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ABSTRACT

Lalithsena, Sarasi. PhD, Department of Computer Science and Engineering, Wright State University,
2018. Domain-specific Knowledge Extraction from the Web of Data.

Domain knowledge plays a significant role in powering a number of intelligent applications such

as entity recommendation, question answering, data analytics, and knowledge discovery. Recent

advances in Artificial Intelligence and Semantic Web communities have contributed to the represen-

tation and creation of this domain knowledge in a machine-readable form. This has resulted in a

large collection of structured datasets on the Web which is commonly referred to as the Web of data.

The Web of data continues to grow rapidly since its inception, which poses a number of challenges

in developing intelligent applications that can benefit from its use. Majority of these applications

are focused on a particular domain. Hence they can benefit from a relevant portion of the Web of

Data. For example, a movie recommendation application predominantly requires knowledge of the

movie domain and a biomedical knowledge discovery application predominantly requires relevant

knowledge on the genes, proteins, chemicals, disorders and their interactions. Using the entire Web

of data is both unnecessary and computationally intensive, and the irrelevant portion can add to the

noise which may negatively impact the performance of the application. This motivates the need to

identify and extract relevant data for domain-specific applications from the Web of data. Therefore,

this dissertation studies the problem of domain-specific knowledge extraction from the Web of data.

The rapid growth of the Web of data takes place in three dimensions: 1) the number of knowledge

graphs, 2) the size of the individual knowledge graph, and 3) the domain coverage. For example, the

Linked Open Data (LOD), which is a collection of interlinked knowledge graphs on the Web, started

with 12 datasets in 2007, and has evolved to more than 1100 datasets in 2017. DBpedia, which

is a knowledge graph in the LOD, started with 3 million entities and 400 million relationships in
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2012, and now has grown up to 38.3 million entities and 3 billion relationships. As we are interested

in domain-specific applications and the domain of interest is already known, we propose to use

the domain to restrict/reduce the other two dimensions from the Web of data. Reducing the first

dimension requires to reduce the number of knowledge graphs by identifying relevant knowledge

graphs to the domain. However, this still may results in large knowledge graphs such as DBpedia,

Freebase, and YAGO that cover multiple domains including our domain of interest. Hence, it is

required to reduce the size of the knowledge graphs by identifying the relevant portion of a large

knowledge graph. This leads to two key research problems to address in this dissertation. (1) Can

we identify the relevant knowledge graphs that represent a domain? and (2) Can we identify the

relevant portion of a cross-domain knowledge graphs to represent the domain?

A solution to the first problem requires automatically identifying the domain represented by

each knowledge graph. This can be challenging for several reasons: 1) Knowledge graphs represent

domains at different levels of abstractions and specificity, 2) a single knowledge graph can repre-

sent multiple domains (i.e., cross-domain knowledge graphs), and 3) the represented domains by

knowledge graphs keep evolving.

We propose to use existing crowd-sourced knowledge bases with their schema to automatically

identify the domains and show its effectiveness in finding relevant knowledge graphs for specific

domains. The challenge in addressing the second issue is the nature of the relationships connecting

entities in these knowledge graphs. There are two types of relationships: 1) Hierarchical relation-

ships, and 2) non-hierarchical relationships. While hierarchical relationships connect in-domain and

out-of-domain entities using the same relationship type and hence represent uniform semantics, non-

hierarchical relationships connect in-domain entities and out-of-domain entities using different rela-

tionships, i.e., they capture diverse semantics. We propose both data-driven and knowledge-driven

approaches to capture the domain-relevancy of both hierarchical and non-hierarchical relationships.

The solution encodes human knowledge on the domain specificity as probabilistic statements and

infers the most probable explanation which captures the domain specificity of concepts and relation-
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ships of the original knowledge graph. We present use cases related to entity recommendation for

multiple domains to show the effectiveness in extracting the domain-specific subgraph. The domain-

specific subgraphs extracted by our approach were 80% smaller in size in terms of the number of

paths compared to the original knowledge graph and resulted in more than tenfold reduction of

required computational time for entity recommendation task, yet produced better accuracy. We

believe that this work will have major impact in utilizing knowledge graphs for domain-specific

applications, especially with the extensive growth in the creation of knowledge graphs.
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Introduction

Thesis Statement: Applications serving specific domains can be benefited by identifying the relevant

knowledge from rapidly growing structured data on the Web. This can be accomplished by: (a)

leveraging existing crowd-sourced knowledge bases as a reference schema to automatically determine

the domains of knowledge graphs, and (b) exploiting the semantics and structure of entities and

relationships with statistical techniques to extract the relevant portions of the knowledge graphs.

Domain knowledge plays an essential role in human decision making [Devine and Kozlowski 1995]

and problem solving [Nokes et al. 2010]. It can be helpful for various tasks ranging from deciding

a movie to watch, planning a family vacation, to diagnosing disease. For example, I enjoy watching

movies which discuss humanistic issues such as civil rights, war, terrorism, and slave trade. I recently

enjoyed watching a couple of movies by Steven Spielberg of the same genre such as Schindler’s List,

Saving Private Ryan, Lincoln and Bridge of Spies. Now when I want to find a new movie to watch,

I look for recent movies of the same genre and/or by the same director. Previous studies have shown

that human decision making depends on their respective domain expertise [Devine and Kozlowski

1995].

Following the same analogy, many computer applications also use the domain knowledge in

different ways to accomplish their tasks and achieve their goals. For example, IBM Watson [Ferrucci

1
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et al. 2010], which was built as a question answering system, used the knowledge about the type

of candidate answers to rank the candidate answers for a given question. Given the question “In

1610, Galileo named the moons of this planet for the Medic brothers.” and the candidate answers

“Telescope,” “Sidereus Nuncius,” “Jupiter,” “Giovanni Medici,” and “Ganymede”, knowing that

“Jupiter” is a planet helped Watson to come up with the correct answer. A movie recommendation

system [Ostuni et al. 2013] uses knowledge about the movies such as genre, actors, and directors to

recommend new movies to the user.

However, this requires the relevant knowledge to be represented in a machine-readable format.

Over the years, Artificial Intelligent and Semantic Web communities have contributed to creating

these knowledge representations which typically consist of entities and their relationships represented

as a graph-based data model. These representations are referred to as knowledge graphs. For

example, Figure 1.1 shows a snippet of the knowledge about Cardiovascular disease from two

knowledge graphs: DBpedia1 and Bio2RDF2. Each knowledge graph captures different aspects of

Cardiovascular disease. While Bio2RDF has the knowledge on side effects and subcategories of the

Cardiovascular disease, DBpedia has the knowledge of the people who have died from the disease,

people who have studied the disease and the journals which publish research on the disease. The

concepts in different KGs can be inter-connected via relationships. In this example, owl:SameAs

relationship connects the Cardiovascular disease in two KGs. This has resulted in a large collection

of knowledge graphs available on the Web which has also been referred to as the Web of data.

Web of data has continued to grow rapidly. This growth can be categorized into three dimensions:

1. The number of knowledge graphs: Linked Open Data (LOD) is a collection of interlinked knowl-

edge graphs3 on the Web. Starting with 12 knowledge graphs in 2007, it has evolved to more

1http://wiki.dbpedia.org/

2http://bio2rdf.org/

3Generally knowledge graphs in LOD are referred as just datasets. For the consistency, we use the term knowledge

graph to refer to a LOD dataset throughout this dissertation.
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Figure 1.1: Snippet of Web of data

than 1100 knowledge graphs in 2017.4

2. Size of the knowledge graphs: One of the prominent knowledge graphs in LOD is DBpedia.

Starting from 3 million entities and 400 million facts in 2012, it has now grown to 38.3 million

entities and 3 billion facts. Table 1.1 shows the annual growth of the DBpedia English version.

3. The number of domains: Web of data cover a wide variety of domains such as government,

geography, biology, publication, history, and entertainment. While some knowledge graphs

capture knowledge about specific domains (e.g., Uniport on protein), others capture knowledge

covering a number of domains (e.g., DBpedia contains knowledge about a number of domains).

The sheer volume of structured and diverse knowledge available on the Web challenges the

consumers in identifying and extracting the relevant Web of data which best suits their application

domain and/or tasks. This dissertation studies the problem of extracting domain-specific

knowledge from the Web of data.

4http://lod-cloud.net/
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Version No of Entities No of Facts

2012 3.77M 400M

2013 4.0M 470M

2014 4.5M 583M

2015 6.2M 1B

2016 6.6M 1.7B

Table 1.1: Growth of DBpedia English version

1.1 Domain-specific knowledge extraction from the Web of

data

1.1.1 Knowledge graphs

As researchers identified the importance of embedding knowledge into computational algorithms,

they were interested in the symbolic representation of the world knowledge in a machine inter-

pretable way. In the mid 1970s, Artificial Intelligence (AI) research community argued that the

captured knowledge can be used as computational models in AI systems. Since 1980, AI community

started to use the term “Ontology” to refer to the symbolic representation of the captured knowl-

edge [Gruber 1995]. During that time, two popular symbolic representations were WordNet [Miller

1995], which is a lexical dataset to group English words into sets of synonyms, and Cyc [Guha and

Lenat 1993] which captures the common sense knowledge. In 2000, Taalee used a similar repre-

sentation “WorldModel” (for multi-domain ontology or knowledge graph) to power its faceted and

semantic search, semantic , semantic browsing, semantic personalization and semantic advertise-

ment. [Sheth et al. 2001]. SCORE discussed an automatic approach for metadata extraction and

annotation to define ontological components in 2002 [Sheth et al. 2002]. In 2012, Google intro-
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duced “Google Knowledge Graph”5 which is their representation of the facts and is the backbone

of Google’s entity search. After this, the term “Knowledge Graph” became prominent among the

applied research community and commercial systems to refer to any graph-based data model to

represent the facts.

1.1.2 Web of data

Generating and capturing knowledge took a drastic turn when Sir Tim Berners-Lee introduced

the concept of Semantic Web, “a Web of data that can be processed directly and indirectly by

machines” [Berners-Lee et al. 2000].6 Semantic Web adopts the Resource Description Framework

(RDF) [Lassila and Swick 1999] as its data model which represents knowledge as a labeled directed

multi-graph.7 For example, in Figure 1.1, db:Cardiovascular disease and db:hans conried are

two nodes in the graph and the edge dbp:death cause represents the relationship between the two

nodes. Nodes and edges in the graph are represented using URLs. For example, Cardiovascular

disease in DBpedia is represented as http://dbpedia.org/resource/Cardiovascular_disease.

The recent adaptation of Semantic Web technologies has created trillions of facts on the Web.

One of the prominent collection of a subset of Web of data is LOD. It follows four principles in

publishing8 [Bizer et al. 2009] and interlinking data on the Web. Another core contribution to the

Web of data is Schema.org which is a vocabulary developed collaboratively by three search engine

pioneers: Google, Bing, and Yahoo, to provide annotations on the web pages. Web Data Commons

project [Meusel et al. 2015] extracts the structured data on the Web including schema.org annotation.

Recent crawl by this project of 541 million HTML pages collected around 6 billion entities and 24

billion triples across multiple domains.9

5https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
6https://en.wikipedia.org/wiki/Semantic_Web

7https://www.w3.org/RDF/

8https://en.wikipedia.org/wiki/Linked_data

9http://webdatacommons.org/structureddata/2015-11/stats/stats.html#results-2015-1
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1.1.3 Utilization of Web of data for domain-specific application

In recent years, Web of data has been increasingly used as background knowledge for various appli-

cations in different ways. A named entity linking [Mendes et al. 2011] application uses the instances

of well-known knowledge graph DBpedia [Auer et al. 2007] as a dictionary. Implicit entity recog-

nition systems [Perera et al. 2015] [Perera et al. 2016] use existing knowledge graphs to represent

the domain knowledge about entities. An early version of IBM Watson for playing Jeopardy used

the type information from YAGO [Hoffart et al. 2013] to improve its accuracy in question answer-

ing. Recommendation [Ostuni et al. 2013] and document similarity/relevance [Schuhmacher and

Ponzetto 2014] applications use relationships between entities of the Web of data to calculate the re-

latedness between entities. Knowledge discovery applications use knowledge graphs to find complex

relationships among entities [Cameron et al. 2015].

While some of these applications require domain agnostic knowledge, most of the applications are

domain-specific and require only the domain-specific knowledge. For example, a movie recommen-

dation application requires knowledge of the movie domain and a biomedical knowledge discovery

application would require knowledge of the genes, proteins, chemicals, disorders and their interac-

tions. Twitris, which is a social media analytics tool that runs analysis on specific topics like natural

disasters and elections, uses domain knowledge that is relevant to the specific topics [Jadhav et al.

2010].

To effectively leverage the existing Web of data for the domain-specific applications, it is impor-

tant and adequate to identify the relevant portion of Web of data. The process of extracting relevant

portion of the Web of data for domain-specific applications depends on the three dimensions of the

growth of Web of data: (1) Number of knowledge graphs, (2) size of the knowledge graphs, and

(3) number of domains. For domain-specific applications, we propose to use the domain information

to restrict/reduce the number and size of knowledge graphs to be used, overcoming the challenges

resulting from exclusive growth of Web of data. Hence, given the domain for the domain-specific
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application, identifying relevant Web of data consists of two steps.

1. Identify the relevant knowledge graphs for a given domain: Identifying the relevant knowledge

graphs mainly has been done using manual inspection of the knowledge graphs and also based

on the popularity of the knowledge graphs. For example, DBTune10 captures the music related

information while Geonames11 captures geospatial information. Even though knowledge graphs

such as DBTune and Geonames are well known and widely used in the community, there are

other hidden gems like Climbdata12 and Lingvoj13 that have not been adequately exploited.

Climbdata provides information about climbing routes, whereas Lingvoj provides various ways

different languages relate to things such as country and organization.

2. Identifying the relevant portion of the knowledge graphs: Even though identifying relevant

knowledge graphs narrow down the search space, it does not solve the problem entirely. Some

of the identified knowledge graphs can be large and contain knowledge from diverse domains

and hence, can contain the knowledge not specific to a domain. In fact, knowledge graphs in

the LOD that are more popular belong to this category. DBpedia, YAGO, Freebase [Bollacker

et al. 2008]14 and WikiData are knowledge graphs in the LOD cloud which are large and popular

in the community for their coverage and availability. Schema.org data on the Web also comes

under this category as there is no easier way to identify the relevant part for its consumers.

Hence, given the domain for the domain-specific application, this dissertation addresses these

two key questions.

1. Can we automatically identify the relevant knowledge graphs to represent a domain adequately?

2. Can we automatically identify the relevant part of a knowledge graph to represent the domain?

10http://dbtune.org/
11https://datahub.io/dataset/geonames-semantic-web
12http://datahub.io/dataset/data-incubator-climb
13http://www.lingvoj.org/
14Google KG uses freebase and it is no longer being developed by the crowd
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1.2 Challenges in extracting domain-specific knowledge from

Web of data

Domain-specific knowledge extraction from Web of data is challenging for the following reasons:

• Different abstraction levels of domains: Domain of a knowledge graph can be defined at dif-

ferent abstraction levels. For example, both NCI Thesaurus15 and Radiology Lexicon contain

information regarding radiology domain. However, NCI Thesaurus covers general clinical care,

translational and basic research. But, Radiology lexicon16 contains fine-grained information

regarding the radiology domain. While both cover the radiology information, the details of the

abstraction levels are different.

• Cross-domain knowledge graphs: Some knowledge graphs can belong to more than one domain

or topic. For example, DBpedia contains knowledge covering multiple domains such as music,

movie, book, people, drug and protein. For some domains, these large cross-domain knowledge

graphs may provide the up-to-date and more comprehensive information. DBpedia captures

more up-to-date book information compared to Gutenberg knowledge graph17 which also cap-

tures book information. In some cases, they can provide complementary information such as

Disease information in DBpedia and Bio2RDF. However, domain-specific knowledge graphs may

cover the fine-grained information than cross-domain knowledge graphs. For example, protein

information is better represented in Uniport18 compared to DBpedia.

• Evolving domains: Domains can evolve over time. It is not feasible to rely on a set of predefined

tags or a predefined schema to describe domains.

• Relationships with diverse semantics connecting entities: Domain entities connect to in-domain

15https://ncit.nci.nih.gov/ncitbrowser/

16http://www.radlex.org/

17https://github.com/mrcook/gutenberg_rdf

18http://www.uniprot.org/format/uniprot_rdf
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and out-of-domain entities via relationships. For example, Brad Pitt (an in-domain entity for

the movie domain) is connected to Rusty Ryan (an in-domain entity for the movie domain) which

is a fictional character in Ocean’s Eleven via the relationship portrayer and also connected

to city Oklahoma (an out-of-domain entity for the movie domain) via relationship birthplace.

Also two in-domain entities Brad Pitt and Angelina Jolie have two relationships spouse

and colleague. colleague relationship is more relevant in the movie domain, but spouse is

not. Domain relationships (except hierarchical relationships) in a knowledge graph use different

relationship labels for different relationships and contains different semantics. An algorithm

needs to find the relationships that are relevant to the domain of these diverse relationships.

• Relationships with uniform semantics connecting entities: Hierarchical relationships in a knowl-

edge graph use the same relationship label with uniform semantics. For example, Wikipedia

category hierarchy uses skos:broader relationship to create a hierarchy of categories. But they

connect entities from multiple domains. For example, Wikipedia category hierarchy assigns

categories Fast Food Mexican Restaurant and Building and Structures in Colorado to

the category Chipotle. The two categories represent two different domains even though they

connect to the category Chipotle using the same relationship.

1.3 Dissertation Focus

In this dissertation, we study the problem of identifying relevant Web of data by addressing the

challenges mentioned above. Specifically, we study the two questions described above in utilizing

Web of data for domain-specific applications and present use cases for each of them.

1. Identifying the relevant knowledge graphs for a given application: We propose to create a registry

of topics by automatically identifying the domains of each knowledge graph. We present and

evaluate an application to identify relevant knowledge graphs by utilizing this registry of topics.

2. Identifying the relevant portion of a knowledge graph for a given application: We propose
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techniques to extract relevant portion or subgraph from a large knowledge graph by capturing the

semantics of both hierarchical and non-hierarchical relationships. We present a recommendation

system as a use case of a domain-specific application for the domains of movie and book. We

show that the quality of recommendations and efficiency of computation can be improved by

using domain-specific knowledge. Furthermore, we analyze how the proposed techniques can be

helpful in identifying the relevant portion of a heterogeneous domain such as US presidential

election campaign.

The above two topics of investigations are divided into the following sub parts.

1.3.1 Automatic domain identification from Web of data

The key aspect in identifying the relevant knowledge graphs is identifying the domains represented

by the knowledge graph. Existing techniques rely on the manually assigned predefined set of tags

or keywords provided by users as descriptors in identifying the domain of the knowledge graphs.

LOD data consumers mainly look at the LOD Cloud diagram19 to identify the relevant knowledge

graphs for their applications. LOD Cloud diagram is generated based on the knowledge graphs being

added to the CKAN data hub.20 CKAN allows data publishers to manually assign predefined sets

of tags such as media, geography, life sciences, publications, government, e-commerce, social web,

user-generated content, schemata, and cross-domain to classify the knowledge graphs to different

domains. CKAN administrators manually review these assignments and use these tags to better

organize the LOD diagram. This process has two problems: First, manual reviewing process has

started to become unsustainable with the rapidly increasing number of knowledge graphs. Second,

the diversity of the knowledge graphs makes it difficult to work with a fixed number of pre-defined

tags. For example, it is hard to decide on proper tags for the Lingvoj knowledge graph using

the predefined CKAN tags. Additionally, CKAN administrators are unlikely to have the required

19http://lod-cloud.net/

20https://datahub.io/
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time and domain knowledge to make proper classification or labeling. To deal with the above

mentioned issues in identifying relevant knowledge graphs, we need to have a mechanism which

automatically tags the knowledge graphs using an evolving vocabulary to capture the diversity and

different abstraction levels of the domains.

