
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

99

Domain Specific Languages

Aruna Raja
Usha Mittal Institute of Technology,

SNDT Women’s University,
Santacruz (W), Mumbai, 400049

 Devika Lakshmanan
Usha Mittal Institute of Technology,

SNDT Women’s University,
Santacruz (W), Mumbai, 400049

ABSTRACT
To match the needs of the fast paced generation, the speed of

computing has also increased enormously. But, there is a limit to

which the processor speed can be amplified. Hence in order to

increase productivity, there is a need to change focus from

processing time to programming time.

Reduction in programming time can be achieved by identifying

the domain to which the task belongs and using an appropriate

Domain Specific Language (DSL). DSLs are constrained to use

terms and concepts pertaining to an explicit domain making it

much easier for the programmers to understand and learn, and

cuts down the development time drastically.

In this paper, we will understand what a DSL is; explore a number

of DSLs spanning various phases of software development life

cycle in terms of features that elucidates their advantages over

general purpose languages and perform in depth study by

practically applying a few open source DSLs: ‘Cascading’, Naked

Objects Framework and RSpec.

Categories and Subject Descriptors
D.1.m [Programming Techniques]: Miscellaneous

General Terms

Performance, Design, Languages

Keywords

Domain Specific Language. Fluent Interfaces, Method Chaining,

RSpec, Cucumber, RGen, Graphviz, ‘Cascading’, Naked Objects

Framework, Maestro, ScalaModules, Make, Rake, Twill, Twist,

SmartFrog, Chef, EC2 Deploy Framework

1. INTRODUCTION
Domain Specific Language (DSL) is a computer language that is

targeted to a particular kind of problem, rather than a general

purpose language that's aimed at any kind of software problem

[1].

The concept of DSLs has been around for a long time in the form

of mini-languages such as shell utilities like awk, sed etc in the

Unix community. These languages specialized in a particular

domain for reduced lines of code. A number of tools like

spreadsheet, HTML, SQL, CSS that have been in widespread use

are also DSLs. But the term has only gained popularity recently

with the advent of Domain-specific modeling.

A DSL is simple and concise with the expressive power focused

on a particular problem domain. It is custom built to be very

intuitive and fluent for a domain expert (even non- programmers)

to use, validate, modify and even write DSL programs. It allows

one to construct efficiently and quickly complete applications for

that domain, thus reducing programming time and increasing

productivity. These advantages of DSLs over general purpose

languages (GPLs) are making DSLs very popular and the design

and implementation of DSLs an intensive area of research.

The goal of DSLs is to provide a highly effective interface that

allows users to interact with their application. They try to screen

away the internal details of the application and let the users work

with familiar terms and concepts of their domain. Classic example

of a DSL that has been used widely for a long time is that of SQL

for writing database queries. For a given problem, the users need

to only think about the SQL queries and commands required and

not the actual underlying operations that work on the database.

Features of DSL

• It is designed to be simple in order to reduce the

learning time.

• It is built on the domain user’s vocabulary.

• The syntax provided hides the inherent programming

aspect of the application from the client.

• In spite of an increased startup cost, DSL - based

methodology renders a lesser Total Software Cost

compared to a conventional methodology.

2. NEED FOR DSLS
The following reasons have lead to the need to create and use

DSLs:

• Creating a domain-specific language can be worthwhile

if the language allows particular type of problems or

solutions to them to be expressed more clearly than pre-

existing languages would allow, and the type of

problem in question reappears sufficiently often.

• In order to reduce development time, tools with reusable

code libraries are required. Repetitive tasks to be

performed are readily defined in DSLs with custom

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

100

libraries whose scope are restricted to the domain and

hence need not be written from scratch each time.

• There is need for a solution that empowers experts with

the power to specify the logic of their applications and

maintain it at the same time as and when requirements

change. Domain specific languages provide such

solutions that help domain experts to easily comprehend

and create code for their application. The self

documenting feature of DSLs supports it further.

• It is difficult to map conceptual model of solution into

mainstream programming language as most time is

spent in finding ways to express natural language

concepts in terms of programming level abstractions

(e.g. classes, methods, loops, conditionals, etc.). The

mapping to DSLs becomes much easier and

straightforward because DSLs make use of terms and

concepts dealt in the specific domain instead of being

forced to translate ideas into notion that a GPL is able to

understand.

