
Struct Multidisc Optim (2011) 43:541–554
DOI 10.1007/s00158-010-0575-x

RESEARCH PAPER

Domain-specific initial population strategy for compliant
mechanisms using customized genetic algorithm

Deepak Sharma · Kalyanmoy Deb · N. N. Kishore

Received: 3 July 2009 / Revised: 11 August 2010 / Accepted: 21 September 2010 / Published online: 24 October 2010
c© Springer-Verlag 2010

Abstract Genetic algorithms (GAs) can precisely handle
the discrete structural topology optimization of single-piece
elastic structures called compliant mechanisms. The initial
population of these elastic structures is mostly generated by
assigning the material at random. This causes disconnected
or unfeasible designs and further rule-based repairing can
result in representation degeneracy. However, the problem-
specific initial population can affect the performance of
GAs like other operators. In this paper, a domain-specific
initial population strategy is developed that generates geo-
metrically feasible structures for path generating compliant
mechanisms (PGCMs). It is coupled with the elitist non-
dominated sorting genetic algorithm (NSGA-II) which has
been customized for structural topology optimization. The
performance of initial population strategy over random
initialization using customized NSGA-II is checked on sin-
gle and bi-objective optimization problems. Based on the
results, it is observed that the custom initialization out-
performs the random initialization by dominating all the
solutions and exploring larger area of posed objectives.
The elastic structures obtained by solving two examples of
PGCMs using domain specific initial population strategy
are also presented.
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1 Introduction

Compliant mechanisms (CMs) are flexible elastic structures
which can deform to perform assigned tasks. If the task of
elastic structures is to trace or generate the user-defined
path, then these mechanisms are called as path generat-
ing compliant mechanisms (PGCMs). These elastic struc-
tures can be designed using the pseudo-rigid-body-model
(Howell and Midha 1996; Hetrick and Kota 1999) or
using topology synthesis method for single-piece CMs
(Ananthasuresh et al. 1994; Sigmund 1997). However, CMs
are preferred over pseudo-rigid-body mechanisms because
CMs are joint-less and monolithic structures, involve less
friction, wear and noise (Howell and Midha 1994). They are
lightweight devices and also, easy to manufacture without
assembly (Ananthasuresh and Kota 1995).

Methods like homogenization method (Bendsøe and
Kikuchi 1988; Nishiwaki et al. 1998), material density
approach (Yang and Chuang 1994), solid isotropic micro-
structure with penalization (SIMP) (Bendsøe 1989; Zhou
and Rozvany 1991), regularization method (Belytschko
et al. 2003), level-set method (Sethian and Wiegmann 2000;
Wang et al. 2003), and evolutionary structural optimiza-
tion (ESO) (Xie and Steven 1993), are commonly used for
topology optimization of structures. Although the homoge-
nization and ESO methods are computationally effective,
the convergence to global optimal solution for the given
structural optimization problem is not guaranteed (Rozvany
2001; Zhou and Rozvany 2001). Moreover, the topology
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optimization of structures based on homogenization, mate-
rial density and SIMP methods transforms the discrete
problem into continuous design variables problem. In this
case, threshold value is required to suppress intermediate
design variable values that can lead to non-optimal solution.
Another issue arises when implementing the large defor-
mation analysis based synthesis with conventional methods
to circumvent non-convergence or snap-through during the
analysis procedure (Saxena 2005). In that case, the search
may not proceed further and may require user interven-
tion to physically remove the sub-region close to their
non-existing states that cause bifurcation.

When genetic algorithms (GAs) are used (Chapman et al.
1994; Chapman and Jakiela 1996; Duda and Jakiela 1997;
Jakiela et al. 2000), the field of topology optimization of
structures has benefited with following properties; (i) pre-
cise handling of discrete optimization of structures, (ii) evo-
lution of improved designs, (iii) independence from the
design sensitivity information, (iv) suitability in solving
complex non-linear structural optimization problems for
global optimization, (v) independent handling of multiple
objectives etc. Hence, GAs are preferred over the above
mentioned methods. However, the structural topology opti-
mization becomes computationally expensive as GAs work
on population of structures. A large portion of the computa-
tion time is consumed in the finite element analysis (FEA)
of structures as compared to GA operators that too increases
with the mesh refinement (Schoenauer 1995).

All above methods have their own merits and demerits
but they commonly suffer from checkerboard and point sin-
gularity problems. These difficulties can be suppressed by
using controlling filters used in image processing (Sigmund
1997), using non-conforming finite elements (Jang et al.
2003), using honeycomb representation (Saxena and Saxena
2007) with material-mask overlay strategy (Saxena 2008)
etc. However, the disconnected topologies or geometri-
cally unfeasible structures can also evolve using GAs. This
problem can arise due to the improper representation of
structures at the beginning and during GA iterations. Thus,
the material connectivity is required at various parts of the
structures to ensure geometrically feasible designs.

