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Abstract
Many previous studies claim to have developed machine learning models that diagnose COVID-19 from blood tests. How-
ever, we hypothesize that changes in the underlying distribution of the data, so called domain shifts, affect the predictive 
performance and reliability and are a reason for the failure of such machine learning models in clinical application. Domain 
shifts can be caused, e.g., by changes in the disease prevalence (spreading or tested population), by refined RT-PCR testing 
procedures (way of taking samples, laboratory procedures), or by virus mutations. Therefore, machine learning models for 
diagnosing COVID-19 or other diseases may not be reliable and degrade in performance over time. We investigate whether 
domain shifts are present in COVID-19 datasets and how they affect machine learning methods. We further set out to esti-
mate the mortality risk based on routinely acquired blood tests in a hospital setting throughout pandemics and under domain 
shifts. We reveal domain shifts by evaluating the models on a large-scale dataset with different assessment strategies, such as 
temporal validation. We present the novel finding that domain shifts strongly affect machine learning models for COVID-19 
diagnosis and deteriorate their predictive performance and credibility. Therefore, frequent re-training and re-assessment are 
indispensable for robust models enabling clinical utility.
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Introduction

Reverse transcription polymerase chain reaction (RT-PCR) 
[1] remains the gold standard test for the coronavirus disease 
2019 (COVID-19) [2]. However, RT-PCR tests are expen-
sive, time-consuming, and not suited for high-throughput or 
large-scale testing efforts. In contrast, antigen tests [3] are 
cheap and fast, but they come with considerably lower sensi-
tivity than RT-PCR tests [4]. Instead of RT-PCR tests or anti-
gen tests, routine blood tests can be automatically scanned for 

COVID-19: machine learning (ML) models can predict the 
diagnoses on the basis of blood tests, which are taken in the 
routine processes of the hospital. The routine blood tests are 
acquired anyway, therefore, no additional efforts are caused 
by screening with ML models. Routine screening of the 
blood tests would allow frequent, fast and broad testing at low 
cost, thus providing a powerful tool to reduce new outbreaks 
in the hospital [5, 6]. Especially in developing countries with 
limited testing capacities, the ML enhanced tests can evolve 
into an efficient tool in combating a pandemic.

ML methods offer very different ways to help confining 
the spread of infectious diseases [7–13], e.g., in developing 
vaccines and drugs for the treatment of COVID-19 [14–16]. 
COVID-19 diagnosis and the patient’s prognosis can be pre-
dicted from chest CT-scans, X-rays [17–25] or sound record-
ings of coughs or breathing [26–28]. Furthermore, it has 
been shown that ML models based on blood tests are capable 
of detecting COVID-19 infection [29–43]. Other outcomes, 
such as survival or admission to an intensive care unit can 
be predicted based on cheap and fast tests, such as blood 
tests [44–52].
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In this study, we first reveal the presence of domain shifts in 
COVID-19-related blood test datasets. Second, we evaluate the 
ML models for prediction of COVID-19 diagnosis and mor-
tality risk with different assessment strategies to demonstrate 
that these domain shifts diminish the predictive performance. 
Third, we compare the expected and actual performance to 
show how model credibility is decreased by domain shifts.

Domain Shifts

Good generalization of ML models is only possible if the 
training data and future (test) data arise from the same 
underlying distribution. Deviations between training and 
test data distribution are a well known challenge in medical 
[53] and biological systems and in other real-world appli-
cations [54]. The failure of generalization on the test set 
and limited reliability of ML models in clinical settings 
has already been discussed in literature [55]. The negative 
effects and the necessity for countering these domain shifts 
in various complex biological systems have to be considered 
for ML models [56]. The necessity for critical appraisal and 
reporting of models for diagnosis and prognosis has been 
published in the context of the TRIPOD-AI guideline [57].

