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Abstract

We propose to harness the potential of simulation for the

semantic segmentation of real-world self-driving scenes in

a domain generalization fashion. The segmentation net-

work is trained without any data of target domains and

tested on the unseen target domains. To this end, we pro-

pose a new approach of domain randomization and pyra-

mid consistency to learn a model with high generaliz-

ability. First, we propose to randomize the synthetic im-

ages with the styles of real images in terms of visual ap-

pearances using auxiliary datasets, in order to effectively

learn domain-invariant representations. Second, we fur-

ther enforce pyramid consistency across different “stylized”

images and within an image, in order to learn domain-

invariant and scale-invariant features, respectively. Exten-

sive experiments are conducted on the generalization from

GTA and SYNTHIA to Cityscapes, BDDS and Mapillary;

and our method achieves superior results over the state-

of-the-art techniques. Remarkably, our generalization re-

sults are on par with or even better than those obtained by

state-of-the-art simulation-to-real domain adaptation meth-

ods, which access the target domain data at training time.
1

1. Introduction

Simulation has spurred growing interests for training

deep neural nets (DNNs) for computer vision tasks [53, 10,

23, 55]. This is partially due to the community’s recent ex-

ploration to embodied vision [46, 62, 2], in which the per-

ception has to be embodied and purposive for an agent to

actively perceive and/or navigate through a physical envi-

ronment [7, 10]. Moreover, training data generated by sim-

ulation is often low-cost and diverse, especially benefiting

the tasks that otherwise need heavy human annotations (e.g.

semantic segmentation [19, 57, 18]). Finally, in the case

of autonomous driving, simulation can complement the in-

1Our code is available at https://github.com/xyyue/DRPC.
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Figure 1. Domain randomization and pyramid consistency enforce

the learned semantic segmentation network invariant to the change

of domains. As a result, the semantic segmentation network can

generalize to various domains, including those of real scenes.

sufficient coverage of real data by synthesizing rare events

and scenes, such as construction sites, lane merges, and ac-

cidents. In summary, the promise of simulation is that one

may conveniently acquire a large amount of labeled and di-

verse imagery from simulated environments. This scale is

vital for training state-of-the-art deep convolutional neural

networks (CNNs) with millions of parameters.

However, when we learn a semantic segmentation neu-

ral network from a synthetic dataset, its visual difference

from real-world scenes often discounts its performance on

real images. To mitigate the domain mismatch between

simulation and the real world, existing work often resorts

to domain adaptation [19, 18, 57], which aims to tailor

the model for a particular target domain by jointly learn-

ing from the source synthetic data and the (often unlabeled)

data of the target real domain. This setting is, unfortunately,

very stringent. Take autonomous driving for instance. It is

almost impossible for a car manufacturer to know in ad-

vance under which domain (which city, what weather, day

or night) the vehicle would be used.

In this paper, we instead propose to harness the po-

tential of simulation from a domain generalization man-

ner [1, 27, 14, 46], without the need of accessing any target
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domain data in training and yet aiming to generalize well to

multiple real-world target domains. We focus on the seman-

tic segmentation of self-driving scenes, but the proposed

method is readily applicable to similar tasks and scenarios.

Our main idea is to randomize the labeled synthetic images

to the styles of real images. We further enforce the semantic

segmentation network to generate consistent predictions, in

a pyramid form, over these domains. Our conjecture is that

if the network is exposed to a sufficient number of domains

in the training stage, it should interpolate well to new real-

world target domains. In contrast, the domain adaptation

work [19, 57, 18] can be seen as extrapolating from a single

source domain to a single target domain.

Our approach comprises two key steps: domain random-

ization and consistency-enforced training, as illustrated in

Figure 1. Unlike [48, 39], we do not require any control of

the simulators for randomizing the source domain imagery.

Instead, we leverage the recently advanced image-to-image

translation [60] to transfer a source domain image to mul-

tiple styles, each dubbed an auxiliary domain. This has

at least three advantages over manipulating the simulator.

First, it enables us to select auxiliary domains from the real

world. After all, our goal is to achieve good performance

on real data. Second, we have a more concrete anticipa-

tion about the look of the randomized images as we view

the auxiliary domains. Finally, the randomized images are

naturally grouped according to the auxiliary domains. The

last point facilitates us to devise effective techniques in the

second step to train the networks in a domain-invariant way.