In this work, we provide an approach to automatically identify the domains of knowledge graphs

by utilizing knowledge sources in other LOD knowledge graphs as the vocabulary, such as the hier-

archy within Freebase. We believe community-driven knowledge sources and their hierarchy enable

us to cover a wide variety of domains and also track their evolution. Our approach assigns domains

to the knowledge graphs in LOD using Freebase types. While we have developed our approach with

Freebase in mind, it is adaptable to any other hierarchy similar to Freebase. We present a search

application built on the identified domains to search and identify relevant knowledge graphs within

LOD. We also provide an evaluation to validate the domains identified and the effectiveness of the

identified domains for searching knowledge graphs in comparison to the existing systems.

1.3.2 Identifying domain-specific subgraph

As discussed earlier, after identifying the knowledge graph, it may be necessary to identify the

relevant portion of knowledge graph. Current applications that require domain-specific knowledge

extract the relevant part of the knowledge graph as a subgraph by navigating a predefined number of

hops from a set of given entities that represent a domain. Most of these applications set the predefined

number of hops between 2 and 4 [Ostuni et al. 2013] [Schuhmacher and Ponzetto 2014] [Hulpuş et al.

2015] [Musto et al. 2014] [Passant 2010]. There are several limitations to this approach:

• Navigating a predefined number of hops can still cover a large part of the knowledge graph. For

example, Figure 1.2 shows the percentage of unique entities reached by navigating up to 3-hops

starting from 3, 072 movie entities in the MovieLens dataset [Harper and Konstan 2016] which is

a popular dataset for the movie recommendation. The subgraph extracted by navigating 3-hops

encompasses 66% of the DBpedia entities. This can be explained by the structure of DBpedia
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Figure 1.2: Percentage of nodes reached via n-hops for movie domain in DBpedia

knowledge graph. The mean shortest path between entities in DBpedia is around 5-hops,21 and

navigating 4-hops from a set of entities can cover a significant part of this large knowledge graph.

• Given a domain, not all entities connected via a predefined number of hops are necessarily

relevant. For example, two movies connected because their directors are known for action movies

is important for a movie recommendation system, whereas two movies connected because the

directors of these movies died in the same city is irrelevant. Hence, extracting a subgraph with

a predefined number of hops can encompass paths that do not contribute to the accuracy of the

application.

When domain-specific applications leverage the large cross-domain knowledge graphs, the usage

of complete knowledge graph or the subgraph created by navigating a predefined number of hops

21http://konect.uni-koblenz.de/networks/dbpedia-all
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can be computationally intensive and result in suboptimal results. To deal with these issues in

identifying the domain-specific part of the knowledge graph, we need a way to reduce the original

graph to a domain-specific subgraph without compromising the accuracy of the application.

Our approach for domain-specific subgraph selection leverages three key elements in the knowl-

edge graph.

1. The semantics of relationships: Relationships play a key role to extract the domain-specific

subgraph. For example, if there is a way to identify that the relationship genre is specific to

the movie domain but not the relationship death city, then we can use the relationship genre to

navigate the graph but ignore the paths with deathCity.

2. The semantics of entities: Semantics of the entities such as types can be helpful to extract the

domain-specific subgraph. For example, James Cameron is a type of Director, which is strongly

associated with the type Movie is a good indicator to determine that the entity James Cameron

is relevant to the movie domain.

3. Structure: The structure of a knowledge graph provides evidence in determining the domain-

specific aspect of a graph. For example, how the Director typed entities are linked with the

Movie typed entities versus Country typed entities are linked with the Movie typed entities can

be helpful in extracting the domain-specific subgraph.

We use these three key elements with statistical measures to extract the domain-specific subgraph.

Domain-specific subgraph selection is challenged by the nature of the relationships connecting

entities in these datasets. Corresponding to the two types of relationships - hierarchical relationships

and non-hierarchical relationships, we divide this study into two parts based on the nature of the

relationship.
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1.3.2.1 Identifying domain-specific subgraph with non-hierarchical relationships

Our proposed methodology for non-hierarchical relationships treats relationships as first-class ele-

ments because relationships induce semantics between entities and, hence, can play a significant role

in identifying domain-specific knowledge. We propose to identify the domain-specific relationships

among all named non-hierarchical relationships in the knowledge graph. Then we use only these

domain-specific relationships to restrict the original knowledge graph to a domain-specific subgraph.

In order to identify the domain-specific relationships, we came up with domain-specific measures

to capture the domain-specificity of these named relationships. These measures are based on the

strength of association of domain entities to the relationships, and the strength of the association is

calculated by the statistic and semantic-based metrics of the relationships.

1.3.2.2 Identifying domain-specific subgraph with hierarchical relationships

Capturing the domain-specificity of hierarchical relationships is challenging as it does not have differ-

ent named relationships among entities. Even though it represents multiple aspects, it uses the same

hierarchical relationship which makes it difficult to use the same techniques used for non-hierarchical

relationships. Hence, we focused only on the entities and structural properties when it comes to

hierarchical relationships. We propose an evidence-based approach for extracting a domain-specific

subgraph from a hierarchical KG. Given a domain, the domain-specificity of entities are determined

by combining different types of evidence using a probabilistic framework. To systematically combine

the different sources of evidence and to manage the uncertainty associated with each of the sources,

we use the probabilistic soft logic (PSL) framework [Bach et al. 2017].

For both the above two problems, we study a recommendation use cases on multiple domains to

show the effectiveness of the domain-specific subgraph generated by our approach.
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1.4 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 presents a background on important

concepts in knowledge representation related to this dissertation and related work for identifying

domains of the knowledge graphs and extracting domain-specific subgraph. The related work sec-

tion for domain identification details the state-of-the-art for domain identification with a focus on

identifying relevant knowledge graphs and the related work section for domain-specific subgraph

extraction discusses how existing domain-specific applications have used these knowledge graphs.

Chapter 3 details the approach to automatically identify the domains of the knowledge graphs

using an existing crowded source knowledge sources. It also presents the evaluation of the identified

domain(s) via the proposed technique with an extensive user study and the impact of the identified

domains to find relevant knowledge graphs in comparison to the state-of-the-art techniques.

Chapter 4 motivates the problem of extracting subgraph from large knowledge graphs and dis-

cusses two approaches to extract domain-specific subgraphs from large knowledge graphs with non-

hierarchical relationships. The quality of the approaches is evaluated using a recommendation ap-

plication which is the most common domain-specific application leveraging knowledge graphs.

Chapter 5 highlights the significance of hierarchical relationships in knowledge graphs and de-

tails an approach to extract domain-specific subgraph from large knowledge graphs with hierarchical

relationships. It uses the same evaluation setup used in Chapter 4 to assess the effectiveness of the

approach. Furthermore, it compares the proposed approach with an existing technique to iden-

tify domain-specific concepts in hierarchical knowledge graphs on domains movie, book, and US

presidential election campaign.

Chapter 6 concludes the dissertation by summarizing the key insights of the contributions and

also details the future research direction in this area and possible extensions to this work.



2

Background and Related Work

2.1 Background

This section discusses the evolution of knowledge representation and other related background to

the dissertation.

2.1.1 Evolution of Knowledge Representation

The importance of knowledge for AI systems dates back to early stages of AI. One of the earliest

works along this line was General Problem Solver (GPS) [Newell et al. 1959] that expresses the the

domain knowledge and query as logical formulas (a directed graph) and then reason over it. However,

this was only limited to solve simple problems and failed to scale to most real-world problems. Later

on, expert systems [Feigenbaum et al. 1970] [Shortliffe 1974] became prominent in the AI for focused

domains such as chemistry and medicine. Expert systems took the knowledge-based approach which

typically consists of knowledge bases (facts and rules) and inference engines to solve a given problem.

During this time, the term “Ontology” became prominent as a way to represent the knowledge and

ontology engineering became the field to construct knowledge bases which can be reused in a number

of projects. One of the leading projects in the ontology engineering area was the Cyc project [Lenat

16
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et al. 1985] which is used to capture the expert and common sense knowledge in a machine-readable

way. One more notable work in the expert systems was a reasoning system [Russell et al. 1995]

which uses knowledge bases for query assertions. [Mena et al. 2000] [Shah and Sheth 1999] were

early search and browsing applications which used domain specific metadata and ontologies.

2.1.2 Semantic Web, Linked Data, and Knowledge Graphs

Semantic Web, coined by Sir Tim Berners-Lee, is a knowledge representation framework that intro-

duced a standard set of representation formats, primitives, and conventions to represent knowledge.

Sir Tim Berners-Lee envisioned the Semantic Web as the data on the Web (Web of Data). Seman-

tic Web introduced three main representation formats; Resource Description Format (RDF), RDF

Schema [McBride 2004], and Web Ontology Language [McGuinness et al. 2004]. As we mentioned

above, Semantic Web uses a directed labelled graph data model which represents a fact as an edge

in the graph using subject, predicate, and object. Subject and object are the nodes in the graph,

and the predicate is the edge.

A Semantic Web dataset mainly consists of the schema-level knowledge and instance-level knowl-

edge. For example, in Figure 1.1, bio2rdf:Heart disease is a rdfs:subClassOf bio2rdf:Cardiovascular

disease is schema-level knowledge as it defines a relationship between two groups of objects. These

groups of objects are known as classes. Classes can be associated with instances. db:Disease is a

class, with an instance db:Cardiovascular disease. Aforementioned is typically referred as type

information. Instances have facts about them such as db:Cardiovascular disease dbp:field

db:Cardiology. These facts and type information form the instance-level knowledge.

Linked Data is a concept to create interconnected structured data. Sir Tim Berners-Lee came

up with Linked Data to facilitate the integration of different Semantic Web datasets. It follows four

basic principles as outlined in [Bizer et al. 2009],

1. Use URIs as names for things.
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2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF, SPARQL [Prud

et al. 2006]).

4. Include links to other URIs, so that human and machine can discover more related things.

Linked Data embodies Sir Tim Berners-Lee’s vision to create an interconnected data on the web

which is commonly known as “Web of Data”.

Semantic Web and Linked Data communities created several well known and widely used datasets.

DBpedia [Auer et al. 2007], YAGO [Hoffart et al. 2013], and WikiData [Erxleben et al. 2014] are a

few of the prominent datasets which capture information covering a number of domains. Linked Data

also contains datasets capturing knowledge for specific domains such as life science (Bio2RDF [Bel-

leau et al. 2008]), entertainment (BBC program [Kobilarov et al. 2009]), and education (DBLP1).

Some of these knowledge graphs (KGs) are very large. For example, DBpedia English version con-

tains 6.2 million entities and 1 billion facts, and Freebase contains 44 million entities and 2 billion

facts. Not all Web of Data follows the Semantic Web and Linked Data standards, however they

follow simple graph-based data model with their own representation format. Google Knowledge

Graph is one such giant dataset which consists of 570 million entities and 18 billion facts as reported

in 2014 [Dong et al. 2014]. With the emergence of Google Knowledge Graph, the term “Knowledge

Graph” has become prominent for any graph-based data model including Semantic Web datasets.

Most of the early knowledge representation techniques captured [Russell et al. 1995] the knowl-

edge manually. However, the manual creation of knowledge was time consuming and costly. Auto-

matic knowledge graph creation techniques use structured sources such as Wikipedia. DBpedia [Auer

et al. 2007] is a knowledge graph created using the structured portion of Wikipedia. NELL [Mitchell

et al. 2015] and Knowledge Vault [Dong et al. 2014] extract facts from a textual corpus using NLP

techniques and use a fixed ontology to guide the extraction process. Reverb [Kobilarov et al. 2009]

1http://dblp.l3s.de/d2r/
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and OLLIE [Schmitz et al. 2012] perform open extraction without any schema even though it can

lead to noisy facts.

This dissertation uses DBpedia and Wikipedia Category Graph as the test beds to evaluate the

effectiveness of the proposed approaches for domain-specific subgraph extraction for non-hierarchical

and hierarchical relationships respectively.

2.1.2.1 DBpedia and Wikipedia Category Graph (WCG)

Both DBpedia and WCG use Wikipedia as its source knowledge. Wikipedia2 is a web-based ency-

clopedia curated by the crowd. As it has been crowdsourced data source, Wikipedia is known for

its coverage and availability. Each Wikipedia page is intended to cover a single topic which can be

a person, a location, an event, etc. DBpedia dataset has been created using the infobox feature in

Wikipedia. Infobox captures the facts of a given Wikipedia page (topic). For example, Figure 2.1

shows some of the facts about Barack Obama as given in the Wikipedia page for Barack Obama.

Each wikipedia page maps to an entity in DBpedia, and the facts about each of these entities are

extracted using the facts expressed in these infoboxes. Figure 2.2 shows an example of some of the

facts represented for the DBpedia entity db:Barack Obama. As shown in Figure 2.2, the fact about

the Barack Obama’s political party in the infobox maps to an edge (db:Barack Obama dbo:party

db:Democratic Party(United States)) in the DBpedia graph. DBpedia maintains DBpedia on-

tology which captures all edge types (e.g. dbo:party), entity types (e.g. dbo:President)), and

entity type (class) structure(e.g. dbo:President rdfs:subClassOf dbo:Politician). We consider

all these edge types defined in DBpedia ontology as non-hierarchical relationships.

Each Wikipedia page is assigned to a set of categories as given at the end of the Wikipedia page.

These categories are attached to super categories, which creates a category structure. WCH uses this

category structure. For example, db:Barack Obama entity has categories db:Democratic Party

Presidents of the United States and db:American Nobel laureates using the relationship

2https://www.wikipedia.org/
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Figure 2.1: Wikipedia infobox for Barack Obama

dct:subject as shown in Figure 2.2. These categories connect to its super categories using the

relationship skos:broader.

2.1.3 Recommendation Systems

Recommendation systems automatically suggest items such as products, movies, and articles to users

and have become increasingly popular in recent years in many application domains. The approaches

used by these recommendation systems can be broadly classified into two groups:(1) content-based,

and (2) collaborative filtering. While content-based approaches recommend the items based on

the properties of the items to be recommended, collaborative filtering approaches recommend the

items based on the preferences of similar users [Lu et al. 2015]. Hybrid approaches combine these

two approaches to exploit the strengths of both these approaches [Burke 2002]. In addition to

these, some advanced recommendation approaches leverage social networks [He and Chu 2010],

fuzzy methods [Zhang et al. 2013], and context [Adomavicius and Tuzhilin 2015] to improve their

recommendations.

Most of the existing content-based recommendation systems use the textual description of the

items to analyze the properties of the items [Lops et al. 2011]. However, leveraging only the textual
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Figure 2.2: DBpedia example

description of items does not capture the semantic features among items. With the popularity of

Linked data, content-based recommendation algorithms started to use knowledge graphs to capture

the semantic features of items [Di Noia et al. 2012] [Ostuni et al. 2013] [Musto et al. 2014] [Passant

2010] [Piao and Breslin 2016]. Details of these recommendation systems use the Linked Data are

provided in Section 2.2.2. A complete review of the Linked Data based recommendation systems can

be found at [Figueroa et al. 2015]. In this dissertation, we use the content-based recommendation

algorithm outlined in [Di Noia et al. 2012] as a use case to show the effectiveness of the domain-

specific subgraph extraction. We pick this algorithm for its simplicity, popularity, and performance.

2.2 Related Work

In this chapter, we review the related work in the existing literature that covers the three parts

of the proposed dissertation, namely, automatic domain identification from Web of data, identi-

fying domain-specific subgraph with non-hierarchical relationships and identifying domain-specific
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subgraph with hierarchical relationships.

2.2.1 Automatic domain identification from Web of data

Domain identification of datasets will improve the identification of relevant datasets for domain-

specific applications. CKAN and LODStats are the state of the art for finding relevant datasets on

LOD. CKAN encourages data publishers to tag their datasets with a set of predefined labels, which

are then manually reviewed by the CKAN administrators. CKAN is used to generate the LOD

bubble diagram as shown in Figure 2.3 and it provides a search interface based on the metadata

provided, assigned tags and keywords. To the best of our knowledge, our work is the first effort

towards automatic domain identification for LOD datasets. However, LOD and information retrieval

communities have worked on topics related to ours as described below.

LODStats [Auer et al. 2012] is a stream-based approach for gathering statistics about the datasets

and it allows to search datasets based on keywords. Both CKAN and LODStats rely on the metadata

provided by data publishers and hence rely on manually categorizing and describing the datasets.

While this may lead to high-quality descriptions, this process is tedious and time-consuming and

consequently different data providers may provide uneven descriptions or metadata. For enriching

metadata about the datasets, in [Frosterus et al. 2011], authors have presented a system to create

such metadata via annotation tools and a faceted search. This approach also relies on the annotations

provided by the data providers. In addition to these systems, semantic search engines such as

Sindice [Tummarello et al. 2007], Watson [d’Aquin and Motta 2011] and Swoogle [Finin et al. 2005]

facilitate searching for entities but none of these systems are designed specifically for dataset search.

Dataset selection and identification has discussed in the context of federated querying and data

interlinking. In SchemEX [Konrath et al. 2012], authors provide a scalable approach for indexing

LOD datasets. It provides an index by leveraging type and property information of RDF instances.

In [Harth et al. 2010], authors have proposed an index structure to store dataset summaries using

QTree to identify relevant data sources. These data summaries are obtained by applying a hash
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Figure 2.3: Linked Open Data Cloud Diagram as of December-2017
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function to the triples of the dataset and mapped to the numerical space. In [Görlitz and Staab

2011], the authors have used voID descriptions [Alexander and Hausenblas 2009] containing metadata

about datasets, to build an index which can be incorporated in query processing to determine the

relevant dataset for querying. In [Schwarte et al. 2011] [Hartig et al. 2009] [de Oliveira et al.

2012] [Tran et al. 2010], authors have proposed different techniques for dataset identification for

query answering. [Nikolov et al. 2011] presents an approach to identify relevant data sources for

interlinking of a given particular dataset by using a semantic web index like sig.ma [Tummarello

et al. 2010]. We believe that these approaches could also benefit from automatic domain identification

for datasets, to reduce their search space and also to further identify more relevant results.

Another related body of work is topic modeling, which is about the identification of abstract

topics (related clusters of words) that occur in a collection of documents. Latent Semantic Analy-

sis [Deerwester et al. 1990] is a dimensionality reduction technique to identify the latent concepts

which result in documents with similar topical content to be close to one another. Subsequently,

probabilistic approaches such as the pLSI model [Hofmann 1999] and LDA [Blei et al. 2003] were

used for topics models. But these latent concepts cannot be readily mapped into natural concepts

in a way that a human would describe the concepts. Along these lines, Explicit Semantic Analysis

(ESA) [Gabrilovich and Markovitch 2007] has been proposed to use machine learning techniques

together with Wikipedia as a knowledge base, to augment keyword based representations with con-

cepts from Wikipedia. Another body of related work is in the area of document/text classification

into pre-defined topic hierarchies or taxonomies using machine learning techniques, such as [Cai and

Hofmann 2004] and [Hao et al. 2007]. All these systems have the advantage of text being available

in the documents for classification, but in our case, we only have one label for each typed instance in

the dataset. A number of these systems utilize training data whereas our approach does not utilizes

any training data at all.

