Morch, A. 1992. The Evolving Artifact Approach to System Building, Working Notes

of the AAAlI992 Workshop on Design Rationale Capture and Use, AAAI, San Jose, CA, July, pp. 207-214.

Polanyi, M. 1966. The Tacit Dimension. Garden City, NY: Doubleday.

Proceedings ofJliEE International Symposium OIl Requirements Engineering. t993. IEEE Computer Society,

IEEE Computet Society Press, Los Alamitos, CA, January.

Repenning, A.. and Sumner. T. 1992. Using Agentsheets to create a voice

Proceedings of the 1992 ACMISIGAPP Symposium on Applied Computing.

Resnick. L. B.. Levine. J. M.. and Teasley, S. D. (eds.) 1991. Perspectives

Washington, DC: American Psychological Association.

Rittel, H. W. 1. 1984. Second-generation design methods. In Developments in

N. Cross. pp. 317-327. New York: John Wiley & Sons.

Simon. H. A. 1981. The Sciences of the Artificial. Cambridge. MA: The MIT
Stahl, G. 1993. Interpretation in Design: The Problem of Tacit and Etplieit UndCl"st<ma'ing in Computer SUPi

of Cooperative Design. Ph.D. Dissertation, Department of Computer Science, of Colorado. Boul

CO.

