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DOMAIN THEORETIC MODELS OF POLYMORPHISM* 

Thierry Coquandt Carl A. Guntert Glynn WinskelQ 

INRIA Rocquencourt University of Pennsylvania Aarhus University 

June 6, 1988 

Abstract 

We give an illustration of a construction useful in producing and describing models of Girard 

and Reynolds' polymorphic A-calculus. The key unifying ideas are that of a Grothendieck fibration 

and the category of continuous sections associated with it, constructions used in indexed category 

theory; the universal types of the calculus are interpreted as the category of continuous sections of the 

fibration. As a major example a new model for the polymorphic A-calculus is presented. In it a type 

is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic A-calculus 

as categories of continuous sections appears to be useful generally. For example, the technique also 

applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the 

work here was inspired by Girard's and arose through trying to extend the construction of his model 

to Scott domains.) It is hoped that by pin-pointing a key construction this paper will help towards a 

deeper understanding of models for the polymorphic Xcalculus and the relations between them. 

1 Introduction. 

Jean-Yves Girard presented his discovery of the polymorphic A-calculus in the paper [7]. His motivations 

came from proof-theory and his use of the calculus to represent proofs in second-order arithmetic. Later, 

in [21], John Reynolds rediscovered the calculus independently though his motivation was different, 

being to provide a formal basis to certain polymorphic type disciplines in programming languages. In 

designing the calculus, Girard and Reynolds each extended the typed A-calculus to allow a form of 

parametric polymorphism. Types include universal types which are types of polymorphic terms, thought 

of as describing those functions which are defined in a uniform manner at all types. Terms can be applied 

to types and in this sense can be parameterised by types. 

In more detail, type variables a are introduced into the typed A-calculus so, for instance, Ax : a . x  

should be thought of as the identity function on the type denoted by a. The polymorphic identity function, 

the term which denotes the identity function on any type, is denoted by the term Acr.Ax : a.x. It has 
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a universal type denoted by na.a -t a. Given a type a l ,  a term Aa.t of universal type ITa.oz can 

be instantiated to a term [ol/a]t which then has type [a1/a]a2, and so, for instance, the polymorphic 

identity above instantiates at type a to the identity Ax : o.x of type a -t a. 

While the pioneering work of Girard contains most of the results on the syntax of the calculus, an 

understanding of its models and semantics has developed more slowly and is still incomplete. There is a 

trivial model got by interpreting types as either the empty or one-point set. While from a proof-theoretic 

view there may be some use in this when the one-point set represents true and the empty set false 

(e.g. to prove consistency as in [25]), it is clearly inadequate as a model of polymorphism. In essence, 

the difficulty of providing nontrivial models arises from the impredicative nature of the calculus; in the 

abstraction of a universal type 1Ia.a the type-variable a is understood to range over all types including 

the universal type itself. This makes it impossible to interpret types as nontrivial sets in a classical set 

theory (see [20]) although, lately, Pitts has shown how polymorphism can be interpreted in a constructive 

set theory [18]. Until recently the only nontrivial models known were either term models or realisability 

models [7] or, following ideas of McCracken [17] and Scott, models based on a universal domain in 

which types are coded-up as particular kinds of retracts. The latter are models for stronger calculi with 

a type of types and so are not tailored directly to the requirements of polymorphic A-calculus and do not 

in themselves suggest a general definition of model for the calculus. In his paper [8], Girard produced an 

interesting new model in which types of the polymorphic A-calculus are represented as certain kinds of 

objects called qualitative domains, work which was extended in [4]. The category of domains used in [8] 

and [4] is not the usual one taken in denotational semantics-in particular the morphisms are functions 

which are stable in the sense of Berry and not just Scott continuous. The work left open the question 

of whether or not a model similar to Girard's could be found in the more traditional category of Scott 

domains and continuous functions. 

One achievement of this paper is to present such a model for the polymorphic A-calculus. It can be 

viewed as doing with Scott domains and continuous functions what Girard did with qualitative domains 

and stable functions. Qpes  will be interpreted as Scott domains and types with free type variables, called 

"variable types" by Girard, as continuous functors on a category of Scott domains. Although Girard's 

work provided inspiration, the construction of domains to denote universal types is different. 

We have taken trouble to expose the abstract construction of which our model is an instance. A key 

unifying idea is that of a Grothendieck fibration and the category of its continuous sections. A universal 

type is interpreted as a category (in this case a domain) of continuous sections of a fibration. Looked at 

in this way, Girard's construction, the retract models of McCracken and Scott, and the construction here 

are all based on instances of a common idea, that universal types are interpreted as continous sections of 

a Grothendieck fibration. 

We briefly outline the paper. The following section, section 2, introduces the basic ideas of domain 

theory and category theory on which we shall rely. Section 3 contains a treatment of Grothendieck 

fibrations and continuous sections, instances of which are given for domains; taking the base category 

to be a domain we obtain constructions to represent the dependent sum and product types as used in, 

e.g., Martin-Li5f type theory while taking a suitable category of domains as the base category we get a 

construction we shall use later as the denotation of universal types. For concreteness, we show how the 



construction can be canied out in the framework of information systems-an elementary representation 

of domains. Section 4 contains proofs of several of the technical lemmas needed for the demonstration 

that our construction yields a model of the polymorphic A-caluculus. Section 5 gives the syntax of the 

polymorphic A-calculus with its equational rules and Section 6 its denotational semantics accompanied by 

proofs of the soundness of the rules. In section 7 where we show how the traditional domain models of 

polymorphism of McCracken and Scott using retracts can be cast in this light (very similar ideas appear 

in the thesis work of Taylor, [29]). Finally, in the conclusion, we present our views on the state of the 

art of models for polymorphism. 

As we have already stated the work of Girard has been a guiding influence on this work. We have 

received encouragement and advice from a number of people whom we tha*, we are grateful to Martin 

Hyland for pointing-out that a construction we produced could be based on a Grothendieck fibration, 

to Eugenio Moggi for the remark that this construction applied to Girard's model as well, and to Pino 

Rosolini for valuable discussions. The significance of fibrations in modelling polymorphism has been 

anticipated in the thesis work of Paul Taylor (see [29]) who gave a category-theoretic analysis of the 

concept of a type of types using indexed category theory (but exclusively, it seems, considering domains 

indexed by partial orders and not as here by categories of embeddings). 

2 Categories and domains. 

In this section we review basic concepts from category and domain theory. Its purpose is largely to 

establish notation and terminology. We assume the reader has some familiarity with these topics. A 

knowledge of the results in [28] would be a good starting point; most of the proofs for results stated in 

this section can be found there. 

Let (I, 5 )  be a partial order. We say that I is directed if it is nonempty and, for any i and j in I, 

there is a b E I such that i 5 k and j 5 b. A partial order (D, 5 )  having a least element I is said to 

be complete (and we say that D is a complete partial order, abbreviated to cpo) if every directed subset 

M C_ D has a least upper bound V D. A point x of a cpo D is said to be finite if, for every directed 

collection M C D such that x < V M ,  there is a y  E M such that x < y. Let BD denote the collection 

of finite elements of D. The cpo D is algebraic if, for every x E D, the set M = {xo E BD I xo 5 x) 

is directed and z = V M .  A cpo D is bounded complete if every bounded subset of D has a least upper 

bound. We call bounded algebraic cpo's Scott domains or just domains. In a domain, least upper bounds 

of finite sets of finite elements are finite, when they exist. 

A function f : D + E between cpo's D and E is monotonic if it is order preserving, i.e. if 

x 5 y  then f (2) 5 f ( y ) .  A monotonic function f : D -t E between cpo's D and E is continuous if 

f ( V  M )  = V f ( M )  for any directed M C_ D. Domains with continuous functions form a category D 

which is very important for denotational semantics. It is cartesian-closed. Let D and E be two domains. 

Their product is the domain D x E consisting of pairs of elements ordered coordinatewise, with the 

obvious projections. Their function space D + E consists of the continuous functions from D to E 



ordered pointwise, sometimes called the extensional order, i.e. 

A pair of continuous functions (f, g), with f : D 4 E and g : E + D between cpo's D,  E, is said to 

be an embedding-projectionpair if g o  f (d) = d, for all d E D, and f o  g(e) < e, for all e E E; then f is 

called the embedding and g the projection. We use equally the notations f og  or f g  for the composition of 

functions, and use the following notation to pick out the embedding and projection parts of an embedding- 

projection pair h = (f,g): let hL = f and hR = g. We remark that as embedding-projection pairs are 

an example of an adjunction, in this case between very simple partial order categories, it follows that an 

embedding determines its accompanying projection uniquely and vice versa. The category of domains with 

embedding-projection pairs as morphisms will be of central importance to us. We call the category DEP, 

and write h E DEP(D, E )  to mean h is an embedding-projection pair, with embedding part a function 

hL : D + E. We take the composition of two embedding-projection pairs h = (hL, hR) E DEP (D, E )  

and k = (kL, kR) E D E P ( ~ ,  F )  to be k o h = (kL o  hL, hR o kR) E D ~ ~ ( D ,  F). The identity of a domain 

D in this category is the pair (idD, idD). 

A partial order (I, 5 )  forms a category in which the objects are the elements of I and the set of 

morphisms from point x to point y, written D(x, y), is a one point set when x 5 y and is empty 

otherwise. A directed family in DEP consists of a functor from a directed set (I ,  5 )  to DEP; as such it 

provides an indexing of a family of objects D; E DEP, for i E I ,  and morphisms fij E DEP(xi,Xj), 

for i < j ,  so that fia = idD, and fik = fjk fij whenever i 5 j 5 k. A cone for such a directed 

family is a family of morphisms (pi E D E P ( ~ ; ,  D)) iE l ,  for a domain D, such that pi = pj o fij for all 

i, j E I. Note that because embeddings are monic the morphisms fij of the directed family are uniquely 

determined by the cone. And in future we shall most often speak of a cone for a directed family without 

troubling to mention the directed family of which it is a cone; this will always be understood to be that 

uniquely determined directed family with morphisms f;j = pfp?, for i, j E I. A directed colimit is a 

cone (pi E DEP(D,, D))iEI for a directed family, with the universal property that for any other cone, 

(pi E D E P ( ~ ; ,  D'))iEl, there is a unique mediating morphism h E DEP(D, D') such that p: = pi o h 

for all i E I. That is, an initial object in the category of cones. In general, we say that a category C is 

directed complete if it has colimits for all directed families. So, in particular, a cpo is directed complete 

when regarded as a category. 

