
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1988

Domain Theoretic Models of Polymorphism Domain Theoretic Models of Polymorphism

Thierry Coquand
INRIA

Carl A. Gunter
University of Pennsylvania

Glynn Winskel
Aarhus University

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Thierry Coquand, Carl A. Gunter, and Glynn Winskel, "Domain Theoretic Models of Polymorphism", . June

1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-38.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/594
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/594
mailto:repository@pobox.upenn.edu

Domain Theoretic Models of Polymorphism Domain Theoretic Models of Polymorphism

Abstract Abstract
We give an illustration of a construction useful in producing and describing models of Girard and
Reynolds' polymorphic λ-calculus. The key unifying ideas are that of a Grothendieck fibration and the
category of continuous sections associated with it, constructions used in indexed category theory; the
universal types of the calculus are interpreted as the category of continuous sections of the fibration. As
a major example a new model for the polymorphic λ-calculus is presented. In it a type is interpreted as a
Scott domain. In fact, understanding universal types of the polymorphic λ-calculus as categories of
continuous sections appears to be useful generally. For example, the technique also applies to the finitary
projection model of Bruce and Longo, and a recent model of Girard. (Indeed the work here was inspired by
Girard's and arose through trying to extend the construction of his model to Scott domains.) It is hoped
that by pin-pointing a key construction this paper will help towards a deeper understanding of models for
the polymorphic λ-calculus and the relations between them.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-38.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/594

https://repository.upenn.edu/cis_reports/594

DOMAIN THEORETIC MODELS
OF POLYMORPHISM

Thierry Coquand, Carl A. Gunter
and Glynn Winskel

MS-CIS-88-38

LlNC LAB 115

Department of Computer and lnformation Science

School of Engineering and Applied Science
University of Pennsylvania

Philadelphia, PA 191 04

June 1988

To appear in a forth coming issue of the "lnformation and Computation "

Acknowledgements: This research was supported in part by DARPA grant N00014-85-
K-0018, NSF grants MCS-8219196-CER, 1R184-10413-A02 and U.S. Army grants DAA29-84-
K-0061, DAA29-84-9-0027.

DOMAIN THEORETIC MODELS OF POLYMORPHISM*

Thierry Coquandt Carl A. Guntert Glynn WinskelQ

INRIA Rocquencourt University of Pennsylvania Aarhus University

June 6, 1988

Abstract

We give an illustration of a construction useful in producing and describing models of Girard

and Reynolds' polymorphic A-calculus. The key unifying ideas are that of a Grothendieck fibration

and the category of continuous sections associated with it, constructions used in indexed category

theory; the universal types of the calculus are interpreted as the category of continuous sections of the

fibration. As a major example a new model for the polymorphic A-calculus is presented. In it a type

is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic A-calculus

as categories of continuous sections appears to be useful generally. For example, the technique also

applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the

work here was inspired by Girard's and arose through trying to extend the construction of his model

to Scott domains.) It is hoped that by pin-pointing a key construction this paper will help towards a

deeper understanding of models for the polymorphic Xcalculus and the relations between them.

1 Introduction.

Jean-Yves Girard presented his discovery of the polymorphic A-calculus in the paper [7]. His motivations

came from proof-theory and his use of the calculus to represent proofs in second-order arithmetic. Later,

in [21], John Reynolds rediscovered the calculus independently though his motivation was different,

being to provide a formal basis to certain polymorphic type disciplines in programming languages. In

designing the calculus, Girard and Reynolds each extended the typed A-calculus to allow a form of

parametric polymorphism. Types include universal types which are types of polymorphic terms, thought

of as describing those functions which are defined in a uniform manner at all types. Terms can be applied

to types and in this sense can be parameterised by types.

In more detail, type variables a are introduced into the typed A-calculus so, for instance, Ax : a . x

should be thought of as the identity function on the type denoted by a. The polymorphic identity function,

the term which denotes the identity function on any type, is denoted by the term Acr.Ax : a.x. It has

*To appear in Information and Computation.

+B.P. 105, 78150 Le Chesnay Cedex, France

t~e~artrnent of Computer and Information Sciences, Philadelphia, PA 19104 U.S.A.

§Computer Science Department, Ny Munkegade. DK-8000 Aarhus C, Denmark.

a universal type denoted by na.a -t a. Given a type a l , a term Aa.t of universal type ITa.oz can

be instantiated to a term [ol/a]t which then has type [a1/a]a2, and so, for instance, the polymorphic

identity above instantiates at type a to the identity Ax : o.x of type a -t a.

