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Abstract—Three-dimensional multiple input multiple output
(3-D MIMO) with a large number of active antennas equipped in a
uniformly rectangular antenna array has a significant potential in
improving the system capacity. In this paper, we present an efficient
two-dimensional (2-D) downlink precoding scheme for single-cell
3-D massive MIMO systems. Considering instantaneous channel
state information at the base station, we show that either the eleva-
tion or azimuth domain can be used for interference cancellation.
We divide the interference into two components, one of which is
canceled in the elevation domain, while the other is canceled in the
azimuth domain. Based on this domain selective (DS) strategy, two
DS precoding algorithms are proposed for the single-path scenario
based on the zero forcing and signal-to-leakage-plus-noise ratio
criteria. Next, we extend our DS precoding scheme to a multi-path
scenario. In the proposed algorithms, the precoding vectors of dif-
ferent users are determined in parallel, so as to reduce the computa-
tional complexity. Simulation results are provided to demonstrate
that the proposed algorithms can achieve better spectral efficiency
performance with a low computational complexity.

Index Terms—Three dimensional multiple-input multiple-
output (3D MIMO), inter-user interference, 2D precoding, domain
selective precoding scheme.

I. INTRODUCTION

M
ULTIPLE-INPUT multiple-output (MIMO) technology

has been widely used to improve the capacity and relia-

bility of wireless communication systems [1]–[4]. By employing

tens or hundreds of antennas and simultaneously serves tens of

users at the base station (BS), the massive MIMO systems have

many advantages such as reduced uplink transmissions power

[5], [6] and improved spectral and energy efficiencies, which
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make it a promising technology for future wireless communica-

tion systems [7]–[10].

Despite the benefits of massive MIMO systems, there are

challenges in their practical deployment. One main challenge

is that the number of antennas is often limited by the phys-

ical space [11]. For example, a uniform linear array (ULA)

antenna in a carrier frequency of 2.5 GHz requires a space of

about 1.9 m to fit 32 antenna elements with half wavelength

spacing between adjacent elements. Three-dimensional MIMO

(3D MIMO) systems have recently been proposed to solve this

problem [11]–[14]. For 3D massive MIMO systems, a large

number of active antenna elements can be placed in a uniformly

rectangular antenna array (URA) at the BS, in order to reduce

the physical space requirements. Moreover, by exploiting the

vertical dimension, the users in the same horizontal direction

but at a different height can be served simultaneously in 3D

MIMO. However, the interference in 3D MIMO systems exists

in both elevation and azimuth domains, which complicates the

precoding design.

The precoding design in 3D massive MIMO systems depends

on the availability of instantaneous channel state information

(CSI) at the BS. In a system where instantaneous CSI is difficult

to obtain, such as in a frequency division duplexing (FDD)

system, some precoding techniques utilizing the statistical CSI

are proposed. Li et al. in [15] propose an asymptotical precoding

scheme in the 3D massive MIMO system and uses a scheduling

algorithm to efficiently reduce the inter-user interference. A 3D

beamforming plus joint spatial-division multiplexing (JSDM)

transmission algorithm is proposed in [16], [17]. The JSDM

scheme divides the users into groups, reduces the inter-group

interference by exploiting the statistical CSI, and suppresses

the intra-group interference by exploiting the instantaneous CSI

[16], [17]. Similarly, Alkhateeb et al. in [18] cancels the inter-

cell interference by exploiting the statistical CSI, while cancels

the intra-cell interference by using the instantaneous CSI.

Considering the BS with instantaneous CSI, such as in a

time division duplexing (TDD) system, two kinds of precoding

schemes have been proposed to reduce the interference. The first

kind is the conventional full precoding algorithm [5], where

the structure of 3D MIMO channel is not exploited. This full

precoding scheme exhibits excellent spectral efficiency, at the

cost of high complexity which is related to the total number

of antennas. The second approach is the two-dimensional (2D)

precoding, which is often used in the Kronecker product channel

model where the precoding in the elevation domain and that
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in the azimuth domain are designed separately [19]–[23]. In

[19], Song et al. propose an eigenbeamforming scheme for

point to point systems, by using the eigenvector corresponding

to the largest eigenvalue of the elevation channel correlation

matrix. The 2D matched filter (MF) and 2D zero-forcing (ZF)

precoding algorithms [20], [21] are proposed to reduce the

inter-user interference in multi-user single-cell systems, which

performs well when the elevation beam of each user covers a

limited angle, and 2D MF outperforms 2D ZF. Seifi et al. [22]

proposed a 3D coordinated beamforming scheme to reduce the

inter-cell interference in both horizontal and vertical planes of

the wireless channel for multi-cell systems. The 2D precoding

scheme, although has a significantly reduced computational

complexity, achieves a lower spectral efficiency compared with

the full precoding algorithm. In [23], a domain selective (DS) 2D

precoding scheme and a DS interference cancellation (DSIC) al-

gorithm with group based domain selection scheme are proposed

to enhance the spectral efficiency in a single-cell 3D massive

MIMO system. However, the heuristic DSIC algorithm still has

a spectral efficiency gap with the full precoding scheme.

In this paper, to further enhance the spectral efficiency of

2D precoding in the single-cell 3D massive MIMO system,

two domain selective precoding algorithms termed as DSZF

algorithm and DS signal-to-leakage-plus-noise ratio (DSSLNR)

algorithm are proposed in the single-path channel model. In

the DSZF algorithm, all the inter-user interference are divided

into two components, one of which is canceled in the eleva-

tion domain, and the other is canceled in the azimuth domain.

While the DSSLNR uses either elevation or azimuth domain to

reduce the impact of interference and noise, such that the users’

SLNRs are maximized. Compared with the user group method

in [23], the DSZF and DSSLNR algorithms give a more efficient

domain selection method to improve the spectral efficiency in

the 3D massive MIMO systems. We theoretically prove that

our proposed DS precoding algorithms can achieve the same

spectral efficiency as the full precoding algorithm when the

number of antennas becomes infinity. In designing the DSZF and

DSSLNR algorithms, we use a parallel computational strategy to

reduce the computational complexity, i.e., the precoding vectors

of different users are calculated in parallel. Moreover, we extend

the DSSLNR algorithm to the one-ring channel models. Simula-

tions validate that, our proposed DS precoding algorithm results

can exhibit excellent spectral efficiency at a low computational

complexity, which makes DS precoding scheme efficient in 3D

massive MIMO systems.

The remainder of this paper is organized as follows. Section II

describes the channel model along with the signal model. In

Section III, we derive the DSZF and DSSLNR precoding al-

gorithms in the single-path scenario. We also show that our

algorithms can obtain the same performance as the full pre-

coding when the number of antennas approaches to infinity. The

DSSLNR algorithm for the one-ring channel model is presented

in Section VI. Simulation results are presented in Section V, and

we finally conclude this work in Section VI.

Notations: Columns and vectors are denoted in lowercase

boldfaced characters, and matrices are represented in uppercase

boldfaced characters; ai denotes the ith column of the matrix

A; (·)T , (·)∗, (·)H and (·)† indicate the matrix transpose,

conjugate, conjugate-transpose, and pseudo inverse operations,

respectively; ‖ · ‖ denotes the 2-norm operation. The complex

number field is represented by C. We denote �a as normalized a

given by �a = a/‖a‖, andK as set {1, 2, . . . ,K}.

II. SYSTEM AND CHANNEL MODEL

A. System Model

Consider a single-cell system with one BS serving K single-

antenna users. The BS is equipped with a URA of N = MxMy

elements, where Mx and My are the numbers of the antennas at

the elevation and azimuth dimensions, respectively. In the down-

link, the BS appliesN ×K precoderW to transmit information

to K users, where wk is the kth column of W. We assume that

the instantaneous CSI is available at the BS, which is reasonable

in TDD systems [24], [25]. Then, the signal received by user k
can be written as

yk =
K
∑

j=1

hT
kwjsj + nk (1)

where hT
k denotes the channel vector from the BS to user k,

s = [s1, s2, . . . , sK ]T ∈ C
K×1 is the transmitted signal, such

that E(ssH) = EsI, with I being the identity matrix, Es rep-

resenting the average power of each element in s, and n =
[n1, n2, . . . , nK ]T ∈ C

K×1 is the additive white Gaussian noise

with n ∼ CN (0, σ2I). The ergodic rate of user k is

Rk = log (1 + µk) (2)

where µk denotes the signal-to-interference-plus-noise ratio

(SINR) of user k, which is given by

µk =

∣

∣hT
kwk

∣

∣

2
Es

∑

j �=k

∣

∣hT
kwj

∣

∣

2
Es + σ2

. (3)

B. Channel Model

We consider a 3D massive MIMO system where a URA

is deployed at the BS. Let Dx = Dy = λ/2 for the sake of

simplicity, where Dx and Dy denote the antenna spacings in the

elevation and azimuth directions, respectively, and λ is the wave

length. We consider a non-dispersive narrow-band channel, with

hk being expressed as [20], [21], [26]

hk =

L
∑

l=1

αk,la (θk,l)
e ⊗ a (θk,l, φk,l)

a
(4)

in which αk,l is the channel path gain, ⊗ is the Kronecker prod-

uct, L is the number of paths, θk,l ∈ [−π, π] and φk,l ∈ [0, π]
are the angles of arrival (AoAs) in the elevation and azimuth

domains, respectively, and the elevation and azimuth array re-

sponse vectors are given by

a (θk,l)
e =

1√
Mx

[

1, ejuk,l , . . . , ej(Mx−1)uk,l

]T

a (θk,l, φk,l)
a =

1
√

My

[

1, ejvk,l , . . . , ej(My−1)vk,l

]T
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with e(·) being the natural exponential function, uk,l =
2πDx

λ
sin θk,l, vk,l =

2πDy

λ
cos θk,l cosφk,l.