The category DEP is another example of a directed complete category, and we shall often be concerned 

with calculations involving its directed colimits. It will be useful to relate embedding-projection pairs 

into a common domain D via certain morphisms in D E P ( ~ ,  D)  which correspond to the images of the 

embeddings in D. 

Lemma 1 Let X,Y, D be domains. Let f E DEP(x, D)  and g  E DEP(y, D). Then 

Theorem 2 The category D~~ is directed complete. A cone (pi E D E P ( ~ ; ,  D))iEI is a directed colimil 

iff {pf o pR(i E I} is directed in D 4 D and 

idD = o p?li E I}.1 



Theorem 3 Let D be a domain. Then 

{fL 0 f R l f  E D~'(x, D) for somefinite X )  

is a directed subset offinite elements in D + D and 

 id^ = v{fL 0 f R l f  E IIEP(x, D) for somefinite X}I 

By virtue of Theorem 2 we see Theorem 3 implies that a domain is the colirnit of the finite domains 

which embed into it. From the fact that the set in the theorem is directed we deduce the following: 

Lemma 4 Let fo E DEP(xo, D) and fl E D~~ ( x l ,  D) where Xo, XI are finite domains. Then there 

is a finite domain X and g E DEP(x, D)  SO that go = (gR o fk,  fc o gL) E D ~ ~ ( x ~ ,  X )  and gl = 
L R (gR 0 fl , f l  0 gL) E D E P ( x l , x )  with f~ = 990 and fl = 991.1 

From the fact that the elements in the set in Theorem 3 are finite we deduce: 

Lemma 5 Suppose (p i  E D E P ( ~ ; ,  D))iEI is a directed colimit in DEP. If X is a finite domain and 

f E DEP(x, D)  then there is some i E I and h E DEP(x, D ~ )  such that f = pi o h. 1 

Given categories C and C', we define the product category C x C' to be the category which has 

as objects pairs (C, C') where C and C' are objects of C and C' respectively. The arrows are pairs 

(f,g) : (X, XI) + (Y, Y') where f E C(X, Y) and g E C'(X',Y1) with the obvious composition and 

identity. There are also projections 

When understood from context, the subscripts will usually be dropped. If Fl : C + C1 and F 2  : C + C2 

are functors, then there is a unique functor (Fl, F2) : C + C1 x C2 such that Fst o (FI, F2) = FI and 

Snd o (Fl, F2) = F2. In particular, the diagonal functor A : C + C x C is (Idc, Idc). If F : CI -, C2 

and F' : C: -+ Ca then we define 

We write 1 for the terminal category which has one object and one arrow and 1~ for the unique functor 

from a category C to 1. Given a category C and a number n 2 0, we define the n'th power Cn of C by 

taking C0 = 1 and Cn+l = Cn x C. More generally, we define the multiary product of a list of categories 

by setting x()  = 1 and x(C1, . . . , Cn+l) = (x(C1,. . . , C,)) x Cn+1. 

A functor F : C -+ C1 between directed complete categories C and C' is continuous just in case 

it it preserves directed colimits. A continuous function is thus an example of a continuous functor on 

categories which are partial orders. It is easy to check that a functor F : Cl x C2 -t C is continuous 

iff it is continuous in each of its arguments individually. As our categories C will often have the form 

( D * ~ ) ~  the problem of verifying continuity we often reduce to the problem of whether or not functors 

F : D~~ + D * ~  are continuous. To verify the continuity of such a functor it is very useful to employ 

the following: 



Lemma 6 A functor F : DEP + DEPis continuous iff whenever X is a domain and there is a family of 

domains Xi and functions fi E DEP (xi ,  X ) ,  such that { ff o fpl i E I )  is directed and V i  ff o f? = idx, 

then Vi  F L ( f i )  o FR( f i )  = idqX). I 

The product operator x on categories cuts down to a continuous functor 

When D and E are domains, we write idD, fstDIE and sndD,E rather than IdD, F s t D , ~  and SndDIE. 

The function space operator + is also a functor on DEP. Suppose f E D E P ( x ,  XI) and g E DEP(y , y ' ) .  

Then we define f + g E D ~ ~ ( x  + Y, XI + Y ' )  by setting 

for h E D ( X , Y )  and 

( f  + g)R(h') = gR 0 h' 0 f 

for h' E D(X1 ,Y1) .  

When functors on DEP take several arguments we can make their manipulation a little tidier by 

introducing the following notation. Given a functor F : C -t DEP, we define a functor F~ : C + D as 

follows. The action of F L  on objects of C is the same as F .  Given a function f E C ( X , Y ) ,  we define 

F L ( f )  = ( F ( f ) ) L  E D ( F ( X ) ,  F ( Y ) ) .  We also define a functor FR : C O P  + D by taking the action of 

F~ on objects to be that of F and defining FR( f )  = ( F (  f ) )R  E D ( F ( Y ) ,  F ( X ) ) .  We may also write 

( F f ) or even F ( f ) when the meaning is clear from context. 

In our semantic treatment of type expressions we will have to cope with the presence of free type- 

variables and a type expression will denote a functor whose arguments provide an environment associating 

values with these variables. It is convenient to define generalisations of the product and function space 

functors on DEP to cope with these extra parameters. Given functors F : C + DEP and G : C + DEP 

we define 

F # G =  X O ( F X G ) O A : C + D ~ ~  

We also define a multiary version of the # operation by taking #() to be the functor 1c into the trivial 

domain and setting #(Fl ,  . . . , Fn+l) = # ( F l , . .  . , Fn) # Fn+l. Given functors Fl ,  . . . , Fn and numbers 

n 2 i > 1, we define i'th projection 

by taking 
i,n-1 

f s t x ( ~ ~ ( x ) ,  ..., ~ ~ - 1  (x)),Fn(X) O PX if < 
S n d x ( ~ ~  (x),...,Fn-~(X)),Fn(X) otherwise. 

To keep the number of parentheses to a minimum in the calculations we make, it is helpful to introduce 

some biding conventions. We will assume that association is to the left, so an expression such as f xy 

or f ( x ) ( y )  will be parsed as ( f  ( x ) ) ( Y ) .  This convention also holds for the application of a section to 



an object; so f ( t ) x  parses as ( f  ( t ) ) ~ .  However, we read an expression such as tG(X)  as t (G(X) )  so 

that f tG (x )  parses as ( f  ( t ) ) (G(x) ) .  We assume that application binds more tightly than composition; so 

F ~ (  f )  o F ~ ( ~ )  parses as (FR( f ) )  o (FR(g ) )  and f o t x  parses as f o ( t x ) .  For functors, we assume 

that # binds more tightly than +, so that FI # F2 + F parses as (Fl # F2) + F.  We assume that II" 

(introduced in section 3) binds more tightly than either # or +. Application will bind more tightly than 

x or +, so that F ( X )  x G ( X )  parses as ( F ( X ) )  x ( G ( X ) ) .  

3 Interpreting types. 

In our approach, closed types (those with no free type variables) will denote domains. m e s  with free 

variables will denote functors on domains which yield a domain once they are given an instantiation of 

their free variables. Thought of in this way the denotation of a type IIa.0 should be a functor taking one 

less argument than that for a in a way which respects the rules of the polymorphic A-calculus. In this 

section we work towards the definition of an operation on functors to achieve this. The operation, again 

called 11, shares many properties with universal quantification, and indeed can be viewed abstractly in 

a similar way, as right adjoint to the operation of "padding out" a functor with an extra argument. Our 

treatment conforms to the category-theoretic definition of model for the polymorphic A-calculus proposed 

by Seely [24], though for the most part we shall express our ideas concretely, through giving particular 

constructions on domains. Our more concrete approach will, however, be enough here (in the same 

way that it is not necessary to know what a cartesian-closed category is in order to understand what it 

means to be a model of simple typed lambda-calculus). A slight exception to this approach arises in the 

construction of II which we show is a special case of a general one, traditional in category theory, that of 

sections of the Grothendieck fibration of a functor. Other familiar constructions on types like dependent 

sum and product arise as special cases too. 

3.1 Fibrations and sections. 

Let F : C -, Cat be a continuous functor from a category C to the category of all categories. Define the 

Grothendieckfibratwn of F to be the category CF consisting of 

objects which are pairs ( X ,  t x )  where X E C and t x  E F ( X ) ,  and 

morphisms ( X ,  t x )  + (Y ,  t y  ) which are pairs (f,  a )  where f : X + Y in C and a : F(  f ) ( t x )  + 

t y  in F ( Y )  

with the composition of two morphisms ( f ,  a )  : ( X ,  t x )  + (Y ,  t y )  and ( g ,  ,B) : (Y, t y )  -+ (2, t z )  given 

by 

(9 ,P )  0 ( f ,  a )  = (9  0 f ,D 0 F ( g ) ( a ) ) .  

Then CF is a category with the identity morphism on ( X ,  t x )  being ( idx ,  idt,). 

The projection p : CF -t C is defined to be the functor which takes ( f ,  a )  : ( X ,  t x )  -t ( Y , t y )  to 

f : X + Y .  



We remark that our definition of Grothendieck fibration is not quite standard as it is traditional to 

work with opposite categories and, consequently, have the functor F  take arguments in a category Cop 

(so that cofibration would perhaps be a better name); for our purposes this would be inconvenient. 