The same underlying distribution of training and future 
data also cannot be guaranteed during pandemics. Examples 
of potential domain shifts in COVID-19 related datasets are 
plotted in Fig. 1. Most of the previous COVID-19 ML stud-
ies evaluated their models by cross-validation, bootstrapping 
or fixed splits on randomly drawn samples [29–33, 37–43], 
which disregard changes in the underlying distribution over 
time, so-called domain shifts.

The domain shifts [54, 59, 60] can occur because of 
changes of the probability of observing a certain RT-PCR 
test result, which strongly changes during the pandemic. It 
can also change with the distribution of the blood test fea-
tures, which are also affected by the overall pandemic course, 

but also, e.g., with the time of the year without connection 
to the pandemic [61]. The joint distribution of patient fea-
tures and labels can change, e.g., with new virus mutations. 
Machine learning and statistical approaches model the proba-
bility to observe a certain RT-PCR test result given a patient. 
However, the RT-PCR test results might also be affected by 
changing test technologies or changing thresholds.

Neglecting and insufficiently countering these domain shifts 
can lead to undesired consequences and failures of the models. 
The domain shifts can lead to degrading of predictive perfor-
mance over time, because standard ML approaches are unable 
to cope with domain shifts over time [54, 59, 60]. Further, 
the domain shifts can cause unreliable performance estimates. 
These performance estimates might be overoptimistic and can 
deviate significantly from the actual performance [62].

The ML models in our experiments do not require addi-
tional expensive features [32–34, 45–52]. The RT-PCR test 
results serve as the ground truth for the COVID-19 diagnosis 
(positive or negative) prediction. The in-hospital death is 
the label for the mortality (survivor or deceased) prediction 
of COVID-19 positive patients. The models are trained and 
evaluated on a large-scale dataset, which exceeds the dataset 
size of many small-scale studies [29–33, 43–46, 52] by far.

The findings of our work do not only apply to COVID-19 
datasets, but also to future pandemics, other medical datasets 
and even to datasets from other fields, where domain shifts 
might play a role.

Materials and Methods

Ethics approval for this study was obtained from the ethics 
committee of the Johannes Kepler University, Linz (approval 
number: 1104/2020). In our study, we analyze anonymized 
data only. The dataset was collected, pre-processed and the 
blood tests were merged with the RT-PCR tests.

Fig. 1  Examples of temporal 
domain shifts in COVID-19 
datasets, which might diminish 
the ML model’s predictive per-
formance over time. COVID-19 
numbers in Austria over time, 
illustrating factors causing a 
temporal domain shift. The 
numbers are sketched accord-
ing to data from the Austrian 
BMSGPK [58]
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As a first step, we plotted the statistics of the blood test 
parameters over time to visualize fluctuations of the statis-
tics indicating the presence of domain shifts. To answer, 
whether domain shifts in the dataset cause degrading of pre-
dictive performance, we implemented different assessment 
strategies. To analyze the model credibility, a comparison 
of expected and actual performance was implemented and 
examined. Additional experiments and results are presented 
in the Supplementary Information.

Dataset

The study is conducted on the dataset (Table 1) of the Kepler 
University Hospital, Med Campus III, Linz, Austria. The 
nature of the dataset corresponds neither perfectly to a cross-
sectional study, since samples are taken at many different 
time-points, nor to a longitudinal study, since at each time-
point a different set of samples is analyzed. Our analyses 
are based on blood tests, which are acquired in the routine 
process of the hospital. The features age, sex and hospital 
admission type (inpatient or outpatient) are added to the 
samples. If parameters in the blood tests are measured more 
than once, the most recent one is selected (Fig. 2). In case no 
COVID-19 test follows the blood test within 48 h in the 2020 
cohort, the blood test samples are discarded. Hence, the 
2020 cohort is biased towards patients, who might already 
be suspect for being COVID-19 positive and therefore are 
tested. Additionally, all samples with a deviating RT-PCR 
test result within the next 48 h are discarded, as the label 
might be incorrect.