In addition to the efforts described above, early work in Semantic Web investigated different ways

to search for a relevant ontology among different ontologies. [Arumugam et al. 2002] proposes a Peer-
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to-Peer infrastructure to support sharing of independently created and maintained ontologies and

facilitates search of shared ontologies. Searching for ontologies is based on keywords for ontological

terms and then followed by discarding ontologies that do not have any common parent node with

other ontologies from initial results. However, more recent KGs consist of shallow schemas where

this technique would fail, but these KGs consist of a rich instance base which we utilize in the

proposed techniques.

2.2.2 Identifying domain-specific subgraph with non-hierarchical rela-

tionships

The need to identify a domain-specific subgraph is a common problem when an application leverages

large cross-domain datasets such as DBpedia, Freebase, and YAGO. Some of the prominent types

of applications are: (1) recommendation, (2) named entity disambiguation, and (3) document simi-

larity. In this section, we discuss usage of the KG in each of these applications and the applicability

of domain-specific subgraph extraction in each of the applications.

Recommendation systems mainly use KGs to capture the item relatedness in recommending

items. Content-based recommendation systems [Di Noia et al. 2012] [Ostuni et al. 2013] [Musto et al.

2014] [Passant 2010] [Piao and Breslin 2016] extract DBpedia subgraphs from a 2-hop expansion of

in-domain entities with a set of manually selected relationships for the movie and book domains.

Dbrec [Passant 2010] measures the relatedness of two items using all paths within 2-hop subgraph in

recommending bands and solo artists. An improved version of this measure [Piao and Breslin 2016]

penalizes the relationships based on its frequency in the whole graph. However, both these similarity

measures are limited to measuring the similarity of two items directly connected or connected via

only one intermediate node. A hybrid recommendation algorithm [Ostuni et al. 2013] extracts the

DBpedia subgraph within 3-hops of movie entities to capture the relationships between the movies

rated by the user and the movies to be recommended. They use a learning to rank function to rank

the paths.
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The n-hop expansion technique to extract the subgraph still contains a significant portion of KG

and also includes irrelevant entities and relationships ignoring domain semantics. Manual selection

of relationships for a given domain can help to capture the domain semantics, but this is a labor

and time intensive process given the number of relationships in KGs. For instance, DBpedia has

more than 1,000 relationships and only 65% relationships have domain and range defined that help to

capture the domain semantics. Also, recommendation systems rank the paths to identify the relevant

paths. However, this ranking depends on the two items being compared rather than the semantics

of the domain of the two items. In this work, we capture the domain semantics for extracting the

subgraph for a given domain. However, the proposed techniques can be complementary to ranking

relevant paths.

Recommendation is a well-suited use case for domain-specific subgraph extraction as it considers

the item relatedness among in-domain entities. Even though we focus on recommendation system as

a use case in this work, it is not limited to recommendation. Named entity disambiguation links the

entity mention in a text to an entity in a KG. Recent approaches [Usbeck et al. 2014] [Hulpuş et al.

2015] use KGs such as DBpedia as a way to generate the context for each ambiguous entity mention.

AGDISTIS [Usbeck et al. 2014] extracts a DBpedia subgraph with up to 3-hop of all candidates and

then use centrality-based measures to link the sense. A more recent approach [Hulpuş et al. 2015]

jointly disambiguates entities by using path-based relatedness measures among all candidate senses

in the DBpedia subgraph. Even though these existing techniques work well with generic entities,

a domain-specific subgraph would benefit the named entity disambiguation in specialized domains

like medical and financial due to the special domain characteristics [Zwicklbauer et al. 2015].

In addition to the approaches mentioned above for semantic relatedness, [Pirrò 2015] lever-

ages the information content of the relationships and paths for semantic relatedness. Some ap-

proaches [Anyanwu et al. 2005] [Aleman-Meza et al. 2005] also employ the schema information to

further improve the information content-based methods. While existing semantic relatedness tech-

niques consider the features of the two items being compared, we restrict the features based on a
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given domain. In fact, [Hulpuş et al. 2015] emphasizes the importance of identifying relevant paths

between two entities to improve the semantic relatedness measures.

2.2.3 Identifying domain-specific subgraph with hierarchical relationships

The n-hop extraction technique for domain-specific subgraph extraction treats both hierarchical

and non-hierarchical relationships in the same way. But as we discussed, hierarchical and non-

hierarchical relationships need to be handled differently. While some of the existing work manually

pick the relationships [Di Noia et al. 2012] [Ostuni et al. 2013] [Musto et al. 2014] [Passant 2010] [Piao

and Breslin 2016], hierarchical relationships carry uniform semantics to connect both in-domain and

out-of-domain categories.

Due to the popularity and availability of the large-scale hierarchical knowledge graphs such as

WCG and YAGO, there are number of techniques proposed to extract the relevant portion of the

WCG. The Wikipedia taxonomy [Ponzetto and Strube 2011] extracts a taxonomy from WCH as

it does not form a full-fledged subsumption hierarchy. Wikipedia Bitaxonomy [Flati et al. 2014]

goes one step beyond [Ponzetto and Strube 2011] by creating an integrated taxonomy of Wiki pages

and categories. While identifying the contextual differences of the categorization, [Jiang et al. 2013]

proposed a domain-independent approach for ranking categories for a given concept with respect to

a particular textual content.

However, none of these studies have focused on addressing the domain-specific aspect of WCH.

Given a set of keywords, Doozer [Thomas et al. 2008] creates a domain model from the WCH.

Doozer tries to capture the domain relevance by identifying semantically relevant entities (Wikipedia

articles) and then traversing the WCH until finding a least common subsumer. In our work, we

have shown that even starting with only domain entities can lead to subgraphs with an irrelevant

portion for the domain. In bootstrapping domain ontologies, [Mirylenka et al. 2015] have used a

classifier to classify whether a given category is relevant to a given domain. We have compared our

approach against [Mirylenka et al. 2015] and showed that our approach performs better than theirs
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in extracting domain-specific hierarchical subgraphs from Wikipedia. However, [Mirylenka et al.

2015] also focuses on extracting a richer domain model which is not the focus of our work.

Another related body of work in extracting domain-specific subgraph from taxonomic relation-

ships is the existing state of the art on automatic domain taxonomy creation [Liu et al. 2012]. Most of

the existing approaches on automatic domain taxonomy creation rely on a domain corpus to extract

the domain taxonomy. However, with the availability of large crowd-sourced structured resources

such as DBpedia, YAGO, and Wikipedia there are few approaches which focus on extracting the

domain-specific portion from these large cross-domain resources.



3

Automatic domain identification

from the Web of data

3.1 Overview

Linked Open Data (LOD) has emerged as one of the largest collections of interlinked structured

datasets on the Web. Despite the adoption, increase in the size and diversity of the datasets creates

challenges in identifying the relevant datasets for the task at hand. As mentioned in the introduction

this is mainly done using manual inspection of the datasets and also based on the popularity of the

datasets. Existing approaches assign a pre-defined set of tags by manually inspecting the datasets,

and these tags are being used to identify the relevant datasets. However, the growth of the number

of datasets and diversity of the domains make this is an unsustainable process.

In this work, we propose [Lalithsena et al. 2013] a systematic and sophisticated approach to

identify the domains of the datasets instead of a pre-defined set of tags. For this, we take a straight-

forward perspective on the domain identifiers needed: We use tags, which will usually be general

terms such as “music,” “geography,” or “artist” as identifiers to describe domains. Automatic do-

main identification for LOD datasets is an interesting and challenging issue for several reasons. First,

29
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schema information plays a critical role in identifying the topic domains of a dataset, but most of

the LOD datasets only contain very shallow schemas. Thus, schema information by itself will not

be enough to identify domains. Second, people represent data that belongs to various domains in

different granularities. For example, DBpedia contains information about diverse domains including

music, while MusicBrainz focuses on the music domain. DBpedia and MusicBrainz use different

schemas to represent data, so by looking at the schemas it is a nontrivial task to identify music as

a common domain covered by both datasets.

In this work, we provide an approach to automatically identify the topic domains of datasets by

utilizing knowledge sources in other LOD datasets, such as the hierarchy within Freebase. We believe

community-driven knowledge sources and their hierarchy will enable us to cover a wide variety of

domains, and in fact, this type of “bootstrapping” of LOD has been used before for other purposes

[Jain et al. 2010]. Also, we present a search application built on the identified domains to search

and identify relevant datasets within LOD. Furthermore, we provide an evaluation to validate the

domains identified and also evaluate the effectiveness of the identified domains for searching datasets

in comparison to existing systems.

3.2 Proposed approach

Our approach provides a technique to automatically identify the main topics of LOD datasets by

utilizing Freebase as both background knowledge and to provide the vocabulary for the domain tags.

We will in particular make use of the fact that each Freebase instance or article (we will call them

Freebase instances in the following), is assigned one or more Freebase types within Freebase (such

as mountain). Each of these types, in turn, is assigned to a Freebase domain (such as geography).

Both Freebase types and Freebase domains will be used as domains in our work.

In a nutshell, our approach is based on assigning Freebase types and Freebase domains to the

instances in an input LOD dataset, together with a weight computed from its frequency count.



3.2. PROPOSED APPROACH 31

While we have developed our approach with Freebase in mind, and we describe it as such below, it

will be clear from the description that our approach is adaptable to other settings. We will discuss

this further in the conclusions.

In more detail, our approach consists of the subsequent steps explained below in Sections 3.2.1

to 3.2.4. Figure 3.1 depicts the workflow of our approach with examples at each step.

Figure 3.1: Workflow for identifying domains

3.2.1 Category Identification

3.2.1.1 Instance Identification

The domains of a dataset are implicitly determined by the collection of entities it contains. As an

example, the domain of ’GeoNames’1 is predominantly geo-spatial because it contains a large number

of geo-spatial entities such as countries, cities and villages. Therefore, our approach primarily utilizes

the instances of the dataset in conjunction with type information of the instances to identify the

domains of each dataset.

1http://www.geonames.org/ontology/documentation.html
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As the first step, the input dataset is processed to retrieve (i) the instances, (ii) their corre-

sponding labels or human readable values, (iii) classes of the instances, and (iv) class name labels

or human readable values.

After this, the next step is the identification of corresponding or closely related Freebase instances

for all instances of the input dataset.

This is achieved by utilizing the labels of the instances in the dataset combined with the concept

names to which the instance belongs,2 and executing a search on Freebase using its API3. The

combination of instance labels with concept labels can improve the accuracy of the approach since

in some cases instance labels by themselves return irrelevant results. For example, consider the

instance ’Ignimbrite’ from the Climb Dataincubator dataset4. Using ’Ignimbrite’ as the search

string on Freebase leads to multiple hits such as ’Ignimbrite’ and the book ’Geology of a Miocene

ignimbrite layer’. Appending the type information, i.e., ’Rock’, to the query term enhances the

precision by eliminating the book ’Geology of a Miocene ignimbrite layer’. The instance name alone

is utilized as the search term where type information does not retrieve any results.

This step is illustrated in Step 1.1 of the Figure 3.1 for three different instances.

3.2.1.2 Category Hierarchy Creation

The search results, i.e., the identified Freebase instances for each query from the previous step,

are used to obtain what we call category hierarchies for them: The Freebase search API is used

to identify the Freebase types within which the Freebase instances have been categorized, and we

also keep track of the corresponding Freebase domains. For the term Ignimbrite, for example,

the Freebase API returns the type ’rock type’ in the domain ’geology’, giving rise to the category

hierarchy consisting of ’rock type’ and ’geology’.

At this point, the system has generated a set of category hierarchies for each given instance of

2i.e., to which it is explicitly assigned; we do not consider inferred types.
3https://developers.google.com/freebase/
4http://climb.dataincubator.org/
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the dataset, as shown in Step 1.2 of Figure 3.1.

3.2.2 Category Hierarchy Merging

Once the category hierarchies have been created, this step merges all of those with the same Freebase

domain, by creating a tree of depth 2 with the Freebase domain as the root and the Freebase types

as leaves. Step 2 in Figure 3.1 shows the resulting category hierarchies for the instances (a) and

(b) after merging. The two category hierarchies with Freebase domain ’geography’ from instance

(a) have been merged. This step is repeated for the two hierarchies with Freebase domain ’music’

of instance (b). This step results in a forest-like data structure with a number of category hierarchy

trees rooted at a common generic node.

3.2.3 Candidate Category Hierarchy Selection

At the end of the previous step the input LOD dataset now has multiple category hierarchy trees

associated with it, due to the varied collection and classification of instances. However, not all of

these hierarchies are relevant and/or significant for a given dataset. Therefore, this step in our

approach filters out insignificant category hierarchies by using a simple heuristic. Given a concept

C of the input dataset, each instance of C gives rise to several category hierarchy trees as a result

of the previous steps. We now identify Freebase domains which occur most often as roots of these

trees, and retain only the trees with these roots, discarding all others.

As an example, consider the 25 instances of type ’Rock’ in the Climb Incubator dataset. Our

system generates multiple category hierarchies for the 25 instances. 22 out of 25 instances have

’geology’ as the root of the hierarchy, while 3 have ’music’ as the root node. Using a simple majority

as the deciding mechanism, all hierarchies with ’geology’ as their root are retained and all hierarchies

with ’music’ as their root are discarded.

This is illustrated in Step 3 in Figure 3.1 for a small example consisting of only three instances.

Category hierarchies rooted at ’geology’ and ’geography’ are retained while the one with ’music’ as



3.3. IMPLEMENTATION 34

its root is removed. This process greatly reduces the impact made by false positives returned by the

search API.

3.2.4 Frequency Count Generation

The next step involves assigning a frequency count to each of the terms in the resulting category

hierarchies to describe their relative importance with regard to a given dataset. This count is

generated by considering all category hierarchies from all instances of the dataset: Given an input

LOD dataset D and a Freebase type or Freebase domain T , let H be the set of all category hierarchies

generated from D using the steps described above, and let FreqD(T ), called the frequency count of

T for D, be the number of occurrences of T in H.

Note that the frequency count is generated both for the root node and for all child nodes occur-

ring in the category hierarchies. The Table given in Step 4 in Figure 3.1 shows frequency counts

calculated for ’geology’, ’rock type’ and ’mountain range’ for our example. These terms which con-

sist of Freebase domains and Freebase types can be considered as the domains for a given dataset.

A higher frequency count for a term provides an evidence for the term being a good descriptor for

the dataset, because it shows that a large number of instances can be described by the given term.

3.3 Implementation

Our system has been implemented in Java using Jena5 and the Freebase API. In order to scale to

large datasets, our system has been deployed on a Hadoop cluster6 consisting of 15 nodes, using a

Map-Reduce job. The list of instance and type labels collected from the dataset is given as input

to the Mapper task as pairs <InstanceLabel, TypeLabel>. The Mapper task performs the category

hierarchy building by querying the knowledge base, and merges the category hierarchies as described

in Step 2 in Figure 3.1. The Mapper writes its output as <TypeName, CategoryHierarchies> for

5http://jena.apache.org/
6http://hadoop.apache.org/
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each instance. Here CategoryHierarchies refer to the hierarchies generated in Step 2 in Figure3.1.

Once the Mapper tasks are done, the Reducer initializes its task by taking the TypeName as the

key, i.e., all the instances with the same TypeName will be performed by a single reducer. The

Reducer processes candidate category hierarchy selection, performs frequency count generation, and

keeps track of the root nodes associated with non-root nodes.

3.4 Evaluation

In order to evaluate our approach, we ran our system on 30 LOD datasets which cover a variety

of domains. These datasets include some prominent ones such as BBCMusic, DailyMed, VIVO

Indiana, LinkedMovieDB, and SemanticWebDogFood.

In order to evaluate the quality of our approach, we use two different settings. The first setting

(see Section 3.4.1) aims to validate the domains we identified involving users as subjects, and the

second setting (see Section 3.4.2) evaluates the identified domains in terms of their effectiveness for

finding LOD datasets on given topics.

3.4.1 Appropriateness of identified domains

Since there is no existing benchmark for this purpose we validate the identified domains using human

subjects. To do so, we extracted the two highest ranked domains from the set of roots (Freebase

domains) and the two other highest ranked terms from the leaves (Freebase type) for each dataset.

Then we mixed these with four other random Freebase types/domains from the Freebase hierarchy.

The reason behind selecting terms from both roots and leaves instead of taking just the four highly

ranked terms is to ensure that the terms cover more than one Freebase domain. This allows us to

assess the validity of assigning more than one Freebase domain as a domain. We then presented

these eight terms to each of twenty users and asked them to select the terms that best represent the

domains of the dataset. Of the twenty people, ten people responded to our request for participation
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Figure 3.2: User agreement on appropriateness of terms.

from W3C Semantic Web and LOD mailing lists7 and an other ten were members of two different

organizations, DERI and Kno.e.sis, who work with LOD datasets and are familiar with them.

To summarize the results, we calculated the percentage of users which agree for each term

generated by our approach. The graph in Figure 3.2 shows how many users agreed on how many

terms being appropriate descriptors, from a total of 20 users (=100%, horizontal axis) and 120 terms

(=100%, vertical axis). The data shows that 50% of the users agreed on 73% (88 out of 120) of the

terms being appropriate descriptors. Table 3.1 shows in more detail the results for the terms which

had the highest user agreement for each dataset.

Even though the system performs well with most datasets, with some datasets, such as Linke-

dEnergyData and UKPatentInfo, our approach fails to identify the prominent topic domains. The

likely reason for this is the lack of matching Freebase instances for the entities in these datasets.

7http://lists.w3.org/Archives/Public/public-lod/2013May/0110.html



3.4. EVALUATION 37

Dataset Term % Dataset Term %

BBCMusic music* 100 BBCProgram TV 100

BBCWildLife animal* 100 Climbdata location* 85

DailyMed medicine* 90 DBTuneClassic music* 100

Diseasome disease* 100 DrugBank medicine* 100

Eumida university 80 EuroStat location* 95

Foodalista food* 100 GeneBank gene 100

GeoSpecies biology* 95 Lingvoj language* 95

EnergyData organization 50 LMDB film* 100

NASA spaceflight* 100 ordinanceSurvey citytown 95

semwebdogFood people 65 UKPatentInfo organization* 65

VIVOIndiana organization 80 WorldFactBook country 90

Airport aviation 100 ECSRKB people* 65

EUInstitutions organization* 95 SIDER drug 85

FarmersMarket location* 75 Medicare Medicine* 100

Gutenburg* book* 65 Telegraphic location* 85

Table 3.1: Terms with highest user agreement for each dataset. We indicate by a star (*) that a

term was also the highest ranked by our system.
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3.4.2 Usefulness of identified domains for dataset search

In this section we present comparative evaluations of our approach by demonstrating its effectiveness

for finding LOD datasets compared with (1) a baseline obtained by a user study employing existing

LOD lookup services such as semantic search engines (Section 3.4.2.1), and (2) searching on the

CKAN data hub repository (Sections 3.4.2.2 and 3.4.2.3).

For the evaluation, we created a LOD dataset search application based on the identified domains.