3. DOMAIN SPECIFIC LANGUAGES vs
GENERAL PURPOSE LANGUAGES
Domain specific languages have a number of advantages over

general purpose languages such as Java and c++, some of which

are listed below:

• The scope of a DSL is only up to a specific domain. It

therefore allows any domain expert to use it, in contrast

with general purpose language that requires core

programming capabilities in order to develop

applications.

• Domain specific languages are very expressive i.e. their

syntax is readable and easily understandable.

front_door.paint(3,:red).dry(30).close

For example, the above piece of code written in Ruby

gives a clear idea to anyone about what it is trying to

implement.

• DSLs reduce complexity by screening away the internal

complex operations of the system. GPLs would require

manual coding of every detail that becomes

cumbersome and time consuming.

• DSLs are more productive as they need lesser

programming time compared to GPLs.

• Domain specific languages support standardization

wherein the underlying implementation can be changed

without the need to change the code. For example,

HTML is browser independent and can work on all

kinds of browsers.

4. FLUENT INTERFACES
Fluent Interface is a term coined by Eric Evans and Martin Fowler

that is used to describe objects that expose an interface that flows,

and is designed to be readable and concise. They allow one to

express the code in the terms of the domain being worked on. It is

basically a design pattern followed to create API for DSLs.

It adds on to readability using the following features:

Method chaining

Method chaining allows each property to be set through a method

call and then have that method return a reference to it so as to

continue on with the next method call. A simple example for

method chaining would be

string user = new StringBuilder().Append("Name:

").Append(emp.Name).AppendLine().Append("EmpCode:

").Append(emp.Code).AppendLine().ToString();

Factory classes

Used in cases where there is a need to build up a series of related

objects. These classes provide methods to manufacture the

instances required.

For example, in NUnit 2.4 the following can be written:

Assert.That(result, Is.EqualTo(4)); [2]

Where ‘Is’ class is the factory class and EqualTo is one of the

factory methods it contains. These methods specify the constraints

for evaluation in NUnit.

Named parameters

Languages like Smalltalk and C# 4.0 contain a feature called

Named parameters which provide a way to include additional

“syntax” in a method call which in turn improves readability [2].

For example, consider a user defined Set () method which takes a

user name and password for setting up a new login Id.

myLogin.Set("DSL","Explore");

With Named Parameters the above can be represented more

precisely as:

myLogin.Set(User:"DSL", Password:"Explore");

5. TYPES OF DSLS
There are two types of DSLs –Internal DSLs and External DSLs

In case of an internal DSL, the aim is to reuse and extend a given

host language. The key feature is that all the infrastructure of the

host language is inherited by the DSL. The DSL is constructed /

embedded as a library of functions written in the host language.

Constructed in this way, the DSL can be easily extended by

simply adding a new function to the library. Internal DSLs are

generally designed using dynamic languages such as Ruby that

contain meta-programming features. Meta programming is the

creation of computer programs that writes or manipulates other

programs (or themselves) as their data, or that do part of the work

at compile time that is otherwise done at run time. In many cases,

this allows programmers to get more work done in the same

amount of time as they would take to write all the code manually.

Common examples of internal DSLs are Ruby on Rails and RSpec

using Ruby, ‘Cascading’ and Smartfrog with Java as their base

language.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

101

For external DSLs such as SQL and Make, the idea is to build a

DSL from scratch. Hence, grammar needs to be created for the

language that requires additional efforts in the form of a compiler

that is required to parse and process the syntax and map it to the

semantics.

An advantage of internal DSL is that the compiler or interpreter of

the base language is reused as it is. Because the programmer takes

the effort to define the grammar for an external DSL, that effort

also serves to validate the syntax. This is harder to do with an

internal DSL because the code is often processed dynamically.

Extensive error checking and validation has to be done.

Furthermore, it is constrained by the host language’s syntax and

structure. In contrast, an external DSL gives a lot of flexibility,

but it involves the overhead of increased compile time.

6. DSLS IN SOFTWARE DEVELOPMENT
LIFECYCLE
The various phases in SDLC can be viewed as separate technical

domains and many in the DSL forefront are actively involved in

creating one for handling the basic functions performed in these

domains.