While the pioneering work of Girard contains most of the results on the syntax of the calculus, an

understanding of its models and semantics has developed more slowly and is still incomplete. There is a

trivial model got by interpreting types as either the empty or one-point set. While from a proof-theoretic

view there may be some use in this when the one-point set represents true and the empty set false

(e.g. to prove consistency as in [25]), it is clearly inadequate as a model of polymorphism. In essence,

the difficulty of providing nontrivial models arises from the impredicative nature of the calculus; in the

abstraction of a universal type 1Ia.a the type-variable a is understood to range over all types including

the universal type itself. This makes it impossible to interpret types as nontrivial sets in a classical set

theory (see [20]) although, lately, Pitts has shown how polymorphism can be interpreted in a constructive

set theory [18]. Until recently the only nontrivial models known were either term models or realisability

models [7] or, following ideas of McCracken [17] and Scott, models based on a universal domain in

which types are coded-up as particular kinds of retracts. The latter are models for stronger calculi with

a type of types and so are not tailored directly to the requirements of polymorphic A-calculus and do not

in themselves suggest a general definition of model for the calculus. In his paper [8], Girard produced an

interesting new model in which types of the polymorphic A-calculus are represented as certain kinds of

objects called qualitative domains, work which was extended in [4]. The category of domains used in [8]

and [4] is not the usual one taken in denotational semantics-in particular the morphisms are functions

which are stable in the sense of Berry and not just Scott continuous. The work left open the question

of whether or not a model similar to Girard's could be found in the more traditional category of Scott

domains and continuous functions.

One achievement of this paper is to present such a model for the polymorphic A-calculus. It can be

viewed as doing with Scott domains and continuous functions what Girard did with qualitative domains

and stable functions. Qpes will be interpreted as Scott domains and types with free type variables, called

"variable types" by Girard, as continuous functors on a category of Scott domains. Although Girard's

work provided inspiration, the construction of domains to denote universal types is different.

We have taken trouble to expose the abstract construction of which our model is an instance. A key

unifying idea is that of a Grothendieck fibration and the category of its continuous sections. A universal

type is interpreted as a category (in this case a domain) of continuous sections of a fibration. Looked at

in this way, Girard's construction, the retract models of McCracken and Scott, and the construction here

are all based on instances of a common idea, that universal types are interpreted as continous sections of

a Grothendieck fibration.

We briefly outline the paper. The following section, section 2, introduces the basic ideas of domain

theory and category theory on which we shall rely. Section 3 contains a treatment of Grothendieck

fibrations and continuous sections, instances of which are given for domains; taking the base category

to be a domain we obtain constructions to represent the dependent sum and product types as used in,

e.g., Martin-Li5f type theory while taking a suitable category of domains as the base category we get a

construction we shall use later as the denotation of universal types. For concreteness, we show how the

construction can be canied out in the framework of information systems-an elementary representation

of domains. Section 4 contains proofs of several of the technical lemmas needed for the demonstration

that our construction yields a model of the polymorphic A-caluculus. Section 5 gives the syntax of the

polymorphic A-calculus with its equational rules and Section 6 its denotational semantics accompanied by

proofs of the soundness of the rules. In section 7 where we show how the traditional domain models of

polymorphism of McCracken and Scott using retracts can be cast in this light (very similar ideas appear

in the thesis work of Taylor, [29]). Finally, in the conclusion, we present our views on the state of the

art of models for polymorphism.

As we have already stated the work of Girard has been a guiding influence on this work. We have

received encouragement and advice from a number of people whom we tha*, we are grateful to Martin

Hyland for pointing-out that a construction we produced could be based on a Grothendieck fibration,

to Eugenio Moggi for the remark that this construction applied to Girard's model as well, and to Pino

Rosolini for valuable discussions. The significance of fibrations in modelling polymorphism has been

anticipated in the thesis work of Paul Taylor (see [29]) who gave a category-theoretic analysis of the

concept of a type of types using indexed category theory (but exclusively, it seems, considering domains

indexed by partial orders and not as here by categories of embeddings).

2 Categories and domains.

In this section we review basic concepts from category and domain theory. Its purpose is largely to

establish notation and terminology. We assume the reader has some familiarity with these topics. A

knowledge of the results in [28] would be a good starting point; most of the proofs for results stated in

this section can be found there.

Let (I, 5) be a partial order. We say that I is directed if it is nonempty and, for any i and j in I,

there is a b E I such that i 5 k and j 5 b. A partial order (D, 5) having a least element I is said to

be complete (and we say that D is a complete partial order, abbreviated to cpo) if every directed subset

M C_ D has a least upper bound V D. A point x of a cpo D is said to be finite if, for every directed

collection M C D such that x < V M , there is a y E M such that x < y. Let BD denote the collection

of finite elements of D. The cpo D is algebraic if, for every x E D, the set M = {xo E BD I xo 5 x)

is directed and z = V M . A cpo D is bounded complete if every bounded subset of D has a least upper

bound. We call bounded algebraic cpo's Scott domains or just domains. In a domain, least upper bounds

of finite sets of finite elements are finite, when they exist.

A function f : D + E between cpo's D and E is monotonic if it is order preserving, i.e. if

x 5 y then f (2) 5 f (y) . A monotonic function f : D -t E between cpo's D and E is continuous if

f (V M) = V f (M) for any directed M C_ D. Domains with continuous functions form a category D

which is very important for denotational semantics. It is cartesian-closed. Let D and E be two domains.