The application makes use of an index, more specifically it leverages the terms and statistical in-

formation collected during our process of topic domain identification. Each term is indexed with a

list of datasets ranked by the normalized frequency count NFreqD(T ) of the term. The normalized

frequency count is calculated as

NFreqD(T ) =
FreqD(T )

Total No of Instances in D

3.4.2.1 User study

We conducted a user study to evaluate how useful the results generated by our approach are for a

dataset search, compared to using CKAN, LODStats8 or the Sindice semantic search engine. CKAN

and LODStats are two systems which allow people to identify relevant datasets based on keywords.

Furthermore, CKAN uses metadata provided by users. More details on these systems are given in

Section 2.2.1. There are a number of semantic web search engines such as Watson and Swoogle.

We choose Sindice mainly because (1) it allows us to group the search results by datasets which is

directly relevant to our approach, and (2) it is a very recent system and regularly updated.

For the evaluation, we performed the following steps.

1. We asked four users to come up with twenty terms each that reflect some topic domains of

datasets present in the LOD. Table 3.2 presents the list of 20 terms for each of the 4 users.

8http://stats.lod2.eu/rdfdocs
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From these eighty terms selected by the users, 20 terms were selected which were most often

mentioned.

2. These twenty terms were used in order to evaluate our approach compared with CKAN, LOD-

Stats and Sindice. We retrieved the top ten results for each term for all systems. The results

for all the terms can be found at the web page we used for the evaluation.9

3. The results for each term and each system were presented to 27 different users and they were

asked to identify which set of results they preferred the most. The familiarity of the users with

the LOD datasets varied from medium to expert. The results were provided to the users in a

blind fashion, i.e., the users were not provided with the names of the systems which generated

each set of results. The users were asked to rank the four result sets from 1 (best) to 4 (worst)

based on their familiarity with the datasets and expectations based on the terms.

4. We calculated a user preference score using the user rankings to assess the performance of each

system for each term. The score R(S, T ) for term T in system S is calculated using the weighted

average10

R(S, T ) =

∑4
i=1((5− i) ∗ (NiTS))

Total Number of Users
,

where NiTS is the number of users which rated rank i for the term T in the system S.

This is essentially the most common method to summarize user ratings in product ranking

systems. Note that a higher score indicates stronger performance.

Table 3.3 summarizes the results: CKAN ranked best for 12 terms while our approach ranked

best for 9 terms. LODStats ranked best for 1 term. While our approach generates only second best

results in some cases, it needs to be noted that our system indexes only 30 datasets, while other

systems index over 290 datasets. Note, also, that CKAN uses keywords, user’s metadata and manual

tagging, while our system creates topic domain tags automatically, and thus scales better.

9http://knoesis-hpco.cs.wright.edu/LODYellowPagesEvaluation/
10http://en.wikipedia.org/wiki/Weighted mean
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User Terms

User1 music, animal, drug, gene, food, confer-

ence, spacecraft, energy, language, uni-

versity, tv program, film, mountain, ge-

ology, biology, spacecraft, instrument,

recipe, disease, artist

User2 music, animal, drug, gene, food, confer-

ence, spacecraft, energy, language, uni-

versity, tv program, rock, geology , as-

tronaut, phenotypes, composer, recipe,

country, artist, organism

User3 music, animal, drug, food, conference,

spacecraft, energy, language, univer-

sity, tv program, invention, book, ge-

ology, biology, phenotypes, composer,

student, location, researcher, region

User4 music, animal, drug, gene, food, con-

ference, energy, language, university,

patent, film, book, geography, biology,

instrument, student, astronaut, disease,

artist, nasa

Table 3.2: Terms selected by users to describe the domain
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Term Our Approach CKAN LOD Stat Sindice

music 2.037 3.74 3.11 1.333

artist 2.815 3.926 1 2.259

biology 3.481 3.333 1 2.185

animal 2.926 1.63 3.481 1.926

geology 2.852 3.666 1 2.481

drug 2.926 3.148 2 2.555

gene 2.148 3.333 3.074 1.222

university 3.185 3.148 2.37 1.222

food 3.259 2.296 3 1.259

language 3.148 3.74 1 2.11

spacecraft 4 4 1 2

conference 2.814 3.555 1 2.666

astronaut 4 4 1 2

composer 3.815 3.037 1 2.11

tv program 3.666 2.923 1 2.370

instrument 3.852 2 2 3.148

recipe 3.926 2 2 3.074

student 2 3.889 2 3.111

phenotypes 2 3.923 2 3.037

energy 1 3.74 3.26 3.03

Table 3.3: Comparative dataset search evaluation results

This evaluation demonstrates that our approach is nearly as effective as the manual tagging of

datasets by CKAN for dataset search.
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3.4.2.2 Evaluation with CKAN as baseline

In order to better understand our automated system in comparison with the CKAN, we performed

a more detailed and focused evaluation against CKAN. For this, we again utilized the twenty terms

from the previous evaluation, and retrieved the search results for those twenty terms from both

CKAN and our search application. By considering the CKAN results as the baseline, we calculated

the Precision (P), Recall, and F-measure for our search application. Here we calculated two recall

values R1 and R2, where R1 considers only the 30 datasets we used for our approach and R2 considers

all the datasets.

Table 3.4 summarizes the results. Some of the extremal values can be explained as follows

(marked by a * in the table): (1) Our search application did not return any results for the terms

’student’, ’phenotypes’ and ’energy’.11 (2) CKAN did not return any results for ’instrument’ and

’recipe’.12 (3) There is no overlap between results returned by our system and CKAN for the terms

’animal’, ’geology’, ’food’ and ’tv program’.

The results demonstrate that our approach is able to provide high recall for some terms like

’music’, ’language’ and ’spacecraft’. The poor precision and recall values for some terms can be

due to (i) inaccuracies within CKAN which we consider as baseline here, or (ii) shortcomings in our

system. We further investigate this issue in Section 3.4.2.3 below. We also believe that our results

could be improved further by increasing the number of datasets utilized by our system for generating

the results.

11We have listed a precision of 1 in this case, indicating that we did not have any false-positives. The precision

could also be considered undefined in this case.
12We have listed a recall of 1 in this case, indicating that we did not have any true-negatives. The recall could also

be considered undefined in this case.
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Term P R1 F1 R2 F2

music 0.286 1 0.445 0.1 0.148

artist 0.4 1 0.571 0.2 0.267

biology 0.125 1 0.222 0.333 0.182

animal 0* 0* n/a* 0* n/a*

geology 0* 0* n/a* 0* n/a*

drug 0.6 0.667 0.632 0.75 0.667

gene 0.333 1 0.5 0.125 0.182

university 0.5 1 0.667 0.0512 0.093

food 0* 0* n/a* 0* n/a*

language 1 1 1 0.045 0.0861

spacecraft 1 1 1 1 1

conference 1 1 1 0.125 0.2222

astronaut 1 1 1 1 1

composer 0.25 1 0.4 0.5 0.3333

tv program 0* 0* n/a* 0* n/a*

instrument 0* 1* 0* 1* 0*

recipe 0* 1* 0* 1* 0*

student 1* 0* 0* 0* 0*

phenotypes 1* 0* 0* 0* 0*

energy 1* 0* 0* 0* 0*

Table 3.4: Evaluation with CKAN as baseline
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3.4.2.3 Comparison of CKAN and our approach against a manually curated gold stan-

dard

Although CKAN is manually populated, it does have omissions and contains erroneous values. For

example, when we search for the term ’food’, CKAN gives ’Semantic Web Dog Food’ as a relevant

result even though it is obvious that this dataset has nothing to do with ’food’ as such. Hence,

in order to perform a fair evaluation and to establish a baseline for our system and any future

applications in the same spirit, we asked 3 different human graders to manually assign the datasets

to the given terms. These human graders are researchers in semantic web technologies and they

have a high expertise level on LOD datasets as they often deal with these datasets for various

applications such as querying and mapping. The output is presented in Table 3.5. We did this, on

the one hand, to achieve higher quality results which have been manually verified. On the other

hand, since CKAN utilizes keyword based indexing, it affects the results obtained by using its search

interface, as explained earlier for the Semantic Web Dog Food example.

We then compared our system and CKAN with this manually curated gold standard, the results

are presented in Table 3.6. We use P for Precision, R for Recall, and F for F-Measure. Table 3.6

shows that our search application provides nearly 90% better recall with respect to the manually

verified standard, while being at par with CKAN in terms of precision.

To summarize, our approach can be helpful for systematically categorizing and finding relevant

datasets from LOD. Our evaluations demonstrate that our approach provides significantly better

precision and recall in retrieving LOD datasets compared to other approaches. It also demonstrates

that the state of the art of LOD searching systems fails to provide the support required for searching

and retrieving relevant datasets from the LOD cloud. The reasons for the superior performance of

our system lies in the utilization of a diverse classification hierarchy such as Freebase in comparison

to approaches which utilize traditional indexing and manual tagging based approaches. In addition,

our system is automated, and thus scales well compared to manual approaches such as the tagging

used in CKAN.
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Term Dataset

music BBCMusic, DBTuneClassic, BBCProgram, Linked-

MovieDB

artist DBTuneClassic, LinkedMovieDB, BBCMusic,

BBCProgram

biology GeoSpecies, BBCWildLife, GeneBank, Diseasome,

DrugBank

animal BBCWildLife

geology OrdanaceSurvey, Climb Data

drug DrugBank, DailyMed, Diseasome, SIDER, MediCare

gene GenBank, Diseasome, DrugBank

university VIVOIndiana, eumida, ECSRKBExplorer

food Foodalista

language lingvoj

spacecraft NASA Space Flight and Astronaut data

conference Semantic Web Dog Food

tv program BBC Program, BBC Music

instrument BBCProgram, BBCMusic, DBTuneClassic

astronaut NASA Space Flight and Astronaut data

composer BBCMusic, BBCProgram, DBtuneClassic, Linked-

MovieDB

recipe Foodalista

phenotypes Diseasome

student VIVO Indiana, eumida, ECSRKBExplorer

energy Linked Clean Energy Data

Table 3.5: Manually Classified Datasets
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3.5 Conclusion

We have presented a solution for systematically identifying domains of LOD datasets. We have

evaluated our approach against existing systems and reported on a user study. Our evaluation

shows the effectiveness of our approach and that it can be very useful for the LOD community in

number of ways. This work has the potential to be a basis for creating a search catalogue for LOD

datasets as we have shown in our evaluation. Furthermore, our work is also potentially useful for

identifying datasets for the purpose of interlinking.

Our approach currently draws some of its strength from the richness of Freebase. However,

only the first Category Identification step described in Section 3.2 actually depends on Freebase,

the remainder of the approach is completely generic. Returning to the description of the Category

Identification step in Section 3.2, note that the only thing we need is a way to assign both a general

domain and a more specific type to each instance in a dataset. Several alternatives suggest how to

approach this, some of which will again reuse LOD datasets. Complementing the use of Freebase with

other appropriate knowledge sources (including dictionaries or thesauri to help with synonyms) is

not only interesting in order to improve performance or topic coverage of our system, it is also needed

for full-scale domain identification for all LOD datasets, as the full use of Freebase is restricted on

a daily basis. We intend to work on such alternatives. Furthermore, we can leverage the interlinks

between datasets as these interlinked datasets are likely to share some topics.

We are confident that the LOD community can benefit from our approach. Our work can in prin-

ciple easily be integrated with LOD meta data repositories such as CKAN, LOD Stats and Sindice,

to allow people to gain a better understanding of the datasets. CKAN can use this for topic identifi-

cation as an alternative or replacement for the manual assignment of topics. Furthermore, the LOD

Bubble Diagram could be organized in a better way with improved topic domain identifications.



3.5. CONCLUSION 47

CKAN Our Approach

Term P R F P R F

music 1 0.5 0.667 0.571 1 0.727

artist 1 0.25 0.4 0.8 1 0.9

biology 1 0.2 0.333 0.625 1 0.769

animal 0 0 n/a 0.333 1 0.5

geology 0 0 n/a 1 0.5 0.667

drug 1 0.6 0.75 1 1 1

gene 1 0.333 0.5 1 1 1

university 0.5 0.667 0.572 0.6 1 0.75

food 0 0 n/a 0.25 1 0.4

language 1 1 1 1 1 1

spacecraft 1 1 1 1 1 1

conference 1 1 1 1 1 1

tv program 0 0 n/a 1 1 1

instrument 1 0 0 0.75 1 0.857

astronaut 1 1 1 1 1 1

composer 1 0.25 0.4 1 1 1

recipe 1 0 0 1 1 1

phenotypes 1 1 1 1 0 0

student 1 0.5 0.667 1 0 0

energy 1 0.333 0.5 1 0 0

Mean 0.775 0.432 0.489 0.846 0.825 0.728

Table 3.6: Comparison of our approach and CKAN with a manual curated gold standard
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Identifying domain-specific

subgraph with non-hierarchical

relationships

4.1 Overview

The large cross-domain knowledge graphs available on the Web gets wider adoption due to their

availability and broader coverage. However, these KGs are large and utilizing the complete graph is

computationally intensive and also, the irrelevant portion may negatively impact the performance

in particular for domain-specific applications.

In this work, we address the task of extracting a domain-specific subgraph from a large KG. Our

approach [Lalithsena et al. 2016] identifies entities and relationships that are strongly associated

with the domain of interest. To determine the associations, our methodology treats relationships as

first-class elements because relationships induce semantics between entities and, hence, can play a

significant role in identifying domain-specific knowledge [Sheth et al. 2004]. As we discussed in the

48
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introduction, there are two main types of relationships between entities: (1) non-hierarchical rela-

tionships, and (2) hierarchical relationships which capture different semantics. Due to their different

semantics discussed in Section 1.2, these two types of relationships have to handled differently.

This chapter discusses the problem of identifying domain-specific subgraph with non-hierarchical

relationships.

The practical usage of our approach is demonstrated with a recommendation system use case. We

harness the domain-specific subgraphs extracted by our approach using DBpedia for recommending

entities of two domains, i.e., movie and book. In the evaluation, we show that the use of a domain-

specific subgraph can, (1) reduce the graph by over 80% without compromising the accuracy by

identifying domain-specific entities and relationships; (2) decrease the computation time by more

than tenfold in comparison to the existing methods that extract subgraphs.

4.2 Proposed approach

In order to extract a domain-specific subgraph from a large KG, the primary input is the domain. For

example, the domain for a movie or a book recommendation system is movie and book respectively.

The entities of the given domain are identified as in-domain entities i.e. movies and books. These

in-domain entities can be leveraged to initiate and expand the subgraph. Our approach uses types

of the entities in the KG as the domain and entities of the given type as in-domain entities. For

instance, a movie recommendation system that utilizes DBpedia as a KG, the input to our approach

would be type dbo:Film, and entities of type dbo:Film are the in-domain entities.

Starting with the in-domain entities, the extraction of the domain-specific subgraph now trans-

lates to expanding the in-domain entities with relationships and other entities that are specific to

the domain of interest. Existing applications perform this expansion with a simple n-hop navigation

with a pre-defined value for n [Ostuni et al. 2013; Musto et al. 2014; Passant 2010]. This would

end up creating a subgraph with knowledge that is not specific to the domain. In order to extract
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Figure 4.1: (a) 2-hop expansion subgraph (b) Domain-specific subgraph

a domain-specific subgraph, this n-hop navigation should only pick the facts that are specific to the

domain. For an illustrative example, consider expanding the entity dbpedia:Titanic to a movie

domain-specific subgraph on DBpedia. Fig. 4.1(a) shows the subgraph extracted by navigating 2-

hops from entity dbpedia:Titanic. If we want to extract a movie domain-specific subgraph from

Fig. 4.1(a) which consists of set of entities and relationships specific to the movie domain, facts such

as dbpedia:Kapuskasing is the dbprop:birthplace of dbpedia:James Cameron and dbpedia:Jim

Threapleton is the dbprop:spouse of dbpedia:Kate Winslet have less significance compared to

facts such as dbpedia:James Cameron and dbpedia:Kate Winslet have won the dbpedia:Academy

Awards.

Inspired by this observation, our approach focuses on assessing the domain-specificity of a

fact. The specificity of a fact with respect to a domain can intuitively be assessed using the re-

lationships. For example, identifying that relationships dbprop:starring, dbprop:director, and

dbprop:award are more specific to the movie domain whereas dbprop:spouse and dbprop:deathdate

are less specific would help to generate domain-specific subgraph in Fig. 4.1(b).1 Therefore, in our

1Jim Threapleton would be in the movie domain-specific subgraph as a film director but not as an ex-spouse of

Kate Winslet.
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approach we consider relationships as the first-class elements in identifying the domain-specific sub-

graph and propose measures to capture the domain specificity of relationships.

To get to the crux of the approach, we formally define a KG and a domain-specific subgraph as

follows:

Definition 1. A knowledge graph KG = (V,E, P ) is a graph-based data model where V is a set of

entities,2 E is a set of labeled edges where E ⊆ V × P × V and P is a set of relationships.

Even though edges are directed in a KG, we assume that all semantic relations can be considered

to have semantically inverse relations. Hence, our KG is undirected.

Definition 2. A domain-specific subgraph for domain d with a set of in-domain entities D is DSG =

(Vd, Ed, Pd) where Pd is a set of domain-specific relationships with each relationship having a domain

specificity score wd, Vd ⊆ V and Ed ⊆ E that can be reached by navigating KG starting with D and

using only Pd.

The primary focus of this work is to determine the domain specificity scores that can be utilized

to restrict the graph to a domain-specific subgraph. Section 4.2.1 describes our novel measures to

determine domain specificity scores wd.

4.2.1 Domain Specificity Measures

Association between a relationship and a domain determines the domain specificity of the relation-

ship. Since the in-domain entities represent the domain in a KG, we consider the association between

a relationship and the in-domain entities as the domain specificity of the relationship. For exam-

ple, relationship dbprop:starring is strongly associated with the movie domain because it appears

specifically with the in-domain entities, whereas, relationship dbprop:country is generic and can

be associated with many non-domain entities of types such as dbo:Person, dbo:Organization and

2We consider only the edges connecting the entities and ignore the literals.
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Figure 4.2: Hops and relationships

dbo:Place. Therefore, we consider that the domain specificity of dbprop:starring is higher than

the domain specificity of dbprop:country with respect to the movie domain.

Our approach focuses on expanding the graph starting from in-domain entities by identifying

domain-specific relationships. Determining the domain specificity of the first hop relationships (re-

lationships that connect in-domain entities to the first hop entities as shown in Fig. 4.2), from the

in-domain entities is trivial because we can find the direct association of the relationship with the

in-domain entities. For example, in Fig. 4.3(a), dbprop:director and dbprop:country are directly

connected to in-domain entity (m1) and its association can be determined based on its frequency

of occurrence with in-domain entities versus all entities. On the other hand, measuring the domain

specificity of relationships that are not directly connected to in-domain entities is non-trivial. For

example, in Fig. 4.3(a) it is not straightforward to find the association of relationships such as

dbprop:award, dbprop:spouse, and dbprop:president with in-domain entities because they may

require more information about their connectedness to the in-domain entities. For simplicity, in the

rest of the paper we refer to relationships that connect in-domain entities to its first-hop entities as

direct relationships and the relationships that are more than one-hop away from in-domain entities

as indirect relationships.