The construction IIF has continuous sections as objects. A section of C F  is a functor s  : C -t C F  

such that p o s  = idc, and, of course, a continuous section is such a functor which is continuous. Taking 

sections as objects we form a category by taking morphisms to be cartesian natural transformations, 

i.e. those natural transformations which project under p to identity morphisrns in C. A typical morphism 

between sections is a natural transformation Y from a section s  to section st consisting of a family ( Y ~ ) ~ ~ ~  

of morphisms v x  : s ( X )  -, s l ( X )  in C F  where p(vx)  = idx for all X  E C. Of course, each component 

Y X  of such a natural transformation must have the form v x  = (idx, ox)  with ax : t x  + t k  where 

s ( X )  = ( X , t x )  and s r ( X )  = (X , t>) .  Being a natural transformation ensures that for all f  : X  -t Y 

we have v y  o s( f )  = s l ( f )  o Y X .  The category TIF is defined to be the full subcategory of continuous, 

sections. 

3.2 Families indexed by a domain. 

We shall be concerned with fibrations and sections solely for the case in which the functor F  takes values 

which are domains. Then for special forms of base category C the structure TIF, in general a category, 

will be isomorphic to a domain. A simple example arises when C is a domain itself and the functor F  

goes from the domain to the category of domains with embeddings; in this case not only is IIF a domain 

but so is CF.  We shall call these constructions dependent product and dependent sum, following the 

terminology in Martin-Lof type theory [14], [15]. (The constructions seem to be well-known and appear 

in the exercises of [19].) A more abstract presentation would have been to use the ideas of 1241 in order to 

give a categorical characterisation of the dependent product and sums, and to show that the constructions 

we give verify these properties (see also [5]) .  See section 7 for an application of dependent products. 

Let C be a domain regarded as a category so there is a unique morphism from x  to y  precisely when 

x  < y; thinking of the graph of the order relation as beiig the set of morphisms, we shall write ( x ,  y)  

for the unique morphism from x  to y. Let F  : C + D~~ be a continuous functor to the category of 

domains with embedding-projection pairs. The functor F  provides a domain F ( x )  for each element x  

of C and embeddings F ( x , ~ ) ~  : F ( x )  + F ( y )  for x  5 y in C. These satisfy the functor laws so 

F ( x ,  x ) ~  = idF(,) and if x 5 y  5 z  then F ( x ,  z ) ~  = F ( y ,  z )L  o F ( x ,  y)L.  In this case the category C F  

has objects ( x ,  t,) where x  E C and t ,  E F(x) .  A morphism ( x , t x )  -t ( y , t y )  arises when and only 

when x  5 y  in C and F ( ~ , y ) ~ ( t , )  5 t y  in F(y) .  It follows that the category C F  is isomorphic to a 

partial order defined on objects of C F  by 

It is easy to check this relation is a partial order, and, perhaps not surprisingly, C F  is a domain too. 

Proposition 7 Let C be a domain. Let F  : C 4 DEP be a continuous functor. Then C  F  is a domain. In 

this case the projection functor is a continuous function p : C F  -t C between domains. 



Proof: CF has a least element (I, IF(I)) .  Suppose V = { (x i ,  t i )  1 i E I )  is a directed subset of CF. 

Then {xi  ( i E I )  is a directed subset of C and so has a least upper bound x  = Viel xi in C. It is easy 

to see the set {F(x ; ,  ~ ) ~ ( t ; )  ( i E I }  is directed. Taking t = ViEz  F(x; ,  ~ ) ~ ( t ; )  we show that ( x ,  t )  is 

the least upper bound of V in CF. Clearly it is an upper bound and supposing (x ; ,  t i)  < ( X I ,  t'), for all 

i E I, we see x  < x' and F(xd ,  ~ ' ) ~ ( t ; )  5 t' for all i E I  whence 

F ( X ,  ~ ' ) ~ ( t )  = F ( X ,  x ' )~ (V   xi,  ti)) 
icZ 

= V ( ~ ( x ,  x ' ) ~  o F(x i ,  ~ ) ~ ) ( t ; )  by continuity 
;€ I  

= V F(xj ,   ti) 
b€I 

< t', 

which makes ( x , t )  5 (xt,t '). Hence CF is a cpo. 

A routine argument shows CF is bounded complete. Let W = {(x; ,  t i )  ( i E I} be a set with upper 

bound ( y ,  u). Then because x; < y  for all i E I  there is a least upper bound x  = Viel X i  in C. Because 

F(x; ,  y )L( t i )  5 u for all i E I  we see ~ ( x ; ,  ~ ) ~ ( t ; )  = ( ~ ( x ,  y )R  0 F(x ; ,   ti) I F ( X ,  Y ) ~ ( u )  for 

all i E I in F(x) .  Hence their least upper bound t  = ViEz F(x; ,  ~ ) ~ ( t ; )  exists in F(x ) .  It follows that 

( x ,  t )  is a least upper bound of W. 

The cpo CF is also algebraic with finite elements of the form (e ,  f )  where e  E Bc and f E 

Such elements are certainly always finite by the following argument. Suppose (e, f )  < V V where V 

is a directed subset of CF,  assumed to be of the form V = {(x; ,  t ; )  1 i E I). As we have seen such 

a directed set V has least upper bound ( x ,  t )  where x  = ViEI x; and t  is the least upper bound of the 

directed set {F(x ; ,  ~ ) ~ ( t ; )  1 i E I}.  Because e 5 ViEz x; and e  is finite there is some j E I for which 

e  5 xj. Because F(e,  ~ ) ~ ( f )  < vi,, F(xi ,   ti) and F(e,  ~ ) ~ ( f )  is finite, being the image under 

an embedding of a finite element f ,  there is some k E I  such that ~ ( e ,  x ) ~ (  f )  5 F ( x k ,  ~ ) ~ ( t k )  and 

xj 5 xk. From 

F ( x k ,  xlL 0 ~ ( e ,  xk)L  = ~ ( e ,  x ) ~ ,  

we see F(e,  xk )L  = F ( x ~ , x ) ~  o F(e ,  x ) ~ .  Hence ~ ( e ,  ~ k ) ~ ( f )  5 F ( x ~ , x ) ~  o ~ ( x ~ , x ) ~ ( t k )  = tk SO 

(e ,  f )  5 ( x k ,  t k ) .  Thus (e ,  f )  is indeed finite. 

Let ( x ,  t  ) E C F. Consider the set 

If (eo, f o ) ,  ( e l ,  f l )  E V then, as we saw when showing CF is bounded complete, their least upper bound 

has the form 

(eo v e l ,  F(eo, eo V el ) ( f o )  V F(e1, eo V e l ) ( f l ) )  

, and this is an element of V using the fact that least upper bounds of finite elements are finite. Thus V 

is directed. From the fact that F is continuous we now show V has least upper bound ( x ,  t ) .  Certainly, 

the set {e 5 x  I e  E Bc) is directed with least upper bound x. We are assuming that F f is continuous, 



i.e. that it presewes directed colimits, so the colimiting cone { (e ,  x )  ( e  5 x  and e  E Bc) in C is sent to 

the colimiting cone { F ( e ,  x )  : F ( e )  -, F ( s )  I e  5 a: and e  E B e }  in DEP. By Theorem 2, this ensures 

t  = V { ~ ( e , x ) ~  o F ( e , ~ ) ~ ( t )  I e  I: x  and e  E Bc}. 

But now we see 

t  = V { F ( ~ ,  ~ ) ~ ( f )  I e I: x and e  E Bc  and f  5 F(e ,  ~ ) ~ ( t )  and f E BF(,,)}. 

This makes ( x ,  t )  = V V.  

Now we can see directly that any finite element ( x ) t )  must be such that x  E Bc and t  E BF(,); 

because ( x ,  t )  is finite and the lub of a directed set of elements of this form it must be equal to one such 

element. And, of course, any element of C F  is a least upper bound of finite elements. Clearly the set of 

finite elements is countable. This completes the proof that C F is a domain. 

It is easy to see it comes equipped with a continuous pmjection function p : C F + C. I 

Now we turn our attention to IIF when F is a continuous functor C + DEP from a domain C. Its 

elements are continuous sections. A section is a functor s : C + C F  such that p o s  = idc. Bearing in 

mind the nature of C F  we take the image of x  E C under s  to be s ( x )  = ( x ,  t,). As both categories C 

and C F  are partial orders, s being a functor amounts to monotonicity, i.e. 

x  5 y  implies s ( x )  5 s (y ) ,  

i.e. x  5 y implies (x, t ,)  5 (y, t ,) ,  

i.e. x  5 y  implies F ( x ,  y)(t,) 5 t ,  

for all x ,  y  E C. Sections thus correspond to families (tx)xEC which satify (1).  Continuous sections 

correspond to families which satisfy the monotonicity condition (1 )  and 

for any directed set V of C. We call such families continuous. Two continuous sections s ,  st correspond 

to continuous families t  = ( tx)zEC and t' = (tL)xEC respectively. A morphism between them corresponds 

to a family of morphisms ( a ,  : t ,  + t;)xEC but each such component a, simply amounts to an ordering 

t ,  5 t;. Hence, a morphism s + st between sections corresponds to a pointwise ordering 

t  5 t' iff V x  E C. t ,  5 t: 

between the corresponding families. 

Not surprisingly, to show IIF is a domain it is convenient to work with the isomorphic category of 

continuous families with morphisms given by the pointwise order. Clearly this category is a partial order, 

and, as we now show, it is a domain. 

Proposition 8 Let C be a domain. Let F : C t D~~ be a continuous functor. Then TIF is a domain. 



ProoE There is a least family with each component consisting of iF(,) for z E C. k t  {t(') I i E I) be 

a directed set in IIF. Define the family t  = (Vie, tl'))x,c. Clearly it satisfies (1). Let V be a directed 

subset of C. Then 

= V F ( V ,  V v ) ~ ( V  t$ ) )  
vEV &I 

= V J'(v,V ~ ) ~ ( t t J )  
vEV 

so t  satisfies ( 2 )  and is therefore a continuous family. Thus IIF is a cpo. 

To show IIF is bounded complete, assume {t(" ) i E I}, a set of continuous families, has upper 

bound u. As F ( x )  is a domain and so bounded complete for all x  E C we can define a family 

t  = (Vie, t f ) ) z  E C. It satisfies (1 )  above. Let V be a directed subset of C. Then, to show (2) ,  we 

notice 

= V F(v,V ~ ) ~ ( t u )  
vEV 

where we have used the fact that embeddings preserve least upper bounds. 