Their product is the domain D x E consisting of pairs of elements ordered coordinatewise, with the

obvious projections. Their function space D + E consists of the continuous functions from D to E

ordered pointwise, sometimes called the extensional order, i.e.

A pair of continuous functions (f, g), with f : D 4 E and g : E + D between cpo's D, E, is said to

be an embedding-projectionpair if g o f (d) = d, for all d E D, and f o g(e) < e, for all e E E; then f is

called the embedding and g the projection. We use equally the notations f og or f g for the composition of

functions, and use the following notation to pick out the embedding and projection parts of an embedding-

projection pair h = (f,g): let hL = f and hR = g. We remark that as embedding-projection pairs are

an example of an adjunction, in this case between very simple partial order categories, it follows that an

embedding determines its accompanying projection uniquely and vice versa. The category of domains with

embedding-projection pairs as morphisms will be of central importance to us. We call the category DEP,

and write h E DEP(D, E) to mean h is an embedding-projection pair, with embedding part a function

hL : D + E. We take the composition of two embedding-projection pairs h = (hL, hR) E DEP (D, E)

and k = (kL, kR) E D E P (~ , F) to be k o h = (kL o hL, hR o kR) E D ~ ~ (D , F). The identity of a domain

D in this category is the pair (idD, idD).

A partial order (I, 5) forms a category in which the objects are the elements of I and the set of

morphisms from point x to point y, written D(x, y), is a one point set when x 5 y and is empty

otherwise. A directed family in DEP consists of a functor from a directed set (I , 5) to DEP; as such it

provides an indexing of a family of objects D; E DEP, for i E I , and morphisms fij E DEP(xi,Xj),

for i < j , so that fia = idD, and fik = fjk fij whenever i 5 j 5 k. A cone for such a directed

family is a family of morphisms (pi E D E P (~ ; , D)) iE l , for a domain D, such that pi = pj o fij for all

i, j E I. Note that because embeddings are monic the morphisms fij of the directed family are uniquely

determined by the cone. And in future we shall most often speak of a cone for a directed family without

troubling to mention the directed family of which it is a cone; this will always be understood to be that

uniquely determined directed family with morphisms f;j = pfp?, for i, j E I. A directed colimit is a

cone (pi E DEP(D,, D))iEI for a directed family, with the universal property that for any other cone,

(pi E D E P (~ ; , D'))iEl, there is a unique mediating morphism h E DEP(D, D') such that p: = pi o h

for all i E I. That is, an initial object in the category of cones. In general, we say that a category C is

directed complete if it has colimits for all directed families. So, in particular, a cpo is directed complete

when regarded as a category.

The category DEP is another example of a directed complete category, and we shall often be concerned

with calculations involving its directed colimits. It will be useful to relate embedding-projection pairs

into a common domain D via certain morphisms in D E P (~ , D) which correspond to the images of the

embeddings in D.

Lemma 1 Let X,Y, D be domains. Let f E DEP(x, D) and g E DEP(y, D). Then

Theorem 2 The category D~~ is directed complete. A cone (pi E D E P (~ ; , D))iEI is a directed colimil

iff {pf o pR(i E I} is directed in D 4 D and

idD = o p?li E I}.1

Theorem 3 Let D be a domain. Then

{fL 0 f R l f E D~'(x, D) for somefinite X)

is a directed subset offinite elements in D + D and

 id^ = v{fL 0 f R l f E IIEP(x, D) for somefinite X}I

By virtue of Theorem 2 we see Theorem 3 implies that a domain is the colirnit of the finite domains

which embed into it. From the fact that the set in the theorem is directed we deduce the following:

Lemma 4 Let fo E DEP(xo, D) and fl E D~~ (x l , D) where Xo, XI are finite domains. Then there

is a finite domain X and g E DEP(x, D) SO that go = (gR o fk, fc o gL) E D ~ ~ (x ~ , X) and gl =
L R (gR 0 fl , f l 0 gL) E D E P (x l , x) with f~ = 990 and fl = 991.1

From the fact that the elements in the set in Theorem 3 are finite we deduce:

Lemma 5 Suppose (p i E D E P (~ ; , D))iEI is a directed colimit in DEP. If X is a finite domain and

f E DEP(x, D) then there is some i E I and h E DEP(x, D ~) such that f = pi o h. 1

Given categories C and C', we define the product category C x C' to be the category which has

as objects pairs (C, C') where C and C' are objects of C and C' respectively. The arrows are pairs

(f,g) : (X, XI) + (Y, Y') where f E C(X, Y) and g E C'(X',Y1) with the obvious composition and

identity. There are also projections

When understood from context, the subscripts will usually be dropped. If Fl : C + C1 and F 2 : C + C2

are functors, then there is a unique functor (Fl, F2) : C + C1 x C2 such that Fst o (FI, F2) = FI and

Snd o (Fl, F2) = F2. In particular, the diagonal functor A : C + C x C is (Idc, Idc). If F : CI -, C2

and F' : C: -+ Ca then we define

We write 1 for the terminal category which has one object and one arrow and 1~ for the unique functor

from a category C to 1. Given a category C and a number n 2 0, we define the n'th power Cn of C by

taking C0 = 1 and Cn+l = Cn x C. More generally, we define the multiary product of a list of categories

by setting x() = 1 and x(C1, . . . , Cn+l) = (x(C1,. . . , C,)) x Cn+1.