Denote H = [h1,h2, . . . ,hK ]. For the full precoding

scheme, ZF is used in designing the precoding matrix WFP

such that HTWFP is a diagonal matrix, which can mitigate the

inter-user interference [5], [20], [21], and the precoding vector

of user k is given by �wk,FP , where wk,FP is the kth column of

WFP = H∗ (HTH∗)−1
. (5)

This scheme can completely cancel out the inter-user interfer-

ence, and can achieve high spectral efficiency. However, when

the numbers of antennas and users become large, the complexity

of this algorithm will be huge, which is prohibitive in massive

MIMO systems.

C. 2D Precoding Scheme

We describe the 2D precoding scheme in this subsection.

Since the channel matrix has the Kronecker structure, an intuitive

way is to formulate the precoding vector in a Kronecker product

structure, i.e., wk = we
k ⊗wa

k, and we
k and wa

k are the precod-

ing vectors in the elevation and azimuth domains, respectively.

Then, the SINR of user k can be written as

µk =

∣

∣hT
k (we

k ⊗wa
k)
∣

∣

2
Es

∑

j �=k

∣

∣hT
k

(

we
j ⊗wa

j

)∣

∣

2
Es + σ2

. (6)

Note that the precoding vector with Kronekcer structure is

determined by two small size vectors (i.e., we
k and wa

k), the

complexity of 2D precoding can be significantly reduced as

compared with the full precoding scheme, which is attractive

in massive MIMO systems. Some algorithms [19]–[23] have

been designed to improve the spectral efficiency. However, these

algorithms have a performance gap with the full precoding

algorithm.

III. DOMAIN DELECTIVE PRECODING IN

SINGLE-PATH SCENARIOS

Single-path channel models describe the scenarios where the

channel is dominated by one line-of-sight (LOS) or non-LOS

(NLOS) path. This is particularly relevant to systems with sparse

channels, such as mmWave systems [27]–[31]. Consider a user

with a single-path channel defined by its azimuth and elevation

angles. The channel vector of user k is expressed as

hk = αka (θk)
e ⊗ a (θk, φk)

a = he
k ⊗ ha

k (7)

where he
k = αka(θk)

e, ha
k = a(θk, φk)

a, θk and φk are the ele-

vation and azimuth AOAs. We aim to design a precoding vector

wk = we
k ⊗wa

k such that the spectral efficiency is maximized.

In the following, two domain selective algorithms are proposed.

A. DSZF Precoding Algorithm

1) Problem Formulation in DSZF: Since the inter-user inter-

ference is a limiting factor for the spectral efficiency, our DSZF

scheme aims to completely cancel out the inter-user interference,

which is similar to the conventional ZF precoding. To this end,

we want to design W to satisfy

HTW = D

where D is a diagonal matrix. With wk = we
k ⊗wa

k , for each

k, we have

HT (we
k ⊗wa

k) = dk (8)

with dk being the kth column of D. (8) is a system of bilinear

equations [32], which has no exact solution. However, each

column of the channel matrix H in single-path scenarios has

the Kronecker product structure, which can be utilized to

analyze (8).

From (8), the interference leakages (ILs) from user k are

zero, where the IL on user j(j �= k) from user k is defined

as |hT
j (w

e
k ⊗wa

k)|2Es. Once all the ILs are mitigated, the

inter-user interference is canceled completely, and the SINR of

user k reduces to the SNR given by

ρk =
∣

∣hT
k (we

k ⊗wa
k)
∣

∣

2 · Es/σ
2. (9)

Our DSZF scheme maximizes the SNR while canceling the

ILs. For user k, the problem is formulated as

P1 : max
‖we

k‖=1,‖wa
k‖=1

∣

∣hT
k (we

k ⊗wa
k)
∣

∣

2

s.t. hT
j (we

k ⊗wa
k) = 0, ∀j �= k. (10)

To better understand the 2D precoding, we introduce a lemma

in [23], which can be used to divide problemP1 into the elevation

and azimuth parts.

Lemma 1: Let He = [he
1,h

e
2, . . . ,h

e
K ], Ha = [ha

1 ,h
a
2 , . . . ,

ha
K ], We = [we

1,w
e
2, . . . ,w

e
K ] and Wa = [wa

1 ,w
a
2 , . . . ,w

a
K ].

Define H = He ⊙Ha and W = We ⊙Wa, where ⊙ is

Khatri-Rao product. We obtain

HTW = (He)T We ∗ (Ha)T Wa (11)

where ∗ is the Hardmard product.

From Lemma 1, we have

hT
j (we

k ⊗wa
k) =

(

he
j

)T
we

k ·
(

ha
j

)T
wa

k (12)

then hT
j wk = 0(j �= k) can be rewritten as

(

he
j

)T
we

k = 0 or
(

ha
j

)T
wa

k = 0, ∀j �= k. (13)

Eq. (13) shows that, in the single-path scenario, user k’s IL can

be canceled in either elevation domain or azimuth domain. In

fact, one may choose two domains to cancel each IL to mitigate

the interference; however, it is unnecessary and will reduce the

signal energy power. Here, we choose only one domain to cancel

the IL.

To select the better domain to cancel the IL, we need to find

two sets Φ and Φ̄ such that
(

he
j

)T
we

k = 0, j ∈ Φ;
(

ha
j

)T
wa

k = 0, j ∈ Φ̄ (14)

where Φ ∩ Φ̄ = ∅, and Φ ∪ Φ̄ = K/{k}. The first equation

means that the IL on user j(j ∈ Φ) is mitigated in the elevation

domain, while the second means that the IL on user j(j ∈ Φ̄) is

mitigated in the azimuth domain.
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To completely cancel out all ILs, the elevation channel vectors

of users inΦ should not be collinear with that of user k, while the

azimuth channel vectors of users in Φ̄ should not be collinear

with that of user k. Moreover, the numbers of non-collinear

vectors inhe
j (j ∈ Φ) andha

j (j ∈ Φ̄) should be smaller thanMx

and My , respectively, so that we can find non-zero vectors we
k

and wa
k satisfying (14). Since the elevation and azimuth AOAs

of each user are continuous random variables, the probability

that the users have the identical elevation (azimuth) AOAs is

zero. We have the following proposition.

Proposition 1: To cancel out the inter-user interference, the

DSZF can serve at most Mx +My − 1 users with probability

one.

Proof: See Appendix A. �

From Lemma 1, the SNR in (9) can be re-written as

ρk =
∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2

·
∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2

· Es/σ
2. (15)

Problem P1 can be equivalently transformed as

P2 : max
Φ,Φ̄,‖we

k‖=1,‖wa
k‖=1

∣

∣

∣
(he

k)
T
we

k

∣

∣

∣

2

·
∣

∣

∣
(ha

k)
T
wa

k

∣

∣

∣

2

s.t.
(

he
j

)T
we

k = 0, j ∈ Φ;
(

ha
j

)T
wa

k = 0, j ∈ Φ̄.

(16)

It is complexity expensive to get the optimal solution of problem

P2, since P2 involves two index sets Φ and Φ̄. Below we give

an efficient algorithm to solve P2.

2) Description of DSZF Algorithm: When the sets Φ and Φ̄
are given, P2 can be factored into two problems. The first one

involves the elevation precoding vector we
k, i.e.,

P2.1 : max
‖we

k‖=1

∣

∣

∣
(he

k)
T
we

k

∣

∣

∣

2

· g1 (wa
k)

s.t.
(

he
j

)T
we

k = 0, j ∈ Φ (17)

where g1(w
a
k) = |(ha

k)
Twa

k|2 is uncorrelated with we
k. The

second problem relates to the azimuth vector wa
k , given by

P2.2 : max
‖wa

k‖=1

∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2

· g2 (we
k)

s.t.
(

ha
j

)T
wa

k = 0, j ∈ Φ̄ (18)

where g2(w
e
k) = |(he

k)
Twe

k|2 is uncorrelated with wa
k .

Proposition 2: Let A ∈ C
N×K and b ∈ C

N×1 be an arbi-

trary matrix and an arbitrary vector, respectively. Let f be the first

row of [b A]†, then �fT is the optimal solution of the following

two problems,

a) when A is not full column rank,

max
‖x‖=1

∣

∣bTx
∣

∣

2
, s.t. ATx = 0; (19)

b) when A is full column rank,

max
‖x‖=1

∣

∣bTx
∣

∣

2

‖ATx‖2
. (20)

Proof: See Appendix B. �

Proposition 2 shows that the ZF precoding solution in each

domain is the optimal solution of P2.1 or P2.2, namely, the

solutions ofP2.1 andP2.2 are �we,1
Φ and �wa,1

Φ̄
respectively, where

w
e,1
Φ and w

a,1

Φ̄
are the first row of We

Φ and that of Wa
Φ̄

, with

We
Φ = [he

k, H
e
Φ]

† , Wa
Φ̄ =

[

ha
k, H

a
Φ̄

]†
. (21)

Moreover, it shows that our DSZF scheme has the largest ele-

vation or azimuth signal-to-interference-leakage ratio when the

IL cannot be mitigated. Then P2 can be transformed as

P3 : max
Φ,Φ̄

∣

∣

∣(he
k)

T
we

k,op

∣

∣

∣

2

·
∣

∣

∣(ha
k)

T
wa

k,op

∣

∣

∣

2

s.t. Φ ∩ Φ̄ = ∅,Φ ∪ Φ̄ = K/{k} (22)

where we
k,op and wa

k,op are the solutions of P2.1 and P2.2,

respectively. To obtain the optimalΦ and Φ̄ inP3, a global search

algorithm is usually adopted, which suffers from exponential

complexity and is prohibitive in massive MIMO systems. Next,

we introduce a low complexity algorithm to obtain the solution.