Let e  E Bc and f E B q e ) .  Define the family [e, f ]  to have component 

~ ( e ,  x ) ~ (  f )  if e  5 x, 
[ e ,  f l x  = 

otherwise, 

for x E C. It is easy to check [e, f ]  satisfies (1 )  and (2) and so is a continuous family. Consider a family 

t ,  obtained in the following way as the least upper bound of a finite number of such families, 

We show t  finite. Suppose t  5 V V where V is a directed subset of C. Then for any i, with 1 5 i 5 n, 

we get 

the least upper bound of a directed set. As f i  is finite, fi 5 udi) for some di) E V .  But then [ei, f i ]  < ~ ( ' 1 .  

As V is directed .there is some v  E V which dominates each di)  for 0 5 i I n which ensures t  5 v. 

This shows t  is finite. 



A continuous family t  is easily seen to be the least upper bound of the directed set 

{[el ,  fiI v . ' .  v [en, fn]  I f~ 5 tel & . . . & fn  5 t en) ,  

where we are assured that the least upper bounds mentioned exist because they are bounded above in a 

bounded-complete partial order. It follows that any family which is a finite element of II F must have the 

form [el,  f l ]  V - .  . V [en, fn] .  Clearly such elements form a countable set. Hence IIF is a domain. I 

3.3 Families indexed by a category of domains. 

Our other important example arises when F : DEP + D~~ is a continuous functor. In this case, as we 

shall see, while CF can only be considered as a category, IIF is isomorphic to a domain when both are 

viewed as categories. 

Assume F : DEP + DEP is a continuous functor. In this case, CF is a category with objects pairs 

( X ,  t x ) ,  where X E DEP and t x  E F ( X ) ,  and morphisms ( X , t x )  + ( Y , t y )  correspond to morphisms 

f : X + Y for which ( ~ f ) ~ t x  < t y .  Note, CF is not a partial order-it simply has too many 

morphisms. We need to consider the form of colimits in CF. A directed family in CF corresponds to 

a directed set ( I ,  5 )  indexing a family of objects ( X i ,  t i )  in C F and morphisms f i j  E D~~ (xi, X j )  SO 

that ( F  f ; j ) L t ;  < t j ,  for i 5 j. A colimit for such a family corresponds to a pair ( X ,  t )  with a collection 

of morphisms (g; : X ;  +- X) ;€ I  making a colirniting cone in DEP and so that t  = V ; ( F ~ ; ) = ~ ; .  

As in the earlier case, when F : DEP + DEP the category IIF of continuous sections can be seen as 

consisting of certain kinds of continuous families ordered pointwise. As before, sections correspond to 

families ( t X ) X E D ~ ~ ,  where t x  E F ( X ) ,  which are monotonic in that they satisfy 

f E DEP(x,  Y )  implies ( F  f )Ltx 5 t y  (1 )  

for any f .  Continuous sections preserve directed colimits. Thus if (pi  : Xi  + X ) ; € I  is a directed 

colirnit in DEP, then (sp; : sX;  + s X ) ; ~ ~  is a directed colimit in CF. Considering the form of directed 

colimits in CF,  it follows that continuous sections correspond to families which satisfy (1 )  and also 

the requirement that for such directed colimits (pi : Xi + X);€* in DEP we have t x  = v ; ( ~ p ; ) ~ t ~ , .  

Recalling Theorem 2 we can write this condition as follows. For any cone (p i  : X;  + X) ;€ I  we have 

{pf. o I i E I }  is directed and V o p? = idx implies t x  = V ( ~ p , ) ~ t ~ ,  . 
i€ I i 

(2 )  

We call families satisfying (1) and ( 2 )  continuous. As before, morphisms between continuous sections 

correspond to their associated families being ordered pointwise, i.e. 

t  5 t'iff V X   ED^'. t~  5 t i  

where t  and t' are two continuous families. 

At this point it is tempting to conclude .that IIF is a partially ordered set and press on with the 

demonstration that it is a domain. Unfortunately, it is not quite, as its objects, the continuous sections, 

are not sets. Even though the elements of IIF are classes they can be put in 1-1 comspondence with the 



elements of a suitable set. To see this, take S to be some countable subcategory of domains equivalent 

to the full subcategory of all finite domains with embedding-projection pairs as morphisms. Then any 

continuous section is determined by its restriction to the standard domains S. Ordered pointwise these 

restrictions are in 1-1 order preserving correspondence with IIF. In this sense IIF is isomorphic to a 

partially ordered set, in fact a domain. This more generous sense of isomorphism is quite standard in 

category theory; according to the usual notion of isomorphism there, IIF is isomorphic to a domain when 

both are viewed as categories. This has described the sense in which we mean IIF is isomorphic to a 

domain. Details are given in the proof of the following theorem. 

Theorem 9 Let F : DEP -+ DEP be a continuousfunctor. The category IIF is isomorphic to a domain. 

Proof: Take IIsF to be the partial order consisting of families ( t x ) x E s  which are monotonic in the 

sense that 

f E DEP(X ,  Y )  implies ( F  f ) L t ~  5 t y ,  

for all X ,  Y E S ,  ordered pointwise. It is clear that IIsF is a set because S is. Now we show that TIF 

and IIsF are isomorphic as categories, and, later, that IIsF is a domain. 

Clearly, any continuous section t E IIF determines, by restriction, an element res t E TISF. Con- 

versely, any element of t E IIsF can be extended to a continuous section ext t by taking 

(ext t ) ~  = V { ( ~ f ) ~ t x  I X E S & f E D E P ( x ,  D)} ,  

for any domain D. This must be checked to be well-defined however. 

We note the set { ( ~ f ) ~ t ~  I X E S & f E D ~ ' ( x ,  D ) )  is directed so that the least upper bound 

really does exist. To show this, take two elements of the set yo = ( ~ f ~ ) ~ t x ,  and yl = ( ~ f ~ ) ~ t x ,  

arising from morphisms fo E DEP(Xo,  D )  and f l  E D ~ ~ ( x ~ ,  D )  where Xo,  X1 are finite domains. By 

Lemma 4 there is a finite domain X and g E D E P ( x ,  D) ,  go E DEP(Xo,  X )  and gl E DEP(X1,  X )  with 

fo = g o go and fl = g o g l .  Because t is monotonic it follows that yo, y1 5 ( ~ ~ ) ~ t ~ ,  an element of 

the set. Hence the set is directed, and the definition above does at least yield a family. It remains to 

show that the family is continuous. Firstly, to show the family is monotonic, assume g E D E P ( ~ ,  E )  and 

notice 

( ~ ~ ) ~ ( e x t  t ) ~  = ( ~ g ) ~ V { ( F f ) ~ t x  ( X E S and f E D E P ( x , D ) }  

= V { ( F ~ ) ~  o ( F  f ) L t ~  I X E S and f E D ~ ' ( x ,  D ) }  

5 V { ( ~ h ) ~ t x  1 X E S and h E D E P ( x ,  E ) }  

= (ext t ) E .  

This shows monotonicity. Suppose now that (pi E D E P ( ~ i ,  D))iEI is a directed colimit. To complete 

the demonstration of continuity we require that 

(ext t ) ~  = V { ( ~ ~ i ) ~ ( e x t  t o i )  I i E I } .  



Note first that the set is directed because ext t is monotonic. Again by monotonicity we obtain 

(ext t ) ~  2 V { ( ~ p ; ) ~ ( e x t  t ~ , )  I i E I} .  

According to its definition (ext t ) ~  is the least upper bound of elements ( ~ f ) ~ t ~  for X E S and 

f E D E P ( x ,  D). Consider such an element. By Lemma 5, there is some i E I and h E D E P ( x ,  Di) 

such that f = pi o h. Now we see 

It follows that (ext t ) ~  5 V ; ( ~ ~ ; ) ~ ( e x t  tDi) ,  and now the equality required for continuity is obvious. 

Now, it is easy to see that the two operations restriction res : IIF + IIsF and extension ext : 

IIsF + IIF preserve the order relation. For t E TISF, we certainly have t y  5 (ext t ) y  for Y E S- 

consider the identity morphism on Y-and by the monotonicity of t we see 

(res ext t )u  = V { ( F  I X E S and f E D E P ( x ,  y)} 5 t y -  

Hence res ext t = t for t E IIsF. For X E S we have (res t ) x  = t x ,  so from the definition of ext and 

res we see 

(ext res t ) ~  = V { ( F  f l L t x  I X E S and f E D ~ ' ( x ,  D)}, 

for a domain D. However, because t is continuous and D is the colimit of finite embeddings in the sense 

of Theorem 3, we also have 

Hence ext res t = t, for all t E IIF. We conclude that res : IIF -+ IIsF and ext : IIsF + IIF form an 

order isomorphism. 

We now show IIsF is a domain. It has a least element, the family ( 1 ~ ) ~ ~ s .  Suppose 1 i E I )  
is a directed set in IIsF. Define the family t by taking 

for all X E S-the least upper bound exists because the set { t i )  I i E I) is directed because i t( ')  I i E I )  

is. It is monotonic because, supposing f E D ~ ~ ( x ,  Y), we see 

using the fact that ( F  f ) L  is continuous. A very similar argument shows that IIsF is bounded complete 

though in this case the argument uses the fact that embeddings preserve all existing least upper bounds. 

Suppose there is a monotone family t such that t x  = e E FX is finite for some X E S. Define 



This is well-defined since t y  is a bound for the set whose join is being taken on the right. It is possible 

to show that it is a monotone family which does not depend on the choice of t .  Now, any least upper 

bound which exists of the form 

[ x l , e l ]  v - . . v  [X, ,e , ] ,  

where el E F X 1 ,  - , e ,  E FX,,  is a finite element of nsF.  The remaining argument, showing that 

any element of IIsF is the lub of such elements and that all finite elements have this form, echoes that 

in the proof of Proposition 8, and we omit it. Having chosen S to be countable it follows that the finite 

elements form a countable set, and hence that IIsF is a domain isomorphic to IIF. I 

Thus although strictly speaking the category IIF is not a partial order because its objects are classes, 

not sets, it is nevertheless isomorphic to a domain. Because of this, in the future, we shall treat IIF as a 

domain, in fact as the domain with continuous families as elements, and not fuss about this problem with 

foundations. The more fastidious reader can after all replace our construction of IIF with the isomorphic 

small category n s F  provided in the proof above. 