We identify two characteristics in the KG that can be harnessed to measure the association of

relationships to in-domain entities: (1) type and (2) path. We use these as ways to obtain the

connectedness of relationships to in-domain entities. In Sections 4.2.1.1 and 4.2.1.2, we detail the

intuition and formalizations of measures with these characteristics.
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Figure 4.3: (a) Type-based connectedness; (b) Path-based connectedness m1 is a movie (in-domain)

entity

4.2.1.1 Type-based scoring

For this measure, we consider the KG as entities of certain types connected via relationships. For

instance, dbpedia:Titanic is an entity of type dbo:Film connected to dbpedia:James Cameron,

an entity of type dbo:Director via the relationship dbprop:director. We utilize the associa-

tion between types to determine the domain specificity of nth hop relationship. For example, as

shown in Fig. 4.3(a), in order to calculate the domain specificity of relationships dbprop:award and

dbprop:spouse that are 2nd hop relationships, we utilize the strength of association between the

type dbo:Film and dbo:Director. If entities of the type dbo:Director are strongly associated

with the entities of type dbo:Film and the relationship dbprop:award is strongly associated with

the type dbo:Director, then there is a higher likelihood that dbprop:award relationship has high

association to the movie domain. To capture this intuition in calculating the domain specificity of

an indirect nth hop relationship we utilize two factors:

(1) The strength of association between the domain entity type td and the entity type at the n−1th

hop tn−1 is determined by calculating the association between each pair of directly connected

intermediate types leading to n−1th hop from in-domain entity type. The strength of association
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between directly connected entity types ti and tj is determined using Eq. 4.1.

d typerel(ti, tj) =
edgecountti,tj

edgecountti × edgecounttj
(4.1)

where edgecountti,tj is the number of edges that connect entities of type ti and tj , and edgecounttj

is the number of edges with entities of type tj .

The strength of the association between td and tn−1 connected via an ordered set of intermediate

entity types T = t1, . . . , tn−2 can be determined using Eq. 4.2

ind typerel(td, tn−1, n) =

n−1∏

k=1

d typerel(tk−1, tk) (4.2)

where t0 = td. When there are multiple ordered sets of intermediate entity types that connect

td and tn−1, we calculate ind typerel(td, tn−1, n) for each ordered set and take the maximum

value.

(2) The strength of association between entity types and their direct relationships is determined

using Eq. 4.3,

proprel(p, t) =
edgecountp,t

edgecountp
(4.3)

where t can be any type, p is a direct relationship of t, edgecountp,t is the number of edges

with relationship p directly connected to entities of type t and edgecountp is the total number

of edges with relationship p.

For indirect relationships, type-based scoring combines both proprel(p, t) and ind typerel(td, tn−1, n)

to compute a score for each n hop relationship p, propscore(p, n), for a given domain entity type td,

as given in Eq 4.4.

propscore(p, n) =
∑

tn−1j
∈C

ind typerel(td, tn−1j , n)

×proprel(p, tn−1j)

(4.4)

where C is the set of all entity types at n− 1th hop that have a direct relationship with relationship

p. When the same relationship appears at hops i and j where i < j, we take the propscore at ith
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hop. Type-based scoring uses Eq. 4.3 to find the domain specificity of direct relationships, where p

is a direct relationship of td.

4.2.1.2 Path-based scoring

While type-based scoring utilizes the types of intermediate entities to determine the domain speci-

ficity, path-based scoring utilizes the domain specificity of intermediate relationships. The intuition

is, if dbprop:director is already detected as a domain-specific relationship in Fig. 4.3(b), then

dbprop:award, which is an indirect relationship connected via the intermediate domain-specific

relationship dbprop:director, has a higher possibility to be a domain-specific relationship.

In order to determine the domain specificity of a relationship, we introduce an iterative approach

that determines the domain specificity of intermediate relationships along the path from the in-

domain entities. In the first iteration, it ranks direct relationships connected to the in-domain entities

as given in Fig. 4.4(a) and selects the top-K relationships as domain-specific relationships. The top-2

relationships in the example are dbprop:director and dbprop:starring. In the next iteration, as

shown in Fig. 4.4(b), it uses the domain-specific relationships identified at the first-hop to traverse

to the next hop and score the second-hop relationships such as dbprop:knownFor, dbprop:award,

and dbprop:writer. In summary, this methodology determines the domain specificity of a nth hop

relationship based on its association with the ordered set of domain specific relationships from the

in-domain entities up to n − 1th hops. The ordered set of domain-specific relationships are termed

as domain-specific paths.

According to Fig. 4.4(b) m1 starring x award y is a domain-specific path formed using the

ordered set of relationships starring and award. The x and y are variables and can be replaced

with any entity and m1 is any in-domain entity. In other words, the intermediate entities are of

no concern in representing a domain-specific path. These are utilized to determine the domain

specificity of relationships that are connected to a subgraph at the next hop.

In this approach the domain specificity of a nth hop relationship depends on its association to
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Figure 4.4: Iterative scoring of relationships (a) Iteration 1: scoring of direct (1-hop) relationship;

(b) Iteration 2: scoring of indirect (2-hop) relationships; m1 and m2 are movie (in-domain) entities.

the domain-specific path obtained from domain entities to n− 1th hop. To measure the association,

we adopt Pointwise Mutual Information (PMI) [Church and Hanks 1990] which is a well-known

association measure. PMI quantifies the association of two items appearing together using the co-

occurrence of the two items. Here, the two items are the nth hop relationship and the domain-specific

paths until the n− 1th hop.

Hence, we define the path-based measure propscore(p, n) of a nth hop relationship p as,

propscore(p, n) = PMI(p, dspn−1) (4.5)

PMI(p, dspn−1) = log
Prob(p, dspn−1)

Prob(p)× Prob(dspn−1)
(4.6)

where dspn−1 ∈ DSPn−1, DSPn−1 is the set of domain-specific paths up to n− 1th hop.

Prob(p, dspn−1) =
Path(dspn−1, p)∑

p∈P Path(dspn−1, p)
(4.7)

where Path(dspn−1, p) is the number of paths of length n with a domain-specific path dsp of length

n− 1 connected to p. The probability Prob(p) is the fraction of edges that contain p. Prob(dspn−1)

is the fraction of paths of length n− 1 that has the domain-specific path dsp. If there are multiple
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domain-specific paths dspn−1 that can reach p, we calculate the propscore(p, n) for each dspn−1 and

take the maximum value.

PMI is known for its sensitivity to low frequency values. Therefore, we normalize the PMI(p, dspn−1)

to NPMI(p, dspn−1) as proposed in [Bouma 2009].

propscore(p, n) = NPMI(p, dspn−1) (4.8)

NPMI(p, dspn−1) =
log

Prob(p,dspn−1)
Prob(p)×Prob(dspn−1)

−logProb(p, dspn−1)
(4.9)

Similar to the type-based ranking, if the same relationship appears in multiple hops i and j where

i < j, we take the propscore at ith hop.

4.2.2 Creating a Domain Specific Subgraph

Definition 2 defines a domain-specific subgraph where the relationships in the graph are scored

based on their domain specificity. These scores as detailed in Section 4.2.1, are utilized to restrict

the KG to a domain-specific subgraph. The restriction is performed by rank-based thresholding of

the scores. The graph extracted using Top-k relationships according to the domain specificity scores

is identified as domain-specific subgraph.

4.3 Evaluation

To show the effectiveness of our approach, we use the domain-specific subgraph for a recommen-

dation use case. Recent developments in recommendation algorithms [Di Noia et al. 2012; Ostuni

et al. 2013; Musto et al. 2014; Piao and Breslin 2016] recognize the importance of incorporating KGs

as background knowledge to improve the accuracy. Our evaluation methodology adapts an existing

recommendation algorithm as outlined in Section 4.3.1.1 and compares its performance with sub-

graphs generated from: (1) n-hop expansion, and (2) n-hop domain-specific subgraph. We perform
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the evaluation for two domains: movie and book by using different evaluation metrics as detailed in

Section 4.3.2.

4.3.1 Evaluation Setup

4.3.1.1 Recommendation algorithm

We adapt an existing recommendation algorithm [Di Noia et al. 2012] for our evaluation. This uses

KGs from Linked Open Data to calculate the similarity between the items. The similarity function

used by [Di Noia et al. 2012] considers only the entities reached via one-hop, which restricts the

recommendations of movies connected via one-hop to the user selected movies. For a fair comparison,

we replace the similarity function with a measure proposed by [Leal 2013] which measures the

similarity of two entities x and y connected via n number of hops. This similarity function is given

below.

sim(x, y) =

r∑

n=1

1

2n2
×

∑

path∈Paths(x,y)

∑

e∈edges(path)

w(e)

where r is the maximum number of hops between two entities, Paths(x, y) returns all the paths

between two entities within n-hops, edges(path) returns all the edges in the path and w(e) is the

weight of the edge. We consider all the edges to have an equal weight.

4.3.1.2 Baseline - n-hop expansion subgraph

The baseline is the recommendation algorithm presented in Section 4.3.1.1 with the input KG being

a simple n-hop expansion of DBpedia.3 We experiment with n = 2, 3.

4.3.1.3 Our approach - Domain-specific subgraph

While the recommendation algorithm remains the same as baseline, the input KG is created by scor-

ing and ranking domain-specific relationships in DBpedia using type-based and path-based measures.

3We use the infobox properties and ignore the hierarchical relationships.
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4.3.1.4 Datasets

We used popular datasets from two domains: (1) movie and (2) book. For movie domain, we used

the MovieLens dataset that consists of 1,000,209 ratings for 3,883 movies by 6,040 users and for

book domain we used the DBbook4 dataset that has 72,372 ratings for 8,170 items by 6181 users.

Since our recommendation algorithm is a content-based approach, users who have rated very few

items significantly impacts the recommendation performance. To deal with this, we eliminated users

who have less than 20 ratings as suggested in [Di Noia et al. 2012]. After this filtering step, the

MovieLens dataset contains 5,886 users with approximately 0.9M ratings, and the DBbook dataset

contains 17,802 ratings by 812 users. For each user, we take 60% of ratings as the training data and

the rest 40% as the testing data.

4.3.2 Evaluation Metrics:

We evaluate our approach on three aspects.

• Graph reduction: Graph reduction measures the reduction of domain-specific subgraph DSGn

compared to the n-hop expansion subgraph in terms of the number of nodes, relationships and

also the number of reachable paths within n-hops starting with the in-domain entities.

• Impact on accuracy: During the process of reducing the graph, it is important to make sure

that the graph reduction does not occur at the cost of the accuracy of the recommendation

algorithm. To assess this, we use two measures. First we calculate the standard measure of

precision@n as used in [Di Noia et al. 2012]. precision@n in comparison to other metrics such

as recall is the most suitable evaluation metric for recommender systems, particularly where

the number of recommended items are pre-obtained [Shani and Gunawardana 2011]. However,

precision@n only measures binary relevancy of the items up to nth rank but does not capture

whether domain-specific subgraph DSGn replace any highly relevant items selected using n-hop

4http://challenges.2014.eswc-conferences.org/index.php/RecSys#DBbook_dataset



4.3. EVALUATION 60

expansion subgraph with relatively low relevant items. To quantify this, we leverage the ratings

provided by users for each item in the gold standard datasets. Ratings provided by the users

will give an indicator whether domain-specific subgraph DSGn replace any highly relevant items

from n-hop expansion subgraph.

We take the average of the ratings of the user from the gold standard dataset. Then we calculate

the deviation of the rating for each relevant top-n items from the average rating and finally take

the mean of the deviation for all relevant items. A higher positive deviation value reflects the

better results. This measure ratingdev for a given user u is formalized as,

ratingdev(u) =

∑
r∈R itemratingr − avgratingu

|R|

where R is the top n relevant items for user u, itemratingr is the rating given by the user u for

item r, and avgratingu is the average rating for user u.

• Impact on runtime performance: Graph reduction should be able to reduce the time taken to

run the recommendation algorithm. The most time consuming module in the recommendation

algorithm is to calculate the similarity of all item pairs as it requires traversing the whole KG.

Hence, we compare the runtime performance required for this step using the domain-specific

subgraph DSGn and n-hop expansion subgraph. We use the Neo4j5 graph database to navigate

the graph and calculate the item similarities for recommendation.

4.3.3 Evaluation Results

Using the aforementioned metrics we evaluate the quality of domain-specific subgraph extracted by

our approach and present the results in this section.
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Path-based Type-based

Relations Nodes Paths Relations Nodes Paths

2-hop 349 1.07M 108.4M 349 1.07M 108.4M

DSG2(15,15) 15(95.7%) 0.08M(92.0%) 5.08M(95.3%) 14(95.9%) 0.13M(87.6%) 17M(83.9%)

DSG2(25,25) 25(92.8%) 0.13M(87.3%) 17.4M(83.8%) 24(93.1%) 0.63M(40.9%) 61.6M(43.19%)

DSG2(35,35) 35(90%) 0.64M(40.7%) 61.64M(43.1%) 32(90.8%) 0.64M(40.7%) 61.62M(43.18%)

Table 4.1: Graph reduction statistics for 2-hop expansion subgraph and DSG2 on movie domain;

M denotes millions

Path-based Type-based

Relations Nodes Paths Relations Nodes Paths

2-hop 424 1.2M 793.4M 424 1.2M 793.4M

DSG2(15,15) 15 (96.5%) 0.09M(92.8%) 159.6M(79.9%) 15(96.5%) 0.09M(92.8%) 159.7M(80%)

DSG2(25,25) 25 (94.1%) 0.62M(49.1%) 465.6M(41.5%) 25(94.1%) 0.62M(49%) 464.4M(41.68%)

DSG2(50,50) 50 (88.2%) 0.68M(44.8%) 484.4M(39.2%) 38(91.0%) 0.63M(48.5%) 464.6M(41.66%)

Table 4.2: Graph reduction statistics for 2-hop expansion subgraph and DSG2 on book domain; M

denotes millions

Path-based Type-based

Relations Nodes Paths Relations Nodes Paths

Movie-3-hop 636 2.86M 4885.3M 636 2.86M 4885.3M

Movie−DSG315,25,15 30(95.3%) 0.19M(93.2%) 48.8M(98.9%) 24(96.2%) 0.26M(90.9%) 105.5M(97.83%)

Book−3-hop 641 3.2M 13852.8M 641 3.2M 13852.8M

Book −DSG315,25,15 31(95.2%) 0.18M(94.2%) 1082.6M(92.18%) 21(96.7%) 0.12M(96%) 1062.5M(92.33%)

Table 4.3: Graph reduction statistics for 3-hop expansion subgraph and DSG3 on movie and book

domain; M denotes millions
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4.3.3.1 Graph reduction

Tables 4.1, 4.2, and 4.3 show the number of nodes, relationships and paths reached via n-hop

expansion subgraph and DSGn(k1,.,kn) with the top-K relationships at each hop. They also include

the reduction percentage from n-hop expansion subgraph to DSGn in parenthesis. Tables 4.1 and

4.2 show the reduction statistics for the domain-specific subgraphs created with 2-hops for the movie

and book domains respectively.

Domain-specific subgraphs created with the top-15 relationships at each hop reduce the n-hop

expansion subgraph by over 80% to 90% (3rd row in Tables 4.1 and 4.2) for both the domains.

As we use more relationships to extract the domain-specific subgraph, the reduction percentage

is decreased. The graph reduction percentage from both type-based and path-based measures are

almost similar except for movie 2-hop graph with top-25 at each hop in which type-based reduction

is less than the path-based reduction.

Table 4.3 shows graph reductions for domain-specific subgraphs created with 3-hops for both the

domains.

Domain-specific subgraphs were able to reduce the graph by 90% - 96%. This is slightly higher

than the reduction from 2-hop graphs. An important aspect to note here is the significant increase

in the number of reachable paths when the hop size changes from 2 to 3.

4.3.3.2 Impact on accuracy

precision@n

We calculate the precision@n for different ranks and average it over all the users. Fig. 4.5 shows the

precision@n for all the users from the MovieLens dataset. We calculate the precision for both 2-hop

expansion subgraph and DSG2. Like the graph reduction, we experiment with different top-Ks in

selecting the DSG2.

For the movie domain, DSG2 selected with the top-15 relationships at each hop via path-based

5http://neo4j.com/
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Figure 4.5: Precision for 2-hop expansion subgraph and movie DSG2 on the movie domain.
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Figure 4.7: Precision for 2 and 3-hop expansion subgraph and DSG on book domain.

scoring technique has the best performance. It performs better than the baseline. This indicates that

merely selecting n-hop subgraph can also negatively impact the results. It increased the precision

by 2% for top-5 recommendations. As we increase the number of relationships it decreases the

performance and converges with the baseline at top-35 relationships. Type-based scoring also

improves the baseline (1% for top 5 ratings).

For the rest of the evaluation, we pick the domain-specific subgraph created with top-15, 25

and 15 at each hop which performed best out of the various top-K values and present the results.

Fig. 4.6 shows the precision@n over all users for the recommendation algorithm with DSG3 for the

movie domain. Fig. 4.7 shows the same results for book domain with DSG2 and DSG3.

For the movie domain DSG3 created with both type and path-based measures, performs equally

well and outperforms the baseline. It increased the precision by 6.7% for the top 5 ratings. For

the book domain, path-based scoring measure performs slightly better than the type-based scoring

measure and is on par with the baseline. However, for the domain-specific subgraph of 3-hops,

type-based scoring measure underperforms in comparison to the baseline.
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2-hop 3-hop

Baseline DSG215,15 Baseline DSG315,25,15

5 0.822 0.823 0.807 0.823

10 0.814 0.816 0.806 0.815

15 0.810 0.811 0.806 0.811

20 0.806 0.807 0.805 0.806

Table 4.4: Deviation from average rating for Movie

2-hop 3-hop

Baseline DSG215,15 Baseline DSG315,25,15

1 0.592 0.584 0.533 0.558

2 0.599 0.604 0.571 0.579

3 0.601 0.614 0.569 0.579

4 0.606 0.617 0.595 0.595

5 0.610 0.620 0.596 0.6

Table 4.5: Deviation from average rating for Book

ratingdev

As precision@n, we calculate the ratingdev for different ranks and average it over all the users. We

pick the path-based measures to present the results for ratingdev as it shows the better performance

in comparison to the type-based measures. Table 4.4 shows the deviation from the average ratings

for movie domain with the domain-specific subgraphs DSG215,15 and DSG315,25,15 in comparison

to the n-hop expansion graph. Table 4.5 shows the same results for book domain.

For both the domains, deviation from the average rating performs equally well or outperforms
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Movie Book

n-hop Expansion
DSG

n-hop Expansion
DSG

Path Rank Type Rank Path Rank Type Rank

2-Hop 72 s 5s 11.2 s 10.15 m 1.3 m 1.4 m

3-Hop 2h 35 m 76 s 3.2 m 7 h 40 m 15.2 m 27 m

Table 4.6: Time performance improvement; s - seconds, m - minutes and h - hours

the baseline except for 1st rank for book 2-hop graph. This indicates that our approach did not

replace highly relevant items from the n−hop expansion subgraph and also was able to identify more

relevant items using the domain-specific subgraph. For example, the top-5 items recommended by

the algorithm using n-hop expansion subgraph to a user in MovieLens dataset, have only 3 relevant

items with ratings 3, 3 and 2. But using DSG the user was given 5 relevant items with ratings 4, 4,

5, 3 and 4. ratingdev was increased by 2.5% and 3.7% for movie and book domain respectively at

their highest ranks (top-5 for movies and top-1 for book) for the 3-hop domain-specific subgraph.

This shows our approach will particularly performs well as the hop increases.