A functor F : C -+ C1 between directed complete categories C and C' is continuous just in case

it it preserves directed colimits. A continuous function is thus an example of a continuous functor on

categories which are partial orders. It is easy to check that a functor F : Cl x C2 -t C is continuous

iff it is continuous in each of its arguments individually. As our categories C will often have the form

(D * ~) ~ the problem of verifying continuity we often reduce to the problem of whether or not functors

F : D~~ + D * ~ are continuous. To verify the continuity of such a functor it is very useful to employ

the following:

Lemma 6 A functor F : DEP + DEPis continuous iff whenever X is a domain and there is a family of

domains Xi and functions fi E DEP (xi , X) , such that { ff o fpl i E I) is directed and V i ff o f? = idx,

then Vi F L (f i) o FR(f i) = idqX). I

The product operator x on categories cuts down to a continuous functor

When D and E are domains, we write idD, fstDIE and sndD,E rather than IdD, F s t D , ~ and SndDIE.

The function space operator + is also a functor on DEP. Suppose f E D E P (x , XI) and g E DEP(y , y ') .

Then we define f + g E D ~ ~ (x + Y, XI + Y ') by setting

for h E D (X , Y) and

(f + g)R(h') = gR 0 h' 0 f

for h' E D(X1 ,Y1) .

When functors on DEP take several arguments we can make their manipulation a little tidier by

introducing the following notation. Given a functor F : C -t DEP, we define a functor F~ : C + D as

follows. The action of F L on objects of C is the same as F . Given a function f E C (X , Y) , we define

F L (f) = (F (f)) L E D (F (X) , F (Y)) . We also define a functor FR : C O P + D by taking the action of

F~ on objects to be that of F and defining FR(f) = (F (f))R E D (F (Y) , F (X)) . We may also write

(F f) or even F (f) when the meaning is clear from context.

In our semantic treatment of type expressions we will have to cope with the presence of free type-

variables and a type expression will denote a functor whose arguments provide an environment associating

values with these variables. It is convenient to define generalisations of the product and function space

functors on DEP to cope with these extra parameters. Given functors F : C + DEP and G : C + DEP

we define

F # G = X O (F X G) O A : C + D ~ ~

We also define a multiary version of the # operation by taking #() to be the functor 1c into the trivial

domain and setting #(Fl , . . . , Fn+l) = # (F l , . . . , Fn) # Fn+l. Given functors Fl , . . . , Fn and numbers

n 2 i > 1, we define i'th projection

by taking
i,n-1

f s t x (~ ~ (x) , ..., ~ ~ - 1 (x)),Fn(X) O PX if <
S n d x (~ ~ (x),...,Fn-~(X)),Fn(X) otherwise.

To keep the number of parentheses to a minimum in the calculations we make, it is helpful to introduce

some biding conventions. We will assume that association is to the left, so an expression such as f xy

or f (x) (y) will be parsed as (f (x)) (Y) . This convention also holds for the application of a section to

an object; so f (t) x parses as (f (t)) ~ . However, we read an expression such as tG(X) as t (G(X)) so

that f tG (x) parses as (f (t)) (G(x)) . We assume that application binds more tightly than composition; so

F ~ (f) o F ~ (~) parses as (FR(f)) o (FR(g)) and f o t x parses as f o (t x) . For functors, we assume

that # binds more tightly than +, so that FI # F2 + F parses as (Fl # F2) + F. We assume that II"

(introduced in section 3) binds more tightly than either # or +. Application will bind more tightly than

x or +, so that F (X) x G (X) parses as (F (X)) x (G (X)) .

3 Interpreting types.

In our approach, closed types (those with no free type variables) will denote domains. m e s with free

variables will denote functors on domains which yield a domain once they are given an instantiation of

their free variables. Thought of in this way the denotation of a type IIa.0 should be a functor taking one

less argument than that for a in a way which respects the rules of the polymorphic A-calculus. In this

section we work towards the definition of an operation on functors to achieve this. The operation, again

called 11, shares many properties with universal quantification, and indeed can be viewed abstractly in

a similar way, as right adjoint to the operation of "padding out" a functor with an extra argument. Our

treatment conforms to the category-theoretic definition of model for the polymorphic A-calculus proposed

by Seely [24], though for the most part we shall express our ideas concretely, through giving particular

constructions on domains. Our more concrete approach will, however, be enough here (in the same

way that it is not necessary to know what a cartesian-closed category is in order to understand what it

means to be a model of simple typed lambda-calculus). A slight exception to this approach arises in the

construction of II which we show is a special case of a general one, traditional in category theory, that of

sections of the Grothendieck fibration of a functor. Other familiar constructions on types like dependent

sum and product arise as special cases too.