Earlier, the material connectivity was ensured by switch-
ing the disconnected element to void (Chapman et al. 1994;
Chapman and Jakiela 1996; Duda and Jakiela 1997; Jakiela
et al. 2000; Deb and Chaudhuri 2005) or by eliminating
the bits of disconnected elements using chromosome mask
method (Fanjoy and Crossley 2002). But, these approaches
can result in representation degeneracy. This issue is han-
dled by penalizing the total area of unusable material
(Schoenauer 1995). But the limitation arises when the dif-
ferent combinations of disconnected material have the same
area. Using Bézier curve and morphological representation,
the connectivity is guaranteed (Tai and Chee 2000), but

the topologies of structures greatly rely on the number and
nature of connecting curves. Piece-wise cubic Bézier curves
are further used (Wang and Tai 2004), however the morpho-
logical representation may hamper the heuristic behavior of
GAs for global optimization. The image processing based
connectivity analysis with dynamic penalty has also been
proposed to handle degeneracy (Wang and Tai 2005). How-
ever, it does not eliminate the one-node connectivity. The
connectivity among the applied boundary and support condi-
tions of PGCMs can also be ensured by joining the islands of
material at the parts of mentioned conditions using straight
line (Sharma et al. 2006, 2008c). If any element of material
is still not connected to these islands, then it is changed to
void. This connectivity scheme can minimize the represen-
tation degeneracy up to some extent and does not hamper
the working of GA. However, the significantly change in
the shape of elastic structures cannot be overruled.

The problem of representation degeneracy can be re-
duced if GAs start with geometrically feasible or connected
structures. In this way, the dependency of any rule based
connectivity or repair technique can be avoided and GAs are
allowed to work heuristically with some ad-hoc technique.
Moreover, the well-suited initial population can speed up
the convergence of GAs on specific problems and meth-
ods (Haubelt et al. 2005; Hill and Hiremath 2005). In
spite of that, the random initialization of population is not
always worse at-least for continuous optimization problems
(Maaranen et al. 2007). It means that the problem-specific
initial population will always affect the convergence, per-
formance and ability of GAs cannot be ensured beforehand.
Nevertheless, GA using problem specific knowledge can be
a potential tool for global structural topology optimization
(Wang et al. 2006). Few studies have concentrated on the
initial population for GAs such as Voronoi-based represen-
tation (Hamda et al. 2002), morphological representation
(Tai and Chee 2000), by introducing the optimal solutions
of single-objective optimization (Madeira et al. 2005) and
by reducing the structure size with initial population strat-
egy (Toğan and Daloğlu 2008). Otherwise in all studies, the
initial structures are generated by assigning the material at
random to the grids or elements.

In this paper, a domain-specific initial population strat-
egy is developed that generates geometrically feasible struc-
tures for path generating compliant mechanisms (PGCMs).
The performance of proposed initial population over ran-
dom initialization of structures is checked on single and
bi-objective sets. The optimization problem is subjected
to Euclidean distance based constraints on precision points
(Sharma et al. 2006, 2008a, b, c). The above PGCM prob-
lem is solved using the elitist non-dominated sorting genetic
algorithm (NSGA-II, Deb et al. 2002), which has been
modified with two-dimensional (2-D) structure representa-
tion scheme, 2-D crossover, parallel computing and with
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additional binary bits to identify applied boundary and sup-
port conditions. The remaining paper is organized in five
sections. In Section 2, the bi-objective optimization formu-
lation for PGCM is discussed. The multiobjective evolu-
tionary algorithm with proposed initial population strategy
and other customized schemes are discussed in Section 3.
Section 4 shows the performance of developed initial popu-
lation over random initialization when coupled with cus-
tomized NSGA-II. The elastic structures of two PGCMs are
also shown and the results are discussed. Section 5 outlines
the conclusions drawn from the study with a note on scope
of future work.

2 Description of problem formulation

In this section, we describe the problem formulation of path
generating compliant mechanisms (PGCMs). Earlier stud-
ies show two methods of designing PGCMs. In the first
method, Euclidean distance formulation is used as the objec-
tive to minimize the gap between the precision points of
prescribed path and corresponding points on the actual path
traced by the elastic structures (Tai et al. 2002; Saxena
2005). However, this formulation does not limit the maxi-
mum gap between the prescribed path and actual path which
may result in undesirable performance. Hence, these paths
can be apart from each other. Fourier shape descriptor-based
objective function is the second method to design PGCMs
(Rai et al. 2007). In this formulation, parameters have to be
specified a-priori that may affect the optimum solution. We
consider that the functional aspect of PGCM is to generate
the prescribed path. Hence, this task has to be represented
as constraint instead of objective function. The constraints
based on Euclidean distance formulation can limit the max-
imum gap between the prescribed and actual paths for all
feasible solutions (Sharma et al. 2006, 2008a, b, c).

A hypothetical case is shown in Fig. 1 to describe the
constraint formulation. The user-defined path is represented
by N precision points. The corresponding points on the
actual path traced by the elastic structure are evaluated from
the non-linear finite element analysis based on equal load
steps. The constraints are designed by evaluating Euclidean
distance (d1) between the current (i) and previous (i − 1)
precision points and is multiplied by a factor η defined as
percent of allowable deviation. Then, another Euclidean dis-
tance (d2) between the current precision point (i) and the
corresponding point (ia) on the actual path is calculated.
Thereafter, the constraint “d2 ≤ d1” is imposed at each pre-
cision point. A pictorial significance is also shown in Fig. 1
where, if a circle of radius d1 at the current precision point
(i) is drawn, then the corresponding point (ia) of actual path
must lie within or on the circle to satisfy this constraint. The
mathematical representation of constraints at N precision
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Fig. 1 The prescribed path and an actual path traced by the elastic
structure after FE analysis

points is given in (1). Any elastic structure that satisfies the
above constraints will trace the user-defined path depending
on user-defined allowable deviation (η).