6.1 Specification phase
It is of utmost importance as any miscommunication of

requirements happening in this phase could lead to an outcome

not as per the client’s needs. To deal with this situation an

“outside-in” methodology called Behaviour Driven Development

(BDD) can be employed. It starts at the outside by identifying

desired outcomes and then works out on the set of features that

will help to achieve them. To simplify these tasks in the

specification domain DSLs like RSpec and Cucumber have been

created and are described below.

6.1.1 RSpec

Ruby based DSL RSpec achieves BDD by creation of 2 separate

files, one containing the specification test cases and other

comprising enough code to pass through the same. It gives the

output in terms of the number of executable examples and

failures. These executable examples are expected behaviour of the

system listed using the method ‘it’ and any deviation to achieve

them is reflected as a failure. They are mainly used to write unit

tests. It is an open source tool; its gem can be readily installed and

included into the ruby library for utilization.

6.1.2 Cucumber

Cucumber is a tool that can execute plain-text documents as

automated functional tests. The stories are specified using Given-

And-When-Then steps making it declarative enough for even a

non-programmer business specialist to understand. It can be of

interest as can be used for integration testing. This tool written in

ruby is also quite capable of testing code in other programming

languages with the aid of some extra tools.

Cucumber stories do not substitute for RSpec unit tests. The two

go hand in hand. The specs for unit tests tend to drive

development of components where as the stories provide a good

test of the application as a whole from the user's perspective.

6.2 Design phase
The primary objective of the design phase is to create a design

that satisfies the agreed application requirements. DSLs that

support auto generation of designs through small pieces of code

have been created.

6.2.1 RGen

The Ruby based RGen is a modeling and generator framework. It

provides support for dealing with models and metamodels, for

defining model transformations and for code generation.

Following the Ruby design principles, it is lightweight and

flexible and supports efficient development by providing means to

write concise, maintainable code, thus allowing for efficient

development and simple deployment [3]. RGen uses its object-

oriented programming for representation of models and

metamodels: objects to represent model elements and classes for

metamodel elements. In model transformation, an instance of one

metamodel is converted into an instance of another metamodel.

RGen also supports code generation wherein model is transformed

to textual output. RGen, being dynamically typed has certain

disadvantages such as missing compiler checks and editor

support. They are compensated by means of a more intensive unit

testing and using those dynamic language features that makes use

of editor support difficult to build. Typical applications include

code generators, prototyping tool in automotive industries, tools

for building and manipulating models, mostly in XML.

6.2.2 Graphviz

Graphviz is software for automatically drawing graphs and

networks using a very compact code as compared to other graph

visualization tools like SVG. Hence there is enormous reduction

in programmer’s time.

It supports in-built options for colour, fonts, line styles, custom

shapes, etc making it much user friendly. One of the many

applications is Instaviz which is a graph sketching application for

the iPhone using Graphviz libraries for rendering.

6.3 Implementation phase
DSLs have been created for implementing tasks from various

domains like distributed computing, object-oriented

programming, building software etc.

6.3.1 Cascading

‘Cascading’ is a java based DSL created by Chris Wensel for

faster implementation of Map/Reduce problems on Hadoop

cluster. It helps to overcome problems like thinking in terms of

Map/Reduce as well as executing larger number of Map/Reduce

jobs in sequence by simply using 5 core components namely:

Tuple, Tap, Pipe, Flow and Cascade.

Tuple is used to represent the records from input files. Tap is a

resource like data files on local, distributed, or Hadoop file

systems. Pipe performs operations on each record and is of three

types: Each, Group and Every. Flow connects the pipe assembly

to source tap and sink tap on either sides. Cascade is an optional

stage which merges multiple flows.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

102

6.3.2 Naked Objects Framework

Naked Objects Framework (NOF) is a DSL which was originally

created for fast prototyping of object- oriented applications. Since

the introduction of persistence, complete applications like the

Irish government’s social benefits program has been created. It is

available as a commercial application development platform in

.Net and an open source development platform in Java. It requires

mere creation of behaviourally rich domain objects and the other

layers like User Interface, persistence layer etc are auto-generated

by NOF. Behaviourally rich domain objects simply need defining

of the parameters and actions associated with the instance of

objects and the various services required. The entire NOF can be

summarized by the conceptual diagram shown below:

Fig 1: Conceptual Diagram of NOF

The various components of NOF as shown in figure 1 are as

follows:

Title- Name associated with each instance of Domain object.