Additionally, we incorporate pre-pandemic blood tests 
from the year 2019 as negatives to our dataset to cover a 

wide variety of COVID-19 negative blood tests (2019 
cohort). The 2019 cohort does not contain COVID-19 tests, 
therefore, blood tests with a temporal distance of less than 
48 h are aggregated. A temporal distance of 48 h is selected 
such that the 2019 cohort resembles the 2020 cohort. The 
samples with less than 15 features are dropped from the 
dataset, all other available blood tests from the year 2019 
are incorporated in the dataset. We assume that all patients 
in the year 2019 have been COVID-19 negative, because the 
virus has not been detected in Austria at this time. With a 
large, diverse dataset, the data distribution of the COVID-19 
negative samples is broadly covered and learnt by the ML 
model. The distribution of the negative samples provided to 
the model during training has to be similar to the test data 
distribution for high predictive performance. During deploy-
ment, the model will be confronted with negative blood tests 
from a broad spectrum of different health scenarios, there-
fore, the 2019 cohort is incorporated during training.

Before the selection of the 100 most frequent features, 
we include all available blood test parameters from the Med 
Campus III in Linz. This ranges from standard blood test 
parameters, such as leucocyte count up to blood tests for 
rare tropical diseases. Only the COVID-19 antibody tests are 
discarded from the dataset, as these might be directly related 
to the COVID-19 status. For the prediction of the COVID-19 
diagnosis, the 100 most frequent features in the 2019 cohort 
are selected as the feature set. For the mortality task these 
100 most frequent features are selected based on the posi-
tives cohort. The number of measurements for each blood 
test parameter in the hospital is determined. The blood test 
parameters, which have been measured most frequently, are 
selected as input features for the ML models. Each sample 
requires a minimum of 15 features (minimum of any twelve 

Table 1  Dataset with summary of patient characteristics

a Multiple samples can be obtained from one case. Therefore, one case can be contained in both, the positives and the negatives cohort, due to a 
change of the COVID-19 diagnoses, e.g., the patient might have been infected during the hospital stay, or the patient’s coronavirus load might 
have decreased, yielding a negative test result
b Adm. type: Admission type, i: inpatient, o: outpatient

N  casesa N positives N negatives Age (mean ± sd) Sex (f/m), (f%) Adm. type (i/o), (i%)b

Full dataset (2019 and 2020 cohort) 79 884 1037 79 053 53.4 ± 25.3 41 589/38 295 (52.1%) 50 727/29 157 (63.5%)
2019 cohort (pre-pandemic) 70 870 - 70 870 52.8 ± 25.1 36 934/33 936 (52.1%) 42 791/28 079 (60.4%)
2020 cohort (pandemic) 9014 1037 8183 58.0 ± 26.4 4655/4359 (51.6%) 7936/1078 (88.0%)
Negatives cohort 79 053 - 79 053 53.3 ± 25.4 41 213/37,840 (52.1%) 50 020/29,033 (63.3%)
Positives cohort 1037 1037 - 64.3 ± 20.2 455/582 (43.9%) 908/129 (87.6%)
Survivors (with COVID-19) 919 919 - 62.7 ± 20.5 417/502 (45.4%) 790/129 (86.0%)
Deceased (with COVID-19) 118 118 - 76.6 ± 11.8 38/80 (32.2%) 118/0 (100%)
March-October 2020 (training and 

validation cohort for prospective 
assessment)

6504 291 6277 57.0 ± 27.3 3416/3088 (52.5%) 5720/784 (87.9%)

November–December 2020 (test cohort 
for prospective assessment)

2636 785 1982 60.8 ± 24.1 1293/1343 (49.1%) 2335/301 (88.6%)
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blood test features and age, sex and hospital admission type). 
All other features and samples are discarded. Besides the 
measured blood test values, the selection of the acquired 
blood test parameters might also contain relevant infor-
mation. Therefore, for each sample 100 additional binary 
entries are created, which indicate whether each of the fea-
tures is missing or measured. The missing values are filled 
by median imputation. Hence, the models can be applied 
to blood tests with few measured values. In the full dataset 
(2019 and 2020 cohort) 58.0% and in the positives cohort 
49.6% of the selected features are missing.