3.1 Fibrations and sections.

Let F : C -, Cat be a continuous functor from a category C to the category of all categories. Define the

Grothendieckfibratwn of F to be the category CF consisting of

objects which are pairs (X , t x) where X E C and t x E F (X) , and

morphisms (X , t x) + (Y , t y) which are pairs (f, a) where f : X + Y in C and a : F(f) (t x) +

t y in F (Y)

with the composition of two morphisms (f , a) : (X , t x) + (Y , t y) and (g , ,B) : (Y, t y) -+ (2, t z) given

by

(9 ,P) 0 (f , a) = (9 0 f ,D 0 F (g) (a)) .

Then CF is a category with the identity morphism on (X , t x) being (idx , idt,).

The projection p : CF -t C is defined to be the functor which takes (f , a) : (X , t x) -t (Y , t y) to

f : X + Y .

We remark that our definition of Grothendieck fibration is not quite standard as it is traditional to

work with opposite categories and, consequently, have the functor F take arguments in a category Cop

(so that cofibration would perhaps be a better name); for our purposes this would be inconvenient.

The construction IIF has continuous sections as objects. A section of C F is a functor s : C -t C F

such that p o s = idc, and, of course, a continuous section is such a functor which is continuous. Taking

sections as objects we form a category by taking morphisms to be cartesian natural transformations,

i.e. those natural transformations which project under p to identity morphisrns in C. A typical morphism

between sections is a natural transformation Y from a section s to section st consisting of a family (Y ~) ~ ~ ~

of morphisms v x : s (X) -, s l (X) in C F where p(vx) = idx for all X E C. Of course, each component

Y X of such a natural transformation must have the form v x = (idx, ox) with ax : t x + t k where

s (X) = (X , t x) and s r (X) = (X , t>) . Being a natural transformation ensures that for all f : X -t Y

we have v y o s(f) = s l (f) o Y X . The category TIF is defined to be the full subcategory of continuous,

sections.

3.2 Families indexed by a domain.

We shall be concerned with fibrations and sections solely for the case in which the functor F takes values

which are domains. Then for special forms of base category C the structure TIF, in general a category,

will be isomorphic to a domain. A simple example arises when C is a domain itself and the functor F

goes from the domain to the category of domains with embeddings; in this case not only is IIF a domain

but so is CF. We shall call these constructions dependent product and dependent sum, following the

terminology in Martin-Lof type theory [14], [15]. (The constructions seem to be well-known and appear

in the exercises of [19].) A more abstract presentation would have been to use the ideas of 1241 in order to

give a categorical characterisation of the dependent product and sums, and to show that the constructions

we give verify these properties (see also [5]) . See section 7 for an application of dependent products.

Let C be a domain regarded as a category so there is a unique morphism from x to y precisely when

x < y; thinking of the graph of the order relation as beiig the set of morphisms, we shall write (x , y)

for the unique morphism from x to y. Let F : C + D~~ be a continuous functor to the category of

domains with embedding-projection pairs. The functor F provides a domain F (x) for each element x

of C and embeddings F (x , ~) ~ : F (x) + F (y) for x 5 y in C. These satisfy the functor laws so

F (x , x) ~ = idF(,) and if x 5 y 5 z then F (x , z) ~ = F (y , z)L o F (x , y)L. In this case the category C F

has objects (x , t,) where x E C and t , E F(x) . A morphism (x , t x) -t (y , t y) arises when and only

when x 5 y in C and F (~ , y) ~ (t ,) 5 t y in F(y) . It follows that the category C F is isomorphic to a

partial order defined on objects of C F by

It is easy to check this relation is a partial order, and, perhaps not surprisingly, C F is a domain too.

Proposition 7 Let C be a domain. Let F : C 4 DEP be a continuous functor. Then C F is a domain. In

this case the projection functor is a continuous function p : C F -t C between domains.

Proof: CF has a least element (I, IF(I)) . Suppose V = { (x i , t i) 1 i E I) is a directed subset of CF.

Then {xi (i E I) is a directed subset of C and so has a least upper bound x = Viel xi in C. It is easy

to see the set {F(x ; , ~) ~ (t ;) (i E I } is directed. Taking t = ViEz F(x; , ~) ~ (t ;) we show that (x , t) is

the least upper bound of V in CF. Clearly it is an upper bound and supposing (x ; , t i) < (X I , t'), for all

i E I, we see x < x' and F(xd , ~ ') ~ (t ;) 5 t' for all i E I whence

F (X , ~ ') ~ (t) = F (X , x ')~ (V xi, ti))
icZ

= V (~ (x , x ') ~ o F(x i , ~) ~) (t ;) by continuity
;€ I

= V F(xj , ti)
b€I

< t',

which makes (x , t) 5 (xt,t '). Hence CF is a cpo.