Properties- Parameters of the Domain objects.

Actions- Operations needed to be performed on each instance of

Object.

Fixtures- Contains data to be launched each time the application

is run during demos.

Services- It defines functions that cannot be applied to single

instance. Eg: Find developer, Show all etc

Repositories- Complex services required to be defined by user.

These are implemented through object stores like Hibernate and

XML.

Factories- Services like object creation is built in NOF.

NOF supports two versions for interface: Drag and Drop and Web

view. Drag and Drop is the desktop version used for standalone

operations. Web view can be used over the web browser.

6.3.3 Maestro

Maestro is an internal DSL with actor based concurrency on .NET

platform used for writing distributed applications. Maestro is a

subset of language features which allow for easier isolation and

concurrency within that isolation.

Built upon Concurrency and Coordination Runtime (CCR), it is an

Actor oriented language with constructs like Domain, Agents,

Channels, Schemas and Networks. This adds on features like

process isolation, message passing, fault tolerance and loose

coupling required for handling concurrency.

6.3.4 ScalaModules

ScalaModules is a DSL for Scala-based OSGi development. The

aim of ScalaModules is to employ the power of the Scala

programming language to ease OSGi development. Scala is

statically typed dynamic language and hence ScalaModules’

OSGi code will be more intuitive and concise as well as less

verbose and involved compared to Java-based development [4].

The Open Services Gateway Initiative (OSGi) is an independent,

non-profit corporation working to define and promote open

specifications for the delivery of managed services to networked

environments, such as homes and automobiles. These

specifications define the OSGi Service Platform, which consists

of two parts: the OSGi framework and a set of standard service

definitions which are defined by ScalaModules [5].

Scala and OSGi both aim at very important concerns about

software development: ease and reduced complexity. Scala

operates at the bottom level of a programming language and OSGi

at the higher level of a module system. Hence it is natural to

combine those two to get the best out of both. It fully supports

interoperability as Scala compiles to the usual Java byte code.

6.3.5 Make

‘Make’ is a dependency tracking build utility tool for executable

programs and libraries. This external DSL is a declarative

programming language where the build process is dependent on a

given platform. Because of its compatibility with UNIX platforms

it has attained wide spread popularity. ‘Make’ builds object files

from the source files and links the object files to create the

executable. If a source file is changed, only its object file needs to

be compiled and then linked into executable instead of

recompiling all source files. Since ‘Make’ utility is not an

executable program on its own, a Makefile is used to derive target

program from each of its dependencies. But, Make is error-prone

as it requires programmers to manually track all dependencies

between files in a project.

6.3.6 Rake

Rake is a Ruby variant of ‘Make’ and used to build simple build

scripts. But unlike ‘Make’ it is an internal DSL which uses ruby

syntax. Rake is a software build tool created by Jim Weirich in

order to define tasks, do dependency task tracking with an

additional feature which rebuilds only modified source files since

last compilation. The third feature however is not required as

Rake is an interpreted language. Rake makes use of a Rakefile as

a reference to all the tasks and dependencies. It can be used for

automating tests, generating HTML documents, cleaning up

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

103

generated files not required for the project, to build a gem package

etc.

6.4 Testing phase
DSLs have been created to perform different types of tests on

various applications.

6.4.1 Twill

This DSL written using python as host language aims at testing

web applications. The simplest way to test web sites is to write

one or more Twill scripts and then simply run from the command-

line. It can be used for both unit as well as stress testing. The

assertion commands built into Twill (code, find and notfind)

should be enough for testing web sites that use straight HTML

and forms. For more complicated Javascript-intensive web sites, a

tool such as Selenium might be more appropriate [6].

6.4.2 Twist

Twist is an IDE created by ThoughtWorks Studios for functional

testing of web and java-applications. It can also run regression,

smoke, performance type of tests. The tool provides a single

platform for documenting user stories, capturing executable

requirements, developing, maintaining, running and reporting on

functional tests. This tool implemented on Eclipse platform

provides support for DSLs. Lines in DSL map into the underlying

test automation using Selenium and Frankenstein. Tags can be

associated with the tests to perform filtering for running subsets of

test.