3.4 ll with parameters. 

In the discussion later we will often need to use the II operator with parameters. If F : C x DEP -+ DEP 

is continuous, then we write I IC F : C + DEP for the continuous functor defined as follows. The action 

of II'F on objects is given by (IIC~)(c) = II(F(C, - )). Given f E C ( C ,  D ) ,  we define 

by taking 

for each section s  E ( I I C  F ) ( c )  and t  E ( I I C  F ) ( D ) .  

Of course, we must show that this definition makes sense. First of all, let us check that ( I I C  F ) ~ (  f ) ( s )  E 

( I I C F ) ( o ) .  Suppose s  E ( I I C  F ) ( c )  = II(F(C, - )) and let t x  = ( I I C  F ) ~ (  f ) ( s )x  = FL( f ,  i dx ) ( sx ) ,  

we wish to show that t x  E II(F(D, -)). Suppose g E D E P ( x , y ) .  Then 

FL(idD,g) ( tx )  = F L ( i d ~ , 9 ) ( F L ( f  i d ~ ) ( s ~ ) )  

= ~ ~ ( f ,  idx) (FL( ido ,g) ( sx  )I 

I F L ( f ,  i dx ) ( ( s y  1) 
= t y .  

This proves monotonicity. To prove continuity, suppose gi E D ~ ' ( x ~ ,  X )  and the functions gf o g p  form 



a directed collection such that Vi g4 o gp = idx, then 

C L 
so (H F )  ( f  )(s) E (IICF)(D). 

C R Now suppose t E (IIC F)(D) = II(F(D, - )) and let sx = (11 F )  (f)(t)x = FR( f ,  idx)(tx). We 

wish to show that s E (IIC F)(c) = II(F(D, - )). Suppose g E DEP(x, Y). Then 

This proves monotonicity. To prove continuity, suppose g; E DEP(xi, X )  and the functions gf o gr form 

a directed collection such that Vi gf o gr = idx. To keep the notation siniple, let 

4; = F(f ,  idxi) E D~'(F(c, x i ) ,  F(D, x i ) )  

ai = F(idD7 gi) € D E P ( F ( ~ ,  Xi), F(D,  X))  

Pi = F(idc, g;) E DEP(F(c, Xi), F(C, x)) 

4 = F ( f ,  idx) E D E P ( ~ ( c ,  X), F(D, X)) 

Note that 

Since Via: o ap = ~ ~ F ( D , x )  and Vi PF o p? = idF(c,x), We have 



C R NOW, let s x  = ( I I ~ F ) ~ ( ~ ) ( ~ ) ~  = +R( tx )  and sxi  = ( I I  F )  ( f ) ( t ) x ,  = 4R( tx i ) .  'I''hen 

That is, s x  = V; ~ ~ ( i d ~ , ~ ) ( s ~ , )  and therefore s E (IIC~)(c) = II(F(D,  -)). 

We have now shown that the definitions of ( I I ' F ) ~ (  f )  and ( I I C  F ) ~ (  f )  make sense. The proof 

that ( I Ic  F)(  f )  E ~ ~ ~ ( ( 1 1 '  F)(c) ,  ( I I C  F ) ( D ) )  and the proof that I IC F is a continuous functor are both 

routine. 

Notation: Later we shall be concerned with functors F : C x DEP -+ DEP and the associated IIC in the 

case where C = ( D ~ ~ ) ~ .  In this case we shall write IIm for IIC. 

3.5 Information systems. 

The inspiration for our work came originally from Girard's paper [8]. There he uses a representation 

of qualitative domains with morphisms stable functions and rigid embeddings to give a model for the 

second-order A-calculus. For domains, we can use the representation of information systems in a similar 

way to give an interesting, elementary contruction of IIF for a functor F on domains. We give a sketch 

of the approach based on the presentation of information systems in [12] following [23]. Because the 

proofs are straightforward and not essential for what follows we omit them. 

Recall the definition of an information system: 

Definition: An inJonnation system is defined to be a structure ( A ,  Con, I-), where A is a countable set 

(the tokens), Con is a non-null subset of finite subsets of A (the consistent sets) and I- is a subset of 

Con x A (the entailment relation) which satisfy: 

X C Y E Con implies X E Con 

a E A implies {a) E Con 

X !- a implies X U {a) E Con 

X E Con and a E X implies X t- a 

( X , Y  E Con a n d V b ~ Y .  XI-  b a n d y  t-c)impliesXt-c. 

An information system determines a domain: 

Proposition 10 The elements of an information system (A,  Con, I-) are defined to be those subsets x of A 

which satisfy: 



X C x implies X E Con for any finite set X, 

X C_ x and X I- aimplies a E s. 

Ordering the elements by inclusion we obtain a domain (A1 withjinite elementsprecisely the sets { a  E A 1 
3 X  c Y. X I- a}, obtained from X E Con. 

A domain determines an information system: 

Definition: Let D be a domain. Define I D  = (BD, Con, t-) where BD is the set of finite elements of D 

and Con and I- are defined as follows: 

X E Con iff X c BD and X is finite and X is bounded, 

~ I - e i f f ~ € ~ o n a n d e < V ~ .  

Proposition 11 Let D be a domain. Then I D  is an information system with domain of elements (ID1 

isomorphic to D. The isomorphism pair is 

tl : D -t J I D J  given by tl : d H { e  E BD I e 5 d } ,  

4 :  [ID1 -t Dgivenby 4 :  x H Vs. 
As is well-known a continuous function f between domains is determined by its action on finite 

elements and so by the relation f 0  between finite elements that it induces, a relation defined as follows. 

Definition: Let f : D + E be a continuous function between domains. Define f O = {(d, e) E BD x BE ( 

e l f(d)). 

Embeddings between domains correspond to the following kinds of mappings between the finite 

elements of the associated information systems. 

Proposition 12 Let f : D + E be a continuousfunction between domains D and E. The function f is 

an embedding iff 

f O is a 1-1 function BD -t BE, 

X E ConD iff f X E ConE, for all finite subsets X of BD, and 

X I-D d iff f X  F E  f (d), for all elements d andfinite subsets X of BD. 

To define the information system of ITF of a continuous functor on domains, as earlier, we use S, a 

countable category equivalent to the full subcategory of finite domains with embedding-projection pairs. 

Definition: Let F : D~~ -t DEP be a continuous functor on domains. Take T+ to consist of those pairs 

(X, b) where X E S and b E B q X ) .  For W, a finite subset of T+, define 

W E Con iff W E S. {(F f)Lb I 3X. (X, b) E W and f E DEP(x,  Y)) E ConFy. 

Define the tokens T to be those elements (X, b) of T+ for which {(X, b ) )  E Con. For W E Con and 

(Y, c) E T,  define 

W I- (Y, c) iff { ( ~ f ) ~ b  ( 3X. (X, b) E W and f E D ~ ~ ( x , Y ) )  I - F y  b. 

Finally, define IIIF to be (C, Con, t-). 



Theorem 13 Let F : DEP + DEP be a continuous functor on domains. Then 

(i) 111 F is an information system. 

(ii) I I F  2 IIIIF( with isomorphism pair 8 : I I F  + lIIIFl and 4 : IIIIFI + I I F  given by 

+(x) = ( t y ) y E ~ ~ ~  where 

t y  = {(F f)Lb I 3 X .  f : X + Y and (X,  b) E x). I 

4 Basic combinators. 

Here we introduce the notation and results we shall use to provide a semantics for the polymorphic 

A-calculus. We are concerned with functors on the category DEP. Suppose Fl,. . . , F, are continuous 

functors from (DEP)" into DEP. We claim that pi, the projection map defined earlier, is a section of 

#(Fly . . . , F,) =+ Fj. To check this, suppose f E ( D ~ ~ ) " ( X ,  Y). Then 

It is clear that pi will be a continuous section. 

Let P, F, G : (DEP)" + DEP be continuous functors. Suppose s is a continuous section of the functor 

P =. (F =+ G) : (DEP)" + DEP and t is a continuous section of the functor P * F : (DEP)m + DEP. 

We define a continuous section apply(s, t)  of P + G by the equation 

where x E P ( X ) .  To show that apply(s,t) really is a section, suppose f E (DEP)"(x,y). Then 

To see that apply(s, t) is continuous, suppose f; E D ~ ~ ( x ~ ,  X )  and the functions f? o fiR form a directed 

collection such that Vi f: o f? = idx, then 



= V cL (fi)((sxi (pR(fi)(x)))(txi (pR(  fi) (x)))) 
i 

R .  
= V G L ( f i ) ( ( ( ~  * GlR(fi)((p * ( F  * G ) ) L ( f i ) ( s ~ i ) ( x ) ) ) ( ~  (f,)((P * ~ ) ~ ( f ~ ) ( t ~ , ) ( x ) ) ) )  

i 

L .  
= V G  ( f M F  * G)R(fi)(sx(x)))(~R(fi)(tX(x)))) 

i 

Let 
P : (DEP)rn + DEP, 

F : ( D ~ ~ ) ~  x DEP + DEP, and 

G : (DEP)" + DEP 

be continuous functors. Suppose t is a continuous section of the functor 

We define a continuous section Apply(t7 G) of the functor 

P + ( F  o (id(Dep ).. , G)) : ( D ~ ~ ) ~  + DEP 

by the equation 

A ~ ~ l ~ ( t ,  G)x(x) = ~x(x)G(x) 

where x E P(X). We check that Apply(t, G) is indeed a section; suppose f E (DEP)"(x, Y), then 

where the penuItimate step follows from the fact that ty(x) is a section of F(Y, - ) and G(f) E 

DEP(G(x), G(Y)). To see that Apply(t, G) is continuous, suppose fi E DEP(xi ,X) and the functions 



f: o f? form a directed collection such that Vi fiL o f: = idx, then 

Let P, F, G : (DEP)" + D~~ be continuous functors and suppose t is a continuous section of the 

functor P # F + G : ( D ~ ~ ) ~  + D ~ ~ .  Then we define a continuous section curry(t) of the functor 

P =+ ( F  + G) by setting 

curr~(t>x(x>(Y> = tx(x,y) 

for x E P(X)  and y E F(X). To see that this does define a section, suppose f E ( D ~ ~ ) " ( X ,  Y). Then 

To see that curry(t) is continuous, suppose fa E D ~ ~ ( X ~ , X )  and the functions f: o f p  fonn a directed 

collection such that V; f;L o f;R = idx, then 

Let P : (DEP)" + DEP, F : (DEP)m x D~~ + D~~ and suppose t is a continuous section of (P o 

Fst) + F. Let X E (DEP)m and x E P(X). We define C ~ r r y ( t ) ~ ( ~ )  to be the continuous section of 

F (X, - ) given by the equation 

Curry(t)x(x)z = ~(x,z)(x).  