4.3.3.3 Impact on runtime performance

Table 4.6 shows the time taken to calculate the item similarity which is the most time consuming

component of recommendation system detailed in Section 4.3.1.1.

Results indicate a tenfold decrease in the amount of time taken to run the algorithm with a

domain-specific subgraph in all cases. The reduction significance is higher as we increase the number

of hops to cover the subgraph. As given in the Table 4.6, for the 3-hop subgraphs, time is reduced

from hours to minutes.

To summarize, the evaluation results suggest that the domain-specific subgraph decreases the

size of the graph by an average of 80% to 90% and still performs comparable to and in some cases
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better than the original subgraph. Graph reduction results in tenfold reduction in time to calculate

the item similarity.

In some cases, path-based scoring measures perform better than type-based scoring. The quality

of type-based scoring depends on the type assignments of the entities. Some entities are not assigned

to the most specific class, and instead assigned to a more generic class in the schema. For example,

DBpedia contains only 6,591 entities of type actor while there are 80,837 unique entities which are

linked to movies via starring relationship.

4.4 Conclusion

In this work, we presented a novel approach to extract the domain-specific subgraph from a large,

generic knowledge graph by ranking relationships to capture their domain specificity. The approach

considers relationships as first-class elements and utilizes the semantics of non-hierarchical relation-

ships to capture their domain specificity. We experimented with two novel measures that utilize

intermediate entity types and intermediate relationships from the in-domain entities to determine

the domain specificity. By restricting the KG to only domain-specific relationships and entities, we

demonstrated its effectiveness for a recommendation use case on two domains, movie and book. Both

our domain specificity measures were able to reduce the graph size by more than 80% which led to

a tenfold decrease in computation time of the recommendation algorithm. The results also showed

that there was no compromise in the accuracy of recommendations rather found more accurate

results.
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Identifying domain-specific

subgraph with hierarchical

relationships

5.1 Overview

Hierarchical relationships are one of the key components of knowledge graphs (KGs). They induce

a structure of generalization and specialization of concepts1 in a KG. For example, Fig. 5.1 shows

a subgraph of the Wikipedia Category Hierarchy (WCH) comprising of entities and categories. In

the Fig. 5.1, the entity Franco Zeffirelli connects to the category Italian Film Directors using the

hierarchical relationship broader, and the category Italian Film Directors connects to the category

European Film Directors using the same relationship.

Commonly used KGs such as DBpedia, Yago, and Freebase contain a significant number of facts

expressed with hierarchical relationships. Fig. 5.2 shows the dominance of the number of facts

expressed with hierarchical relationships compared to the facts expressed with other relationships

1Concepts represent both entities (articles) and categories on Wikipedia [Lehmann et al. 2015].

68



5.1. OVERVIEW 69

Franco 
Zeffirelli

Italian film 
directors

Italian 
opera 

directors

Italian 
military 

personal

1923s 
births

1920s 
births

20th century 
military 
politics  

European 
Film 

Directors

broader

broader broader

broader broader

broader

broader

Figure 5.1: hop-based path navigation. Entities and Categories are indicated by rectangles and ovals

respectively. Out of domain categories for the movie domain are indicated by ovals with dotted lines.

within 150 most frequently used DBpedia relationships. They play a major role in intelligent ap-

plications such as personalization [Kapanipathi et al. 2014], question answering [Welty et al. 2012],

and recommendation systems [Ostuni et al. 2013] [Musto et al. 2014] [Di Noia et al. 2012] [Piao and

Breslin 2016][Cheekula et al. 2015].

These applications face two primary challenges in consuming KGs: (1) they are computationally

intensive due to the large number of facts in the KGs [Lalithsena et al. 2016]; and (2) many of

these KGs are generic and comprise of facts representing multiple domains. On the other hand,

most applications are domain-specific and may require knowledge that is only specific to the domain

of interest. For example, a movie recommendation system may require knowledge related to only

movies.

For example, Fig. 5.1 shows a subgraph extracted by traversing up to 2-hops from the entity

Franco Zeffirelli in WCH. According to the subgraph, entity Franco Zeffirelli belongs to categories

Italian Film Directors, Italian Opera Directors, Italian military personal, and 1923s births. Out

of these categories, the first two categories are relevant to the movie domain and the last two are

irrelevant and might not be necessary for a movie recommendation system. Furthermore, Table 5.1

shows the exponential growth of the number of paths reached of a movie-specific subgraph created
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Figure 5.2: Number of facts for each relationship.

by navigating up to 4-hops in WCH, starting from 3, 121 movie entities in the MovieLens2 dataset.

Hence, the simple n-hop expansion technique to extract a domain-specific subgraph has not shown

to be effective either in reducing size or noise from a large KG. Therefore, this chapter discusses how

to extract a domain-specific hierarchical knowledge graph that reduces the size of the KG without

compromising the accuracy of the applications for a given domain of interest.

We propose [Lalithsena et al. 2017] an evidence-based approach for extracting a domain-specific

subgraph from a hierarchical KG. We selected WCH as the testbed to develop and evaluate our

proposed approach due to its prominence and usage in existing domain-specific applications. WCH

is the main hierarchical knowledge source for many KGs such as DBpedia and YAGO and consists of

2https://grouplens.org/datasets/movielens/
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Table 5.1: Number of paths reached via seed movie enties; M - million; B - billion.

hops Paths Reached

1 50953

2 18M

3 345M

4 72B

7.5 million entities and categories connected via 25 million hierarchical relationships.3 Our approach

collects evidence for supporting or opposing a category’s relevance to a given domain in the KG.

These pieces of evidence are based on type, lexical, and structural semantics of the categories. To

systematically combine the different sources of evidence and to manage the uncertainty associated

with each of the sources, we use the probabilistic soft logic (PSL) framework [Bach et al. 2015]. PSL

is proven to work well in such environments and has generated state-of-the-art results [Kouki et al.

2015] [Pujara et al. 2013].

To demonstrate the effectiveness of the subgraphs extracted by our approach, we pick a recom-

mendation use case which is an important application leveraging KGs. We show that it is possible

to extract a domain-specific subgraph from a hierarchical knowledge graph, reducing around 40% -

50% of the paths compared to the subgraph created with an n-hop based navigation technique. This

is done without compromising the accuracy of the recommendation algorithm and in most cases,

domain-specific subgraphs extracted by our approach also improve the accuracy of the recommen-

dation system. We also demonstrate that the recommendation results obtained by the subgraph

created with our approach outperform the results obtained by a subgraph created with a supervised

learning technique.

3http://wiki.dbpedia.org/downloads-2016-04
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5.2 Approach

In order to extract a domain-specific hierarchical subgraph, our approach considers a set of domain

entities as the input. These domain entities represent the domain of interest. For example, to

create a movie-specific hierarchical subgraph a set of movie entities would be the input to our

approach. Given the domain entities and the hierarchical graph, a domain-specific hierarchical

subgraph is extracted by expanding the domain entities to only the categories that are specific to

the domain. Existing approaches [Ostuni et al. 2013] consider connectedness to the domain entities

in the hierarchical graph as the proxy to estimate the domain-specificity. For example, Fig. 5.3

shows a subgraph extracted by navigating 2 to 3 hops starting from five movies in WCH. While, this

subgraph contains categories which describe the genre of the movie (American LGBT related films,

America spy films) and the director of the movie (Films Directed by Doug Liman), it also contains

out-of-domain categories such as Museums in Popular Culture, LGBT Culture in US, Education, etc.

With respect to this subgraph, the domain-specific hierarchical subgraph should retain categories

describing genre and director of the movies and eliminate the out-of-domain categories. In order to

assess and retain the domain-specific categories, we have identified three different types of semantics

of categories in the hierarchy that can be quantified and systematically leveraged, they are; 1) type

semantics, 2) lexical semantics, and 3) structural semantics. These provide evidence for assessing

the domain-specificity of categories.

We discuss these three types of semantics in Section 5.2.1 and Section 5.2.2 describes how the

evidences obtained via these types of semantics are aggregated to calculate the domain-specificity

of the categories using a probabilistic framework.

5.2.1 Evidence types towards domain-specificity

A category on Wikipedia can span across multiple topics. Our intuition is that the domain-specificity

of a category can be estimated based on the relevancy of its associated topics to the domain. The
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Figure 5.3: n-hop expansion subgraph. The graph is created by navigating 2 to 3-hops from five

movies (marked in boxes). The in-domain and out-of-doman categories are marked by ovals with a

solid lines and dotted lines respectively.

relevancy can be determined through the type and lexical semantics of the category label.

5.2.1.1 Type semantics

The topics of a category can be made explicit by identifying the types of the entities mentioned

in the category label. For example as shown in Fig. 5.4(a) the category 1) Films Directed by

James Cameron has types Film and Film Director ; 2) Documentary films about horror has types

Documentary Films and Horror Film; and 3) Kingdom and countries of Austria-Hungary has types

Monarchy and Country .

The identified types can be utilized to show that first two categories are specific to the movie

domain while third category is less/not specific to the movie domain.

5.2.1.2 Lexical semantics

The topics of a category label can also be derived using their lexical semantics. For example,

categories 1997 anime and biographical work have topics animation films and biographical films

respectively. However, they cannot be identified via type semantics as current computational tech-
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niques fall short in identifying entities within them. The lexical semantics of these labels can be

used to group such categories with more descriptive categories and collectively identify their topics.

Fig. 5.4(b) shows such grouping where category label 1997 anime and biographical works are grouped

with other category labels which share a similar lexical pattern. This grouping enrich the semantics

of these categories and enable the identification of their respective topics (i.e animation films and

biographical film). The domain-specificity calculated for these topics are considered as reflective to

the domain-specificity of the categories in the group.

Section 5.2.2.2 details the techniques used to identify type and lexical semantics and calculate

domain-specificity of these topics.

5.2.1.3 Structural semantics

Abstract categories are generally shown to have less importance in most domain-specific applications

that utilize knowledge graphs [Tonon et al. 2013] [Welty et al. 2012]. For example, in a recommen-

dation system, categories such as American films or English-language films may provide less or no

impact in recommendations whereas specific categories such as American action films or War epic

films are important for better recommendations. We utilize the structural semantics of hierarchies

to quantify the abstractness of a category [Resnik 1995] [Seco et al. 2004]. Specifically, we consider

the outdegree of a category to determine its abstractness. For example, Fig. 5.4(c) shows that the

category American films is linked to 43k entities and 34 sub categories in the graph and American

action films is only linked to 632 entities and 6 subcategories. Hence, measuring the specificity of a

category using structural features provides another piece of evidence regarding the domain-specificity

of a given category.

5.2.2 PSL Framework for category ranking

The three types of semantics can provide complementary and contrasting signal towards determining

the domain-specificity of a category. Fig. 5.5 shows evidences collected for a few categories. The
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Figure 5.5: Complementary and contrasting evidences.

evidences collected for both (a) and (b) categories are complementary. The type and lexical semantic

evidence collected for (c) are complimentary while structural evidence provides a contrasting signal

to them. The type semantic evidence provides a contrasting signal to other two types of evidences

collected for (d). Our approach uses a probabilistic framework to aggregate these complementary

and contrasting evidences in a principled way. Specifically, we use probabilistic soft logic (PSL),

which is a statistical relational learning framework with a declarative language as the interface.

Section 5.2.2.1 provides a brief overview of PSL and Section 5.2.2.2 describes the category ranking

using PSL.

5.2.2.1 A Brief Introduction to PSL

PSL is a declarative language which uses first order logic to specify probabilistic models. PSL mainly

has: (1) predicates - P, (2) atoms - P(A, B), and (3) weighted rules. A weighted rule will be of the

form w : X → Y , where X can be a conjunction, disjunction or an individual atom. Eq. 5.1 shows
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a simple rule where P is a predicate, A, B, and C are variables, and w is the weight.

w : P (A,B)∧̃P (B,C) → P (A,C) (5.1)

The grounding of each atom happens when the variables are instantiated with individuals. A

grounded atom P (a, b), where a and b are the individuals for A and B, can take a continuous value

ranging from 0 to 1. The capability to deal with continuous values instead of a boolean value for

atoms makes PSL more useful and practically applicable for many scenarios [Kouki et al. 2015]. The

value of each atom can either be observed or unknown.

PSL uses lukasiewicz t-norm [Bach et al. 2015] to provide a relaxation for the logical connectives

∧ and ∨. It assigns truth values to the logical connectives as follows.

p∧̃q = max(0, p+ q − 1) (5.2)

p∨̃q = min(1, p+ q) (5.3)

Using lukasiewicz t-norm, PSL assigns a distance to satisfaction for each grounded rule. The distance

to satisfaction to the grounded rule for the rule in Eq. 5.1 will be max((P (a, b)∧̃P (b, c))−P (a, c), 0).

PSL rules with grounded atoms and continuous values to represent probabilities for each grounded

atom define features for Markov networks, which are probabilistic graphical models used for collective

inferencing. In particular, the PSL implementation used in this work employs Hinge-loss Markov

Random Fields (HL-MRFs), which are probabilistic models over continuous random variables. HL-

MRFs infer the values for the unknown variables in the model by looking at the most probable

explanation (MPE). MPE tries to find an interpretation I (the most possible assignment of the

soft truth values) such that it minimizes the distance to satisfaction for grounded rules R. The

probability distribution over interpretation I for a set of grounded rules R can be formulated as,

f(I) =
1

Z
exp[−

∑

r∈R

wr(dr(I))
p] (5.4)

where wr is the weight of rule r, dr is the rules’s distance to satisfaction, p is the distance exponent,

which can be 1 or 2, and Z is a normalization constant. For a detailed description of PSL, see [Bach
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et al. 2015].

5.2.2.2 PSL rules for scoring domain-specificity of categories

The proposed framework combines type, lexical, and structural semantic evidence obtained from

categories using PSL to assess the domain-specificity of a category. Here, we have expressed these

in the form of rules in the PSL model. The domain-specificity of categories will be the value to be

inferred (unknown) and the types of evidence will be the observed (known) values. Now, we present

the rules and their expansions obtained using different computational techniques.

PSL rules for type semantics

Type semantics harnesses the semantics of topics mentioned in the category labels. In order to

extract the topics, we perform entity annotation on labels, specifically using the DBpedia Spotlight

annotation tool [Mendes et al. 2011].4 We consider the types (rdf:type) of the annotated entities

as topics. When the type of the annotated entity is owl:Thing, we consider the entity itself as the

topic. The domain-specificity of a category is calculated by averaging the domain-specificity of these

topics.

The domain-specificity of a topic is calculated by measuring its similarity to the domain term.

The domain term is the rdfs:label of the class representing the domain in DBpedia. For example,

for the movie domain, we consider the DBpedia class dbo:Film and use its label, which is film,

as the domain term. The similarity between domain term and the topics extracted is calculated

using two most prominent state-of-the-art techniques; 1) word2vec similarity [Mikolov et al. 2013]:

embedding-based semantic similarity measure and 2) UMBC similarity [Han et al. 2013]: hybrid

semantic similarity measure. The hybrid similarity measure uses information derived from both the

knowledge base and the corpus. The rules defined using type semantics and their expansion using

two similarity measures are shown in Equations 5.5 and 5.6,

4As DBpedia Spotlight does not capture the temporal annotations, we implement a regular expression based

temporal annotator to identify the time mentions in a category label
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semtype(Cat, TypeSet)∧̃semtypesimuc(TypeSet,Dom)

→ domainspec(Cat,Dom)

(5.5)

semtype(Cat, TypeSet)∧̃semtypesimw2v(TypeSet,Dom)

→ domainspec(Cat,Dom)

(5.6)

where semtype, semtypesim, and domainspec are predicates. Cat and Dom denote the cat-

egory variable and domain variable respectively, uc and w2v denotes two similarity measures.

semtype predicate defines the relationship between a category and a set of topics. semtypesim

and domainspec predicates capture the similarity of set of topics to the domain and membership

value of a category to the domain respectively. The above rules state that the membership of the

category to the domain is determined by its topics and similarity of those topics to the domain term.

PSL rules for lexical semantics

Lexical semantics groups the categories based on their labels and then identify topics for each group.

These topics act as a reference for measuring the domain-specificity of the members of that group.

In order to perform the grouping, we use k-means clustering [MacQueen et al. 1967] to cluster

the category labels. The category labels are represented as vectors and these vectors are obtained

by averaging the word2vec embedding vectors of the words present in the category. This simple

averaging method has proven to be a strong baseline for multiple tasks [Kenter et al. 2016].

The topics for each group are obtained using two methods. First, we take the most frequent

entity/type obtained via DBpedia Spotlight annotations in a given cluster as its topic. Second, we

extract the most frequent bigram of a given cluster as topics. Finally, we measure the semantic

similarity of these two topics to the domain term using UMBC and word2vec similarity measures.

PSL rules derived from lexical semantics are shown in Equations 5.7, 5.8, 5.9, and 5.10,
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lexclutype(Cat, Clus)∧̃lexclussimdb,uc(TClusClus, Dom) →

domainspec(Cat,Dom)

(5.7)

lexclutype(Cat, Clus)∧̃lexclussimdb,w2v(TClusClus, Dom) →

domainspec(Cat,Dom)

(5.8)

lexclutype(Cat, Clus)∧̃lexclussimbi,uc(TClusClus, Dom) →

domainspec(Cat,Dom)

(5.9)

lexclutype(Cat, Clus)∧̃lexclussimbi,w2v(TClusClus, Dom) →

domainspec(Cat,Dom)

(5.10)

where db denotes the DBPedia Spotlight, bi denotes the bigram, Clus denotes a cluster and

TClusClus denotes the topic for the cluster Clus. The predicate lexclutype represents the member-

ship of a category to the cluster Clus. lexclussimbi,uc predicate is used to represent the similarity

of the topic obtained via bigram to the domain term using UMBC similarity. The above rules state

that the membership of the category to the domain is determined by the cluster that it belongs and

similarity between the topics derived for that cluster and the domain term.

PSL rules for graph structural features

In order to measure the structural specificity of a category, we use the inverse of the out-degree of a

category. Here, the out-degree refers to the sum of the number of entities assigned to the category

and the number of sub-categories subsumed by the category. This is shown in the PSL rule 5.11,

graphspec(Cat) → domainspec(Cat,Dom) (5.11)

where graphspec is the predicate which captures the specificity value. Hence, the structural

specificity directly determines the domain-specificity of the category.
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Any additional types of evidence can be easily incorporated into the PSL model. PSL rules

require a weight for each of the rules and these weights can either be pre-specified or can be learned.

In order to learn the weights, PSL needs training data for each rule. However, it is hard to create

training data in a generic way which works for any domain. So, we determine the weights of the

rules via an empirical experiment, as describe in the evaluation section.

The domain-specific subgraph is created by restricting the subgraph created by navigating n-hops

to the top-K domain-specific categories determined by the PSL model.

5.3 Evaluation with a Recommendation Usecase

Following the related work on domain-specific subgraph extraction [Lalithsena et al. 2016], we use

recommendation systems as a use case for evaluating the effectiveness of domain-specific hierarchi-

cal subgraphs. We adapt evaluation setup in [Lalithsena et al. 2016] to evaluate domain-specific

hierarchical subgraphs where we use an existing KG-based recommendation algorithm.

5.3.1 Evaluation Setup

5.3.1.1 Recommendation algorithm

A KG-based recommendation algorithm is implemented for the evaluation [Di Noia et al. 2012]. The

algorithm in [Di Noia et al. 2012] recommends items based on its similarities determined using a

similarity function on the KGs. Detailed algorithm is described in Section 4.3.1.1.