Considering user k, there are K − 1 ILs. We search all these

ILs, and decide which IL is canceled in the azimuth domain or the

elevation domain. At the initial stage, let Φ0 = ∅, and Φ̄0 = ∅,

and the optimal elevation and azimuth precoding vectorswe
k,0 =

(�he
k)

∗ and wa
k,0 = (�ha

k)
∗ respectively. In the (i− 1)th iteration,

suppose we have Φi−1 and Φ̄i−1, where Φi−1 ∩ Φ̄i−1 = ∅ and

Φi−1 ∪ Φ̄i−1 = Ωi−1, Ωi−1 is the index set of the ILs that have

been considered. Let He
Φi−1

denote the matrix whose columns

are he
j , j ∈ Φi−1, and Ha

Φ̄i−1

the matrix whose columns are

ha
j , j ∈ Φ̄i−1. In the ith iteration, we want to cancel the IL on

user l (this means the ith element in K/{k} is l). If we cancel

it in the elevation domain, then Φi = Φi−1 ∪ {l}, Φ̄i = Φ̄i−1,

and He
Φi

becomes [He
Φi−1

,he
l ]. The azimuth precoding vector

remains unchanged, and the elevation precoding vector we
k,i

should satisfy

max
‖we

k‖=1

∣

∣

∣
(he

k)
T
we

k

∣

∣

∣

2

s.t.
(

he
j

)T
we

k = 0, j ∈ Φi. (23)

From Proposition 2, we
k,i should be (�we,1

Φi
)T , where w

e,1
Φi

is the

first row of matrix We
Φi

= [he
k, H

e
Φi
]† = (H̄e

Φi
)†. Substituting

we
k,i and wa

k,i into (15), we get pe,i. Since the inverse operation

is expensive, here we propose a low complexity update scheme

to obtainWe
Φi

using the lemma in [33]. Let H̄e
Φi

= [H̄e
Φi−1

,he
l ].

Lemma 2: For H̄e
Φi

= [H̄e
Φi−1

,he
l ], we have

(

H̄e
Φi

)†
=

(
(

H̄e
Φi−1

)†
− dmbH

m

bm

)

(24)

where dm = (H̄e
Φi−1

)†he
l ,

bH
m =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

1 + dH
mdm

)−1
dH
m

(

H̄e
Φi−1

)†
,he

l − H̄e
Φi−1

dm = 0,

(

he
l − H̄e

Φi
dm

)H

∥

∥

∥
he
l − H̄e

Φi−1
dm

∥

∥

∥

2 ,h
e
l − H̄e

Φi−1
dm �= 0.
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Algorithm 1: The DSZF Algorithm.

Input: He, Ha; Output: We, Wa;

For user k, k ∈ K, initialize we
k,0 = (�he

k)
∗, wa

k,0 = (�ha
k)

∗,

Φ0 = ∅, and Φ̄0 = ∅;

For i = 1 : K − 1
Assume the ith element inK/{k} (i.e., element l)
belongs Φ;

Denote wa
te,e = wa

k,i−1, and obtain We
Φi

using

Lemma 2;

Let we
te,e = (�we,1

Φi
)T , where w

e,1
Φi

is the first row of We
Φi

;

Using wa
te,e and we

te,e to get pe,i;

Assume element l belongs Φ̄;

Denote we
te,a = we

k,i−1, and obtain Wa
Φ̄i

using

Lemma 2;

Let wa
te,a = (�wa,1

Φ̄i
)T , where w

a,1

Φ̄i
is the first row

of Wa
Φ̄i

;

Using we
te,a and wa

te,a to get pa,i;

If pe,i > pa,i

Φi = Φi−1 ∪ l, Φ̄i = Φ̄i−1, we
k,i = we

te,e,

wa
k,i = wa

te,e;

else

Φi = Φi−1, Φ̄i = Φ̄i−1 ∪ l, we
k,i = we

te,a,

wa
k,i = wa

te,a;

End

End

Using Lemma 2, we can obtain We
Φi

in a recursive way.

Similarly, if the IL on user l is canceled in the azimuth domain,

Φi = Φi−1, Φ̄i = Φ̄i−1 ∪ {l}. Thenwe
k remains unchanged, and

wa
k should satisfy

max
‖wa

k‖=1

∣

∣

∣
(ha

k)
T
wa

k

∣

∣

∣

2

s.t.
(

ha
j

)T
wa

k = 0, j ∈ Φ̄i. (25)

The solution of (25) is (�wa,1

Φ̄i
)T , where w

a,1

Φ̄i
is the first row

of matrix Wa
Φ̄i

= [ha
k, H

a
Φ̄i
]† = (H̄a

Φ̄i
)†. Substituting we

k and

wa
k into (15), we get pa,i. Similarly, we can obtain Wa

Φ̄i
from

Wa
Φ̄i−1

recursively as in Lemma 2. Then, we only need to choose

the larger one between pe,i and pa,i. If pe,i is larger than pa,i,
canceling the IL on user l in the elevation domain will achieve

a larger SNR, otherwise canceling the IL in the azimuth domain

will achieve a larger SNR.

The DSZF algorithm is summarized in Algorithm 1.

B. DSSLNR Precoding Algorithm

1) Problem Formulation in DSSLNR: The DSZF algorithm

cancel the inter-user interference in the absence of noise. In this

subsection, we take the noise into consideration, and propose

a new precoding algorithm, called DSSLNR, to maximize the

SLNR of each user. For user k, the SLNR is given by

βk =

∣

∣hT
kwk

∣

∣

2
Es

∑

j �=k

∣

∣hT
j wk

∣

∣

2
Es + σ2

(26)

where hk = he
k ⊗ ha

k, wk = we
k ⊗wa

k . Substituting (12) into

(26), the SLNR is expressed as

βk =

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2 ∣
∣

∣(ha
k)

T
wa

k

∣

∣

∣

2

Es

∑

j �=k

∣

∣

∣

(

he
j

)T
we

k

∣

∣

∣

2 ∣
∣

∣

(

ha
j

)T
wa

k

∣

∣

∣

2

Es + σ2

.

For the ease of notification, denoting γk = β−1
k and c = σ2

Es
, we

have

γk =
∑

j �=k

∣

∣

∣

(

he
j

)T
we

k

∣

∣

∣

2

∣

∣

∣
(he

k)
T
we

k

∣

∣

∣

2

∣

∣

∣

(

ha
j

)T
wa

k

∣

∣

∣

2

∣

∣

∣
(ha

k)
T
wa

k

∣

∣

∣

2

+
c

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2 ∣
∣

∣(ha
k)

T
wa

k

∣

∣

∣

2 .

The SLNR maximization problem is formulated as

P4 : min γk, s.t. ‖we
k‖ = 1, ‖wa

k‖ = 1. (27)

The term
|(he

j)
Twe

k
|2

|(he
k
)Twe

k
|2

|(ha
j )

Twa
k
|2

|(ha
k
)Twa

k
|2 in γk is called user j’s (j �= k)

leakage term (LT). Note that each LT is affected by two multi-

pliers, i.e., the azimuth part and the elevation part. In our domain

selective scheme, we minimize each LT in γk by minimizing one

of the multipliers, either in the elevation part or in the azimuth

part. In particular, if one multiplier is reduced to a small enough

value, while the other multiplier is appropriately upper bounded,

the LT becomes small.

2) Decription of DSSLNR Algorithm: Denote Φ and Φ̄ as the

index set of users whose LTs are canceled in the elevation and

azimuth domain, respectively. We consider the LTs one by one,

and obtain Φ and Φ̄ iteratively, in a manner similar to that of the

DSZF algorithm. At the initial stage, we set Φ0 = ∅, and Φ̄0 =
∅, and we have we

k,0 = (�he
k)

∗ and wa
k,0 = (�ha

k)
∗. In the (i−

1)th iteration, assume we have Φi−1 and Φ̄i−1, where Φi−1 ∩
Φ̄i−1 = ∅ and Φi−1 ∪ Φ̄i−1 = Ωi−1, Ωi−1 is the index set of

users whose LTs are reduced in the previous i− 1 iterations. In

the ith iteration, we consider the ith LT (user l’s LT), and choose

one precoding vector (elevation or azimuth) to reduce the ith LT,

which results in smaller γk,i, where

γk,i =
∑

j∈Ωi

∣

∣

∣

(

he
j

)T
we

k

∣

∣

∣

2

∣

∣

∣
(he

k)
T
we

k

∣

∣

∣

2

∣

∣

∣

(

ha
j

)T
wa

k

∣

∣

∣

2

∣

∣

∣
(ha

k)
T
wa

k

∣

∣

∣

2

+
c

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2 ∣
∣

∣(ha
k)

T
wa

k

∣

∣

∣

2 . (28)

From above, each LT is reduced in either elevation or azimuth

domain. Then, we rewrite (28) as

γk,i =
∑

j∈Φi

a2j ·

∣

∣

∣

(

he
j

)T
we

k

∣

∣

∣

2

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2 +
∑

j∈Φ̄i

b2j ·

∣

∣

∣

(

ha
j

)T
wa

k

∣

∣

∣

2

∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2

+ c
1

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2 · 1
∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2 (29)
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where aj =
|(ha

j )
Twa

k
|

|(ha
k
)Twa

k
| , bj =

|(he
j )

Twe
k
|

|(he
k
)Twe

k
| , Φi ∩ Φ̄i = ∅ and Φi ∪

Φ̄i = Ωi. In (29), we aim to minimize the jth (j ∈ Φi) LT using

the elevation precoding vector and minimize the jth (j ∈ Φ̄i)

LT using the azimuth precoding vector.