A routine argument shows CF is bounded complete. Let W = {(x; , t i) (i E I} be a set with upper

bound (y , u). Then because x; < y for all i E I there is a least upper bound x = Viel X i in C. Because

F(x; , y)L(t i) 5 u for all i E I we see ~ (x ; , ~) ~ (t ;) = (~ (x , y)R 0 F(x ; , ti) I F (X , Y) ~ (u) for

all i E I in F(x) . Hence their least upper bound t = ViEz F(x; , ~) ~ (t ;) exists in F(x) . It follows that

(x , t) is a least upper bound of W.

The cpo CF is also algebraic with finite elements of the form (e , f) where e E Bc and f E

Such elements are certainly always finite by the following argument. Suppose (e, f) < V V where V

is a directed subset of CF, assumed to be of the form V = {(x; , t ;) 1 i E I). As we have seen such

a directed set V has least upper bound (x , t) where x = ViEI x; and t is the least upper bound of the

directed set {F(x ; , ~) ~ (t ;) 1 i E I}. Because e 5 ViEz x; and e is finite there is some j E I for which

e 5 xj. Because F(e, ~) ~ (f) < vi,, F(xi , ti) and F(e, ~) ~ (f) is finite, being the image under

an embedding of a finite element f , there is some k E I such that ~ (e , x) ~ (f) 5 F (x k , ~) ~ (t k) and

xj 5 xk. From

F (x k , xlL 0 ~ (e , xk)L = ~ (e , x) ~ ,

we see F(e, xk)L = F (x ~ , x) ~ o F(e , x) ~ . Hence ~ (e , ~ k) ~ (f) 5 F (x ~ , x) ~ o ~ (x ~ , x) ~ (t k) = tk SO

(e , f) 5 (x k , t k) . Thus (e , f) is indeed finite.

Let (x , t) E C F. Consider the set

If (eo, f o) , (e l , f l) E V then, as we saw when showing CF is bounded complete, their least upper bound

has the form

(eo v e l , F(eo, eo V el) (f o) V F(e1, eo V e l) (f l))

, and this is an element of V using the fact that least upper bounds of finite elements are finite. Thus V

is directed. From the fact that F is continuous we now show V has least upper bound (x , t) . Certainly,

the set {e 5 x I e E Bc) is directed with least upper bound x. We are assuming that F f is continuous,

i.e. that it presewes directed colimits, so the colimiting cone { (e , x) (e 5 x and e E Bc) in C is sent to

the colimiting cone { F (e , x) : F (e) -, F (s) I e 5 a: and e E B e } in DEP. By Theorem 2, this ensures

t = V { ~ (e , x) ~ o F (e , ~) ~ (t) I e I: x and e E Bc}.

But now we see

t = V { F (~ , ~) ~ (f) I e I: x and e E Bc and f 5 F(e , ~) ~ (t) and f E BF(,,)}.

This makes (x , t) = V V.

Now we can see directly that any finite element (x) t) must be such that x E Bc and t E BF(,);

because (x , t) is finite and the lub of a directed set of elements of this form it must be equal to one such

element. And, of course, any element of C F is a least upper bound of finite elements. Clearly the set of

finite elements is countable. This completes the proof that C F is a domain.

It is easy to see it comes equipped with a continuous pmjection function p : C F + C. I

Now we turn our attention to IIF when F is a continuous functor C + DEP from a domain C. Its

elements are continuous sections. A section is a functor s : C + C F such that p o s = idc. Bearing in

mind the nature of C F we take the image of x E C under s to be s (x) = (x , t,). As both categories C

and C F are partial orders, s being a functor amounts to monotonicity, i.e.

x 5 y implies s (x) 5 s (y) ,

i.e. x 5 y implies (x, t ,) 5 (y, t ,) ,

i.e. x 5 y implies F (x , y)(t,) 5 t ,

for all x , y E C. Sections thus correspond to families (tx)xEC which satify (1). Continuous sections

correspond to families which satisfy the monotonicity condition (1) and

for any directed set V of C. We call such families continuous. Two continuous sections s , st correspond

to continuous families t = (tx)zEC and t' = (tL)xEC respectively. A morphism between them corresponds

to a family of morphisms (a , : t , + t;)xEC but each such component a, simply amounts to an ordering

t , 5 t;. Hence, a morphism s + st between sections corresponds to a pointwise ordering

t 5 t' iff V x E C. t , 5 t:

between the corresponding families.

Not surprisingly, to show IIF is a domain it is convenient to work with the isomorphic category of

continuous families with morphisms given by the pointwise order. Clearly this category is a partial order,

and, as we now show, it is a domain.

Proposition 8 Let C be a domain. Let F : C t D~~ be a continuous functor. Then TIF is a domain.

ProoE There is a least family with each component consisting of iF(,) for z E C. k t {t(') I i E I) be

a directed set in IIF. Define the family t = (Vie, tl'))x,c. Clearly it satisfies (1). Let V be a directed

subset of C. Then

= V F (V , V v) ~ (V t$))
vEV &I

= V J'(v,V ~) ~ (t t J)
vEV

so t satisfies (2) and is therefore a continuous family. Thus IIF is a cpo.