This makes sense because t(x,Z) is a continuous functor in 2. We wish to show .that Curry(t) is a section 

of P + IIm F. In other words, we want to show that 

where f E ( D ~ ~ ) ~ ( x , Y ) .  Let x E P ( X )  and suppoose Z E DEP. Then 

To see that Curry(t) is continuous, suppose f; E DEP(X;,X) and the functions f: 0 fp form a directed 

collection such that Vi ft o fiR = idx, then 

Notation: Suppose 

P : (DEP)rn + DEP, 

F : (DEP)rn + DEP, and 

G : (DEP)" + DEP 

are functors. Given continuous sections 

s € I I ( P # F = + G )  

t E I I (P =. F ) ,  

we define a continuous section 

[t]s E I I (P + G) 

by setting 

([tls)x(x) = a~ply(curry(s), t) = sx(x ,  tx(x)). 1 

We will need the following Lemma later: 



Lemma 14 1. If th(p ,  b)  = t x ( p )  and sh(p,  b, a )  = sx(p, a ,  b )  for every X ,  p, a and b, then 

cu rry([tt]st) = [t](curry(s)). 

2. I f t iXr)  = t x ,  then Curry([tt]s) = [t](Curry(s)). 

3. apply([tIr, P I S )  = [tl(apply(r, 4). 

4-  Apply([tIs, G) = [tl(Apply(s, G)). 

Proof: 1. 

Notation: Suppose 

P, Ii : (DEP)" + DEP and 

F : ( D ~ ~ ) "  X DEP + DEP 

are continuous functors and 

t E TI((P o Fst) F ) ,  



then we define a continuous section 

by setting 

( [ K ] t ) X ( x )  = A P P ~ Y ( C ~ ~ ~ Y ( ~ ) , K ) X ( X )  = t ( ~ , ~ ( ~ ) ) ( x ) .  

We will need the following Lemma later: 

Lemma 15 I .  c u r r y ( [ l i ] t )  = [K ] (cur ry ( t ) ) .  

2. Ift ix,z,y) = t(X,y,Z) for each X ,  Y and 2, then Cur ry ( [K  0 Fst] t t )  = [K ] (Cur ry ( t ) ) .  

3. app ly ( [K Is ,  [Kit) = [Icl(aPPlY(s,t)). 

4. A P P ~ Y ( [ ~ ~ ] ~ ,  H 0 (Id, I { ) )  = [ K I ( A P P ~ Y ( ~ ,  H I ) .  

Proof: 1.  



5 Syntax of the polymorphic A-calculus. 

The types of the polymorphic A-calculus are given by the following abstract syntax: 

and the terms of the calculus are described as follows: 

M ::= x I Ax : a .  M 1 M1(M2) ( Aa. M ( M{a).  

We distinguish a subcollection of well-typed terms of the calculus to be those terms M for which 

t- M : a is derivable from the typing rules listed below. The sequent5 in the typing rules are of the form 

H kc M : a where H = X I  : 01,.  . . a, is a (possibly empty) list of typings for variables which must 

include all of the free term variables of M, and C = a l ,  . . . , a,  is a list of type variables which must 

include all of the free type variables that appear in al ,  . . . , a, and M. We use I-E M as an abbreviation 

for H M where H is the empty list and H t- M as abbreviation for H kc M where C is the empty 

list. 

Typing rules for the polymorphic A-calculus. 

projection: 

+ introduction: 

II introduction: 

+ elimination: 

II elimination: 

Restrictions: 

H kc Aa. M : IIa. a  

r In the projection rule, .the variable x  does not appear in H1 or Hz. 

In the II introduction rule, there is no free occurrence of a in the type of any variable in H. 

r In the II elimination rule, all free variiables of 0 2  are in C. 



The terms of the calculus (in particular, the well-typed terms) are taken to satisfy a collection of 

equational rules of the form H k c  MI = M2 where H and C are lists of variable typings and type 

variables as descibed above. Again, we assume that H lists all of the free term variables that appear in 

M and C includes all of the free type variables that appear in H and M.  The rules are given as follows: 

Equational rules for the polymorphic A-calculus. 

reflexivity: HI ,  x : a ,  H2 kc x  = x  : a  

type f :  

congruence: 

type congruence: 

It is not difficult to see that from these rules, a lambda expression M satisfies H kc  M : a if and 

only if it satisfies H t-c M = M : a. Thus, for the remaining axioms, we use H kc  M : a as an 

abbreviation for H kc  M = M : a. 

symmetry: 

transitivity: 

type P: 

type 77: 

Restrictions: 

H kc, , M : 0 1  

H kc (Aa. M){a2} = [a2/a]M : [a2/a]al 



In the reflexivity axiom, the variable x does not appear in HI or Hz. 

In the type [ rule, there is no free occurrence of a in the type of a variable in H. 

In the type P rule, there is no free occurrence of a in the type of a variable in H 

In the 7 rule, the variable x does not occur free in M 

In the type 7 rule, the variable a does not occur free in M. 

6 Semantics of the polymorphic A-calculus. 

In this section we provide a detailed description of a semantics for the polymorphic A-calculus, whose 

syntax was described in the previous section. We end by showing that our model interprets types differently 

from the models based on finitary projections described earlier and we show that the equational theory of 

our model is different from that of any such model. 

If m 2 i 2 1, then define Pilm : (DEP)" + DEP to be the i'th projection, i.e. the continuous 

functor whose action on objects is given by P","(D~, . . . , Dm) = Di and whose action on arrows is 

Pi*"( fl, . . . , f") = f;. 

If C = al ,  . . . , a, is a list of type variables then %[[kc a] will be a continuous functor from (DEP)" 

into DEP. The semantic function S[ -1 is defined inductively as follows: 

We also assign a meaning to a sequent H kc a by the equation: 

Example: The type of the polymorphic identity is given as follows: 

%[I- IIa. a + a] = II1(S[I-, a + a]) 

= nl(s[ka a] + %[ka an) 

- - Jp(p1,l +. p1J > I 

We now define the semantics of the sequents of the calculus. In general, the value 

will be a continuous section of the functor 

The semantic equations are given as follows: 



For the second equations, one must suppose that the variable x doesn't appear free in H .  To see that the 

third line makes sense, we note the following: 

Lemma 16 I f  a does not appear free in the type a ,  then %[kc,  , a ]  = %[kc a ]  o Fst. 

Proof: Straightforward structural induction on a. I 

Example: The polymorphic identity function is the following continuous section of 11l(P1>l + P1>l 1: 

[t ha. Ax : a. x : Ha. a + a] = c~rry(l[l-, Ax : a. x : a a ] )  

= Curry(curry([x : a l-, x : a ] ) )  

= Curry(curry(plJ)). I 

Lemma 17 (Permutation) I f  we have 

(1,. . . , n }  = { i l ,  . . . , in} and 

{ l , - - . 7 m }  = { j17 . . . , jm}  

then 
1x1 : 01, ... , x ,  : an kal ,  ..., an M : aIl(x1 ,..., X , ) ( P I , . . - ~ P ~ )  

- 
- [xi1 : ail 7 .  . X i ,  : sin Fajl ..., a,,,, M : a] ( x j l  ,..., %,)(pil 7 .  . pin) 

Proof: Easy structural induction on M .  I 

Lemma 18 (Substitution) Suppose H k c  MI  : a1 and H ,  x : a1 k c  M2 : u2, then 

Proof: To help reduce the amount of notation needed for the arguments below, let 

r = [H l-c [M1/x]M2] 

s = [ H ,  x : a1 kc M2 : a2] 

t = [ H  I-c MI : ul] 

We must show that r = [tls. Let n and m be the lengths of H and C respectively. The proof is by 

structural induction on the term M2. There are six cases. 



Case 1: M2 E y $ x. Suppose y is the i'th variable in H. Then T = [H kc  y : a2] = pi" = 

[t](pi*+') = t .  

Case 2: M2 = x. We have T = t  and [t]s = [t](pn+lyn+') = t ,  so T = [tls. 

Case 3: M2 - Xy : a. M.  Suppose that 0 2  = o + r so that H, y : a kc  M : r. 

T = [H kc  Xy : a. [ M l / x ] M  : a2] 

= curry([H, y : u kc  [M1/x]M : a ] )  

= curry([[H, y : u Ml : olJ]([H,  y : a,  x : al kc M : a ] )  @YP) 

= [t](curry([H, x : a l ,  y : a kc M : a ] ) )  (Lemmas 14.1 and 17) 

= [tls. 

Case 4: M2 = h a .  M .  Suppose that 6 2  - IIa. a SO that H kc,  , M : a. 

T = [H k c  h a .  [ M l / s ] M  : a 2 ]  

= Curry([H kc,  , [M1/x]M : a ] )  

= Curry([[H k c ,  , Ml : a l ] ] [H,  x : a1 kc,  a M : a ] )  OW) 

= [t](Curry([H, x : a ,  kc ,  , M : a ] ) )  (Lemmas 14.2 and 17) 

= [tls. 

Case 5: M2 = M ( N ) .  Suppose that H kc  M : a + 0 2  and H kc  N : a. 