Using the constraint formulation of (1), PGCMs can be
designed using various features. In the present study, the
minimization of weight is used as primary objective for
single-objective optimization. For bi-objective study, the
secondary objective of minimum supplied input energy to
elastic structure is coupled with the primary objective. The
elastic structures are evolved using both the objective sets
and the performance of domain specific initial population is
checked.

Single-objective optimization:

Minimize: Weight of structure

Bi-objective optimization:

Minimize: Weight of structure (primary obj.),

Minimize: Supplied input energy to structure

(secondary obj.),

Both problems are subjected to:

1 −
√

(xia−xi )
2+(yia−yi )

2

η×
√

(xi −xi−1)
2+(yi −yi−1)

2
≥ 0, i = 1, 2, ..., N

σflexural − σ ≥ 0,

(1)

where η = 15%, is kept fixed in this paper (Sharma et al.
2009), and σflexural and σ are the flexural yield strength of
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Fig. 2 Design-domain with loading, output and support regions

material and the maximum stress developed in the structure
respectively.

In this paper, the design domain (50 mm by 50 mm) of
Fig. 2 is used for compliant mechanisms that is mainly cat-
egorized into three regions. The first region is called the
support region where the nodes of an element of the elas-
tic structure are restrained with zero displacement. In the
second region, defined as loading region, an input displace-
ment boundary condition is applied at a node of the element.
The output region is the third region, in which a fixed point
on the elastic structure traces out the user defined path. In
this work, the origin of the design domain is fixed on its
left lower corner and the output region is positioned at the
coordinate (50, 32) of the structure. As in Fig. 2, a spring of
constant stiffness (κ = 0.4 KN/m) is attached at the output
point to provide some resistance during the deformation of
elastic structures.

3 Customized NSGA-II algorithm

GA using problem specific knowledge can be a poten-
tial tool for global structural topology optimization (Wang
et al. 2006). The benefits of these specific information can
be used at various places like, to formulate the problem
(Sharma et al. 2006, 2008c), to develop problem specific
GA operators (Hamda et al. 2002; Madeira et al. 2005; Tai
and Chee 2000) etc. The existing NSGA-II algorithm has
also been modified by the authors to customize it for solving
topology optimization of compliant mechanisms (Sharma
et al. 2008a, b, c).

Though many multiobjective evolutionary algorithms
(MOEAs) have been developed, there are only a few domi-
nance ranking based algorithms that are really effective to
solve multiobjective optimization problems. Mostly, these

MOEAs differ in their ranking methods which helps to
select and propagate good individuals to the next itera-
tion. Among them, NSGA-II is the fastest. It has also
shown to have a good convergence property to the global
‘Pareto-optimal’ front as well as to maintain the diversity
of population on the ‘Pareto-optimal’ front for various two
objective test and engineering problems (Deb 2001). Thus,
NSGA-II is used as a global search and optimizer in this
paper. In this section, we draw our attention to discuss
different customization schemes that modify the existing
NSGA-II for topology optimization of structures.

A local search method is also coupled with the cus-
tomized NSGA-II algorithm as a post-processing method
to further refine the non-dominated compliant mechanisms.
The basic detail of local search based customized NSGA-II
algorithm is shown in Fig. 3 which is also discussed in the
subsequent sections.

3.1 GA parameters

The NSGA-II parameters are given in Table 1. In this work,
the binary string representing a structural member of the
population is made of two sets as shown in Fig. 4. First set
of 625 bits represents the material distribution as described
in Section 3.2. The decoded value of second set identi-
fies the support and loading positions in their respective
regions (refer to Fig. 2), and the magnitude of input dis-
placement. For the same, 12 bits of second set are further
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Fig. 3 A flow chart of customized NSGA-II algorithm
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Table 1 GA parameters

Population 240 Generation 100

Crossover 0.95 Mutation 1/string

probability probability length

String length 625 String length for boundary 12

for a structure and support conditions

divided into three groups of five, three and four bits respec-
tively as shown in Fig. 4. The decoded value of first five
bits indicates the location of an element from the origin
where the elastic structure is to be supported. The decoded
value of subsequent three bits helps to determine the load-
ing position, that is, a node where the input load is applied.
The decoded value of last four bits are used to evaluate
the magnitude of input displacement which can vary from
1 to 16 mm at step of 1 mm. Using this flexibility, the
optimization algorithm will find the optimum set of these
applied boundary and support conditions to promote non-
dominated solutions during NSGA-II run. The additional
significance of this flexibility will be discussed later along
with the results presented in the study.

3.2 Structure representation scheme

A binary string of 625 bits is used to represent the material
distribution for the elastic structure. First, a binary string is
copied to two dimensional representation as shown in Fig. 5.
Thereafter, the material-void representation of each grid is
chosen based on the binary bit value. For example, the bit
value ‘1’ signifies that material is present whereas, ‘0’ rep-
resents the void. This scheme divides a design domain of
structure into 25 × 25 (= 625) grids in x and y directions,
respectively.