In the ith iteration, if we consider to use the elevation pre-

coding vector to reduce the ith LT (denoted as user l’s LT),

Φi = Φi−1 ∪ l, and Φ̄i = Φ̄i−1. Since user j’s (j ∈ Φ̄i) LT is

minimized using the azimuth precoding vector, we
k,i is used to

minimize the remaining terms to minimize γk,i. The problem is

formulated as

P5.1 : min
‖we

k‖=1
γe
k,Φi

=
∑

j∈Φi

a2j ·
∣

∣

∣

(

he
j

)T
we

k

∣

∣

∣

2

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2 +
c1

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2

(30)

where c1 = c · |(ha
k)

Twa
k|−2. We will show that P5.1 is ap-

proximately equivalent to minimizing γk,i later. Similarly, using

the azimuth precoding vector to reduce this LT, the problem is

formulated as

P5.2 : min
‖wa

k‖=1
γa
k,Φ̄i

=
∑

j∈Φ̄i

b2j ·
∣

∣

∣

(

ha
j

)T
wa

k

∣

∣

∣

2

∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2 +
c2

∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2

(31)

where c2 = c · |(he
k)

Twe
k|−2. Actually, P5.1 and P5.2 can be

seen as the elevation and azimuth SLNR maximization prob-

lems, respectively, which can be reformulated as

P6.1 : max
‖we

k‖=1

∣

∣

∣(he
k)

T
we

k

∣

∣

∣

2

∑

j∈Φi

∣

∣

∣

(

ajhe
j

)T
we

k

∣

∣

∣

2

+ c1

(32)

P6.2 : max
‖wa

k‖=1

∣

∣

∣(ha
k)

T
wa

k

∣

∣

∣

2

∑

j∈Φ̄i

∣

∣

∣

(

bjha
j

)T
wa

k

∣

∣

∣

2

+ c2

. (33)

Theorem 3: Let He
Φi

and Ha
Φ̄i

denote the matrices whose

columns are ajh
e
j , j ∈ Φi and bjh

a
j , j ∈ Φ̄i, respectively. Let

H̃e
Φi

= [akh
e
k,H

e
Φi
] and H̃a

Φ̄i
= [bkh

a
k,H

e
Φ̄i
]. The solution of

maximizing the elevation or azimuth SLNR is equivalent to the

MMSE criterion, which means that the optimal solutions ofP6.1

and P6.2 are �we
1,Φi

and �wa
1,Φ̄i

, where we
1,Φi

and wa
1,Φ̄i

are the

first columns of We
Φi

and Wa
Φ̄i

, respectively, with

We
Φi

=

(

(

H̃e
Φi

)∗ (
H̃e

Φi

)T

+ c1I

)−1
(

H̃e
Φi

)∗
(34)

Wa
Φ̄i

=

(

(

H̃a
Φ̄i

)∗ (
H̃a

Φ̄i

)T

+ c2I

)−1
(

H̃a
Φ̄i

)∗
. (35)

Proof: See Appendix C. �

Remark 1: In our DSSLNR precoding scheme, the elevation

channel vectors of users inΦ are not collinear with that of user k.

It is because, if the elevation channel vector of user j(j �= k) is

collinear with that of user k, the azimuth channel vector of user

j will be not collinear with that of user k, and using the elevation

domain to reduce user j’s LT will result in a smaller SLNR than

reducing this LT in the azimuth domain, then this LT is reduced

in the azimuth domain. Similarly, the azimuth channel vectors

of users in Φ̄ are not collinear with that of user k. Hence, we

have the following proposition.

Proposition 4: When the numbers of antennas Mx and My

approach infinity, in the ith iteraion, we have

we
k,i →

(

�he
k

)∗
,wa

k,i →
(

�ha
k

)∗
.

Proof: See Appendix D. �

Remark 2: When using the elevation vector to minimize

γe
k,Φi

in P5.1, the value of bj in the second term in (29) is

changed, which will enlarge the second term. A similar prob-

lem exists in calculating the azimuth precoding vector in P5.2.

Actually, from Proposition 4, with an increase of Mx and My ,

we have we
k,i → (�he

k)
∗ and wa

k,i → (�ha
k)

∗, and hence aj (bj)

has approximately the same value in each iteration. In addition,

with an increase of the numbers of antennas, he
j (j ∈ Φi) and

ha
j (j ∈ Φ̄i) are different from and orthogonal to he

k and ha
k,

respectively. Hence, from Proposition 4,
|(he

j)
Twe

k
|2

|(he
k
)Twe

k
|2 (j ∈ Φi)

and
|(ha

j )
Twa

k
|2

|(ha
k
)Twa

k
|2 (j ∈ Φ̄i) will approximately be zero in each

iteration. This means that, when minimizing γe
k,Φi

in P5.1,

the term b2j ·
|(ha

j )
Twa

k
|2

|(ha
k
)Twa

k
|2 will approximately be 0, and P5.1 is

approximately equivalent to minimizing γk,i in (29). Similarly,

minimizing γa
k,Φ̄i

in P5.2 is approximately equivalent to mini-

mizing γk,i by the azimuth precoding vector.

Next, we can determine in which domain the ith LT in γk
will be reduced. In the ith iteration, if user l’s LT is reduced in

the elevation domain, Φi = Φi−1 ∪ {l} and Φ̄i = Φ̄i−1. Then,

wa
k,i = wa

k,i−1, andwe
k,i can be updated byP6.1, which is �we

1,Φi

from Theorem 3, and we
1,Φi

is the first column of

We
Φi

=

(

(

H̃e
Φi

)∗ (
H̃e

Φi

)T

+ c1I

)−1
(

H̃e
Φi

)∗
. (36)

Note that the columns in H̃e
Φi

are ajh
e
k. From Proposition 4,

aj (j ∈ Φi) is approximately constant in each iteration; as a

result, we can approximate H̃e
Φi

by [H̃e
Φi−1

alh
e
l ] to reduce the

complexity. Let he
l = alh

e
l , then H̃e

Φi
= [H̃e

Φi−1
,he

l ], and we

can obtain We
Φi

from We
Φi−1

in the i− 1th iteration as follows.

Lemma 3: Denote r=(he
l )

T (he
l )

∗ − vHG−1v + c1, where

v = (H̃e
Φi−1

)T (he
l )

∗, G = (H̃e
Φi−1

)T (H̃e
Φi−1

)∗ + c1I and c1 >
0. We have r > 0.

Proof: See Appendix E. �

Using Lemma 3, we have the following theorem.

Theorem 5: For each i, define

We
Φi

=

(

(

H̃e
Φi

)∗ (
H̃e

Φi

)T

+ c1I

)−1
(

H̃e
Φi

)∗
. (37)

Then, we have

We
Φi

=
[

We
Φi−1

− rmpH
m, rm

]

(38)
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Algorithm 2: The DSSLNR Algorithm.

Input: He, Ha, Ps/σ
2; Output: We, Wa;

For user k, k ∈ K, initialize we
k,0 = (�he

k)
∗, wa

k,0 = (�ha
k)

∗,

Φ0 = ∅, and Φ̄0 = ∅;

For i = 1 : K − 1
Assume the ith LT (user l’s LT) is reduced in elevation;

Denote wa
te,e = wa

k,i−1; Obtain We
Φi

using Theorem 5;

Let we
te,e = �we

1,Φi
, where we

1,Φi
is the first column of

We
Φi

;

Using wa
te,e and we

te,e to get γe
k,Φi

;

Assume the ith LT (user l’s LT) is reduced in azimuth;

Denote we
te,a = we

k,i−1; Obtain Wa
Φ̄i

using Theorem 5;

Let wa
te,a = �wa

1,Φ̄i
, where wa

1,Φ̄i
is the first column of

Wa
Φ̄i

;

Using we
te,a and wa

te,a get γa
k,Φ̄i

;

If γe
k,Φi−1

− γe
k,Φi

< γa
k,Φ̄i−1

− γa
k,Φ̄i

Φ̄i = Φ̄i−1, Φi = Φi−1 ∪ l, we
k,i = we

te,e and

wa
k,i = wa

te,e;

else

Φi = Φi−1, Φ̄i = Φ̄i−1 ∪ l, we
k,i = we

te,a and

wa
k,i = wa

te,a;

End

End

if H̃e
Φi

= [H̃e
Φi−1

,he
l ], where pm = (We

Φi−1
)H(he

l )
∗, rm =

qm

(he
l )

Tqm+c1
,qm = (he

l )
∗ − (H̃e

Φi−1
)∗pm.

Proof: See Appendix F. �

We can use Theorem 5 to obtain We
Φi

using We
Φi−1

, and

substitute we
k,i and wa

k,i into P5.1 to get γe
k,Φi

. If we cancel

user l’s LT in the azimuth domain, Φ̄i = Φ̄i−1 ∪ {l},Φi = Φi−1,

and we
k,i = we

k,i−1. We update wa
k,i by P6.2, which is �wa

1,Φ̄i

from Theorem 3, and wa
1,Φ̄i

is the first column of Wa
Φ̄i

. By

substituting we
k,i and wa

k,i intoP5.2, we get γa
k,Φ̄i

. Similarly, we

can use Wa
Φ̄i−1

to obtain Wa
Φ̄i

. If γe
k,Φi−1

− γe
k,Φi

< γa
k,Φ̄i−1

−
γa
k,Φ̄i

, it means that canceling the LT in the ith iteration in the

elevation domain will result in smaller SLNR loss. In this case,

we reduce the LT in the elevation domain. Otherwise, we reduce

the LT in the azimuth domain.

The DSSLNR algorithm is summarized in Algorithm 2.

C. DS Precoding in Large-Scale Systems

In this subsection, we show our DSZF and DSSLNR algo-

rithms can achieve the same performance as the full precoding

when Mx and My approach infinity. In the full precoding

scheme, the precoding vector of user k is �wk,FP . We assume all

users’ channel vectors are not collinear, such that all users can

be distinguished. When Mx and My approach infinity, hi and

hj are orthogonal for i �= j [15], [25]. As a result,

HTH∗ → Λ

where Λ is a diagonal matrix. Thus, user k’s precoding vector

is wk = �h∗
k. Moreover, when Mx and My approach infinity, he

i

and he
j are orthogonal if he

i and he
j are not collinear, ha

i and ha
j

are orthogonal if ha
i and ha

j are not collinear.