In the second step of our approach, we train a deep CNN

for semantic segmentation with a pyramid consistency loss.

If the network fits well to not only the synthetic source do-

main but also the auxiliary domains — synthetic images

with the styles of real images, it may become invariant to

domain changes to a certain degree and thus generalize well

to real-world target domain(s). To ensure consistent per-

formance across different training domains, we explicitly

regularize the network’s internal activations so that they do

not deviate from each other too much for the stylized ver-

sions of the same source domain image. We find that it is

vital to apply the regularization over average-pooled pyra-

mids rather than the raw feature maps, probably because

the pooled pyramid gives the network certain flexibility —

the pyramid allows some errors made by the network on the

finest-grained pixel level as long as the average activations

are about the same across different training domains.

To the best of our knowledge, this is the first work to

explore domain randomization for the semantic segmen-

tation problem. Experiments show that the proposed ap-

proach gives rise to robust domain-invariant CNNs trained

using synthetic images. These CNN models generalize well

to multiple datasets of real images. It significantly out-

performs the straightforward source-only baseline and the

newly designed network [34], where the latter reduces the

network’s dependency on the training set by a hybrid of

batch and instance normalizations. Our results are on par or

even better than state-of-the-art domain adaptation results

which are obtained by accessing the target data in training.

2. Related Work

We now discuss some related work on semantic segmen-

tation, domain adaptation, domain generalization, domain

randomization, and data augmentation.

Domain Adaptation for Semantic Segmentation. Un-

til [19, 57] first studied the domain shift problem in seman-

tic segmentation, most works in domain adaptation had fo-

cused on the task of image classification. After that, the

problem subsequently became one of the tracks in the Vi-

sual Domain Adaptation Challenge (VisDA) 2017 [35] and

started receiving increasing attention. Since then, adver-

sarial training has been utilized in most of the following

works [18, 3, 41, 58] for feature alignment. Most of these

works were inspired by the unsupervised adversarial do-

main adaptation approach in [13] which shares similar idea

with generative adversarial networks. One of their most im-

portant objectives is to learn domain-invariant representa-

tions by trying to deceive the domain classifier. Zhang et

al. [57] perform segmentation adaptation by aligning label

distributions both globally and across superpixels in an im-

age. Recently, an unsupervised domain adaptation method

has been proposed for semantic segmentation via class-

balanced self-training [63]. Please refer to [56, Section 5]

for a brief survey of other related works.

Domain Generalization In contrast to Domain Adap-

tation, where the network is tested on a known target do-

main, and the images in the target domain, although without

labels, are accessible during the training process, Domain

Generalization is tested on unseen domains [31, 12]. Cur-

rent domain generalization researches mostly focus on the

image classification problem. Image data is hard to manu-

ally divide into discrete domains, [15] devised a nonpara-

metric formulation and optimization procedure to discover

domains among both training and test data. [28] imposed

Maximum Mean Discrepancy measure to align the distribu-

tions among different domains and train the network with

adversarial feature learning. [26] assigned a separate net-

work duplication to each training domain during training

and used the shared parameter for inference. [27] improved

generalization performance by using a meta-learning ap-

proach on the split training sets.

Domain Randomization. Domain randomization (DR)

is a complementary class of techniques for domain adap-

tation. Tobin et al. [46] introduced the concept of Domain

Randomization. Their approach randomly varies the texture

and color of the foreground object, the background image,

the number of lights in the scene, the pose of the lights,
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Figure 2. The domain randomization process. Top: an original synthetic image from the source domain; Mid: auxiliary image sets

composed of ImageNet classes: (a) great white shark, (b) ambulance, (c) barometer, (d) tennis ball, (e) can opener, (f) snorkel, (g) tennis

ball; Bottom: stylized images with same image content as the synthetic image and meanwhile corresponding styles of the ImageNet classes.

the camera position, etc. The goal is to close the reality

gap by generating synthetic data with sufficient variation

that the network views real-world data as just another vari-

ation. Randomization in the visual domain has been used

to directly transfer vision-based policies from simulation to

the real world without requiring real images during train-

ing [39, 46]. DR has also been utilized to do object detec-

tion and 6D pose estimation [49, 36, 45]. All the above DR

methods require modifying objects inside the simulation

environment. We instead propose a different DR method

which is orthogonal to all the aforementioned methods.