= [H k c  ( [ M l / x ] M ) ( [ M l I x l N )  : a21 

= apply(%H k c  [MlIxIM : a + 0 2 1 ,  [H k c  [MlIxIN : 4) 
= apply([t][H, x : a1 kc M : a =. 021,  [ t ][H,  a: : a1 k c  N : a ] )  (~YP) 

= [t](apply([H, x : al kc  M : a + a2] ,  fH, x : al k c  N : a ] ) )  

= [tls. 

Case 6: M2 = M{a) .  Suppose H kc M : r .  

T = [H t-c ([M1lxIM){a} : a21 

= APP~Y(~[H k c  [ M l l ~ l M  : r] ,  [kc  a ] )  

= APP~Y([~IUH, 2; 0 1  k c  M : 71, [ k c  a ] )  

= [tl(Apply(UH, x ;  0 1  k c  M : 70, [ k c  4)) 
= [tls. I 

@YP) 

(Lemma 14.4) 

Lemma 19 [kc  [a2/a]al]  = [kc all o (Id, I t c  a2]) .  

Proof: Structural induction on 01. I 

Lemma 20 (Type Substitution) Suppose H kc ,  , M : 01, and a does not appear free in H,  then 



Proof: To help reduce the amount of notation needed, let 

We must show that s = [Klt. The proof is by structural induction on M. There are five cases. 

Case 1: M = x. This is trivial. 

Case 2: M = Xy : a. N. Suppose a1 = a e- T so that N : T .  

s = [H kc Xy : [a2/a]o. [az/a]N : [+/a]al]l 

= curry([H, y : [az/a]a t-c [a2/a]N : [ a 2 / a ] ~ l )  

= curry([K][H, y : a kc, a N : T]) (~YP) 

= [li](curry([H, y : a kc, a N : T I ) )  (Lemma 14.1) 

= [K]t .  

Case 3: M = A@. N. Suppose that a1 = II@. a so that N : a 

s = [H tc A@. [a2/a]N : [a2/a]al] 

= Curry([H t-c, p [02/"]N : [ ~ 2 / a l ~ l l )  

= Curry([K 0 Fst][H kc, p ,  a N : 011) ( ~ Y P )  

= [K](Curry([H kc, p N : ai l ) )  Kernmas 15.2 and 17 ) 

= [Iilt. 

Case 4: M = N1(N2). Suppose that N1 : o + al and N2 : a. 

= IIH I-c ([a2/aIN1)([a2/alN2) : [ f l2lal~l l  

= ~ P P ~ Y ( [ H  t-c [a2lalN1 : [o2lal(a =+ a1)l, [H t-c [a2lalN2 : [a2/alal) 

= aPPly([K][H kc, a N1 : (0 =+ ( T I ) ] ,  [K][H kc, a N2 : 01) (~YP) 

= [K](apPlY([H kc, a Nl : (0 * al)D, [H kc, a N2 : 01)) (Lemma 15.3) 

= [K]t .  

Case 5: N{a).  Suppose H I-= N : T .  

s = [ H  t-c ([a2lalN){[o2lal.) : [.2/(.1.11 

= Apply([H t-c [o2/a]N : [ o z l a ] ~ ] ,  [kc [a2/a]a]) 

= APP~Y([KJ~H kc, a N : T I ,  I[ke [a2/alal) 

= Apply([KI[H kc, a N : 711, b e  01 0 ( Id ,  K ) )  

= [KI (APP~Y([KIUH kc, a N : 711, ut-c 01)) 

= [Klt. I 

Cnyp) 

(Lemma 19) 

(Lemma 15.4) 



Lemma 21 Suppose H k c  M : al + 02. If x does not appear in H ,  then 

[ H ,  x : a1 kc  M : a1 + a2]  = [H kc M : a1 + a2]  o fst. 

Proof: By structural induction on M. ) 

The following is a more dramatic version of Lemma 16: 

Lemma 22 Suppose H k c  M : a .  Ifa I$ C,  then [H kc ,  , M : a ]  = [H k c  M : TIa. a ]  o Fst. 

Proof: By structural induction on M. ) 

We will say that an equation H k c  M I  = M2 : a is satisfied by our semantics just in case [H kc  

M I  : a ]  = [H kc  M I  : a] .  We are now prepared to state our central result: 

Theorem 23 The semantic function [ - I )  satisJies the rules for the polymorphic A-calculus. 

Proof: There are eleven rules altogether. Those whose proofs are non-trivial are the rules /?, type /?, 
q and type q. The ,f3 rule and type ,f3 rule are immediate from the Substitution Lemma (18) and Type 

Substitution Lemma (20) respectively. 

First we consider the q rule: 

This is subject to the restriction that the variable x does not occur free in M (and hence does not appear 

in H ) .  We have 

[ H  kc Ax : al. M ( x )  : a1 * az] 
= curry([H, x : al k c  M ( x )  : 0 2 1 )  

= curry(apply([H, x : al k c  M : 01 + 0 2 1 ,  s nd ) )  

= curry(apply([H k c  M : al + a2]  o fst, s nd ) )  (Lemma 21) 

= [H k c  M : 01 * 021 

We now prove the type q ruIe: 

H k c M : I I a . a  

H t-c Aa. M { a )  = M : IIa. a 

This is subject to the restriction that the variable a does not occur free in M (and hence does not appear 

in C). 

[ H  kc  ha. M i a )  : n a .  G I )  

= Curry([H kc ,  a M { a )  : a ] )  

= Curry(Apply([H k c ,  , M : n a .  a ] ,  [ k c ,  , a] ) )  

= Curry(Apply([H kc  M : Ha. a ]  0 Fst, S n d ) )  

= [H k c  M : I Ia .  a ] .  I 

(Lemma 22) 



Example: We wish to compute the interpretation S[IIcu. a]  of the trivial type. This will show that our 

model is distinct from the fhitary projection model (and also that the equational theories are distinct, 

since the equation X(x : IIa. a) .  X(y  : IIa. a) .  x = X(x : IIa. a). X(y  : IIaa). y is valid in our model 

and not in the finitary projection model). 

Let ( t x )  be a continuous section of the identity functor. For all f E D E P ( x ,  Y ) ,  we get fL(tx)  5 ty. 

Given an arbitrary domain X, let us consider Y = X + X (the coalesced sum), with the two morphisms 

(that are left adjoints) in1 : X + Y and inr : X -t Y .  Let f 1 (resp. f T )  be the morphism in D~~ 

corresponding to inl (resp. inr). Then, we must have ~ ( f l ) ~ ( t x )  < ty and ~ ( f r ) ~ ( t x )  < ty  which 

entails ty =I, and then t x  =I. 

7 A model of Type:Type. 

There are two purposes of this section. Firstly, we want to illustrate the notion of a family of domains 

indexed over a domain with the example of domains over a universal domain. Secondly, we want to 

explain how the finitary projection model of [I] relates to our model. In order to illustrate the first point, 

we shall actually show that the finitary projection model is a model for a more powerful type system than 

second-order type system, namely a type system with a type of all types. A more categorical description 

of this model may be found in [29]. 

7.1 A reformulation of Type:Type 

The system we use is an extension of intuitionistic type theory [1511, where we add one universe, but 

with a slight change in the axioms for type equalities as compared with the version in [15]. 

We suppose that we have a special type U ,  which should be thought of as a type of indices for types, 

and an operation T over the element of U, to be regarded as a dependent type over U. We suppose that 

there exists an element u of type U such that T(u)  = U, that is, a name for the type of all types. 

We suppose furthermore that there is an "internalisation" of the product operation of dependent types. 

Namely, there exists 

T : TIa,u.(T(a) -t U )  + U, 

We ask that these operations are inverses, that is Lambda o App = id, and App o Lambda = id.' 

The ordinary formulation [15] is with a type equality rule T(r (a ,  b)) = II,,T(a).T(b(~)), but this rule 

'Notice that it should be possible, from the interpretation of the dependent product and sums over a domain outlined in the 

previous section, to give an interpretation of intuitionistic type theory in terns of Scott domains (see [16]). We shall not develop 

this here, since the precise verification that it is indeed a model is similar to checking that we get a model for second-order type 

theory, and we have given this verification in full detail. 

'It is interesting to note that this system is that obtained by representing the T y p e  : T y p e  calculus in the LF-framework 

[lo], and also that it may be seen as providing a syntactic condition for what it means to be a model of T y p e  : T y p e  following 

the ideas of [3]. 



does not seem to square with a "standard" semantics. For our purpose, the "weaker" system with only 

isomorphisms is sufficient. It is significant that the Type : Type system, even with this weaker form 

of equality, can be translated syntactically into our formalism (in particular, it is possible to interpret 

Girard's paradox [7] in it, and so all types are "syntactically" inhabited). 

Rather than describe this syntactic translation in full formal details, let us give some examples. The 

universal type of second-order X-calculus lla.a -t a is first translated by Da  : Type. Dx : a. a in the 

Type : Type system. Then, it becomes T(n(u, Ax. ~ ( x ,  Xy. x))). And so, if M is of this type, and N is of 

type T(u) (that is N is a type), we can form the application of M to N by App(u, Ax. ~ ( x ,  Xy. x), M, N). 

In the same way, the type IIa. a will be interpreted by T(n(u, id)). Since App and Lambda are inverses, 

the p-7-conversion rules will be satisfied. 

7.2 Semantics in domain theory 

We can point at once to one important difference between the finitary projection model and our categorical 

model. In it, types are not interpreted directly as arbitrary domains, but as finitary projections of a single 

"universal domain". So, for the construction of this model, we must first pick a domain D so that 

[D -t Dl is embedded in D by the pair (@,XI!) (as is well-known following Scott, such domains can, 

for instance, be built using an inverse limit construction). It is important to note that there are many 

such domains, that there is nothing canonical in this choice, and that the influence of this choice over the 

model is not clear. This is, however, the only part that is "non canonical" in the construction. 