To show IIF is bounded complete, assume {t(") i E I}, a set of continuous families, has upper

bound u. As F (x) is a domain and so bounded complete for all x E C we can define a family

t = (Vie, t f)) z E C. It satisfies (1) above. Let V be a directed subset of C. Then, to show (2) , we

notice

= V F(v,V ~) ~ (t u)
vEV

where we have used the fact that embeddings preserve least upper bounds.

Let e E Bc and f E B q e) . Define the family [e, f] to have component

~ (e , x) ~ (f) if e 5 x,
[e , f l x =

otherwise,

for x E C. It is easy to check [e, f] satisfies (1) and (2) and so is a continuous family. Consider a family

t , obtained in the following way as the least upper bound of a finite number of such families,

We show t finite. Suppose t 5 V V where V is a directed subset of C. Then for any i, with 1 5 i 5 n,

we get

the least upper bound of a directed set. As f i is finite, fi 5 udi) for some di) E V . But then [ei, f i] < ~ (' 1 .

As V is directed .there is some v E V which dominates each di) for 0 5 i I n which ensures t 5 v.

This shows t is finite.

A continuous family t is easily seen to be the least upper bound of the directed set

{[el , fiI v . ' . v [en, fn] I f~ 5 tel & . . . & fn 5 t en) ,

where we are assured that the least upper bounds mentioned exist because they are bounded above in a

bounded-complete partial order. It follows that any family which is a finite element of II F must have the

form [el, f l] V - . . V [en, fn] . Clearly such elements form a countable set. Hence IIF is a domain. I

3.3 Families indexed by a category of domains.

Our other important example arises when F : DEP + D~~ is a continuous functor. In this case, as we

shall see, while CF can only be considered as a category, IIF is isomorphic to a domain when both are

viewed as categories.

Assume F : DEP + DEP is a continuous functor. In this case, CF is a category with objects pairs

(X , t x) , where X E DEP and t x E F (X) , and morphisms (X , t x) + (Y , t y) correspond to morphisms

f : X + Y for which (~ f) ~ t x < t y . Note, CF is not a partial order-it simply has too many

morphisms. We need to consider the form of colimits in CF. A directed family in CF corresponds to

a directed set (I , 5) indexing a family of objects (X i , t i) in C F and morphisms f i j E D~~ (xi, X j) SO

that (F f ; j) L t ; < t j , for i 5 j. A colimit for such a family corresponds to a pair (X , t) with a collection

of morphisms (g; : X ; +- X) ;€ I making a colirniting cone in DEP and so that t = V ; (F ~ ;) = ~ ; .

As in the earlier case, when F : DEP + DEP the category IIF of continuous sections can be seen as

consisting of certain kinds of continuous families ordered pointwise. As before, sections correspond to

families (t X) X E D ~ ~ , where t x E F (X) , which are monotonic in that they satisfy

f E DEP(x, Y) implies (F f)Ltx 5 t y (1)

for any f . Continuous sections preserve directed colimits. Thus if (pi : Xi + X) ; € I is a directed

colirnit in DEP, then (sp; : sX; + s X) ; ~ ~ is a directed colimit in CF. Considering the form of directed

colimits in CF, it follows that continuous sections correspond to families which satisfy (1) and also

the requirement that for such directed colimits (pi : Xi + X);€* in DEP we have t x = v ; (~ p ;) ~ t ~ , .

Recalling Theorem 2 we can write this condition as follows. For any cone (p i : X; + X) ;€ I we have

{pf. o I i E I } is directed and V o p? = idx implies t x = V (~ p ,) ~ t ~ , .
i€ I i

(2)

We call families satisfying (1) and (2) continuous. As before, morphisms between continuous sections

correspond to their associated families being ordered pointwise, i.e.

t 5 t'iff V X ED^'. t~ 5 t i

where t and t' are two continuous families.

At this point it is tempting to conclude .that IIF is a partially ordered set and press on with the

demonstration that it is a domain. Unfortunately, it is not quite, as its objects, the continuous sections,

are not sets. Even though the elements of IIF are classes they can be put in 1-1 comspondence with the

elements of a suitable set. To see this, take S to be some countable subcategory of domains equivalent

to the full subcategory of all finite domains with embedding-projection pairs as morphisms. Then any

continuous section is determined by its restriction to the standard domains S. Ordered pointwise these

restrictions are in 1-1 order preserving correspondence with IIF. In this sense IIF is isomorphic to a

partially ordered set, in fact a domain. This more generous sense of isomorphism is quite standard in

category theory; according to the usual notion of isomorphism there, IIF is isomorphic to a domain when

both are viewed as categories. This has described the sense in which we mean IIF is isomorphic to a

domain. Details are given in the proof of the following theorem.

Theorem 9 Let F : DEP -+ DEP be a continuousfunctor. The category IIF is isomorphic to a domain.

Proof: Take IIsF to be the partial order consisting of families (t x) x E s which are monotonic in the

sense that

f E DEP(X , Y) implies (F f) L t ~ 5 t y ,

for all X , Y E S , ordered pointwise. It is clear that IIsF is a set because S is. Now we show that TIF

and IIsF are isomorphic as categories, and, later, that IIsF is a domain.