Data Augmentation. Data augmentation is the process

of supplementing a dataset with similar data created from

the information in that dataset, which is ubiquitous in deep

learning. When dealing with images, it often includes the

application of rotation, translation, blurring, and other mod-

ifications [4, 51, 42] to existing images that allow a network

to better generalize [43]. In [25], a network is proposed to

automatically generate augmented data by merging two or

more samples from the same class. A Bayesian approach

is proposed in [47] to generate data based on the distribu-

tion learned from the training set. In [9], simple transfor-

mations are used in the learned feature space to augment

data. Counterexamples are considered to help data augmen-

tation in [11]. Recently, AutoAugment has been proposed

to learn augmentation policies from data [6]. The type of

domain randomization we proposed in this paper can also

be considered as a type of data augmentation.

3. Approach

The main idea of our approach is twofold, illustrated in

Figure 1. The first part is Domain Randomization with

Stylization: mapping the synthetic imagery to multiple

auxiliary real domains (cf. Figure 2) in the training stage,

such that, at the test stage, the target domain is not a surprise

for the CNN model but merely another real domain. The

second part is Consistency-enforced Training: enforcing

pyramid consistency across domains and within an image

to learn representations with better generalization ability.

3.1. Domain Randomization with Stylization

Keeping in mind that the target domain consists of real

images, we randomly draw K real-life categories from Ima-

geNet [8] for stylizing the synthetic images. Each category

is called an auxiliary domain. We then use the image-to-

image translation work [60] to map the synthetic images to

each of the auxiliary domains. As a result, the training set

is augmented to K + 1 times the original size.

Figure 2 illustrates this procedure and some qualitative

results. We can see that each auxiliary domain stylizes the

synthetic images by different real-world elements. Mean-

while, the semantic content of the original image is retained

at most parts of the images. Some edge-preserving meth-

ods [29] on style transfer may give rise to better results, and

are left for future work.

A straightforward method is to train a CNN segmen-

tation model using the augmented training set. Denote

by Dk, k = 0, 1, · · · ,K, the training domains, where D0

stands for the original source domain of synthetic images

and Dk, k > 0 the auxiliary domains. A synthetic image

I0n ∈ D0 has K stylized copies Ikn ∈ Dk in the auxiliary

domains, and yet they all share the same semantic segmen-

tation map Yn as the labels. The objective function for train-

ing a segmentation network f(·; ✓) is:

min
θ

L :=
1

Z

X

n

K
X

k=0

L
⇣

Yn, f(I
k
n; ✓)

⌘

, (1)

where ✓ denotes the weights of the network, L(·, ·) is the

mean of pixel-wise cross-entropy losses, and Z = (K +
1)
�

�D0
�

� is a normalization constant.

Our experiments (cf. Section 4) show that the network

trained using this augmented training set D0 ∪D1 · · ·∪DK

generalizes better to the unseen target domain than using

the single source domain D0. Two factors may attribute

to this result: 1) the training set is augmented in size and
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Figure 3. Pyramid Consistency across Domains. After feeding the images from different domains with the same content into the neural

network, we impose the pyramid consistency loss on the activation maps at each of the last few layers (shown in blue, green and red).

2) the training set is augmented in style, especially in the

styles closer to the real images. Despite being effective, this

baseline method fails to track the multi-domain structure of

the training set. We improve on it by the following.

3.2. Consistency-enforced Training

We aim to learn an image representation through the seg-

mentation network that is domain-invariant for the semantic

segmentation task. However, simply training the network

with images from different domains (i.e., Eq. (1), the base-

line method) has some problems: a) images from different

domains may drive the network toward distinct represen-

tations, making the training process not converge well; b)

even if the network fits well to the training domains, it could

capture the idiosyncrasies of each individual and yet fail at

interpolating between them or to the new target domain.

In order to tackle these caveats, we regularize the net-

work by a consistency loss. The intuition is that if the

network can generalize well, it should extract similar high-

level semantic features and perform similar predictions for

the images with the same content regardless of the styles.

The consistency loss is simply imposed as the following:

R :=
X

n,k

X

l∈P

�l L1

⇣

gl(In; ✓), gl(I
k
n; ✓)

⌘

, (2)

where l indexes an operator gl(·; ✓) (e.g., average pool-

ing) which maps a hidden layer’s activations to a vector of

smaller dimension, gl(In; ✓) denotes the target after each

operation gl (cf. Sections 3.2.1 and 3.2.2 for details), and L1

is the `1 distance. We argue that, by doing so, the network

can be better guided to find a generic and domain-invariant

representation for the semantic segmentation task.