Let D be a domain so that there exists an embedding-projection pair (@, Q) of [D 4 Dl into D. An 

element p E D + D is called a finitary projection if, and only if, p 5 id, p o p = p, and the image of p 

is a domain with respect to the restriction of the order on D. It is known that the partial order of finitary 

projections (with respect to the extensional ordering) is a domain, that we shall write Fp, and that this 

domain is embedded in [D -t D] [22]. We obtain an embedding-projection pair (Go, Qo) from Fp into 

D, from the composition of this embedding-projection from Fp into [D + D] with (Q, Q). We now take 

for the interpretation of the set U the image of Go, which we again call U. This should cause no real 

confusion. Notice that we do not interpret the type of types U by the "universal" domain D. 

In the sequel, it will be convenient to use the "uncurried" notation " f (x, y)" for " f (x)(y)". If a E U ,  

then a defines a finitary projection Qo(a) and hence a subdomain of D, namely the image of this finitary 

projection T(a) = {x E D I Qo(a)(x) = x). Notice that T(a) is a subdomain of the "universal domain" 

D. Furthermore, a E U, and that if a _< b in U then T(a) is a subdomain of T(b). The family T(x), 

x E U, is a good example of a continuous family of domains over a domain. 

Each T(a), for a E U, is embedded in the "universal domain" D, where the embedding is the 

inclusion map, and the projection is defined by x c-. Qo(a,x). If b E T(a) + U, since D + D is 

embedded into D, there is a "canonical" embedding of II,,T(,).T(b(~)) into D. Explicitly, the embedding 

is defined in the following way: let f E II,,T(,).T(b(~)), then the image of f under this embedding 

is defined by x - f(!Po(x,a)). The definition of the projection is: for f E D + D, the image 

of f under the projection is defined by x - !Po(b, f(x)). This embedding will define an element 

of Fp, hence an element of U by 90, that we shall write as n(a, b). Explicitly, we have n(a, b) = 



@(Ax. Q( Az. Q(b(Q(a, z)), Q(x, Q (a, 2))))). By construction, we have that T(n(a, b)) is isomorphic 

to IIx:T(a). T(b(x)) and App, Lambda are notation for the two halves of this isomorphism. We find 

that, if c E T(n(a,b)), and d E T(a), then App(c,d) = Q(c,d), and if c E l12:T(a). T(b(x)), then 

Lambda(c) = @(Ax. c(Qo(a, x))). 

We can then check the desired equalities. For c E T(n(a, b)) we have c = @(Q(c) o (Qo(a))). Indeed, 

we have 
c = Q(r(a, b), c) 

= Q(b(Q(a, z)), Q(c, Q(a, 4))). 
Hence Q(c) = Az. Q(b(Q(a, z)), Q(c, Q(a, z))) and Q(c) o Qo(a) = Q(c) since !@(a) o Qo(a) = Q(a), 

because a E U, so that 

Lambda(App(c)) = @(Q(c) o Qo(a)) 

= @(Q(c)) 

For the other equality, we suppose that c E IIx,T(a). T(b(x)), and then 

Finally, we build an element u E U so that T(u) = U. We take u = @o(QooQo). Since Qo o QO E Fp, 

we have u E U. And x E T(u) if, and only if, x E D and Qo(Qo(x)) = x, hence if, and only if, x E U. 

By definition of equality of domain, we get T(u) = U. 

Since one can interpret second-order A-calculus in this calculus, we get a model for second-order 

A-calculus (and the reader can check that what we get in this way is indeed the model described in [I]). 

7.3 An example 

As an example, we shall show that, in general, the interpretation of 1Ia.a. which here is T(n(u, id)), is 

a non-trivial domain. This is significant because it shows that we get an essentially different model with 

the categorical approach, since there the interpretation of IIa.cr is the trivial domain. Since T(n(u, id)) 

is isomorphic to Il,,u.T(x), it is enough to show that IIx,u.T(x) is not trivial if U is not trivial (that is 

if D is not trivial). Let a E U be an element different from I. Then, if x E U, we have Q(x, a)  E T(x), 

by definition of T(x). It results that Ax. Q(x, a)  E IIx:v. T(x), and we have Ax. Q(x, a) # I since 

a f I. 

The intuitive explanation of the difference between the models is that in the fkitary projection model 

we restrict ourselves to domains that are finitary projections of a given "big" domain, and the only 

morphisms we allow are inclusions (and not arbitrary embeddings). We thus get a small category that is 

isomorphic to the domain Fp(D) of finitary projections over D. This category is a subcategory (but not a 

full one) of the category D~~ via the inclusion functor. A dependent type becomes a continuous function 

f from Fp(D) = U into itself which defines, by composition with this inclusion functor, a dependent 



domain over the domain U. We can then see that the general definition of the product of a dependent 

donlain given previously will specialise itself to T(T(u, f)). This explains why the interpretation of 

ITa.a is bigger in the finitary projection model: when we consider Fp(D) as "the" category of domains, 

we forget the morphisms that are not inclusions (for instance, non-trivial automorphisms). In a sense, 

the categorical model is a refinement of this model where we take into account embeddings that are not 

inclusions. 

8 Questions and comparisons with related work. 

We want first to describe why Girard's model [8], [4] follows the same pattern as our present model. The 

idea is to translate all our definitions to the stable framework of [2]. That is, instead of requiring the 

continuity of functors and functions, we require further that pull-backs are preserved, a property called 

stability. In place of the extensional ordering on functions, we take the stable ordering. In place of 

natural transformations between functors we take cartesian natural transformations. We can then work in 

the category DIE' [2,8], or in the full subcategories of qualitative domains or coherent spaces [8]. The 

relationship with the work of J.Y. Girard is then explained by a general result due to E. Moggi, which 

we state in the following special case: 

Proposition 24 Let F be a stable functorfrom to DI~', then a fzmily ( tX)X,DI~~ is a continuous 

and stable section of F if, and only it is uniform, that is F(f)R(ty)  = t x  whenever f E DI~'(x,Y). 

We need first to express what a stable section is. A simple calculation of pull-backs in the Grothendieck 

fibration of F shows that (f, g, u, v) is a pull-back diagram, with f E (T, t )  -+ (X, x), g E (T, t)  + (Y, y), 

u E (X,x) -t (2 ,  t )  and v E (Y, y) + (Z , t )  (that is, f E DIEP(T,x),  g E DIEP(T,y), u E 

DIEP(x, Z), v E DIEP(y, Z), and ~ ( f ) ~ ( t ~ )  5 t ~ ,  ~ ( g ) ~ ( t ~ )  I t ~ ,  F ( u ) ~ ( ~ x )  i t~ and ~ ( v ) ~ ( t ~ )  I 
tz), if, and only if, t~ = ~ ( f ) ~ ( t x )  A ~ ( ~ ) ~ ( t * ) .  The key fact is that if f E DI~'(x,Y) then we can 

always find a domain Z and two morphisms u, v E DIEP(y, 2) such that they form a pull-back diagram. 

This is clear if we think in terms of the representation using event structures of dI-domains (see section 

3 of [4]). By expressing the stability condition for this diagram, we get the uniformity of (tx). 

The stable model leads to a ''smaller" interpretation. For instance, in all the known stable models, 

the interpretation of IIa.a -+ cr is the two-point domain. In the model presented in this paper, this 

turns out to be infinite since it contains the following "continuous" operations indexed by an integer n: 

fx(x) = x if x bounds more than n finite elements, and fx(x) =I if x does not bound more than 

n finite elements (these are examples of "parametric" operations that are not uniform). It is not clear 

whether or not these "non uniform" operations are interesting. It seems that all the terms we get form the 

syntax of the second-order A-calculus are uniform, and so the stable model may be helpful in producing 

fully abstract models. 

A question raised by the last example is whether or not the interpretation of a given syntactic type 

is an effectively given domain [26]. We do not even know actually what is the precise form of the 

interpretation of IIa.cr -t cr (are there other elements than the ones given?). This question may be asked 

of the stable models too [8,4]. It was one of the motivations in introducing the notion of coherent domain 



[8], since, in this case it is possible to give an "explicit" description of the interpretation of the syntactic 

types. 

An important general question is the connection between these "models" and the general definition of 

a model for second-order A-calculus given in [3]. A surprising point is that, strictly speaking, the present 

model, and Girard's models as well, are not models in the sense of Bruce and Meyer (this was pointed 

out to us by E. Moggi). Indeed, it seems essential that the collection of types is interpreted as a category, 

and not as a set. This cannot be done if we follow verbatim the Bruce and Meyer definition. This is to 

be contrasted with the finitary projection model of [I], which is a model for Bruce and Meyer definition. 

This adds weight to the proposal of Seely of a more general definition of model [24,5], and, indeed, our 

construction is a model [5] in his sense. It would be also possible to generalise slightly the definition 

of Bruce and Meyer following the ideas developed in [2], so that this definition becomes equivalent to 

Seely's definition. 

We may ask also what are the relationship with other known models for polymorphisms. For instance, 

the ideal model of [13], or models in the effective topos (see for instance [Ill). In contrast with the 

effective topos model [l I], our model is a direct extension of that commonly used in denotational semantics 

of programming languages and it allows us to handle recursion at all types. 

In our construction, we made the choice to use the category of embedding-projection pairs rather than 

arbitrary left adjoints. The constructions go through in the same way for with this category in place of 

embeddings. For instance, we get a simple model by taking complete algebraic lattices and left adjoints, 

model where the interpretation of the polymorphic identity type has only three points, as expected (see 

[5] for a brief description of this model). We do not understand the relationship between this model and 

.the one presented in detail here. Notice that this choice does not appear in the stable case (as noticed by 

A. Pitts), due to the following remark: if a stable function f  : D -t D is greater than idD for the stable 

ordering, then, this function is equal to the identity. Indeed, we have, for x  E D, x  5 f ( x )  hence, by 

stability, x  = f  ( x )  A i d D ( f  (x)), that is, x = f  (3). From this, we deduce that a left adjoint is, in the 

stable case, an embedding. 

We have explained the central role Grothendieck fibrations and continuous sections play in the inter- 

pretation of polymorphism. Our presentation has been deliberately based on examples, and on one model 

in particular; a new model for polymorphism has been worked out in considerable detail. From another 

point of view, we have probably not been abstract enough. It is not yet clear what the right framework 

is in which to encompass and relate the full range of models, and what techniques to use to home-in on 

the model appropriate to meet certain requirements like full-abstraction. 
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