3.3 Domain specific initial population strategy

As discussed in Section 1, the evolved structures using GA
can have disconnected or unfeasible geometrical topologies.
This issue arises when GA operators are performed on the
population. However, it can also appear at the beginning
of GA when material is assigned at random. Earlier studies
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Fig. 4 A binary string comprises of two sets
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Fig. 5 A representation of structure using binary string

described in Section 1 concentrated on the connectivity tech-
niques. However, it can be suppressed at the beginning by
evolving initial population of geometrically feasible struc-
tures. In this case, the representation degeneracy issue can
be reduced which may come with various rule-based con-
nectivity techniques existing in the literature (discussed in
Section 1).

Nevertheless, the problem-specific initial population can
also affect the performance of GA as other operators do.
However, this feature is not much explored in the topology
optimization of structures even though it may look intu-
itive. Only a few studies (discussed in Section 1) incorporate
the initial representation. On the contrary, Maaranen et al.
(2007) showed that the initial random population of GA
is not always worse, at least for continuous optimization.
In this conflicting scenario, the performance of developed
initial population is checked on single and bi-objective
frames over random initialization of material. The statisti-
cal quantitative analysis is done to support results for global
optimization. In the following paragraphs, the developed
initial population strategy is discussed for PGCMs.

For describing the initial population strategy, a hypothet-
ical case is shown in Fig. 6 which shows the connectivity
between the support and loading regions. Here, the element
positions of support and loading regions are calculated after
decoding second set of binary string (refer to Section 3.1
and Fig. 4). The location of output region is fixed in this
study because this point will trace the user-defined path.

For connecting the support and loading regions, a ran-
dom integer number between 1−5 is generated to decide
the number of intermediate points through which these two
regions get connected. Depending upon the number of inter-
mediate points, the coordinates of each intermediate point
is randomly generated within the design domain. For the
hypothetical case of Fig. 6, four random points (P1, P2,
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Fig. 6 Connectivity between support and loading regions

P3 and P4) are generated within the design domain and the
support (S1) and the loading (L1) positions are connected
through these points by straight lines. Thereafter, a material
is assigned to those elements where these straight lines pass.
A material connectivity of the above mentioned regions is
also shown in Fig. 6. Similarly, a set of piece-wise linear
line segments between the support and output regions and
another set between the loading and output regions are
explained. Depending on the randomly generated intermedi-
ate points, an initial population for the customized NSGA-II
is developed. The above-defined strategy not only incorpo-
rates the diversity in the initial population, but also ensures
the well-connected continuum structures at support, loading
and output positions.

3.4 GA operators

In this study, a two-dimensional crossover operator is used
that swaps either a patch of row or column as shown in Fig. 7
by flipping a coin (Deb and Goel 2001; Deb and Chaudhuri
2005). The width and location of patch are found randomly
and it is swapped between the two parents. For the crossover
of remaining 12 bits of binary string, a standard single point
crossover operator is used.

In this paper, the mutation of each bit of binary string rep-
resenting the structure is done with a probability of 1/string
length. For mutating the remaining 12 bits of same binary

Row-wise exchange
Column-wise

exchange

Fig. 7 A two dimensional crossover which swaps a patch of row/
column between the two parent solutions

string, the values of support and loading regions, and magni-
tude of input displacement are decoded and then perturbed
in the range of {−2, 2} at their decoded values. It is also
ensured that the perturbed values of above three conditions
do not fall outside their respective bounds. After perturba-
tion, these mutated values are again coded into the binary
string of 12 bits to get the nearest integer number at the
decoded value.

3.5 Connectivity and repairing techniques

Crossover and mutation operators of GA create new solu-
tions that differ from the parent solutions. These GA opera-
tors are responsible for the search aspect of GA. However,
the new solutions may suffer from disconnected topology
problem. In this paper, the connectivity technique is dis-
cussed using a hypothetical case of Fig. 8 where the support
region (S) is disconnected from the loading (L) and the
output (O) regions. In this disconnected scenario, the indi-
vidual distances are calculated from the centroid of each
grid of material of S to the centroid of each grid of mate-
rial of L and O. Then, the straight lines (L1, L2) are drawn
from the centroid of those two grids which show minimum
distances between S-L and S-O. In this way, the connec-
tivity among S, L and O regions of a structure is checked
and ensured.

The point singularity between the two material element’s
may arise due to the developed initial population strat-
egy, GA operators and after the connectivity technique. An
ad-hoc repairing technique is employed in this paper which
is motivated from the image processing concept (Sigmund
1997). For any element of material, there are eight possible
neighborhoods as shown in Fig. 9. Among them, material at
positions 2, 4, 6 and 8 can create point singularity. To elimi-
nate this problem, an extra material has to be filled. Suppose
position 2 creates point connectivity, then an extra material

L1

L

S

O

L2

Fig. 8 Disconnected topology: a hypothetical case
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Fig. 9 Eight neighborhood
connectivity
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can be filled at 1 or 3 with equal probability. In this way,
the point singularity for each element of material is checked
and eliminated.