The design of the operators gl(·; ✓), l ∈ P is key to the

overall performance. The obvious identity mapping — so

the `1 distance is directly calculated over the hidden activa-

tions — does not work well in the experiments. One of the

reasons is that it strictly requires the network to give about

the same representations across different training domains,

while some domains may be harder than the others to fit.

3.2.1 Pyramid consistency across domains

We find that the spatial pyramid pooling [16, 59, 24] serves

as very effective operators gl(·; ✓), l ∈ P in our context

probably because it accommodates subtle differences of the

network representations and meanwhile enables Eq. (2) to

enforce the consistency at multiple scales. Pyramid pooling

has been used in supervised visual understanding before,

mostly as a part of the backbone networks. In this paper,

instead, we use the pooled features to define regularization

losses for training the network. The pyramid consistency

we consider is over the images of different styles but with
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the same semantic content.

Figure 3 illustrates our pyramid consistency scheme

across the training domains. Consider a set of images

In = {Ikn | k = 0, 1, . . . ,K} of K+1 different styles with

the same annotation Yn and denote by M l,k
n ∈ R

Cl×Hl×Wl

the feature map of input Ikn at layer l. Then, a spatial pyra-

mid pooling operation is done on M l,k
n . The spatial pyramid

pooling operation is designed to fuse features under four

different pyramid levels. First of all, a global average pool-

ing is of the coarsest level that generates a single bin out-

put. Each other pyramid levels separates the feature map

into sub-regions evenly and performs average pooling in-

side each sub-region. In our design, we use 1 × 1, 2 × 2,

4 × 4 and 8 × 8 as the pyramid pooling scales, namely the

spatial size of the outputs of the pyramid pooling. After

the pooling, we squeeze and concatenate the output tensors

into a tensor P l,k
n ∈ R

Cl×(1+2
2
+4

2
+8

2), which is much

lower-dimensional than the original feature map M l,k
n . For

a pair of images Ikn, I
k0

n ∈ In, the network is expected

to have similar understanding and thus similar high-level

features in a deep layer l. Note that simply constraining

M l,k
n and M l,k0

n to be the same is too strong and could eas-

ily lead to degraded performance. To save computation,

we avoided pair-wise terms and instead use the mean of

P l,k
n (k = 0, 1, ...,K) as the target value for the loss. Back

to equation (2), we have gl(I
k
n; ✓) = P l,k

n , the target is the

mean across domains gl(In; ✓) = 1

K+1

P

k P
l,k
n , and the

set P = {l} is the layers down deep of the network.

3.2.2 Pyramid consistency within an image

The pyramid consistency loss across the training domains

can guide the network to learn style-invariant features so

that it can generalize well to the unseen target domains with

different appearances. However, in many cases, style is not

the only difference between domains. The view angles and

parameters of cameras also lead to systematic domain mis-

matches in terms of the layout and scale of scenes. Take

the focal length parameter for instance. With different focal

lengths, the same objects may be of different scales as the

fields of view vary.

In order to alleviate the issues above, we propose to fur-

ther apply the pyramid consistency between random crops

and full images. The idea is to artificially randomize the

scale of the images and, therefore, guide the network to be

robust to the domain gap incurred by the scene layouts and

scales. Formally, following the notations in Section 3.2.1,

each image Ikn of size (H,W ) is first randomly cropped

at the same height-width ratio, with the top-left corner at

(hk
n, w

k
n) and with the height hk

n. Then the crop is scaled

back to the full image size, denoted as Ck
n, and finally fed

to the network. Denote by M l,k
n and MCl,k

n ∈ R
Cl×Hl×Wl

the feature maps of the image Ikn and crop Ck
n at layer l, re-

spectively. Denote by M l,k
n the part of M l,k

n corresponding

to the crop. When there is no significant padding through

the layers, then M l,k
n is of shape Cl × (⇢ ·Hl)× (⇢ ·Wl),

where ⇢ = hk
n/h.