In our DSZF precoding, it is easy to verify that, if the elevation

channel vector of any user is collinear with that of user k, the IL

on this user is canceled in the azimuth domain. Because this

user’s azimuth channel vector is not collinear with and will

be orthogonal to user k’s azimuth channel vector, and using

the azimuth domain to cancel the IL will give a larger SNR.

Similarly, if the azimuth channel vector of a user is collinear

with that of user k, the IL on this user is canceled in the elevation

domain. Thus, the azimuth channel vectors of users in set Φ̄ are

not collinear with and are orthogonal to the azimuth channel

vector of user k, and the elevation channel vectors of users in

set Φ are not collinear with and are orthogonal to the elevation

channel vector of user k.

From Subsection III-A, the elevation precoding vector we
k

of user k in the DSZF precoding is (�we,1
Φ )T , where w

e,1
Φ is the

first row of the matrix (H̄e
Φ)

† = ((H̄e
Φ)

HH̄e
Φ)

−1(H̄e
Φ)

H , and the

azimuth precoding vector wa
k is (�wa,1

Φ̄
)T , where w

a,1

Φ̄
is the first

row of the matrix (H̄a
Φ̄
)† = ((H̄a

Φ̄
)HH̄a

Φ̄
)−1(H̄a

Φ̄
)H . Note that

the first columns of H̄e
Φ and H̄a

Φ̄
are he

k and ha
k, respectively,

and they are orthogonal to the remaining columns of H̄e
Φ and

H̄a
Φ̄

respectively. Matrices
(

H̄e
Φ

)H
H̄e

Φ and
(

H̄a
Φ̄

)H
H̄a

Φ̄
have

the following form,

(

H̄e
Φ

)H
H̄e

Φ →
(

a1 0

0 A1

)

,
(

H̄a
Φ̄

)H
H̄a

Φ̄ →
(

a2 0

0 A2

)

where a1 and a2 are the constants. It is easy to verify that

(

(

H̄e
Φ

)H
H̄e

Φ

)−1

→
(

a−1
1 0

0 A−1
1

)

(

(

H̄a
Φ̄

)H
H̄a

Φ̄

)−1

→
(

a−1
2 0

0 A−1
2

)

based on which one can obtain

we
k →

(

�he
k

)∗
, wa

k →
(

�ha
k

)∗
. (39)

Considering the DSSLNR algorithm, and using Proposition

4, when Mx and My tend to infinity, we have

we
k,i →

(

�he
k

)∗
,wa

k,i →
(

�ha
k

)∗

in each iteration. At the end of DSSLNR algorithm, we have

we
k →

(

�he
k

)∗
,wa

k →
(

�ha
k

)∗

which shows that our DSSLNR precoding algorithm asymptot-

ically approaches the full precoding scheme.

IV. DS PRECODING IN ONE-RING CHANNEL MODEL

We consider the one-ring channel model [16]–[18], [34]–[37]

in this section, due to its meaningful geometrical interpretation.

This model describes the case when a BS is elevated away

from scatterers and communicates with a mobile user that is

surrounded by a ring of scatterers. Assuming all paths that reach

one user are equal in power [16]–[18], [34]–[37], the channel
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response of the lth path (scatterer) from the BS to user k is

represented by

hl
k =

ηke
jτk,l

√
L

a (θk,l)
e ⊗ a (θk,l, φk,l)

a

where ηk represents the amplitude of each path, each τk,l is uni-

formly distributed in [−π, π], θk,l ∈ [θk −∆E/2, θk +∆E/2],
and φk,l ∈ [φk −∆A/2, φk +∆A/2], with ∆E and ∆A being

the angular spreads (ASs) in the elevation and azimuth domains,

respectively. θk andφk are determined by the location of the ring.

∆E and ∆A are determined by the ring’s radius and the distance

between the BS and the ring. Then user k’s channel vector is

given by

hk =

L
∑

l=1

hl
k =

ηk√
L

L
∑

l=1

ejτk,la (θk,l)
e ⊗ a (θk,l, φk,l)

a

and it is easy to verify that E(‖hk‖2) = η2k, where the amplitude

ηk is normalized as 1. In fact, the elevation (azimuth) AOA

has different distributions in different scenarios. Similar to the

one-ring model in [16]–[18], the elevation and azimuth AOAs

are assumed to be independent and they are uniformly distributed

in [θk −∆E/2, θk +∆E/2] and [φk −∆A/2, φk +∆A/2], re-

spectively (It is shown that similar performances and asymptotic

behaviors are achieved by other AoA distributions [16]). In

reference channel model [34], [35], the number of paths are

assumed to be infinity, while it is not realizable in reality.

Here, we use the simulation channel model [36]–[38], where

the number of paths is finite in our paper.

In one-ring channel model, we focus on the DSSLNR algo-

rithm, since the noise effect is incorporated and better perfor-

mance can be achieved. From (26), the SLNR of user k is βk.

Denote the 2D representation of the channel vector hk as Hk,

which is expressed as

Hk =
ηk√
L

L
∑

l=1

ejτk,la (θk,l, φk,l)
a (a (θk,l)

e)
T
. (40)

It is easy to verify vec(Hk) = hk, where vec(·) denotes the

vectorization operation. If wk = we
k ⊗wa

k, we have

hT
j wk = (wa

k)
T
Hjw

e
k. (41)

Substituting (41) into βk and denoting γk = β−1
k , the SLNR

maximization problem can be equivalently written as

min
‖we

k‖=1,‖wa
k‖=1

γk =
∑

j �=k

∣

∣

∣(wa
k)

T
Hjw

e
k

∣

∣

∣

2

∣

∣

∣(wa
k)

T
Hkw

e
k

∣

∣

∣

2 +
c

∣

∣

∣(wa
k)

T
Hkw

e
k

∣

∣

∣

2

where c = σ2

Es
. Motivated by the DS scheme in the single-path

channel, the LTs are divided into two parts, and are removed in

either the elevation domain or the azimuth domain, respectively.

We need to find two sets Φ and Φ̄, where the jth(j ∈ Φ) LT and

the lth(l ∈ Φ̄) LT are reduced by the elevation precoding vector

we
k and the azimuth vector wa

k, respectively. We re-write γk as

γk=
∑

j∈Φ

∣

∣

∣

(

ge
j

)T
we

k

∣

∣

∣

2

∣

∣

∣(ge
k)

T
we

k

∣

∣

∣

2 +
∑

j∈Φ̄

∣

∣

∣(wa
k)

T
ga
j

∣

∣

∣

2

∣

∣

∣(wa
k)

T
ga
k

∣

∣

∣

2 +
c

∣

∣

∣(wa
k)

T
Hkw

e
k

∣

∣

∣

2

(42)

where (ge
j)

T = (wa
k)

THj and ga
j = Hjw

e
k.

In the one-ring channel model, as the angular

spread is usually not large, we have a(θk,l, φk,l)
a ≈

a(θk, φk)
a, and a(θk,l)

e ≈ a(θk)
e. Hence, Hk ≈

( ηk√
L

∑L
l=1 e

jτk,l)a(θk, φk)
a(a(θk)

e)T , and |(wa
k)

THjw
e
k|2 ≈

|( ηk√
L

∑L
l=1 e

jτk,l)(wa
k)

Ta(θj , φj)
a(a(θj)

e)Twe
k|2. Hence,

∣

∣

∣
(wa

k)
T
Hjw

e
k

∣

∣

∣

2

∣

∣

∣(wa
k)

T
Hkw

e
k

∣

∣

∣

2 ≈ p

∣

∣

∣
(wa

k)
T
a (θj , φj)

a
∣

∣

∣

2 ∣
∣

∣
(a (θj)

e)
T
we

k

∣

∣

∣

2

∣

∣

∣(wa
k)

T
a (θk, φk)

a
∣

∣

∣

2 ∣
∣

∣(a (θk)
e)

T
we

k

∣

∣

∣

2

(43)

where p = (
∑L

l=1 e
jτj,l/

∑L
l=1 e

jτk,l)2. Note that the LT is also

affected by two multipliers. We can use either elevation or

azimuth precoding vector to reduce each multiplier, to reduce

the LT. The analysis is similar to that in the single-path scenario.

We briefly summarize the process in the following.

We determine Φ, Φ̄, we
k and wa

k in an iterative manner, i.e.,

we considered the LTs in γk iteratively. In each iteration, if

minimizing the LT in the elevation domain has larger SLNR,

this LT belongs to Φ, and we use the elevation precoding vector

we
k to minimize it. Otherwise, we minimize the LT in the azimuth

domain, and the vector wa
k is updated via iteration. The process

is as follows.

At beginning, denote the SVD of Hk as Hk = UΛVH .

Initialize Φ0 = ∅, Φ̄0 = ∅. To maximize |(wa
k)

THkw
e
k|2, let

we
k,0 = �v1,w

a
k,0 = �u∗

1 (44)

where λ1 is the larget singular value, u1 and v1 are the columns

in U and V corresponding to λ1 respectively. Suppose we have

Φi−1 and Φ̄i−1 in the i− 1 iteration, where Φi−1 ∩ Φ̄i−1 = ∅
and Φi−1 ∪ Φ̄i−1 = Ωi−1. In the ith iteration, we determine in

which domain user l’s LT
|(wa

k
)THlw

e
k
|2

|(wa
k
)THkw

e
k
|2 will be reduced such

that γk,i is minimized, where

γk,i =
∑

j∈Φi

∣

∣

∣

(

ge
j

)T
we

k

∣

∣

∣

2

∣

∣

∣
(ge

k)
T
we

k

∣

∣

∣

2 +
∑

j∈Φ̄i

∣

∣

∣(wa
k)

T
ga
j

∣

∣

∣

2

∣

∣

∣
(wa

k)
T
ga
k

∣

∣

∣

2

+
c

∣

∣

∣(wa
k)

T
Hkw

e
k

∣

∣

∣

2 .