6.5 Deployment phase
After the system has been tested during the Testing Phase, and

accepted by the user, the system is installed and made operational

in a production environment, in accordance with the requirements.

This has been made easier for large distributed systems through

DSLs.

6.5.1 SmartFrog

SmartFrog is a powerful and flexible Java-based software

framework used in the domain of configuration-driven systems for

configuring, deploying and managing distributed software

systems [7]. It uses notations to specify which applications are

running where, how each component configured and their

lifecycle are sequenced and how they are related. This HP Labs

system uses a declarative template language for describing

deployments. It has multiple software components running across

a network of computing resources, where the components must

work together to deliver the functionality of the system as a

whole. There is no central server; you can deploy a .SF

configuration file to any node and have it distributed to peer nodes

according to the distribution information contained inside the

deployment descriptor itself. It is critical that the right

components are running in the right places, that the components

are individually and collectively configured, and that they are

correctly combined to create the complete system. This profile fits

many of the services and applications that run on today's

computing infrastructures. It is an open source tool and can be

used by anyone for the purpose of deployment. Recent version of

the tool has been successfully run on both Linux and Windows.

Currently used by HP Labs for infrastructure and service

automation.

6.5.2 Chef

Chef is a Ruby based DSL interpreted by chef clients working

under chef servers. It uses a pure Ruby DSL for writing

configuration "recipes". Clients authenticate themselves using an

OpenID. Synchronization of needed resources and libraries are

done automatically. These resources are used for configuring the

client node, a process called convergence [8]. Chef can be used as

a client-server tool, or used in "solo" mode. Recent version of the

tool has been successfully run on Linux.

Both support mutual authentication. Encryption is fully supported

by SmartFrog but partially by Chef.

6.5.3 EC2 Deploy Framework

EC2 Deploy is an open source framework for deploying an

enterprise Java application on a set of Amazon EC2 servers. This

deployment tool is written in Groovy.

EC2 (Elastic Cloud Compute) provides on – demand computing.

It is one of the pay per use services managed by Amazon. It has a

virtualized computing environment with server instances managed

by a web service API.

EC2 Deploy describes clusters in terms of servers and location of

web applications. It provides a methodology that easily launches

EC2 instances, configures servers, deploys web applications and

performs JMeter tests on clusters.

7. EXPERIMENTS WITH DSLS
In order to practically apply a few DSLs, small applications were

created using ‘Cascading’, Naked Objects Framework and RSpec

respectively.

7.1 Brand name change application using

‘Cascading’

The product created can be used by companies at time of brand

name change. In such a scenario the new name needs to replace

the old one in all the web pages associated with the company so as

to adopt the new brand name. For huge firms the number of places

where such a change will be encountered would be huge and the

task might consume substantial amount of time if done manually.

In an attempt to reduce this time, the concept of distributed

computing and Map/Reduce can be utilized.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

104

Figure 2. Pipe diagram for the cascading application

The product is developed using the ‘Cascading’ DSL created over

a distributed Hadoop cluster. The application makes use of a

single ‘Each’ pipe applying the ‘search and replace’ operation on

each record from the input web pages as shown in figure 2. Thus,

the user is not required to think in terms of Map/Reduce resulting

in drastic reduction of development time.

7.2 Defect Tracking System using Naked

Objects Framework

This business system has been designed using Naked Objects

Framework to manage the various defects that have been logged

by the QA team of the organization. Two domain objects namely

Developer and Defect have been created along with the associated

parameters, actions and services. They are displayed on the UI

upon which the user can carry out various operations. Persistence

has been achieved via XML object store. Through fixtures inbuilt

data gets loaded onto the UI every time the system runs in the

transient mode.

The Developer object in figure 3 allows the user to include any

new developer into the system and conduct various operations like

finding developers by name or id and also to delete them from the

system if required.

The Defect object as shown in figure 4 helps to register any new

Defects identified. The next step would be to allocate a developer

to the defect from the set of developers in the system. This is done

either by using the Drag and Drop mechanism in DND viewer or

by using the Drop down menu in the HTML viewer.