We perform the spatial pyramid pooling on the cropped

feature map M l,k
n and the feature map MCl,k

n of the

crop. The results are the same-size maps, P l,k
n , PCl,k

n ∈

R
Cl×(1+2

2
+4

2
+8

2). Back to Eq. (2), we have gl(I
k
n; ✓) =

PCl,k
n and the target vector is gl(In; ✓) = P l,k

n .

4. Experiments and Results

In this section, we describe the experimental setup and

present results on the semantic segmentation generalization

by learning from synthetic data. Experimental analysis and

comparison with other methods are also provided.

4.1. Experimental Settings

It should be emphasized that our experiment setting is

different from domain adaptation. Since domain adaptation

aims to achieve good performance on a particular target do-

main, it requires unlabeled target domain data during train-

ing and also (sometimes) uses some labeled target domain

images for validation. In contrast, our model is trained with-

out any target domain data and is tested on unseen domains.

Datasets. In our experiments, we use GTA [37] and SYN-

THIA [38] as the source domains and a small subset of

ImageNet [8] as well as datasets used in CycleGAN [60]

as the auxiliary domains for “stylizing” the source do-

main images. We consider three target domains of real-

world images, whose official validation sets are used as our

test sets: Cityscapes [5], Berkeley Deep Drive Segmenta-

tion (BDDS) [54], and Mapillary [33].

GTA is a vehicle-egocentric image dataset collected in a

computer game with pixel-wise semantic labels. It contains

24,966 images with the resolution 1914 × 1052. There are

19 classes which are compatible with other semantic seg-

mentation datasets of outdoor scenes e.g. Cityscapes.

SYNTHIA is a large synthetic dataset with pixel-

level semantic annotations. A subset, SYNTHIA-RAND-

CITYSCAPES, is used in our experiments which contains

9,400 images with annotations compatible with Cityscapes.

Cityscapes contains vehicle-centric urban street images

taken from some European cities. There are 5,000 images

with pixel-wise annotations. The images have the resolution

of 2048× 1024 and are labeled into 19 classes.

BDDS contains thousands of real-world dashcam video

frames with accurate pixel-wise annotations. It has a com-

patible label space with Cityscapes and the image resolution

is 1280×720. The training, validation, and test sets contain

7,000, 1,000 and 2,000 images, respectively.

Mapillary contains street-level images collected from

all around the world. The annotations contain 66 object
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Figure 4. Accuracy of FCN8s-VGG16 with varying numbers of

auxiliary domains. Two domain sets A and B are used. Models are

trained on GTA and tested on Cityscapes, BDDS, and Mapillary.

classes, but only the 19 classes that overlap with Cityscapes

and GTA are used in our experiments. It has a training set

with 18,000 images and a validation set with 2,000 images.

Validation. To select a model for a particular real-world

dataset DR (e.g. Cityscapes), we randomly pick up 500 im-

ages from the training set of another real-world dataset DR
0

(e.g. BDDS) as the validation set. This cross-validation is

to imitate the following real-life scenarios. When we train a

neural network from a randomized source domain without

knowing to which target domain it will be applied, we can

probably collect a validation set which is as representative

as possible of the potential target domains. Still take the

car manufacturers for instance. A manufacturer may collect

images of Los Angeles and NYC for the model selection

while the cars will also be used in San Francisco and many

other cities.

Evaluation. We evaluate the performance of a model on a

test set using the standard PASCAL VOC intersection-over-

union, i.e. IoU. The mean IoU (mIoU) is the mean of all IoU

values over all categories. To measure the generalizability

of a model M , we propose a new metric,

Gperf (M) = EB∈P mIoU(M,B) ≈
1

L

X

l

mIoU(M,Bl)

where B is an unseen domain drawn from a distribution

of all possible real-world domains P , and L is the number

of unseen test domains, which is 3 in our experiment setting.

Implementation Details In our experiments, we choose

to use FCN [30] as our semantic segmentation network. To

Table 1. Performance contribution of each design.