If the LT on user l is reduced in the elevation domain, Φi =
Φi−1 ∪ l and Φ̄i = Φ̄i−1. Then we use we

k to reduce this LT, and

wa
k remains unchanged. The problem to determine we

k is

P7.1 : min
‖we

k‖=1
γe
k,Φi

=
∑

j∈Φi

∣

∣

∣

(

ge
j

)T
we

k

∣

∣

∣

2

∣

∣

∣(ge
k)

T
we

k

∣

∣

∣

2 +
c

∣

∣

∣(ge
k)

T
we

k

∣

∣

∣

2 .

(45)
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Note that P7.1 can be rewritten as

max
‖we

k‖=1

(we
k)

H
(

(ge
k)

∗ (ge
k)

T
)

we
k

(we
k)

H
(

∑

j∈Φi

(

ge
j

)∗ (
ge
j

)T
)

we
k + c

. (46)

The objective function in (46) is a Rayleigh quotient, and the

optimal solution of (46) is �we
k,Φi

, where

we
k,Φi

=
(

(

Ge
Φi

)∗ (
Ge

Φi

)T
+ cI

)−1

(ge
k)

∗
(47)

and Ge
Φi

denotes the matrix whose columns are ge
j , j ∈ Φi.

Substituting wa
k,Φ̄i

and we
k,Φi

into γe
k,Φi

in P9.1, we have

γe
k,Φi

. Similar to the single-path scenario, we approximate

Ge
Φi

= [Ge
Φi−1

ge
l ] to reduce complexity. Denoting AΦi

=

((Ge
Φi
)∗(Ge

Φi
)T + c1I)

−1, AΦi
can be obtained by AΦi−1

as

AΦi
=

(

AΦi−1
+ (ge

l )
∗ (ge

l )
T
)−1

= A−1
Φi−1

−
A−1

Φi−1
(ge

l )
∗ (ge

l )
T
A−1

Φi−1

1 + (ge
l )

T
A−1

Φi−1
(ge

l )
∗ . (48)

Alternatively, if the LT on user l is minimized in the az-

imuth domain, Φ̄i = Φ̄i−1 ∪ l, Φi = Φi−1, and we
k remains

unchanged. Hence, we use wa
k to minimize this LT, leading to

P7.2 : min
‖wa

k‖=1
γa
k,Φ̄i

=
∑

j∈Φ̄i

∣

∣

∣(wa
k)

T
ga
j

∣

∣

∣

2

∣

∣

∣
(wa

k)
T
ga
k

∣

∣

∣

2 +
c

∣

∣

∣
(wa

k)
T
ga
k

∣

∣

∣

2 .

(49)

Similar to the elevation domain, its optimal solution is (�wa
k,Φ̄i

)∗,

where

wa
k,Φ̄i

=

(

Ga
Φ̄i

(

Ga
Φ̄i

)H

+ cI

)−1

ga
k (50)

with Ga
Φ̄i

being the matrix whose columns are ga
j , j ∈ Φ̄i.

Substituting wa
k,Φ̄i

and we
k,Φi

in P7.2, we have γa
k,Φ̄i

. Also,

we approximateGa
Φ̄i

= [Ga
Φ̄i−1

ga
l ] to reduce complexity. Then,

(Ḡa
Φ̄i
(Ḡa

Φ̄i
)H + c1I)

−1 can be obtained by (Ḡa
Φ̄i−1

(Ḡa
Φ̄i−1

)H +

c1I)
−1, which is similar to (48). If γe

k,Φi−1
− γe

k,Φi
< γa

k,Φ̄i−1

−
γa
k,Φ̄i

, canceling the LT in the ith iteration in the elevation domain

will result in a larger SLNR. Otherwise, we cancel the LT in the

azimuth domain. When all the terms in γk are considered, stop

the iteration. The DSSLNR algorithm in one-ring channel is

given in Algorithm 3.

V. SIMULATION RESULTS AND COMPLEXITY ANALYSIS

In this section, we evaluate the performance of our proposed

DS precoding algorithms based on simulations. Consider a

single-cell system equipped with a rectangular array at a height

HBS =35 m and servingK single-antenna users with cell radius

rc. The users are randomly and uniformly distributed in the cell.

Each user antenna is located at a height of 1.5 m.

Algorithm 3: The DSSLNR in One-Ring Channel.

Input: Hk(k ∈ K), Ps/σ
2; Output: We, Wa;

For user k, k ∈ K, initialize we
k,0 and wa

k,0 by (44),

Φ0 = ∅, Φ̄0 = ∅;

For i = 1 : K − 1
Assume the ith LT (user l’s LT) is reduced in elevation;

Denote wa
te,e = wa

k,i−1; Obtain (ge
l )

T = (wa
te,e)

THl;

Let (ge
k)

T = (wa
te,e)

THk; Use (47), (48) to get we
1,Φi

;

Let we
te,e = �we

1,Φi
, and use wa

te,e and we
te,e to get γe

k,Φi
;

Assume the ith LT (user l’s LT) is reduced in azimuth;

Denote we
te,a = we

k,i−1; Obtain ga
l = Hlw

e
te,a;

Let ga
l = Hlw

e
te,a; Use (50) to get wa

k,Φ̄i
;

Let wa
te,a = �wa

1,Φ̄i
, and use we

te,a and wa
te,a get γa

k,Φ̄i
;

If γe
k,Φi−1

− γe
k,Φi

< γa
k,Φ̄i−1

− γa
k,Φ̄i

Φ̄i = Φ̄i−1, Φi = Φi−1 ∪ l, we
k,i = we

te,e and

wa
k,i = wa

te,e;

else

Φi = Φi−1, Φ̄i = Φ̄i−1 ∪ l, we
k,i = we

te,a and

wa
k,i = wa

te,a;

End

End

A. Results With Single-Path Channels

The azimuth and elevation angles are determined based on

user locations relative to the BSs. The complex path gain αk,l is

normalized as a zero mean Gaussian variable with unit variance.

Our DSZF and DSSLNR schemes are compared to 2D MF [21],

DSIC [23], eigen-beamforming [19], [39] and the full precoding

[5] schemes.

1) Comparison With Perfect CSI: In single-path TDD mas-

sive MIMO systems, angular-based channel estimation tech-

niques [39], [40] are usually utilized to obtain the complex

path gain αk and the elevation and azimuth AOAs, which can

be used to obtain he
k and ha

k (Input in Algorithm 1 and 2).

The channel estimation error is related with the length of the

training sequence and the transmission power, and nearly perfect

instantaneous CSI can be obtained when the training sequence

is long and the transmission power is large. Here we give the

comparison of different algorithms with perfect CSI.

Figs. 1–2 show the achievable rates of our proposed DS

precoding algorithms under different SNRs with rc = 200 m.

The BS is equipped with a 16× 16 antenna array in Fig. 1 and

a 30× 16 antenna array in Fig. 2. Both Figs. 1 and 2 show

that the achievable rate of all the precoding scheme increases as

the SNR increases. More importantly, our DSZF and DSSLNR

schemes can achieve larger achievable rates than the exsiting 2D

precoding schemes and the eigen-beamforming scheme. Also,

DSSLNR can achieve a higher achievable rate than the DSZF

schemes due to the fact that the DSSLNR scheme takes the

noise into consideration. Moreover, the DSSLNR scheme can

approach the full precoding algorithm. The eigen-beamforming

deteriorates at high SNR. This is because the eigen-beamforming

can not cancel the inter-user interference well, which dominates

in high SNR regions.
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Fig. 1. Comparison of the achievable rates for different SNRs. The BS is
assumed to employ 16× 16 URAs. (a) K = 8. (b) K = 20.

Fig. 3 shows the achievable rates of our proposed DS precod-

ing schemes under different numbers of users. The achievable

rate of the DSSLNR scheme increases as the number of the

users increases, which is similar to that of eigen-beamforming

and full precoding schemes. The achievable rate of the DSZF

scheme first increases then decreases as the number of the

users increases, due to the large inter-user interference. This

phenomenon is similar to the ZF precoding scheme in massive

MIMO systems, since our DSZF scheme divides the precoding

problem into the ZF precoding in the elevation and azimuth

domains. The 2D MF performs the ZF precoding on all users’

elevation channel vectors, and when the number of users (K)
is smaller than Mx, the spectral efficiency performs similar to

the ZF precoding, i.e., the spectral efficiency first increases, and

then decreases with increasing number of users. When K is

larger than Mx, the spectral efficiency increases as the number

of users increases. The spectral efficiency of DSIC performs

similarly to that of the 2D MF.

In Fig. 4, we evaluate the impact of the number of elevation

antennas, using the same system and channel parameters as

in Fig. 3. The achievable rates of all the DS-based precoding

schemes, the eigen-beamforming scheme and the full precoding

scheme increases as the number of elevation antennas increases,

Fig. 2. Comparison of the achievable rates for different SNRs. The BS is
assumed to employ 30× 16 URAs, and K = 20.

Fig. 3. Comparison of the achievable rates for different number of users. The
BS is assumed to employ 16× 16 URAs, and SNR = 20 dB.

while that of the 2D MF remains unchanged. Our DSSLNR

scheme has the largest achievable rate among the 2D precoding

schemes, and the achievable rate of DSSLNR approaches that

of the full precoding scheme.