5.3.1.2 Baseline: Recommendations with EXP-DSHGn

Existing content-based recommendation systems using hierarchical KGs create domain-specific sub-

graphs by navigating n-hops from domain entities [Ostuni et al. 2013] [Di Noia et al. 2012]. Hence,

we consider the recommendation algorithm presented in Section 4.3.1.1 with the domain-specific

hierarchical subgraph created with n-hop navigation on WCH as our baseline. We experimented
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with n = 2 and n = 3 for the evaluation.

5.3.1.3 Our Approach: Recommendations with PSL-DSHGn

For our approach, we use the n-hop domain-specific hierarchical subgraph of the WCH created using

our PSL framework. One of the parameters in our algorithm is the set of weights for the identified

rules in Section 5.2.2.2. In order to find the optimal weights for the PSL rules, we conducted an user

study with three users who empirically evaluated the generated ranked list of categories for different

weight combinations. In order to reduce the complexity of this experiment, we assume that rules

only differ due to the similarity measure being used, have same weight value. Hence, the goal of

this experiment was to find the weights for; 1) the type semantic rules, 2) the lexical semantic rules

derived using DBpedia annotations, 3) the lexical semantic rules derived using bigrams, and 4) the

structural semantic rule. This experiment is conducted in an incremental manner. First step fixes

the weights of rules 2 and 3 and vary the weights of rules 1 and 4 between 0 and 10 with step size

1. The next step vary the weight of rule 2 with the best combination of weights found for rules 1

and 4. Last step repeats this for rule 3 after finding the weights for rules 1, 2, and 4. The results

of this experiment showed that the ranked list of categories generated with weight values 8 for type

semantic rules, 6 for structural semantic rules, 6 for lexical semantic rules with DBpedia features,

and 1 for lexical semantic rules with bigram features is better than the other ranked lists. Hence,

we used the subgraph created with these rule weights for the experiments presented here.

5.3.1.4 Supervised Approach: Recommendations with SUP-DSHGn

An existing approach [Mirylenka et al. 2015] on bootstrapping a domain ontology from Wikpedia

category hierarchy uses a binary classifier to determine the domain relevance of Wikipedia categories.

Given a root category (category Film) that represents the domain, their approach performs a breadth

first graph traversal from the root category up to a given max depth and identifies relevant and

irrelevant categories to the domain of interest. They showed that the model trained for determining
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the domain relevancy for a particular domain can be used to determine the domain relevancy of a

another domain.

Hence, we have used the provided training data on computing domain and derived the domain-

specific subgraphs for movie and book domains. We pick the max depth in a way that it reaches all

the domain entities in our evaluation datasets. The depth values used for the movie and book are 7

and 8 respectively. Again, we use the recommendation algorithm outlined in Section 4.3.1.1 on the

subgraph created with this supervised approach SUP-DSHGn.

5.3.1.5 Datasets

In order to evaluate the effectiveness of our algorithm for multiple domains, we used well-known

datasets from two domains. (1) MovieLens dataset [Herlocker et al. 2000] for the movie domain and

DBbook5 dataset for the book domain. Detailed description of the datasets can be found in Section

4.3.1.4.

5.3.2 Evaluation Metrics

Our primary goal is to reduce a large KG to a domain-specific subgraph while preserving the per-

formance of the application that utilizes the domain-specific subgraph. Based on this, we evaluate

our approach on the two aspects described below for the recommendation use case.

• Graph reduction: Graph reduction measures the reduction of PSL-DSHGn and SUP-DSHGn

compared to EXP-DSHGn in terms of the number of categories, and the number of reachable

paths within n-hops starting from domain entities.

• Impact on accuracy: We used two measures to calculate the accuracy of the recommendation

algorithm. First, we calculate the standard measure of precision@n as used in [Di Noia et al.

2012]. As precision@n only measures the binary relevancy of the items up to the nth rank, it

does not capture whether recommendations obtained with PSL-DSHGn or SUP-DSHGn replaces

5http://challenges.2014.eswc-conferences.org/index.php/RecSys



5.3. EVALUATION WITH A RECOMMENDATION USECASE 84

any highly relevant items selected using EXP-DSHGn with relatively less relevant items. To

quantify this, we came up with a measure ratingdev by leveraging the ratings provided by users

for each item in the gold standard datasets. Equation for the ratingdev and its interpretation

is detailed in Section 4.3.2.

5.3.3 Evaluation Results on PSL-DSHGn with EXP-DSHGn

In this section, we present the results obtained by PSL-DSHGn in comparison to the EXP-DSHGn

using the evaluation metrics detailed above.

5.3.3.1 Graph reduction

Tables 5.2, 5.3, 5.4, and 5.5 summarize the graph reduction results. These results are generated

on 2 and 3 hop subgraphs for the movie and book domain. Our approach retains the Top-K

domain-specific categories in the subgraph. If there are more than one category with the same

domain-specific score as the Kth rank category, all those categories are included in the subgraph.

Hence in Table 4.1 for PSL-DSHG2(4500) where K is 4, 500, the overall movie subgraph extracted

contains 4, 782 categories.

Table 5.2 shows the number of categories and paths reached in EXP-DSHG2 and three PSL-

DSHG2s extracted by selecting different top-K for the movie domain. The reduction percentage

from EXP-DSHG2 to PSL-DSHG2 is presented in parentheses beside the raw number of categories

and paths. Tables 5.3, 5.4, and 5.5 portray the results for movie 3-hop, book 2-hop, and book 3-hop

graphs.

In Table 5.2, for the movie 2-hop subgraphs, we can see that reducing the number of categories

by 25% has led to a reduction of the total number of paths by 43% (the last row in Table 5.2),

and in the case of movie 3-hop subgraphs, reducing the number of categories by 27% has led to a

reduction of the total number of paths by 52% (the last row in Table 5.3). As expected, reducing

K in top-K to extract the domain-specific subgraph, increases the reduction percentage.
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Categories Paths

EXP-DSHG2 6413 18M

PSL-DSHG2(3500) 3844(40%) 1.62M(91%)

PSL-DSHG2(4000) 4315(33%) 10.8M(44%)

PSL-DSHG2(4500) 4782(25%) 10.26M(43%)

Table 5.2: Graph reduction statistics of PSL-DSHG2(K) in comparison to EXP-DSHG2 in the movie

domain; M denotes millions, K denotes top-K categories.

Categories Paths

EXP-DSHG3 12348 320M

PSL-DSHG3(6500) 6534(47%) 106M(67%)

PSL-DSHG3(7500) 7508(39%) 115M(64%)

PSL-DSHG3(9000) 9015(27%) 151M(52%)

Table 5.3: Graph reduction statistics of PSL-DSHG3(K) in comparison to EXP-DSHG3 in the movie

domain; M denotes millions, K denotes top-K categories.

Categories Paths

EXP-DSHG2 8603 2.2M

PSL-DSHG2(5000) 5155(40%) 1.4M(36%)

PSL-DSHG2(5500) 5847(32%) 1.6M(27%)

PSL-DSHG2(6000) 6297(27%) 1.8M(18%)

Table 5.4: Graph reduction statistics of PSL-DSHG2(K) in comparison to EXP-DSHG2 in the book

domain; M denotes millions, K denotes top-K categories.
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Categories Paths

EXP-DSHG3 18680 22M

PSL-DSHG3(6500) 6868(63%) 9M(73%)

PSL-DSHG3(7500) 7504(60%) 12M(45%)

PSL-DSHG3(8500) 8916(52%) 14M(35%)

Table 5.5: Graph reduction statistics of PSL-DSHG3(K) in comparison to EXP-DSHG3 in the book

domain; M denotes millions, K denotes top-K categories.

The book 2-hop subgraph was only able to reduce the number of paths by 18% when reducing

the number of categories by 27% as shown in Table 5.4. This is comparatively lesser than the

movie domain. This is due to the cardinality of links between the domain entities and categories for

each domain on Wikipedia. Specifically, there are fewer links between nodes in the book domain in

comparison to the movie domain. On an average, a movie entity is connected to 2 categories (3, 121

entities – 6, 413 categories) whereas a book entity is connected to 1.1 categories (7, 632 entities –

8, 603 categories) on Wikipedia. However, as we increase the number of hops for the book domain,

domain-specific subgraphs were able to increase the reduction. The book 3-hop subgraph was able

to reduce the number of paths by 35% by reducing the number of categories by 52% as shown in

Table 5.5. An important aspect to note in both the domains is the significant increase in the number

of reachable paths when the hop size changes from 2 to 3.

5.3.3.2 Accuracy

precision@n

The reduction percentages reported above are only meaningful if the domain-specific subgraphs

(PSL-DSHGn) do not compromise the accuracy of the application in comparison to the n-hop

expansion domain-specific subgraph (EXP-DSHGn). Therefore, to assess this, we compare the
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performance by calculating the precision for top-n recommendations provided for each user and

then averaging it over all the users in the dataset.

Fig. 4.5 shows the precision@n for all the users from the MovieLens dataset. We calculate the

precision for both EXP-DSHG2 and PSL-DSHG2. We experimented with same top-Ks presented

for graph reduction in selecting the PSL-DSHG2. Movie 2-hop subgraph extracted with top-4500

categories show the best performance. It increased the precision by 1.5% for the top-5 and top-10

recommendations over the baseline. This indicates that merely selecting n-hops to create a subgraph

can sometimes negatively impact the results. In other words, selecting the domain-specific categories

and paths can lead to better performance of the overall application.

Fig. 5.6 shows the precision@n for all the users from the MovieLens dataset. We calculate the

precision for both EXP-DSHG2 and PSL-DSHG2. We experimented with same top-Ks presented

for graph reduction in selecting the PSL-DSHG2. Movie 2-hop subgraph extracted with top-4500

categories show the best performance. It increased the precision by 1.5% for the top-5 and top-10

recommendations over the baseline. This indicates that merely selecting n-hops to create a subgraph

can sometimes negatively impact the results. In other words, selecting the domain-specific categories

and paths can lead to better performance of the overall application.

Fig. 5.7 shows the results for the 3-hop subgraphs. The best performance for the subgraph

extracted is seen when selecting top-9000 categories and it also outperforms the baseline.

The recommendation results obtained for the 2-hop subgraphs on book domain are shown in the

Fig. 5.8. The subgraph extracted with the top-5500 categories shows the similar performance as

the baseline subgraph.

With respect to the book 3-hop subgraphs shown in Fig. 5.9, the subgraph extracted with

top-7500 categories shows the best performance with an increase in precision by 3.3% for top-1

recommendations. To conclude, all the domain-specific subgraphs extracted by our approach perform

better or equally well when compared to the subgraph created by expanding set of domain entities

by navigating n-hops.
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Figure 5.6: Precision@n for PSL-DSHG2(K) and EXP-DSHG2 on the movie domain; K denotes
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2-hop 3-hop

EXP-DSHG2 PSL-DSHG2 EXP-DSHG3 PSL-DSHG3

5 0.87 0.876 0.87 0.87

10 0.852 0.857 0.851 0.852

15 0.842 0.849 0.842 0.844

20 0.837 0.842 0.836 0.84

Table 5.6: Deviation from average rating for Movie for EXP-DSHG and best performing PSL-DSHG ;

PSL-DSHG2(4500) and PSL-DSHG3(9000)

ratingdev

We calculate the ratingdev for different ranks and average it over all the users. We pick the best

performing PSL-DSHGn in terms of precision@n to present the results in comparison to the EXP-

DSHGn. Tables 5.6 and 5.7 show the deviation from the average ratings for the movie and book

domains calculated with 2-hop and 3-hop subgraphs. For both the domains, deviation from the

average rating performs equally well or outperforms the results obtained with EXP-DSHGn, except

for top 3 results for the book 3-hop graph. Hence, we can conclude that our approach does not

compromise the quality of recommendations by replacing highly rated recommendations. In most

cases, our approach improves the recommendations by replacing low rated recommendations with

better rated ones.

To summarize, the best performing movie-specific PSL-DSHG2 outperforms the EXP-DSHG2,

with a 43% reduction in the number of paths, and the PSL-DSHG3 outperforms the EXP-DSHG3,

with a 52% reduction in number of paths. The best performing book-specific PSL-DSHG2 performs

equally well with a 27% reduction in the number of paths and PSL-DSHG3 outperforms with a 45%

reduction in the number of paths with respect to the corresponding EXP-DSHGn subgraphs.
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2-hop 3-hop

EXP-DSHG2 PSL-DSHG2 EXP-DSHG3 PSL-DSHG3

1 0.619 0.623 0.613 0.632

2 0.617 0.617 0.622 0.629

3 0.610 0.617 0.632 0.625

4 0.613 0.613 0.627 0.627

Table 5.7: Deviation from average rating for Book for EXP-DSHG and best performing PSL-DSHG ;

PSL-DSHG2(5500) and PSL-DSHG3(7500)

5.3.4 Evaluation Results on PSL-DSHGn with the SUP-DSHGn

In this section, we compare the reduction and precision@n results for subgraphs generated by our

approach and a supervised approach.

5.3.4.1 Graph Reduction

In our approach, PSL-DSHG is generated by identifying the domain-specific categories from a n-hop

expansion subgraph from the domain entities. While SUP-DSHG follows a similar procedure, its

expansion graph is generated by navigating n-hops starting from a category representing the domain

(e.g., category Film) rather than the domain entities. In order to compare this approach to ours,

the graph expanded has to comprise of all the domain entities for recommendation. Therefore, we

set the n to 7 and 8 for movie and book domains where the expanded graph contains all the domain

entities in our evaluation datasets. The graph reduction statistics for PSL-DSHG and SUP-DSHG

is presented in Table 5.8. For 2-hop subgraphs in both movie and book domains, we pick the best

performing PSL-DSHG to report the results. As shown in the Table 5.8, movie path reductions are

significantly higher in the PSL-DSHG in comparison to SUP-DSHG. But, book path reductions are

higher in the SUP-DSHG.
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PSL approach Supervised approach

Categories Paths Categories Paths

Movie

EXP-DSHGn 6413 18M 77033 17M

*x-DSHG 4782(25%) 10.2M(43%) 10576(86%) 16M(6%)

Book

EXP-DSHGn 8603 2.2M 45784 2.0M

*x-DSHG 5847(31%) 1.6M(27%) 8521(81%) 1.0M(50%)

Table 5.8: Graph reduction statistics for PSL-DSHG2 and SUP-DSHG with expansion graphs for

movie and book domain; M denotes millions; *x refers either to PSL or SUP (depends on the column

title).

5.3.4.2 Accuracy - precision@n

We compare the precision@n results of PSL-DSHG in comparison to the SUP-DSHG and the

expansion graph of SUP-DSHG created by starting at the domain category (EXP-DSHG). The

results are portrayed in Fig. 5.10 where PSL-DSHG2 performs the best with an improvement of 3%

for both top-5 and top-15 movie recommendations in comparison to SUP-DSHG. The performance

of the recommendation system that utilize SUP-DSHG not only deteriorates in comparison to PSL-

DSHG but also in comparison to its own expansion subgraph. This is also corroborated with the

results shown in Fig.5.11 for the book domain. PSL-DSHG2 performs the best with an improvement

of 17% and 19% for top-3 and top-4 in comparison to the SUP-DSHG. SUP-DSHG is a good

example that emphasizes the importance of the evaluation metrics selected and the requirements

stated for a good graph reduction problem in this work. To reiterate, while reducing the graph to a

domain-specific graph is the primary goal of the work, it is also important not to compromise the

performance of the application that utilizes the reduced graph (in our case, the recommendation
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system). SUP-DSHG performs better in reducing the graph for the book domain, however, the

approach fails to provide equivalent or better recommendation performance in comparison to the

baseline. On the other hand, our approach, shows significant graph reductions without compromising

(and in most cases improving) the performance of the recommendation systems.

5.4 Campaign-specific Hierarchical Subgraph Extraction -

An Use Case

Social media platforms such as Twitter, Facebook, and LinkedIn have become a necessary tool in

the modern world as a way for people and organizations to share content. According to the statistics

reported in 2016, 69% of the total US population visit social networking sites.6 Twitter has around

330 million active users contributing to 500 million tweets per day.7 Many applications leverage this

vast amount of data being generated by social media users. Twitris [Sheth et al. 2014] is a social

data analytics platform to analyze the real world events. To name a few, it has been used to study

political events including election [Chen et al. 2012], brands [Purohit et al. 2012], crisis [Bhatt et al.

2014], and drug abuse [Lamy et al. 2016]. Social media text is short and noisy, and it also lacks

the context. This is challenging for NLP algorithms and hence has become a very active research

area [Derczynski et al. 2015]. Studies [Perera et al. 2015] [Perera et al. 2016] [Brambilla et al. 2017]

have shown that background knowledge about the domain can play a key role to understand social

media text better.

Creating domain knowledge that can support social media analytics can be very challenging.

The main source for creating the domain knowledge is the social media content. This content cover

diverse and highly dynamic events happening anywhere at anytime. For example, twitter campaigns

covered topics such as election campaigns, cancer studies, political events, and brand advertising.

6http://www.pewinternet.org/fact-sheet/social-media/
7https://www.omnicoreagency.com/twitter-statistics/
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With the vast amount of information being generated by social media with these diverse topics, it

is challenging to filter the domain relevant content [Kapanipathi et al. 2011] to create the domain-

specific knowledge. Furthermore, [Szekely et al. 2015] discuss the challenges caused by informal

language in creating a domain-specific KG for human trafficking domain. This emphasizes the that

relying purely on the social media content to create the domain-specific KGs can result in noisy

extraction. There have not been many efforts in leveraging large existing KGs to bootstrap the

domain-specific knowledge graphs. Even though the existing knowledge graphs cannot completely

capture the diverse real-time social media events, the domain-specific subgraphs extracted from large

knowledge graphs can be the base domain knowledge which can lead to further improvement. For

example, the domain-specific subgraph extracted from a large KG can be used to reduce the noisy

extraction from social media content. In fact, prior studies have shown that distant supervision

methods [Ren et al. 2017] which use a curated KG can enhance the accuracy of the fact extraction

from textual data. Then, the facts extracted from social media content can be used to improve the

domain-specific subgraph extracted from a large KG, and this can iterate over several times until

we capture complete knowledge.

The techniques discussed in this dissertation on domain-specific subgraph extraction cannot be

directly applicable to campaign-specific subgraph extraction. We use domains such as movie and

book to show the effectiveness of our approach. These domains have cohesive sets of entity types

such as movies, actors, directors, and producers which are tightly coupled together. However, if we

consider a domain which is interesting to social media such ”US Presidential Election”, it covers

diverse sets of entity types ranging from politician and policies to funding and business. Also, even

though every actor in the world relevant in the movie domain, every politician in the world might not

be relevant for the ”US Presidential Election”. This indicates that dealing with fine-grained domains

such as ”US Presidential Election” is not straightforward compared to domains such as movie and

book. At the same time, existing techniques leverage a large number of known seed domain entities

and an entity type to guide the extraction. For example movie-specific subgraph used around 3000
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movies and entity type Film in DBpedia. In the case of ”US Presidential Election”, there are only

58 US Presidential Election entities in DBpedia, and most of these entities might not be relevant as

social studies typically want study temporally important prior elections when analyzing an election

campaign. Also, if we stick only to the entity type US Presidential Election, we will miss out on an

important entity such US Foreign Policy as US Foreign Policy cannot be reached by simple 3 or 4

hop expansion from US Presidential Election.