Method DR PCD PCI
mIoU

Cityscapes BDDS Mapillary

FCN 30.04 24.59 26.63

+DR 3 34.64 30.14 31.64

+PCD 3 3 35.47 31.21 32.06

+PCI 3 3 35.12 30.87 32.12

All 3 3 3 36.11 31.56 32.25

make it easier to compare with most of other methods, we

use VGG-16 [44], ResNet-50, and ResNet-101 [17] as FCN

backbones. The weights of the feature extraction layers in

the networks are initialized from models trained on Ima-

geNet [8]. We add the pyramid consistency loss across do-

mains on the last 5 layers, with � = 0.2, 0.4, 0.6, 0.8, 1,

respectively. The pyramid consistency within an image is

only added on the last layer. The network is implemented

in PyTorch and trained with Adam optimizer [22] using a

batch size of 32 for the baseline models and 8 for our mod-

els. Our machines are equipped with 8 NVIDIA Tesla P40

GPUs and 8 NVIDIA Tesla P100 GPUs.

4.2. Evaluation of Domain Randomization

In total, we use two sets of 15 auxiliary domains: A) 10

from ImageNet [8] and 5 from CycleGAN [60], and B) 15

from ImageNet with each domain corresponding to one se-

mantic class in Cityscapes. Please see supplementary mate-

rials for additional auxiliary domains, including color aug-

mentation as an auxiliary domain.

To evaluate our domain randomization method, we con-

duct experiments generalizing from GTA to Cityscapes,

BDDS, and Mapillary with FCN8s-VGG16. We augment

the training set with images from different numbers of aux-

iliary domains in both setting A and B, and show the result

in Figure 4. As we can see from the plot, the accuracy in-

creases with the number of auxiliary domains. The accuracy

eventually saturates with the number of auxiliary domains.

This is probably because 1) the 15 auxiliary domains are

somehow sufficient to cover the appearance domain gap,

and 2) as the number of images of the same content goes

up, it is harder for the network to converge for the sake of

the data scale and data variation.

4.3. Ablation Study

Next, we study how each design in our approach influ-

ences the overall performance. The experiments are still

adapting from GTA to the 3 tests with FCN8s-VGG16. Ta-

ble 1 details the mIoU improvement on Cityscapes, BDDS

and Mapillary by considering one more factor each time:

Domain Randomization (DR), Pyramid Consistency across

Domains (PCD) and within an Image (PCI). DR is a generic

way to alleviate domain shift. In our case, it helps boost the
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Figure 5. Qualitative semantic segmentation results of the generalization from GTA to Cityscapes, BDDS, and Mapillary.

Table 2. Domain generalization performance from (G)TA and

(S)YNTHIA to (C)ityscapes, (B)DDS, and (M)apillary.

VGG-16 ResNet-50 ResNet-101

NonAdapt Ours NonAdapt Ours NonAdapt Ours

G→ C 30.04 36.11 32.45 37.42 33.56 42.53

G→ B 24.59 31.56 26.73 32.14 27.76 38.72

G→ M 26.63 32.25 25.66 34.12 28.33 38.05

Gperf 27.09 33.31 28.28 34.56 29.88 39.77

S → C 27.26 35.52 28.36 35.65 29.67 37.58

S → B 24.38 29.45 25.16 31.53 25.64 34.34

S → M 24.39 32.27 27.24 32.74 28.73 34.12

Gperf 25.34 32.41 26.92 33.31 28.01 35.35

performance from 30.04 to 34.64, from 24.59 to 30.14 and

from 26.63 to 31.64, respectively for Cityscapes, BDDS and

Mapillary. PCD and PCI further enhance the performance

gains. By integrating all methods, our full approach finally

reaches 36.11, 31.56 and 32.25 on Cityscapes, BDDS and

Mapillary, respectively. Figure 5 showcases some examples

of the semantic segmentation results on the 3 test sets.

Table 3. Comparison with other domain generalization methods.

Methods Base Net mIoU mIoU↑

NonAdapt 22.17

IBN-Net [34]
ResNet-50

29.64
7.47

NonAdapt 32.45

Ours
ResNet-50

37.42
4.97

4.4. Generalization from GTA and SYNTHIA

Then, we conduct extensive experiments to evaluate the

generalization ability of our proposed methods. Specifi-

cally, we tested 2 source domains, GTA and SYNTHIA;

3 models with different backbone networks, VGG-16,

ResNet-50 and ResNet-101; 3 test sets, Cityscapes, BDDS

and Mapillary; and 2 sets of auxiliary domains (cf. Sec-

tion 4.2). The experiments with ResNet-50 are conducted

with auxiliary domain set B, while the rest of the exper-

iments are with set A. The validation set and test set in

each experiment are from different domains, e.g. using
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Table 4. Adaptation from GTA to Cityscapes with FCN-8s.