2) Comparison With Imperfect CSI: In massive MIMO sys-

tems, the training interval length and the transmit power are

limited. In this case, there will exist estimation errors. Next, we

show the impact of imperfect CSI to our proposed precoding

schemes. In single-path scenario, using angular-based channel

estimation techniques, we obtain the estimation of the complex

gain αk as α̃k, and the estimations of elevation and azimuth

AOAs as θ̃k and φ̃k, respectively, then the channel vector of user

k obtained by the BS is given by

ĥk = α̃ka
(

θ̃k

)e

⊗ a
(

θ̃k, φ̃k

)a

. (51)

We denote α̃k = αk + εk, θ̃k = θk + δe and φ̃k = φk + δa,

where εk, δe, and δa are the estimation errors in path gain,

elevation AOA, and azimuth AOA, respectively. The error εk in

path gain is assumed to be zero mean Gaussian variable [41] with

variance σ2
ε . δe and δa are assumed to be uniformly distributed in

[−δ/2, δ/2] where δ is a constant [41]. In sparse channel model,
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Fig. 4. Comparison of the achievable rates for different number of vertical
antennas. My = 16, K = 20, and SNR = 20 dB.

Fig. 5. Comparison of the achievable rates for different SNRs withσ2
ε = 0.01

and δ = 2◦. The BS is assumed to employ 16× 16 URAs and K = 20.

the channel estimation error can be very small through effective

channel estimation techniques [39], [40].

Fig. 5 and 6 compare the achievable rates under imperfect CSI,

using the same system and channel parameters as in Fig. 1(b).

In Fig. 5, we give the comparison of different precoding algo-

rithms under different SNRs with δ = 2◦, σ2
ε = 0.01. Similar

to the comparison with perfect CSI, the achievable rates of all

precoding schemes increases as the SNR increases, and our

DSZF and DSSLNR schemes can achieve a larger achievable

rate than the exsiting 2D precoding schemes and the eigen-

beamforming scheme. The DSSLNR scheme also can approach

the full precoding algorithm with imperfect CSI. Fig. 6 compares

the spectral efficiency of our DS-based precoding algorithms

with perfect CSI and imperfect CSI under different δ, and σ2
ε is

set to 0.01 in imperfect CSI situation. Our DSSLNR algorithm

can achieve larger achievable rate than the DSZF algorithm.

With the increase of δ, the estimation error increases, and the

interference becomes larger, resulting in lower achievable rate.

B. Results With One-Ring Channels

For the one-ring channel model, the azimuth and elevation

angles are geometrically determined based on user locations

Fig. 6. Comparison of the achievable rates of DS-based algorithms for dif-
ferent SNRs with different δ. The BS is assumed to employ 16× 16 URAs,
K = 20 and σ2

ε = 0.01.

relative to the BS, and the angular spreads in the elevation and

azimuth domain are set to ∆A and ∆E respectively. The BS

randomly serves K = 20 users. The number of paths is set to

25 [36]. From Algorithm 3, we need to obtain Hk (i.e., hk)

for each user, which can be obtained by linear MMSE based

channel estimations [42] or channel covariance matrix based

channel estimations [43]. Our DSSLNR is compared with the

full precoding scheme [5], and both the perfect and imperfect

CSI are considered. In one-ring channel model, the channel

vector of user k obtained by the BS is given by

ĥk = hk + ek (52)

where ek is the estimation error. For simplicity, ek is assumed

to be distributed as a zero mean Gaussian random variable [15].

Note that E(‖hk‖2) = 1. Here the covariance matrix of ek is

set to
σ2

e

MxMy
I, such that E(‖ek‖2) = σ2

e, where σ2
e = 0 means

perfect CSI.

Figure 7 shows the achievable rate of our proposed domain

selective precoding scheme under different SNRs with both per-

fect and imperfect CSI, where the BS is equipped with 16× 16
antennas. The ASs are set to 5◦ in both the elevation and azimuth

domains. It is shown that the achievable rate of our DSSLNR

precoding algorithm increases as the SNR increases. Moreover,

our DSSLNR algorithm can achieve a spectral efficiency similar

to that of the full precoding scheme when the number of users is

small, while it has a spectral efficiency gap from that of the full

precoding scheme when the number of users becomes large. In

fact, due to the Kronecker structure of the precoding vector, the

2D precoding scheme performs worse than the full precoding

algorithm. Moreover, the achievable rates of both our DSSLNR

and full precoding algorithms decrease as the channel estimation

error becomes large.

Fig. 8 shows the achievable rate of our proposed DSSLNR

algorithm under different ASs, where the BS employs a 16× 16
antenna array, K = 20, and the SNR is 20 dB. The elevation AS

and azimuth AS are the same. The DSSLNR performs worse

than the full precoding scheme does. The achievable rate of

the DSSLNR algorithm decreases as the AS increases. The

larger the AS is, the worse the performance of the 2D precoding
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Fig. 7. Comparison of the achievable rates for different SNRs. The BS
is assumed to employ 16× 16 URAs and ∆A = ∆E = 5◦. (a) K = 8.
(b) K = 20.

Fig. 8. Comparison of the achievable rates different angular spread. The BS
is assumed to employ 16× 16 URAs, SNR=20 dB, and K = 20.

algorithms will be. This is because, when the AS becomes large,

the Kronecker structure of the channel matrix becomes less

accurate, and the Kronecker structure based precoding scheme

gives a worse performance. Similar to Fig. 7, with the increase

of channel estimation error, the achievable rates of both our

DSSLNR and full precoding algorithms decrease.

Fig. 9. Complexity comparison for different number of users with Mx =

My = 16.

C. Complexity Analysis

In this subsection, we analyze the complexity of our DS-based

precoding algorithms. Since the precoding vectors of different

users are calculated in parallel, we denote the computational

complexity as the largest one among the complexities of calcu-

lating all users’ precoding vectors. For each user, the calculation

of the precoding vector requires K − 1 iterations.

First of all, we consider the DSZF algorithm in a single-

path scenario. In the ith iteration, when calculating (H̄e
Φi
)†,

we need to calculate dm which costs 2Mx|Φi−1| floating pi-

ont operations (flops) [44]. If he
l − H̄e

Φi−1
dm �= 0, calculating

he
l − H̄e

Φi−1
dm will cost 2Mx|Φi−1|+Mx flops, and obtain-

ing bm will cost 2Mx|Φi−1|+ 4Mx flops. Then (H̄e
Φi
)† costs

6Mx|Φi−1|+ 4Mx flops. If he
l − H̄e

Φi−1
dm = 0, obtaining bm

will costs 6Mx|Φi−1|+ 3Mx + 1 flops, and the complexity of

obtaining (H̄e
Φi
)† requires 8Mx|Φi−1|+ 3Mx + 1 flops. Simi-

lar complexity will be required for the azimuth precoding. Ob-

taining pe,i and pa,i will cost 2Mx and 2My flops, respectively.

Summing all the components for each iteration, we get the total

complexity.

Next, we consider the complexity of DSSLNR algorithm. In

the ith iteration, to obtain We
Φi

, we need to calculate pm which

costs 2Mx|Φi−1| flops. Calculating qm costs 2Mx|Φi−1|+Mx

flops, and obtaining rm costs 3Mx + 1 flops. The complexity

of obtaining We
Φi

entails 6Mx|Φi−1|+ 4Mx + 1 flops. Similar

complexity is required for the azimuth precoding. Summing all

components for each iteration, we get the total complexity. In

Fig. 9, we show the comparison of the number of flops of each

precoding algorithm. Our precoding algorithm has a similar

complexity with other 2D precoding algorithms, while the full

precoding has much higher complexity.

In the one-ring channel model, the complexity in the initial

stage is O(M2
xMy), and the complexity in each iteration is

O(M2
x +M2

y ). Since there are K − 1 iterations, the complex-

ity of DSSLNR algorithm in the one-ring channel scenario is

O((K − 1)(M2
x +M2

y ) +M2
xMy). From the above observa-

tions, the complexity of our DSSLNR is cubic, which is much

smaller than that of the full precoding algorithm.
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VI. CONCLUSION

In this paper, we have proposed two DS-based precoding

scheme termed as DSZF and DSSLNR for 3D massive MIMO

systems. We have mathematically analyzed the two DS pre-

coding algorithms, and derived one efficient method to select

a better domain to cancel the interference. Moreover, we have

theoretically proved that our DS precoding algorithms asymp-

totically approach the full precoding scheme when the number

of antennas becomes infinity. Simulation results have demon-

strated that our proposed algorithms can achieve better spectral

efficiency performance than existing 2D precoding with a low

computational complexity. In single-path and one-ring channel

3D TDD massive MIMO systems, since the instantaneous CSI is

available at the BS, the proposed DS precoding algorithms can be

applied to improve the spectral efficiency at a low computational

complexity. However, in the FDD massive MIMO systems,

obtaining the instantaneous CSI is very expensive. Therefore,

using statistical CSI to design precoding should be an efficient

way to reduce the cost of channel estimation. For our future

work, we will design the DS precoding scheme utilizing the

statistical CSI in FDD 3D massive MIMO systems.

APPENDIX

A. Proof of Proposition 1

To cancel out the inter-user interference, (he
j)

Twe
k = 0 or

(ha
j )

Twa
k = 0, j �= k for each k, should be satisfied. For user k,

suppose the ILs on userj (j ∈ Φ) are canceled in the elevation

domain, then (he
j)

Twe
k = 0, j ∈ Φ. If the ILs on user j(j ∈ Φ̄)

are canceled in the azimuth part, then (ha
j )

Twa
k = 0, j ∈ Φ̄.

If the number of users is larger than Mx +My − 1, either

the elevation will suffer more than Mx − 1 ILs or the azimuth

will suffer more than My − 1 ILs. Since all users have differ-

ent elevation (azimuth) array response vectors with probability

one, we cannot find non-zero vectors we
k or wa

k such that

(he
j)

Twe
k = 0(j ∈ Φ) or (ha

j )
Twa

k = 0(j ∈ Φ̄). The ILs will

not be completely canceled.