Due to the mutation operator, any floating material ele-
ment can appear which is not connected to the topology.
In this case, this isolated element is changed to void by
assigning value ‘0’.

3.6 Finite element analysis (FEA)

After the custom initialization, structure representation, con-
nectivity and repairing techniques, the elastic structures are
geometrically feasible without checkerboard, point singular-
ity and floating element problems. These elastic structures
are now undergo for FEA. In this study, one grid of a struc-
ture (as described in Section 3.2) is further discretized into
four finite elements with same Boolean variable value as
shown in Fig. 5. Therefore in the present process, the struc-
ture is discretized with 4×625 (= 2,500) 4-node rectangular
finite elements and analyzed through a non-linear large
deformation FE analysis using ANSYS package. However,
the GA operations are performed on 625 bits representing
the same structure.

3.7 Parallel computing

A distributed computing platform is used in the present
study to reduce the computational time involved in the
topology optimization of compliant mechanisms. In this
parallelization process, the root processor first initializes a
random population. Then, it divides the entire population
into different sub-populations in proportion to the number
of processors available. After this, each sub-population is
sent to different slave processors. These slave processors
further perform finite element computation and evaluate
the objective functions and constraints. These values are
then sent to the root processor. Thereafter, the root pro-
cessor performs the GA operators, like selection, crossover
and mutation operators, non-dominated front ranking etc.
on the population and replaces it with good individuals.

The above process is repeated till the termination criterion
of NSGA-II is met. A MPI based Linux cluster with 24
processors is used in the present study.

3.8 Clustering procedure

For an adequate convergence near to the global ‘Pareto-
optimal’ front, the evolutionary algorithms (EAs) need a
fairly large population and generations depending upon the
problem complexity. At the end, EA evolves large num-
ber of non-dominated solutions. The clustering procedure
employed in the study selects a few solutions for end users.
In this procedure, the neighboring solutions are grouped
together and solutions from each group representing that
region of the non-dominated front are chosen as representa-
tive solutions (Zitzler 1999). Figure 10 shows the procedure
pictorially.

3.9 Local search method: post-processing

The local search method used in the present work is a
combination of mutation and hill climbing process. As a
single objective function is needed for hill climbing, the
bi-objective problem is reduced to single-objective using
weighted sum method. The scaled single-objective function
is minimized in the present study as in (2).

MinimizeF(x) = Minimize
n∑

j=1

wx
j

(
f x

jmax
− f x

j

)

f x
jmax

− f x
jmin

, (2)

where f x
j is j th objective function, f x

jmin
and f x

jmax
are min-

imum and maximum values of j th objective function in the
population respectively, n is number of objectives and wx

j
is the corresponding weight to the j th objective function
which is computed as:

wx
j =

(
f x

jmax
− f x

j

)
\

(
f x

jmax
− f x

jmin

)

∑M
k=0

(
f x
kmax

− f x
k

)
\

(
f x
kmax

− f x
kmin

) , (3)

where M is the number of representative solutions after clus-
tering procedure. In (2), the values of the objective functions

NSGA-II Clustering
Problem

Fig. 10 A clustering procedure
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are normalized to avoid bias towards any objective function.
In this approach, the weight vector decides the importance
of different objectives, in other words it gives the direction
to local search in the objective space (Deb 2001). As (3) sug-
gests, these weights are calculated based on their positions
in two-objective space after the termination of NSGA-II.

In the local search method, the weighted sum of scaled
fitness of a selected representative solution is evaluated as
given in (2). Thereafter, a binary string of the solution is
converted into a two-dimensional array and checked for
the grids having a material. For each material’s grid, there
are maximum of eight possible neighborhoods as shown in
Fig. 9. One by one, all neighboring bits including its own
bit, value are mutated. The new elastic structure is now
extracted on which the finite element computations are per-
formed for objective function and constraints values. If this
new structure does not satisfy any of the constraint, then
the change in the new string is discarded and the old values
are restored. Otherwise, the weighted sum of scaled fitness
of the new string is calculated and compared with that of
the old string’s value. If mutating a bit brings an improve-
ment in the scaled fitness, then the change is accepted. Else,
the change is discarded and the previous values are restored.
When all the bits having material are mutated along with
their neighborhoods, the grids of the new elastic structure
are again checked for material and mutated as discussed
above. When the scaled fitness of elastic structure before
checking the material’s grid is same as after mutating all bits
having material with their neighborhood, the local search
method is terminated. In the same way, all representative
solutions are mutated. This post-processing technique is an
exhaustive method that may require considerable compu-
tation time to refine the solutions. It is expected that the
use of proposed initial population strategy can assist the
customized NSGA-II to evolve the improved set of represen-
tative non-dominated solutions. Thereafter, the local search
gets boosted to refine these improved solutions in short span
of time. Note that the aim of executing this exhaustive local
search is to evolve the optimum solutions which cannot be
further improved in their objective values.

4 Results and discussion

In this section, the performance of domain-specific initial
population is checked on single and bi-objective optimiza-
tion problems over random initialization. Statistical perfor-
mance assessment tools are used for which 10 independent
runs of customized NSGA-II are taken. Two examples of
PGCMs are solved and their elastic structures are presented.