Domain shifts are changes of the distribution over time, 
therefore, the mean, median and standard deviation, the first 
and third quantile of exemplary blood test features of the 
positives cohort are displayed in Fig. 3. Indeed, the statistics 
change over time, which indicate the presence of domain 
shifts. These eight features are the most frequently measured 
blood test features in the positives cohort.

Machine Learning Methods and Model Selection

We investigate the capability of different ML model 
classes to predict the COVID-19 diagnoses and the mor-
tality risk. To this end, the predictive performance of 
self-normalizing neural networks (SNN) [63], K-nearest 
neighbor (KNN), logistic regression (LR), support vector 
machine (SVM), random forest (RF) and extreme gradi-
ent boosting (XGB) are compared against each other. The 
pre-processing, training and evaluation is implemented in 
Python 3.8.3. In particular, the model classes RF, KNN 
and SVM are trained with the scikit-learn package 0.22.1. 
XGB is trained with the XGBClassifier from the Python 

package XGBoost 1.3.1. The SNN and LR are trained with 
Pytorch 1.5.0.

The hyperparameters are selected via grid-search on 
a validation set or via nested cross-validation to avoid a 
hyperparameter selection bias (Table S2). The training, 
validation and test splits are conducted on patient level, 
such that one patient only occurs in one of the sets and 
the dataset is Z-score normalized based on the mean and 
standard deviation of the training set.

The models are selected and evaluated based on the 
area under the receiver operating characteristic curve 
(ROC AUC) [64], which is a measure of the model’s dis-
criminating power between the two classes and is in this 
case equivalent to the concordance-statistic (c-statistic) for 
binary outcomes [64]. Further, we report the area under 
the precision recall curve (PR AUC) [65] and we also cal-
culate threshold-dependent metrics, where the classes are 
separated into positives and negatives, instead of probabil-
ity estimates. These metrics are negative predictive value 
(NPV), positive predictive value (PPV), balanced accuracy 
(BACC), accuracy (ACC), sensitivity, specificity and the 
F1-score (F1) [66]. We additionally report the thresholds, 
which are determined on the validation set to achieve the 
intended NPV.

Experiments for Model Performance under Domain 
Shift

In this section, we evaluate whether domain shifts dimin-
ish the predictive performance of ML models. A flow chart 
about the assessments is shown in the supplementary infor-
mation (Fig. S1). Therefore, five modeling experiments with 

Fig. 2  Large-scale COVID-19 dataset. a: A block diagram of the 
structure of the dataset. The blood tests from 2019 (blood tests 2019) 
are all negatives and are pre-processed to the 2019 cohort. The 
COVID-19 RT-PCR test results and the blood tests are merged to 
the 2020 cohort. The negatives cohort results from the 2019 cohort 
(pre-pandemic samples) and the negative samples of the 2020 cohort. 
The positive tested cases (positives cohort) are further divided to the 
cohort with the survivors and deceased. Note that one case can be in 

the negatives and positives cohort due to a change of the COVID-19 
status. Multiple samples are obtained from one case, if RT-PCR and 
blood tests are measured repeatedly. b: Aggregation of the blood tests 
for the COVID-19 tested patients. The blood tests of the last 48  h 
before the COVID-19 test are merged to one sample. In case a fea-
ture is measured multiple times, the most recent one is inserted in the 
sample. Patient specific data, namely age, sex and hospital admission 
type, are added to the sample
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two prediction tasks and different assessment strategies are 
set up:

COVID‑19 Diagnosis Prediction

 i. assessed by random validation with pre-pandemic 
negatives.