Network Method

Train

w/

Tgt

Val

on

Tgt

mIoU mIoU↑

VGG-19

NonAdapt
3 3

22.3
6.6

Curriculum [57] 28.9

NonAdapt
3 3

NA
NA

CGAN [20] 44.5

VGG-16

NonAdapt
3 3

21.1
6.0

FCN wld [19] 27.1

NonAdapt
3 3

17.9
17.5

CYCADA [18] 35.4

NonAdapt
3 3

29.6
7.5

LSD [41] 37.1

NonAdapt
3 3

21.9
14.0

ROAD [3] 35.9

NonAdapt
3 3

24.9
3.9

MCD [40] 28.8

NonAdapt
3 3

NA
NA

I2I [32] 31.8

NonAdapt
3 3

24.3
11.8

CBST-SP [63] 36.1

NonAdapt
3 3

27.8
8.4

DCAN [52] 36.2

NonAdapt
3 3

30.0
8.1

PTP [61] 38.1

NonAdapt
3 3

NA
NA

AdaptSegNet [50] 35.0

NonAdapt
3 3

18.8
13.8

DAM [21] 32.6

NonAdapt
7 3

30.0
8.6

Ours 38.6

NonAdapt
7 7

29.8
6.3

Ours 36.1

Cityscapes to select the model which will be evaluated on

BDDS/Mapillary. The Gperf value of each model is com-

puted and the results are shown in Table 2. We can see that

the proposed techniques can greatly boost the generalizabil-

ity by 5%∼12% of different models regardless of dataset

combinations.

Then we compare our method with the only known ex-

isting state-of-the-art domain generalization method for se-

mantic segmentation IBN-Net [34] under the generaliza-

tion setting from GTA to Cityscapes. From the comparison

shown in Table 3, we can see that our domain generalization

method has better final performance. IBN-Net improves

domain generalization by fine-tuning the ResNet building

blocks. Our method would be complementary with theirs.

4.5. Adaptation from GTA and SYNTHIA

All experiments in the sections above are conducted in

the domain generalization setting, where the validation set

and the test set are from different domains. Now we conduct

more experiments using the domain adaptation setting and

compare our results with previous state-of-the-art works.

Since most of the previous works conducted adaptation to

Table 5. Adaptation from SYNTHIA to Cityscapes with FCN-8s.

Network Method

Train

w/

Tgt

Val

on

Tgt

mIoU mIoU↑

VGG-19

Non Adapt
3 3

22.0
7.0

Curriculum [57] 29.0

Non Adapt
3 3

NA
NA

CGAN [20] 41.2

VGG-16

Non Adapt
3 3

17.4
2.8

FCN Wld [19] 20.2

Non Adapt
3 3

25.4
10.8

ROAD [3] 36.2

Non Adapt
3 3

26.8
9.3

LSD [41] 36.1

Non Adapt
3 3

26.2
9.9

CBST [63] 36.1

Non Adapt
3 3

27.8
8.4

DCAN [52] 36.2

Non Adapt
3 3

NA
NA

DAM [21] 30.7

Non Adapt
3 3

24.9
9.3

PTP [61] 34.2

Non Adapt
7 3

27.3
9.1

Ours 36.4

Non Adapt
7 7

26.8
8.7

Ours 35.5

Cityscapes with VGG backbone networks, we present the

adaptation mIoU comparison on GTA → Cityscapes and

SYNTHIA → Cityscapes in Table 4 and Table 5, leaving

class-wise comparison details in the supplementary mate-

rial. We can see that our method could outperform the

state-of-the-art methods in both settings. Further, we should

notice that the domain generalization performance of our

method (last row) outperforms the adaptation performance

of most other techniques. In addition, since our method is

target domain-agnostic, no data is needed from the target

domain, resulting in more extensive applicability.

5. Conclusion

In this paper, we present a domain generalization ap-

proach for generalizing semantic segmentation networks

from simulation to the real world without accessing any tar-

get domain data. We propose to randomize the synthetic

images with auxiliary datasets and enforce pyramid consis-

tency across domains and within an image. Finally, we ex-

perimentally validate our method on a variety of experimen-

tal settings, and show superior performance over state-of-

the-art methods in both domain generalization and domain

adaptation, which clearly demonstrates the effectiveness of

our proposed method.
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