In this paper, a few parameters are kept constant such
as, a material with Young’s modulus of 3.3 GPa, flexu-
ral yield stress of 6.9 MPa, density of 1.114 gm/cm3 and

Table 2 Solutions of single-objective optimization

Solutions (weight in gm)→ GA Local search

Custom initialization 0.682 0.525

Random initialization 1.043 0.645

Poisson ratio of 0.40, is assumed. The direction of input
displacement is fixed along x-axis of design domain. The
prescribed path is represented by five precision points and
the trajectory traced by output point of elastic structures is
evaluated through a geometric nonlinear FE analysis using
AN SY S package. The stress concentration near the support
is ignored in this work. Maximum six representative solu-
tions are chosen from the non-dominated solutions using
clustering procedure.

4.1 Comparison and performance assessment

In this section, the example of curvilinear path generat-
ing compliant mechanism is solved using single and bi-
objective optimization formulations as given in (1). The
customized NSGA-II algorithm is run with domain spe-
cific initial population strategy (‘custom initialization’).
Then, the same algorithm with random initialization
scheme is run in which material is assigned at ran-
dom to initialize the population. The results of single-
objective optimization of the minimum weight is shown in
Table 2. The custom initialization evolves the lighter weight
elastic structure than the random initialization after the
termination of GA. When the local search is performed
independently on both the solutions, the solution generated
using custom initialization is again lighter weight than the
random initialization. Thereafter, the bi-objective optimiza-
tion problem is solved. In this case, the non-dominated
solutions of custom initialization dominate all solutions of
random initialization after the completion of NSGA-II. The
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Fig. 11 Non-dominated solutions from both population initializations
after the completion of NSGA-II
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Fig. 12 Local search solutions from both population initializations

solutions are shown in Fig. 11 which also reveal largely
explored area by the non-dominated solutions of custom
initialization in the two-objective space. As a good plat-
form of solutions is provided by the customized NSGA-II
using the domain specific initial population strategy, the
non-dominated local search solutions (1--5) outperform the
results of random initialization as shown in Fig. 12. Hence,
the solutions 1--5 become the part of ‘Pareto-optimal’ front.
Note that the local search is executed independently on the
representative NSGA-II solutions which does not follow the
domination principle of multi-objective optimization. How-
ever, only the non-dominated PGCMs are presented in this
paper.

In this paper, the quantitative performance assessment
of the customized initial population strategy over the ran-
dom initialization is also done. The customized NSGA-II
is executed for ten different runs with both population
initializations. R− and hypervolume indicators are used
(Hansen and Jaszkiewicz 1998; Zitzler and Thiele 1999)
that can signify the proximity and spread of non-dominated
front with respect to the reference set. The reference set
of non-dominated solutions is designed by choosing the
non-dominated solutions over the different runs of both
population implementations. The statistical values of these
indicators are given in Table 3 in which the value −1 is

Table 3 R− and hypervolume indicators values of customized
NSGA-II algorithm for different initializations

Initialization→ Random Customized

Indicators→ R− H yp R− H yp

Mean 3.61E−01 7.43E−01 1.25E−01 2.78E−01

Median 3.85E−01 7.94E−01 1.27E−01 2.72E−01

Std .Dev. 0.10795 0.20667 0.03897 0.08750

Best 1.08E−01 2.48E−01 7.64E-02 1.80E−01

Worst 4.87E−01 9.45E−01 1.45E−01 4.09E−01

(a) Sol. 1: Undeformed (b) Sol. 1: Final deformed

(c) Sol. 2: Undeformed (d) Sol. 2: Final deformed

(e) Sol. 3: Undeformed (f) Sol. 3: Final deformed

(g) Sol. 4: Undeformed (h) Sol. 4: Final deformed

(i) Sol. 5: Undeformed (j) Sol. 5: Final deformed

Fig. 13 Non-dominated PGCMs generating curvilinear path
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Fig. 14 Prescribed path and path traced by all local search solutions
of single- and bi-objective studies

the best and +1 is considered as worst (Zitzler et al. 2003;
Knowles et al. 2006). The statistical values of the custom
initialization are not only better than the random initializa-
tion but also close to zero. This observation supports the
role of domain specific initial population strategy for global
optimization.

4.1.1 Non-dominated PGCMs and their properties

In the last section, the solutions 1--5 are evolved as ‘Pareto-
optimal’ solutions which are shown in Fig. 13. The solution
1 evolves as minimum weight PGCM, but at the same time
it requires larger input energy to deform the elastic struc-
ture and to follow the prescribed path. While the solution 5
requires minimum supplied input energy but it is heavier in
all five. Similarly, other solutions show ‘trade-off’ between
the posed objectives. Although these solutions are topolog-
ically same, but they have different shapes. For example,
the solution 5 has a ‘winding shape’ (refer to Fig. 13(i)) that
may reduce the requirement of supplied input energy to elas-
tic structure. Similarly, the solutions 3 and 4 also have some

‘winding shapes’ at two places. The solutions 1 and 2 seem
rigid.