If the number of users is no larger than Mx +My − 1, for

user k, the number of ILs is not larger than Mx +My − 2. We

can set Φ and Φ̄ such that |Φ| < Mx and |Φ̄| < My . Since all

users have different elevation (azimuth) array response vectors

with probability one, we almost can find vectors we
k and wa

k

such that (he
j)

Twe
k = 0(j ∈ Φ) and (ha

j )
Twa

k = 0(j ∈ Φ̄).

B. Proof of Proposition 2

Denote Ã = A∗ and b̃ = b∗. The projection matrix of Ã is

P = Ã(ÃHÃ)−1ÃH [44]. If the unit norm vector x satisfies

ATx = 0 (ÃHx = 0), then

b̃Hx = b̃H (I−P)x+ b̃HPx = b̃H (I−P)x. (53)

To maximize |bTx|2 (|b̃Hx|2), x = �̄x where x̄ = (I−P)b̃.

Note [b A]† = ([b A]H [b A])−1[b A]H , and denote

[b A]H [b A] =

(

v rH

r Z

)

(54)

where v = bHb, r = AHb and Z = AHA. Then, we have

(

[b A]H [b A]
)−1

=

(

k−1 −k−1rHZ−1

−k−1Z−1r
(

Z− v−1rrH
)−1

)

(55)

where k = v − rHZ−1r. Consequently, the first row of [b A]†

is given by

f =
[

k−1 − k−1rHZ−1
]

[b A]H

= k−1
(

bH − bHA
(

AHA
)−1

AH
)

(56)

or

fT = k−1
(

b∗ −A∗ (ATA∗)−1
ATb∗

)

= k−1 (I−P) b̃

(57)

which means �̄x = �fT .

If N ≤ K, [bA]† = [bA]H(bbH +AAH)−1, and the first

row of [b A]† is f = bH(bbH +AAH)−1. According to the

Sherman-Morrison formula [44], we have

f = bH
(

(

AAH
)−1 − d ·

(

AAH
)−1

bbH
(

AAH
)−1

)

= qbH
(

AAH
)−1

(58)

where d = 1 + bH(AAH)−1b and q = 1− d ·
bH(AAH)−1b. Thus, fT = q(A∗AT )−1b∗. Note that the

optimal solution of
xH(b∗bT )x
xHA∗ATx

is �xo, where

xo =
(

A∗AT
)−1

b∗. (59)

We have �fT = �xo, which means �fT also maximizes
|bTx|2

xHA∗ATx
.

C. Proof of Theorem 3

Since the proof in the azimuth domain is similar to that in the

elevation domain, we only consider the elevation domain. Ac-

cording to the Rayleigh quotient theorem, we have the solution

of P6.1, which can be expressed as �̄w
e

k, and

w̄e
k =

⎛

⎝

∑

j∈Φ
a2j

(

he
j

)∗ (
he
j

)T
+ c1I

⎞

⎠

−1

(he
k)

∗ . (60)

For the channel matrix (H̃e
Φ)

T , user k’s precoding vector in the

MMSE scheme is �we
k,1, where we

k,1 is the first column of the

matrix ((H̃e
Φ)

∗(H̃e
Φ)

T + c1I)
−1(H̃e

Φ)
∗, namely

we
k,1=

⎛

⎝

∑

j∈Φ
a2j

(

he
j

)∗(
he
j

)T
+ c1I+ a2k (h

e
k)

∗ (he
k)

T

⎞

⎠

−1

(he
k)

∗.

(61)

Denote B =
∑

j∈Φ a2j (h
e
j)

∗(he
j)

T + c1I. According to

Sherman-Morrison formula, we can obtain
(

B+ a2k (h
e
k)

∗ (he
k)

T
)−1

= B−1 + gB−1 (he
k)

∗ (he
k)

T
B−1

where g is a constant. Then,

we
k,1=

(

B−1 + gB−1 (he
k)

∗ (he
k)

T
B−1

)

(he
k)

∗= g̃B−1 (he
k)

∗
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where g̃ = 1 + g(he
k)

TB−1(he
k)

∗. Thus, we have �̄w
e

k = �we
k,1,

which means we
k = �we

k,1.

D. Proof of Proposition 4

Since the proof in the azimuth domain is similar to that in the

elevation domain, we only consider the elevation domain. When

Mx approaches infinity, he
i and he

j are orthogonal if he
i and he

j

are not collinear [15].

In the ith iteration of our DSSLNR algorithm, the elevation

precoding matrix we
k,i is �we

1,Φi
, where we

1,Φi
is the first column

of matrixWe
Φi

in (34). According to the matrix inversion lemma

[45], we can rewrite (34) as

We
Φi

=
(

H̃e
Φi

)∗ ((
H̃e

Φi

)T (

H̃e
Φi

)∗
+ c1I

)−1

. (62)

Note that the first column of H̃e
Φi

is akh
e
k, and it is orthogonal

to the remaining columns of H̃e
Φi

. As a result, we have

(

H̃e
Φi

)T (

H̃e
Φi

)∗
+ c1I =

(

b1 0

0 B1

)

where b1 is a constant. It is easy to verify that

(

(

H̃e
Φi

)T (

H̃e
Φi

)∗
+ c1I

)−1

=

(

b1−1 0

0 B−1
1

)

.

Therefore, we have we
k,i =

(

�he
k

)∗
.

E. Proof of Lemma 3

Since v = (H̃e
Φi−1

)T (he
l )

∗, G = (H̃e
Φi−1

)T (H̃e
Φi−1

)∗ + c1I,
we can obtain

r = (he
l )

T
T (he

l )
∗ + c1 (63)

where T = I − (H̃e
Φi−1

)∗((H̃e
Φi−1

)T (H̃e
Φi−1

)∗ + c1I)
−1

(H̃e
Φi−1

)T . Denote the singular value decomposition of

(H̃e
Φi−1

)∗ = UΛVH , we obtain (H̃e
Φi−1

)T (H̃e
Φi−1

)∗ + c1I =

V(ΛHΛ)VH + c1I = V(ΛHΛ+ c1I)V
H . Then,

T = I−UΛH
(

ΛHΛ+ c1I
)−1

ΛHUH

= U
(

I−ΛH
(

ΛHΛ+ c1I
)−1

ΛH
)

UH . (64)

It is easy to verify that ΛH(ΛHΛ+ c1I)
−1ΛH is a diagonal

matrix, with each diagonal entry being within [0, 1), then T is a

positive definite Hermitian matrix, and we have (he
l )

TT(he
l )

∗ >
0 which means r > 0 from (63).

F. Proof of Theorem 5

According to the matrix inversion lemma [45], we have

We
Φi−1

=
(

H̃e
Φi−1

)∗ ((
H̃e

Φi−1

)T (

H̃e
Φi−1

)∗
+ c1I

)−1

We
Φi

=
(

H̃e
Φi

)∗ ((
H̃e

Φi

)T (

H̃e
Φi

)∗
+ c1I

)−1

.

Denote
(

H̃e
Φi

)T (

H̃e
Φi

)∗
+ c1I =

(

G v

vH u

)

(65)

where u = (he
l )

T (he
l )

∗ + c1, v = (H̃e
Φi−1

)T (he
l )

∗, G =

(H̃e
Φi−1

)T (H̃e
Φi−1

)∗ + c1I. According to the block matrix

inversion formula, we have
(

(

H̃e
Φi

)T (

H̃e
Φi

)∗
+ c1I

)−1

=

⎛

⎝

(

G− u−1vvH
)−1 −r−1G−1v

−r−1vHG−1 r−1

⎞

⎠

where r = u− vHG−1v. As H̃e
Φi

= [H̃e
Φi−1

he
l ], we have

We
Φi

=
[(

H̃e
Φi−1

)∗
(he

l )
∗
]

×
(
(

G− u−1vvH
)−1 −r−1G−1v

−r−1vHG−1 r−1

)

.

Denote

T1 =
[(

H̃e
Φi−1

)∗
(he

l )
∗
]

(
(

G− u−1vvH
)−1

−r−1vHG−1

)

=
(

H̃e
Φi−1

)∗
(

G− u−1vvH
)−1 − (he

l )
∗ r−1vHG−1.

(66)

According to the Sherman-Morrison formula [29], we have

(

G− u−1vvH
)−1

= G−1 +
1

r
G−1vvHG−1. (67)

Substituting (67) into (66), we have

T1 =
(

H̃e
Φi−1

)∗
G−1 +

(

H̃e
Φi−1

)∗
G−1vvHG−1

r

− (he
l )

∗
vHG−1

r

= We
Φi−1

−

(

(he
l )

∗ −
(

H̃e
Φi−1

)∗
G−1

(

H̃e
Φi−1

)T

(he
l )

∗
)

vHG−1

(he
l )

T

(

(he
l )

∗ −
(

H̃e
Φi−1

)∗ (
We

Φi−1

)H

(he
l )

∗
)

+ c1

= We
Φi−1

− qmpH
m

(he
l )

T
qm + c1

.

Denote

T2 =
[(

H̃e
Φi−1

)∗
(he

l )
∗
]

(

−r−1G−1v

r−1

)

= −r−1
(

H̃e
Φi−1

)∗
G−1v + (he

l )
∗ r−1. (68)

Noting that v = (H̃e
Φi−1

)T (he
l )

∗, (68) can be written as

T2 =
(he

l )
∗ −

(

H̃e
Φi−1

)∗
G−1

(

H̃e
Φi−1

)T

(he
l )

∗

u− vHG−1v
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=
(he

l )
∗ −

(

H̃e
Φi−1

)∗ (
We

Φi−1

)H

(he
l )

∗

(he
l )

T (he
l )

∗ − (he
l )

T
(

H̃e
Φi−1

)∗ (
We

Φi−1

)H

(he
l )

∗ + c1

=
qm

(he
l )

T
qm + c1

. (69)

From We
Φi

= [T1,T2], we can obtain (38).
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