NOF supports validation through a few built in methods and

registered annotations that have been used to validate the

parameters of Defect and Developer objects.

Figure 3. Developer Domain Object

Figure 4. Defect Domain Object

7.3 Using RSpec to create specifications for a

Finite State Machine (FSM)

An application defining the specifications for a FSM has been

written using the following steps [9]:

• Write a test. This test describes the behavior of a small

element of the system.

• Run the test. The test fails because the code for that part

of the system has not been built yet. This step tests the

test case, verifying that the test case fails when it

should.

• Write enough code to make the test pass.

• Run the tests and verify that they pass.

Figure 5.Specifications file for FSM in RSpec

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

105

The specifications file in figure 5 contains the various specs such

as the valid states and events of the machine and correct

transitions upon different triggering events. These specifications

describe the basic requirements that need to be satisfied by the

code to be of acceptable level. Since the code is written to pass

these specifications, they tend to capture the client’s requirements

completely and have minimal errors. As testing is performed

along with the development, testing is not compromised as

deadlines approach closer.

8. CONCLUSION
In today’s world, every possible domain requires the use of

computers either to perform calculations, store information or

write programs and hence a number of Domain Specific

Languages have been designed to serve the need. Since the focus

of each DSL is just a domain, it can be used by any specialist of

that domain to write applications without the need to have any

core programming skills.

The concept of DSLs has been around in the Unix community

since long in the form of mini-languages with the focus being

reduction in lines of code. However, DSLs now have additional

features to aid readability, reusability and maintainability due to

the introduction of object oriented and dynamic languages.

DSLs have really changed the way of building software and many

in the DSL forefront see the future of programming as writing

DSLs for specific platforms, frameworks (i.e. Rails), or the actual

language used for writing the code in a specific business domain

(i.e. Domain Driven Development). With the promising

productivity boost and smaller code base feature, the future for

DSLs seems to be brilliant and a study on this subject is

worthwhile.

9. ACKNOWLEDGMENTS
We would like to express our gratitude to Usha Mittal Institute of

Technology and Patni Computer Systems Ltd. for providing us

with this brilliant opportunity to take up this project activity as a

part of the curriculum.

10. REFERENCES
[1] M.Fowler, “Domain-specific language “, Oct. 2008 [Online]:

Available:

http://en.wikipedia.org/wiki/Domain_specific_languages.

[Accessed: Jan. 16, 2009]

[2] Bevan, “Fluent Interfaces – Method chaining”, Nov. 2008

[Online]. Available:

http://stackoverflow.com/questions/293353/fluent-interfaces-

method-chaining [Accessed: January 23, 3009]

[3] M.Thiede, “RGen: Ruby Modelling and Code Generation

Framework”, Feb. 2009 [Online]. Available:

http://www.infoq.com/articles/thiede-ruby-modelling.

[Accessed: Feb. 26, 2009]

[4] “Scala DSL to ease OSGi development”, March 2009

[Online]. Available:

http://wiki.github.com/hseeberger/scalamodules [Accessed:

March 11, 2009].

[5] H.Cervantes and R.S.Hall, “OSGi in a nutshell”, March 2004

[Online]. Available:

http://gravity.sourceforge.net/servicebinder/osginutshell.html

[Accessed: March 11, 2009].

[6] G.Gheorghiu, “Agile Testing Web app testing with Python

part 3: twill”, Sep. 2005 [Online]. Available:

http://agiletesting.blogspot.com/2005/09/web-app-testing-

with-python-part-3.html [Accessed: June 05, 2009]

[7] “Homepage – SmartFrog”, Feb. 2009 [Online]. Available:

http://wiki.smartfrog.org/wiki/display/sf/SmartFrog+Home.

[Accessed: Feb. 11, 2009]

[8] C.Martin, “Chef Configuration and Provisioning Tool

Announced”, Jan. 2009 [Online]. Available:

http://www.infoq.com/news/2009/01/chef-management-tool-

announced. [Accessed: Feb. 5, 2009]

[9] B.Tate, “Behavior-driven testing with RSpec”, Aug. 2007

[Online]. Available:

http://www.ibm.com/developerworks/web/library/wa-rspec/.

[Accessed: Feb. 19, 2009]