The path traced by all elastic structures are shown in
Fig. 14 along with a prescribed curvilinear path. The con-
straints at precision points impose the adherence of actual
paths with the prescribed path. The values of maximum
allowed gap d1 and actual distance between the prescribed
and actual paths d2 are given in Table 4. It can be seen
here that the d2 value increases for all solutions as they
follow precision points 1--5. This shows that the preci-
sion points defining the extreme part of prescribed path are
more critical. But the importance of constraints on initial
precision points cannot be ignored that assisted the cus-
tomized NSGA-II to evolve feasible compliant mechanisms
(Sharma et al. 2009). The prescribed path for this example
is designed such that the output point of each elastic struc-
ture has to deform 10.48% in x-direction and 17.72% in
y-direction with respect to the size of design domain.

In this paper, the applied boundary and support condi-
tions are identified by customized NSGA-II. Table 5 shows
these conditions for single and bi-objective optimization.
The identical loading position and same input displacement
magnitude are observed for all solutions in both studies.
However, the support positions are different. These condi-
tions are evolved without any priori information to assist
and propagate non-dominated solutions. Moreover, the
designer and decision makers can benefit from such flexi-
bility to explore the non-optimum conditions which might
have been considered in the previous practices.

The computational time of customized NSGA-II with
local search is reported in Table 6. The FEA of elastic struc-
tures is done in parallel because it consumes maximum com-
putational time than the GA operators. During the NSGA-II
run 24 processors are used that reduced the computational
time approximately in the proportion of processors used.
However, the local search is performed independently on
different processors that consumes considerable time to
improve the solutions.

Table 4 Deviation at precision
points Precision points 1 2 3 4 5

Max. allowed d1 0.3196 0.3142 0.3074 0.3084 0.3092

Single-objective study ‘Minimum weight design’

d2 0.1032 0.1739 0.2127 0.2470 0.3091

Two-objective study

Solution 1: d2 0.0290 0.0301 0.0324 0.1047 0.3058

Solution 2: d2 0.0531 0.0829 0.1220 0.1979 0.3091

Solution 3: d2 0.0761 0.1084 0.1262 0.1812 0.3091

Solution 4: d2 0.0226 0.0407 0.0256 0.1064 0.3091

Solution 5: d2 0.0278 0.0516 0.0939 0.1766 0.3091

Solution 6: d2 0.0161 0.0217 0.0588 0.1502 0.3083
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Table 5 Evolved applied boundary and support conditions of curvilin-
ear PGCMs

Conditions → Support position Loading position Input

Study ↓ (mm) (from the (mm) (from the displacement

origin) origin) (mm)

Single-obj. 20 32 7

Bi-obj. Sol. 1 at: 8 32 7

Sols. 2−5 at: 2

4.2 Straight line generating PGCMs

In this section, another example of PGCMs generating
straight line path is solved. The compliant mechanisms are
generated using bi-objective set and domain specific initial
population with customized NSGA-II. Note that the same
categorization of design domain in Fig. 2 is used that intro-
duces difficulty for optimization technique. Because such
type of categorization of applied boundary and support con-
ditions allow elastic structures to follow some curvilinear
path instead of straight line.

For this example of compliant mechanism, five represen-
tative NSGA-II solutions are evolved (a−e) as shown in
Fig. 15. After the local search, only two solutions (1 and
2) are evolved as non-dominated solutions. It is worthwhile
to mention again that the local search method improves the
solution based on single-objective function which does not
follow the definition of domination. Thus, the solutions 1 to
5 are evolved independently.

The elastic structures of non-dominated solutions are
shown in Fig. 16. Both PGCMs look very similar. They
have two common closed loops and two similar segments.
However, it is interesting to observe how they show ‘trade-
off’ between the posed objectives. The smaller closed loop
and the segments of solution 1 look thinner than solution
2 that makes the difference in weight. For supplied input
energy, two regions of solution 1 are highlighted by circle
and rectangle in Fig. 16(b). A relatively larger deforma-
tion can be seen at the region with circle of solution 1 than

Table 6 Computation time of curvilinear PGCM problem

Problem NSGA-II Local search

time (hrs) time (hrs)

Single-objective 5.59 12.19

Two-objective 5.47 Solution 1: 8.65

Solution 2: 9.15

Solution 3: 9.61

Solution 4: 10.93

Solution 5: 11.52

Solution 6: 25.07
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Fig. 15 NSGA-II and local search solutions for straight line PGCM

the corresponding region of solution 2. This causes a dif-
ference in the styles of segment joining the bigger closed
loop and straight line tracing output point for both solutions.
The same segment of solution 2 looks more rigid than that
of solution 1. As more thinner regions appear in solution 1,
these regions are deformed relatively more and thus, require
larger supplied input energy so that the output of the elastic
structure can generate the prescribed straight line path.

The straight line path traced by all local search solutions
along with the prescribed path is shown in Fig. 17. It shows
that the elastic continuum structures do not trace the exact
straight-line path. However, the imposed constraints at pre-
cision points limit the maximum gap between the prescribed
and actual paths. The real values of maximum allowed gap

(a) Sol. 1: Undeformed (b) Sol. 1: Final deformed

(c) Sol. 2: Undeformed (d) Sol. 2: Final deformed

Fig. 16 Non-dominated straight line PGCMs
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Fig. 17 Prescribed path and path traced by all local search solutions

d1 and the actual gap between the paths at precision points
d2 are given in Table 7. For this example, the d2 value for
all local search solutions increases till the precision point 2
and then, it decreases. Finally, the maximum d2 value can
be seen at precision point 5 which makes it critical. The
output point of elastic structures are deformed by 10.0% in
x-direction and 0.0% in y-direction with respect to the size
of design domain to trace the given straight line path.