In this chapter, we discuss how we leverage a description of the domain ”US Presidential Election”

to extract a domain-specific subgraph using the techniques proposed in Section 5.2

5.4.1 Schema-based Subgraph Extraction for US Presidential Election

Campaign

US Presidential Election Schema

”US Presidential Election” domain is a fine-grained domain and hence can not confine to a single

entity type in existing KG. We use a domain description about the ”US Presidential Election”.

While this description can be any structured or unstructured source which provides the necessary

initial coverage for the domain, we develop a schema/ontology to describe the ”US Presidential

Election” domain. Fig. 5.12 represents the entity types (classes) and relationships between these

entity types captured in the ”US Presidential Election” domain. For our study, we select these entity

type with the help of domain experts who work on analyzing the social media content including US

presidential election campaign in the Twitris platform. The selected entities are: 1) US Presidential

Election, 2) State, 3) County, 4) Presidential Candidate, 5) Vice President Running Mate, 6) Debate,

7) Debate Poll, 8) Election Campaign, 9) Candidate Finance, 10) Campaign Funding, 11) Party

Nominee, 12) Politician, 13) Supporter, 14) Political Party, 15) Political Convention, and 16) Political

Topic.
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N-hop Expansion Subgraph

To create the domain-specific subgraph, we first need to create the n-hop expansion subgraph.

Prior approaches use domain entities (e.g., movie entities in the movie domain) to create the n-

hop expansion subgraph. However, coming up with the domain entities for the ”US Presiden-

tial Election” domain is not straightforward due to the diversity of the domain. In order to col-

lect a diverse set of domain entities, we extract domain entities from the Wikipedia page about

”US Presidential Election” domain.8 This page contains important entities such as Political

Parties in the US, Electoral College, President of the United States, Vice President

of the United State, and United States Presidential Primary. As we conducted this study

during the US election 2016, we also extracted domain entities from the Wikipedia page about 2016

US presidential election domain.9 This led to adding domain entities such as 2016 Democratic

National Convention, Donald Trump, Hilary Clinton, Bernie Sanders, and Swing State. Out

to all the domain entities in these two Wikipedia pages, we manually pick 75 domain entities as seed

entities in the n-hop expansion subgraph. Finally, starting with these domain entities, we traverse

the Wikipedia category graph up to 3-hop towards both up and down in the hierarchy. Fig. 5.13

shows a portion of the subgraph we extracted from the domain entity Donald Trump.

In extracting the domain-specific subgraph from n-hop expansion graph, we leverage the PSL-

based framework proposed in Section 5.2.2. We assess the domain-specificity of a category us-

ing the type, lexical and structural semantics. However, in applying the PSL rules 5.5 and 5.6

for type semantics and PSL rules 5.7, 5.8, 5.9, and 5.10 for lexical semantics require to calculate

semtypesimx(TypeSet,Dom) and lexclussimy,x(TClusClus, Dom) constructs. In the case of movie

and book domains, we use the rdfs:label of the class representing the domain in DBpedia as the domin

term to calculate these similarities. In this scenario, we calculate semtypesimx(TypeSet,Dom) and

lexclussimy,x(TClusClus, Dom) with each domain term listed above in the ”US Presidential Elec-

8https://en.wikipedia.org/wiki/United States presidential election
9https://en.wikipedia.org/wiki/United States presidential election, 2016
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tion” domain and average it over all the domain terms to calculate the final value.

5.5 Evaluation Results

We ranked the categories in the n-hop expansion subgraph using PSL rules as outlined above. Our

n-hop expansion subgraph consisted of 19371 categories. We extract the top-K ranked categories

as domain specific and use only those categories to extract the domain-specific subgraph. We select

top-5000 ranked categories as relevant using the rankings from the PSL framework.

We follow the evaluation set up in [Mirylenka et al. 2015] which is the state of the art technique

for bootstrapping ontologies from Wikipedia category graph. We manually annotate 1000 random

sample from the 19371 categories in the n-hop expansion subgraph. Three annotators independently

annotate whether a given category is ”relevant” or ”irrelevant” to the ”US Presidential Election”

domain. We consider a category as ”relevant” if at least two of the three annotators indicated

the category is ”relevant”. This gold standard contains 264 relevant categories and 760 irrelevant

categories.

We implement a baseline using the approach outlined in [Mirylenka et al. 2015] and compare

its performance with the domain-specific ranking from our approach. We use the accuracy of the

prediction and the F1 scores of each class (relevant and irrelevant) as performance metrics. Table

5.9 shows the performance of this task. As shown in Table 5.9, our approach performs well in

comparison to the baseline. It increased the accuracy by 13%, F1 relevant by 21%, and F1 irrelevant

by 18% with a reduction of 74% of the categories.

5.6 Conclusion

We proposed an approach to extract a domain-specific subgraph from a generic hierarchical knowl-

edge graph. We used Wikipedia category hierarchy as the test bed. Our approach uses type, lexical,

and structural semantics of Wikipedia categories as evidences and aggregate them using PSL to
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Accuracy F1 relevant F1 irrelevant

Baseline 0.71 0.532 0.786

PSL 0.8 0.645 0.861

Table 5.9: Performance of category relevancy

determine the domain-specificity of a category. To demonstrate that our approach can work on mul-

tiple domains, we used datasets from two diverse domains, i.e., movie and book. We showed that our

approach is able to reduce the size of the subgraph by 40% - 50% in terms of number of paths com-

pared to the subgraph created by simple n-hop navigation-based approach. Furthermore, to show

the effectiveness on applications using KGs, we evaluated the quality of the domain-specific subgraph

extracted with a recommendation use case. Our evaluation showed that the recommendation results

improved in majority of the scenarios which demonstrated that harnessing relevant, domain-specific

information in KGs can in turn improve the performance of the applications in comparison to using

the entire KGs. We also compared our approach with a state-of-the-art domain-specific subgraph

extraction approach which uses a supervised learning technique and showed that our approach out-

performs accuracy of recommendation results obtained via supervised technique with a significant

graph reduction. We use the same state-of-the-art domain-specific subgraph extraction approach

to evaluate the subgraph created for ”US Presidential Election domain” and have shown that our

approach outperforms their approach.

We believe that this work has major impact in utilizing knowledge graphs for domain-specific

applications, specially with the exclusive growth in the creation of knowledge graphs. The reduction

in size with no compromise in the performance of applications will lead to fast and quick processing

of KGs for corresponding applications.



6

Conclusion and Future Work

6.1 Summary

Structured data on the Web frequently referred to as the Web of Data consists of a large number of

knowledge graphs representing diverse domains. Widely used commercial applications such as entity

recommendation, search, question answering and knowledge discovery use these knowledge graphs as

their knowledge source. Majority of these applications have a particular domain of interest, hence

require only the fragment of the Web of data representing that domain (e.g., movie, biomedical,

sports). In fact, leveraging the entire Web of data for a domain-specific application is not only

computationally expensive, but also the irrelevant portions negatively impact the accuracy of the

application. Hence, finding the relevant portion of the Web of data for domain-specific applications

has become an important research challenge.

This dissertation addressed the problem of extracting relevant Web of Data for domain-specific

applications. We categorize the problem of identifying relevant portion of the Web of Data in to two

subproblems; 1) Find the relevant knowledge graphs that contain knowledge about the domain of

interest, and 2) extract domain-specific subgraphs from the knowledge graphs that represent multiple

domains (e.g., DBpedia, YAGO, Freebase). This chapter summarizes our findings with respect to

101
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these subproblems and discusses interesting future research directions.

6.1.1 Automatic domain identification from the Web of Data

In this dissertation, we propose a solution to automatically identify the domain(s) of Web of Data

which can be used to automatically identify the relevant knowledge graphs for a given domain-

specific application. We have shown that existing crowd-sourced knowledge sources can be leveraged

to automatically identify the domains of the knowledge graphs. The main intuition behind our

approach is to derive a probability distribution over a well-specified list of domains organized at

different abstraction levels for each knowledge graph in a data-driven manner. We leverage knowledge

sources in the Web of data as a vocabulary to come up with a well-specified list of domains organized

at different abstraction levels. We use Freebase hierarchy (Freebase domain and Freebase type)

as our vocabulary. In a nutshell, our approach aligns the instances of a source knowledge graph

with freebase instances. It then uses the type information in Freebase to create a hierarchy as a

domain representation of the source knowledge graph with a weight computed for each category in

the hierarchy using the instance matching statistics.

We evaluate our approach on 30 LOD datasets using a user study involving twenty users. The

user study shows that 50% of the users agreed with 73% of our assignments. We also present a

search application with the domains identified using our approach and compare our approach with

well-known existing knowledge graph search applications: CKAN, LODStats, and Sindice. Our

approach performs better than LODStats and Sindice and is nearly as effective as CKAN which uses

manual tagging given to knowledge graphs. We believe our approach performs well due to the use

of Freebase which has a category hierarchy with good coverage of different domains in comparison

to approaches which utilize traditional indexing and manual tagging based approaches.

Automatic domain identification from the Web of Data is an essential step to improve the search-

ability of knowledge graphs. As the number of knowledge graphs in the Web of Data is rapidly

increasing, easy access to these knowledge graphs will certainly be helpful to improve the utilization
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of knowledge graphs for domain-specific applications.

6.1.2 Identifying domain-specific subgraph

Structured data on the web produced large-scale knowledge graphs such as DBpedia, YAGO, Free-

base, NELL, and Google Knowledge Graph. Relationship connecting two entities play a key role

in identifying the domain-specific subgraph from these large knowledge graphs. We categorize the

relationships into two main categories; 1) Hierarchical relationships which use inheritance to con-

nect entities, and 2) non-hierarchical relationships which represent diverse named relationships to

connect entities. We propose solutions to deal with both types of relationships in this dissertation.

For non-hierarchical relationships, we propose techniques to identify non-hierarchical relation-

ships specific to a given domain, and then use only those relationships to extract the domain-specific

subgraph. For example, recognizing that relationships dbprop:starring, dbprop:director, and

dbprop:award are specific to the movie domain whereas dbprop:spouse and dbprop:deathdate are

less specific would help to generate a better movie-specific subgraph. The specificity of a relationship

to its domain is calculated by measuring the strength of association of the relationship to its seed

domain entities using statistical techniques. Our approach identifies two characteristics, type and

path, in the KG to measure the strength of association of relationships to domain entities and pro-

pose two novel measures based on these characteristics. As hierarchical relationships have uniform

semantics (inheritance or ISA), we measure the specificity of entities to derive the domain-specific

subgraph. We measure the domain specificity of an entity in a hierarchy using the type, lexical and

structural semantics of the entities. To systematically combine different semantics towards domain

specificity of the category, we use the probabilistic soft logic (PSL) framework which is a statistical

framework to collect different forms of evidence.

To demonstrate the effectiveness of the proposed methodology, we evaluate the domain-specific

subgraphs created with our approach in the context of a recommendation application. Evaluation

results indicate that our approach was able to reduce the subgraph by 80% for non-hierarchical
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relationships and by 50% for hierarchical relationships without compromising on the accuracy of the

recommendation algorithm. We perform these experiments on two domains: movie and book. In

addition to the domains such as movie and book, we also evaluate our work in the context of a more

fine-grained domain such as US presidential election. We have shown that the subgraph extracted

by our approach is better than the state-of-the-art domain-specific subgraph extraction techniques

which use supervised learning.

As we have outlined above, Linked Data based recommendation algorithms can improve both

its performance and accuracy by extracting domain-specific subgraphs. Linked data based recom-

mendation algorithms commonly use graph-based algorithms such as page rank to rank items to be

recommended [Nguyen et al. 2015] [Musto et al. 2017]. These algorithms typically require a number

of iterations to converge to its final ranking and hence cause performance issues. The presented sub-

graph extraction techniques can be a great way to deal with these kinds of performance issues for any

graph-based algorithm. Even though we demonstrate the effectiveness of domain-specific extraction

techniques with a recommendation use case, this can be useful for applications such as named entity

disambiguation, question answering, and graph-based querying. To disambiguate an entity, existing

disambiguation techniques first select candidate entities for a given input word. Domain-specific

subgraphs can help to reduce the number of candidate entities by selecting only domain relevant

entities. This can contribute to improve both accuracy and performance. Graph-based querying

(e.g. SPARQL) can use domain-specific subgraphs to improve its response time.

To conclude, we believe that both automatic domain identification and domain-specific subgraph

extraction contribute in utilizing knowledge graphs for domain-specific applications by identifying

the relevant piece of knowledge.
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6.2 Future Work

6.2.1 Automatic domain identification from Web of Data

We believe the proposed technique to identify domains has a potential to be a basis for creating

a search catalog for a large number of knowledge graphs out there, and hence assisting in finding

relevant knowledge graph for a given domain-specific application. Our approach uses the richness

of Freebase as the domain vocabulary for our work. In future, it will be important to discuss

any alternatives for Freebase such as KBpedia 1 given that Freebase is no longer being actively

maintained. The proposed techniques are generic enough to be adaptable to any other knowledge

source. At the same time, it is impractical to assume that a single vocabulary has the capability to

address diverse domains represented by current knowledge graphs. Hence, another future direction

worth investigating would be to come up with mapping from one vocabulary to other. For example,

if we can map higher level concept in UMLS to generic medical concept in Freebase, this technique

will be able to provide a fine-grained description for medical domain.

In order to make sure of the sustainability of these kinds of data profiling techniques, we need to

create a community effort for indexing the knowledge graphs in this way by asking data providers

to provide these descriptions along with the knowledge graphs. This will make it easier to integrate

these domain descriptions with other data profiling techniques such as VOID and LODStats. In-

tegrated domain descriptions can be used by various search and indexing services to improve the

searchability of the knowledge graphs.

6.2.2 Identifying domain-specific subgraph

In this dissertation, we propose domain-specific subgraph extraction techniques which go beyond

from simple n-hop expansion techniques. However, these techniques do not address the extraction

of temporally relevant subgraphs. Incorporating spatial-temporal relevance to the domain-specific

1http://kbpedia.com/
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subgraph extraction will be an important criteria and future research direction in this area (such

as social campaigns during US presidential election). As of now, our techniques facilitate domains

described as an entity type or a set of entity types. Some applications might benefit from extracting

subgraphs when the domain description is not only limited to entity types but also to relationships

types. At the same time, there can be certain relationships which have different interpretations

depending on the context. For example, even though spouse relationship is generally not considered

as relevant to the movie domain if the spouse relationship is specified between two characters

in a movie that will be a relevant relationship for the movie domain. Tackling these different

interpretations of the same relationship will be a challenging future research direction.

With respect to the technical advancements to the proposed approaches, one limitation in the

current approaches is that of selecting top-k entities and relationships after the ranking is done

via experimental analysis. An approach to determine the right k value with some measures of

reduction will be an important contribution to the proposed approaches. Furthermore, while in

non-hierarchical relationships have only focused on relationships and hierarchical relationships on

entities, investigating that combining both entities and relationships for domain-specific ranking can

be an interesting discussion. Certainly, this will require more computation power as the number of

entities are much higher than the number of relationships. In this case, an analysis which discusses

the trade-offs between the accuracy improvement versus scalability of the approach can be highly

valuable. It will also be interesting to study different applications which can be benefited from the

subgraph extraction in addition to the recommendation applications.
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Pirrò, G. 2015. Explaining and suggesting relatedness in knowledge graphs. In International Semantic

Web Conference. Springer, 622–639.

Ponzetto, S. P. and Strube, M. 2011. Taxonomy induction based on a collaboratively built

knowledge repository. Artificial Intelligence.

Prud, E., Seaborne, A., et al. 2006. Sparql query language for rdf.



6.2. FUTURE WORK 118

Pujara, J., Miao, H., Getoor, L., and Cohen, W. 2013. Knowledge graph identification. In

Proceedings of the 12th International Semantic Web Conference. ISWC ’13. Springer-Verlag New

York, Inc., New York, NY, USA, 542–557.

Purohit, H., Ajmera, J., Joshi, S., Verma, A., and Sheth, A. P. 2012. Finding influential

authors in brand-page communities. In ICWSM.

Ren, X., Wu, Z., He, W., Qu, M., Voss, C. R., Ji, H., Abdelzaher, T. F., and Han, J.

2017. Cotype: Joint extraction of typed entities and relations with knowledge bases. In Proceed-

ings of the 26th International Conference on World Wide Web. International World Wide Web

Conferences Steering Committee, 1015–1024.

Resnik, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. arXiv

preprint cmp-lg/9511007 .

Russell, S., Norvig, P., and Intelligence, A. 1995. A modern approach. Artificial Intelligence.

Prentice-Hall, Egnlewood Cliffs 25, 27, 79–80.

Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al. 2012. Open language learning for

information extraction. In Proceedings of the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning. Association for

Computational Linguistics, 523–534.

Schuhmacher, M. and Ponzetto, S. P. 2014. Knowledge-based graph document modeling. In

Proceedings of the 7th ACM international conference on Web search and data mining. ACM,

543–552.

Schwarte, A., Haase, P., Hose, K., Schenkel, R., and Schmidt, M. 2011. Fedx: Optimiza-

tion techniques for federated query processing on linked data. In International Semantic Web

Conference. Springer, 601–616.



6.2. FUTURE WORK 119

Seco, N., Veale, T., and Hayes, J. 2004. An intrinsic information content metric for semantic

similarity in wordnet. In Proceedings of the 16th European conference on artificial intelligence.

IOS Press, 1089–1090.

Shah, I. and Sheth, A. 1999. Infoharness: managing distributed, heterogeneous information. IEEE

Internet Computing 3, 6, 18–28.

Shani, G. and Gunawardana, A. 2011. Evaluating recommendation systems. In Recommender

systems handbook. Springer, 257–297.

Sheth, A., Arpinar, I. B., and Kashyap, V. 2004. Relationships at the heart of semantic web:

Modeling, discovering, and exploiting complex semantic relationships. In Enhancing the Power

of the Internet. Springer, 63–94.

Sheth, A., Avant, D., and Bertram, C. 2001. System and method for creating a semantic web

and its applications in browsing, searching, profiling, personalization and advertising. US Patent

6,311,194.

Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., and Warke, Y. 2002. Man-

aging semantic content for the web. IEEE Internet Computing 6, 4, 80–87.

Sheth, A., Jadhav, A., Kapanipathi, P., Lu, C., Purohit, H., Smith, G. A., and Wang, W.

2014. Twitris: A system for collective social intelligence. In Encyclopedia of social network

analysis and mining. Springer, 2240–2253.

Shortliffe, E. H. 1974. A rule-based computer program for advising physicians regarding antimi-

crobial therapy selection. In Proceedings of the 1974 annual ACM conference-Volume 2. ACM,

739–739.

Szekely, P., Knoblock, C. A., Slepicka, J., Philpot, A., Singh, A., Yin, C., Kapoor, D.,

Natarajan, P., Marcu, D., Knight, K., et al. 2015. Building and using a knowledge graph

to combat human trafficking. In International Semantic Web Conference. Springer, 205–221.



6.2. FUTURE WORK 120

Thomas, C., Mehra, P., Brooks, R., and Sheth, A. 2008. Growing fields of interest-using an

expand and reduce strategy for domain model extraction. In Web Intelligence and Intelligent

Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on. Vol. 1.

IEEE, 496–502.

Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P., and Aberer, K. 2013. Trank:
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