   All patients are randomly shuffled and split regard-
less of the patient cohorts (60% training, 20% valida-
tion, 20% testing). Domain shifts are not considered 
in this experiment. This experiment is performed to 
obtain an estimate of the predictive performance if 
there were no domain shifts in the data. This also cor-
responds to the performance estimates provided in 
other studies [29–34, 37–43], which we hypothesize 
to be over-optimistic.

 ii. assessed by random validation with recent negatives.
   The training and validation sets include the 2019 

cohort and 80% (60% training, 20% validation) of the 
2020 cohort. The test set comprises the remaining 
samples (20%) of the 2020 cohort. Therefore, the per-
formance is estimated on patients, who actually were 
tested for COVID-19. Domain shifts between the 2019 
cohort and the 2020 cohort are considered. Domain 
shifts within the 2020 cohort are not considered. This 
experiment is executed in order to reveal the effects of 
biases and domain shifts between the 2019 and 2020 
cohort.

 iii. assessed by temporal validation.
   The training and validation sets include the 2019 

cohort and the 2020 cohort before November (80% 

training, 20% validation). A prospective performance 
estimation is conducted for the test set with all sam-
ples from November and December 2020. By the tem-
poral split, domain shifts over time are considered. 
In this experiment, it is investigated how the mod-
els would perform in real-world environment, where 
models can only be trained with data from the past and 
deployed on future data.

Mortality Prediction

 iv. assessed by nested cross-validation.
   The training (60%), validation (20%) and test 

(20%) sets comprise the positives cohort, which are 
the positive cases from the 2020 cohort. Due to the 
limited number of samples, predictive performance is 
estimated with five-fold nested cross validation. This 
experiment is conducted to show the performance esti-
mates, when domain shifts over time within the posi-
tives cohort are not considered. We hypothesize, that 
these results, which correspond to the performance 
estimates in other studies [46–48], are over-optimistic.

 v. assessed by temporal validation.
   The training and validation sets include the posi-

tive cases from 2020 before November (80% training, 
20% validation). The test set comprises the cases from 
November and December. In this experiment, domain 
shifts over time are considered. In this experiment, by 
temporal validation, the performance of the models 
with consideration of the domain shifts is estimated.

Fig. 3  Statistics of blood test features of the positives cohort. The 
change of the statistics over time indicate a change of the underlying 
distribution and the presence of domain shifts. Abbreviations: mean 

cell hemoglobin (MCH), mean corpuscular hemoglobin concentration 
(MCHC), mean corpuscular volume (MCV)
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The performance estimates obtained by these different 
assessment strategies are compared. If the underlying distri-
bution of the data remains similar over time, the performance 
estimates by random cross-validation and temporal cross-
validation must also be similar. If the performance estimates 
of (ii) are different from (i), then former and more recent 
negatives follow different distributions and the ML models 
are affected by the domain shifts. If performance estimates 
from (iii) are lower than those of (i) and (ii), the distribution 
of the data changes over time, hence indicating the presence 
and diminishing effects of domain shifts on predictive perfor-
mance. Equally, changing performance estimates from (iv) to 
(v) indicate a domain shift over time. The binomial test [67] 
is used to check, whether the ML model’s (SNN, KNN, LR, 
SVM, RF, XGB) performance estimates in experiment (i) 
are equal to the estimates in experiment (ii). Similarly, we 
compare experiment (ii) with (iii) and (iv) with (v).

Experiments for Model Credibility under Domain 
Shifts

In this experiment, we test whether domain shifts cause devia-
tions of expected and actual performance. The predictive per-
formance would remain similar without domain shifts, but 
in the presence of domain shifts, the performance could be 
significantly different and thus domain shifts may be exposed. 
If the expected and actual performance are different, the dimin-
ishing effect of domain shifts on model credibility are revealed.

In this experiment, a standard ML approach is simulated 
in which a model is trained on data collected in a particular 
time-period (model training), then assessed on a hold-out set 
(expected performance) and then deployed (actual perfor-
mance) (Fig. 4). For example, the deployment in December 

2020 is simulated in the following way: First, an XGB model 
is trained (with the selected hyperparameters of experi-
ment (iii)) on data from July 2019 until October 2020. The 
expected performance is then determined on data of Novem-
ber 2020. Then the actual performance of the model is evalu-
ated on the subsequent month (December 2020). In other 
words, the ROC AUC metrics of two subsequent months are 
compared. The expected performance is determined with a 
temporal split, which might already be more credible than an 
expected performance assessed by random cross-validation. 
The 95% confidence intervals are determined via bootstrap-
ping by sampling 1000 times with replacement.