The identical boundary and support conditions of solu-
tions 1 and 2 are evolved for this example. Both the PGCMs
are supported at 46 mm and require 5 mm of input dis-
placement which is applied at 28 mm. An interesting thing
can be seen here that these solutions are supported on their
right-hand side when tracing the straight-line path. How-
ever in the previous example of curvilinear path tracing,
PGCMs were supported on their left-hand side. This is quite
expected that the elastic structures supported on their right-
hand side show minimum tendency to generate higher curvi-
linear paths for the given categorization of applied boundary
and support conditions. On the other hand, left-hand side
supported elastic structures tend to trace the curvilinear tra-
jectories. The customized NSGA-II also acknowledges the
same support conditions.

Table 7 Deviation at precision points

Precision points 1 2 3 4 5

Max. allowed d1 0.15 0.15 0.15 0.15 0.15

Two-objective study

Solution 1: d2 0.0930 0.1260 0.1119 0.0876 0.1498

Solution 2: d2 0.0901 0.1257 0.1169 0.0957 0.1497

Solution 3: d2 0.0874 0.1262 0.1243 0.1071 0.1499

Solution 4: d2 0.0962 0.1350 0.1277 0.1045 0.1498

Solution 5: d2 0.0869 0.1209 0.1113 0.0911 0.1499

4.3 Discussion on performance of customized GA and
local search method

In both the examples, the local search method significantly
improved the non-dominated solutions of NSGA-II. This
justifies its role to further improve the elastic structures.
However, it raises a question that the customized GA is
not effective and local search method can alone generate
‘Pareto-optimal’ solutions. In the literature, several limita-
tions of reducing the multi-objective optimization problem
into single-objective for generating the non-dominated or
‘Pareto-optimal’ solutions are discussed. However, a few
of them are discussed here that are mainly associated with
structural topology optimization. First, the chances of pre-
mature convergence is more for single-objective optimiza-
tion while solving non-linear and multi-modal problems
(Deb 2001). Similar fact can be observed particularly for
example 2, when the single-objective local search method
was executed on five non-dominated solutions (a−e as
in Fig. 16). The three solutions (3--5) prematurely con-
verged and only two solutions (1 and 2) were evolved as
non-dominated. Second, the local search starting with dif-
ferent initial points can converge to the same final solution
(Grosan et al. 2007). It was also observed in earlier studies
(Sharma et al. 2006, 2008a, c) that the few representative
solutions were converged to the same optimal elastic struc-
ture. In that case the performed computations were wasted.
Last but not the least, the computations in local search
method can be expensive than the present customized GA.
It is because (1) has some constraints and the local search
method has to first find the feasible solution that must sat-
isfy all the constraints. Only after that, it can improve the
solution in the objective value.

On the other hand, the solutions of mulitobjective GAs
can also trap in local optimal region. Similar observation is
also noticed in this work when the history of non-dominated
solutions is plotted in Fig. 18 after every 20 generations. It
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Fig. 18 The history of non-dominated solutions after 20 generations
and local search solutions
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shows that the progress gets reduced after generation #60.
A possible remedy is to use large population and/or iter-
ations depending on the problem complexity (Deb 2001).
But it will result in higher computational cost. Thus, the
concept of hybrid algorithm is used with NSGA-II that not
only improves the non-dominated solutions but also helps
them to come-out from the sub-optimal region. Such hybrid
techniques are well discussed in the literature and interested
readers can refer book by Grosan et al. (2007).

5 Conclusions

In this paper, the initial population strategy has been devel-
oped that created geometrically feasible elastic structures by
joining the regions of applied boundary and support condi-
tions of path generating compliant mechanisms. The same
initial population strategy can be used for various structure
topology optimization problems where these applied bound-
ary and support conditions are known or unknown. The
results and statistical test demonstrated the successful appli-
cation of proposed initial population strategy over random
initialization. Using proposed initial population strategy,
the customized NSGA-II algorithm successfully solved the
two examples of PGCMs. The local search further refined
the solutions of NSGA-II and assisted them to come out
from the sub-optimal region. The elastic structures of both
the examples were also presented in this paper. The par-
allel computing platform reduced the computation time of
NSGA-II. However, the local search consumed the consid-
erable computation time. The constraints on the precision
points showed the different behavior of PGCMs as curvi-
linear PGCMs showed active or critical constraints on the
extreme part of the prescribed path. In case of the straight
line PGCMs, the middle and extreme parts of the path
were critical. The criterion of finding the applied bound-
ary and support conditions by customized NSGA-II abided
the expected rules of support positions and generated these
conditions without a-priori information. These conditions
can further be beneficial to check the optimality of prede-
fined conditions in the previous practices for evolving the
non-dominated solutions.

In the future work, the effort can be made to generate
topologically diverse and improved elastic structures. This
can be done by using another objective function and also by
developing knowledge-based GA operators.
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