Results

Model Performance under Domain Shifts

In general, ML models are capable of diagnosing COVID-
19 and predicting mortality risk with high ROC AUC val-
ues. XGB and RF outperform other model classes in the 
COVID-19 diagnosis and in the mortality prediction. The 
comparison of evaluations on different cohorts expose 
domain shifts and their diminishing effect on predictive 
performance. Results are reported in terms of threshold-
independent performance metrics for the comparison of the 
models (Tables 2 and 3) as well as threshold-dependent met-
rics (Tables S3, S4, S5, S6 and S7).

COVID‑19 Diagnosis Prediction

 i. assessed by random cross-validation with pre-pan-
demic negatives.

Fig. 4  Comparison of expected and actual performance. a: The 
actual model performance is calculated for each month from June to 
December 2020 and the expected model performance is calculated on 
the respective previous month. The ROC AUCs of two subsequent 
months are compared, which correspond to expected and actual per-
formance. b: The expected and actual performance with 95% confi-

dence intervals. The expected and actual ROC AUC is significantly 
different in December and PR AUC differs significantly in Novem-
ber and December, showing the effect of the domain shifts on model 
credibility. Note that the PR AUC is sensitive to changes of preva-
lence
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   In this experiment, the highest ROC AUC per-
formance is achieved, however, domain shifts are 
not considered in the performance estimate. The 
threshold-dependent metrics for the RF for multiple 
thresholds are reported, which are determined by 
defining negative predictive values on the validation 
set (Table S3).

 ii. assessed by random cross-validation with recent negatives.
   The test set of experiment (ii) only comprises 

cases from the year 2020, which have been tested 
for COVID-19 with an RT-PCR test. Pre-pandemic 
negatives are excluded from the test set and the 
model is evaluated on pandemic samples only, which 
causes a performance drop from experiment (i) to (ii) 
(P = 0.016), see Table 2.

 iii. assessed by temporal cross-validation.
   In this experiment, the model is trained with sam-

ples until October and evaluated on samples from 
November and December. An additional performance 
drop in comparison to experiment (ii) (P = 0.016) is 
observed, which points to a domain shift over time 
which degrades predictive performance.

Mortality Prediction

 iv. assessed by random cross-validation.
   The samples are randomly shuffled and a five-

fold nested cross-validation is performed. Again, the 
threshold-dependent metrics are reported (Table S6).

 v. assessed by temporal cross-validation.
   In this experiment, the model is trained with sam-

ples until October and evaluated on samples from 
November and December for mortality prediction 
of COVID-19 positive patients (positives cohort). 
The performance drops from experiment (iv) to (v) 
(P = 0.016), revealing a domain shift and over time 
for mortality prediction. The domain shifts over time 
again decrease the predictive performance.

The conducted experiments explore different levels of 
consideration of the domain shifts by different assessments. 
The evaluations are compared on the basis of ROC AUC 
as the PR AUC depends on the class prior, which varies 
in the different evaluation cohorts. The results expose the 
domain shifts and their diminishing effect on predictive 

Table 2  Performance metrics of threshold-independent metrics for 
COVID-19 diagnosis prediction (experiment (i)-(iii)). The mean and 
the standard deviation ( ±) for the ROC AUC and PR AUC for the 
five random seeds are listed. Note that the PR AUC is dependent on 
the class prior, which changes with the different assessment strate-

gies. E.g., the class prior in the test set in experiment (iii) is higher, 
because disease prevalence in the evaluation months November and 
December is higher. The performance estimates of a random esti-
mator (RE) and the best feature (BF) are listed for comparison. The 
highest performance metrics per experiment are printed in bold

Model Experiment (i) Experiment (ii) Experiment (iii)

ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC 

RE 0.5000 ± 0.0000 0.0124 ± 0.0000 0.5000 ± 0.0000 0.0822 ± 0.0000 0.5000 ± 0.0000 0.3162 ± 0.0000
BF 0.6745 ± 0.0000 0.0221 ± 0.0000 0.6774 ± 0.0000 0.3141 ± 0.0000 0.6623 ± 0.0000 0.5716 ± 0.0000
SNN 0.9567 ± 0.0025 0.4349 ± 0.0306 0.8998 ± 0.0044 0.5577 ± 0.0074 0.7836 ± 0.0053 0.6620 ± 0.0082
KNN 0.9071 ± 0.0000 0.3137 ± 0.0000 0.8432 ± 0.0000 0.4486 ± 0.0000 0.7209 ± 0.0000 0.5712 ± 0.0000
LR 0.9600 ± 0.0008 0.4126 ± 0.0145 0.8878 ± 0.0022 0.4770 ± 0.0086 0.7732 ± 0.0008 0.6467 ± 0.0059
SVM 0.9611 ± 0.0000 0.4268 ± 0.0000 0.9045 ± 0.0000 0.5573 ± 0.0000 0.7759 ± 0.0000 0.6387 ± 0.0000
RF 0.9654 ± 0.0005 0.5231 ± 0.0106 0.9138 ± 0.0025 0.5761 ± 0.0100 0.7957 ± 0.0025 0.6626 ± 0.0049
XGB 0.9629 ± 0.0000 0.5558 ± 0.0000 0.9169 ± 0.0000 0.6216 ± 0.0000 0.8142 ± 0.0000 0.7077 ± 0.0000

Table 3  Performance metrics 
of threshold-independent 
metrics for mortality prediction 
(experiment (iv)-(v)). The mean 
and the standard deviation ( ±) 
for the ROC AUC and PR AUC 
for the five random seeds are 
listed. Note that the PR AUC 
is dependent on the class prior, 
which changes with the different 
assessment strategies. The 
highest performance metrics per 
experiment are printed in bold

Model Experiment (iv) Experiment (v)

ROC AUC PR AUC ROC AUC PR AUC 

RE 0.5000 ± 0.0000 0.1592 ± 0.0351 0.5000 ± 0.0000 0.1320 ± 0.0000
BF 0.7599 ± 0.0748 0.4320 ± 0.1021 0.7483 ± 0.0000 0.3938 ± 0.0000
SNN 0.8656 ± 0.0356 0.5866 ± 0.1196 0.8478 ± 0.0053 0.4917 ± 0.0110
KNN 0.8207 ± 0.0550 0.5527 ± 0.1137 0.8272 ± 0.0000 0.4669 ± 0.0000
LR 0.8613 ± 0.0351 0.5555 ± 0.1281 0.8388 ± 0.0088 0.4784 ± 0.0173
SVM 0.8587 ± 0.0306 0.5679 ± 0.1010 0.8271 ± 0.0000 0.4185 ± 0.0001
RF 0.8813 ± 0.0214 0.6267 ± 0.1065 0.8572 ± 0.0071 0.5556 ± 0.0127
XGB 0.8501 ± 0.0210 0.5196 ± 0.1005 0.8038 ± 0.0000 0.4334 ± 0.0013
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performance, as the performance drops from experiment (i) 
to (ii) and even further to (iii), and also from experiment (iv) 
to (v). By comparing experiment (i) and (ii) we investigate 
if inclusion of pre-pandemic negatives in the test set leads to 
overoptimistic metrics, and indeed variations in the perfor-
mance metrics can be observed. We attribute this to the fact 
that the 2020 cohort comprises patients who are suspect for 
COVID-19, some might even have characteristic symptoms, 
which are reflected in the blood tests. We hypothesize, that 
patients with characteristic symptoms tend to have similar 
blood test parameters, independent of their actual COVID-
19 status. Therefore, a classification of the samples in the 
2020 cohort is more difficult and potential biases between 
the 2019 and 2020 cohort cannot be exploited. Domain 
shifts over time within the year 2020 are considered in 
experiment (iii), which leads to a further decrease in predic-
tive performance. Same holds for the drop of the predictive 
performance due to prospective evaluation in the mortality 
prediction task from experiment (iv) to (v).

Model Credibility under Domain Shifts

This experiment investigates the difference of the expected 
to the actual performance. The expected and actual results 
are compared for different simulated deployment times (June 
until December 2020) (Fig. 4). The expected performance 
is calculated on the respective preceding month (May until 
November). The expected ROC AUC is higher than the 
actual performance in most months (Fig. 4). The expected 
ROC AUC performance for December is significantly lower 
than the actual performance in December. The expected and 
actual PR AUC differ significantly in November and Decem-
ber. These results show the presence of a domain shift and 
thus there is a necessity for up-to-date assessments, other-
wise the performance estimate is not trustworthy.

Credible and highly performant ML models for in-hospital 
applications require frequent re-training and re-assessments to 
combat the domain shift effects. Stronger weighting of more 
recent samples increases the predictive performance under 
domain shifts. More details on the methods and results to 
frequent re-training and stronger weighting of more recent 
samples are described in the Supplementary Information.

Discussion

Our set of experiments exposes the presence of domain 
shifts in COVID-19 blood test datasets as well as their 
detrimental effect on ML models. These domain shifts 
were insufficiently considered in previous works, which 
might have led to poor performance or even failure of the 
ML models in clinical practice. Therefore, our results 
suggest that the model performance should be frequently 

re-assessed. An up-to-date temporal evaluation appears 
indispensable to avoid unexpected behavior. The model 
should be frequently re-trained and more recent samples 
should be weighted stronger to exploit newly acquired 
samples and, thus, to counter the domain shift effect (see 
supplementary information, section Weighting of Recent 
Samples). Frequent re-training from scratch is a simple 
and feasible solution to handle the domain shifts, as ML 
models, such as RF or XGB for tabular data can easily 
be trained with limited computational resources. A high 
re-training frequency leads to fast adaptation to domain 
shifts and further to accurate predictions and assessments, 
but it is also associated with high effort for the acquisition 
of new samples and re-training of the ML models. This 
trade-off has to be balanced when selecting the re-training 
frequency in the hospital. Further, methods to handle the 
domain shifts could be considered, such as stronger weight-
ing of recent samples during training.

In this large-scale study, we trained and evaluated our 
models with more samples than most studies [29–33] and 
we exploited pre-pandemic negative samples, which vastly 
increases our dataset size. The ML models achieved high 
predictive performance, comparable to previous studies 
[30–32, 35, 47], although the results cannot be directly 
compared as our assessment procedure is more rigorous. 
Different assessment procedures within our study also 
yielded highly variable performance estimates. In accord-
ance with previous studies [29, 30, 35, 42, 48], XGB or 
RF for COVID-19 diagnosis and RF for mortality predic-
tion were found to perform best. For increased validity 
and comparability of published performance estimates of 
clinical prediction models, it is highly recommended that 
authors stick to guidelines, such as TRIPOD-AI, thereby 
increasing the quality of published works in the medical 
AI research community.

One limitation of our work could be that we did not 
evaluate the generalization of our model to other hospitals. 
A transfer of a COVID-19 diagnostic model should only 
be done with thorough re-assessments, as a domain shift 
between hospitals might be present. However, this is not 
part of our investigation.

By automatic scanning of all blood tests, a large num-
ber of patients can be tested for COVID-19, which would 
not be feasible with expensive and slow RT-PCR tests. 
The ML predictions could enhance the established testing 
strategies in the hospitals, thereby broadening the screen-
ing. For re-training, at least some recent blood tests with 
associated ground truth RT-PCR test results have to be 
acquired to allow countering the domain shifts.

Our findings about domain shifts are not only relevant 
for COVID-19 datasets, but also transfer to other medi-
cal tasks, or in general, other applications of ML, where 
domain shifts occur. By advancing this field of research, 
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we want to increase patient safety and protect clinical 
staff and we wish to make a contribution in banning the 
pandemic.
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