Clearly, any continuous section t E IIF determines, by restriction, an element res t E TISF. Con-

versely, any element of t E IIsF can be extended to a continuous section ext t by taking

(ext t) ~ = V { (~ f) ~ t x I X E S & f E D E P (x , D)} ,

for any domain D. This must be checked to be well-defined however.

We note the set { (~ f) ~ t ~ I X E S & f E D ~ ' (x , D)) is directed so that the least upper bound

really does exist. To show this, take two elements of the set yo = (~ f ~) ~ t x , and yl = (~ f ~) ~ t x ,

arising from morphisms fo E DEP(Xo, D) and f l E D ~ ~ (x ~ , D) where Xo, X1 are finite domains. By

Lemma 4 there is a finite domain X and g E D E P (x , D) , go E DEP(Xo, X) and gl E DEP(X1, X) with

fo = g o go and fl = g o g l . Because t is monotonic it follows that yo, y1 5 (~ ~) ~ t ~ , an element of

the set. Hence the set is directed, and the definition above does at least yield a family. It remains to

show that the family is continuous. Firstly, to show the family is monotonic, assume g E D E P (~ , E) and

notice

(~ ~) ~ (e x t t) ~ = (~ g) ~ V { (F f) ~ t x (X E S and f E D E P (x , D) }

= V { (F ~) ~ o (F f) L t ~ I X E S and f E D ~ ' (x , D) }

5 V { (~ h) ~ t x 1 X E S and h E D E P (x , E) }

= (ext t) E .

This shows monotonicity. Suppose now that (pi E D E P (~ i , D))iEI is a directed colimit. To complete

the demonstration of continuity we require that

(ext t) ~ = V { (~ ~ i) ~ (e x t t o i) I i E I } .

Note first that the set is directed because ext t is monotonic. Again by monotonicity we obtain

(ext t) ~ 2 V { (~ p ;) ~ (e x t t ~ ,) I i E I} .

According to its definition (ext t) ~ is the least upper bound of elements (~ f) ~ t ~ for X E S and

f E D E P (x , D). Consider such an element. By Lemma 5, there is some i E I and h E D E P (x , Di)

such that f = pi o h. Now we see

It follows that (ext t) ~ 5 V ; (~ ~ ;) ~ (e x t tDi) , and now the equality required for continuity is obvious.

Now, it is easy to see that the two operations restriction res : IIF + IIsF and extension ext :

IIsF + IIF preserve the order relation. For t E TISF, we certainly have t y 5 (ext t) y for Y E S-

consider the identity morphism on Y-and by the monotonicity of t we see

(res ext t)u = V { (F I X E S and f E D E P (x , y)} 5 t y -

Hence res ext t = t for t E IIsF. For X E S we have (res t) x = t x , so from the definition of ext and

res we see

(ext res t) ~ = V { (F f l L t x I X E S and f E D ~ ' (x , D)},

for a domain D. However, because t is continuous and D is the colimit of finite embeddings in the sense

of Theorem 3, we also have

Hence ext res t = t, for all t E IIF. We conclude that res : IIF -+ IIsF and ext : IIsF + IIF form an

order isomorphism.

We now show IIsF is a domain. It has a least element, the family (1 ~) ~ ~ s . Suppose 1 i E I)
is a directed set in IIsF. Define the family t by taking

for all X E S-the least upper bound exists because the set { t i) I i E I) is directed because i t(') I i E I)

is. It is monotonic because, supposing f E D ~ ~ (x , Y), we see

using the fact that (F f) L is continuous. A very similar argument shows that IIsF is bounded complete

though in this case the argument uses the fact that embeddings preserve all existing least upper bounds.

Suppose there is a monotone family t such that t x = e E FX is finite for some X E S. Define

This is well-defined since t y is a bound for the set whose join is being taken on the right. It is possible

to show that it is a monotone family which does not depend on the choice of t . Now, any least upper

bound which exists of the form

[x l , e l] v - . . v [X, ,e ,] ,

where el E F X 1 , - , e , E FX,, is a finite element of nsF. The remaining argument, showing that

any element of IIsF is the lub of such elements and that all finite elements have this form, echoes that

in the proof of Proposition 8, and we omit it. Having chosen S to be countable it follows that the finite

elements form a countable set, and hence that IIsF is a domain isomorphic to IIF. I

Thus although strictly speaking the category IIF is not a partial order because its objects are classes,

not sets, it is nevertheless isomorphic to a domain. Because of this, in the future, we shall treat IIF as a

domain, in fact as the domain with continuous families as elements, and not fuss about this problem with

foundations. The more fastidious reader can after all replace our construction of IIF with the isomorphic

small category n s F provided in the proof above.

3.4 ll with parameters.

In the discussion later we will often need to use the II operator with parameters. If F : C x DEP -+ DEP

is continuous, then we write I IC F : C + DEP for the continuous functor defined as follows. The action

of II'F on objects is given by (IIC~)(c) = II(F(C, -)). Given f E C (C , D) , we define

by taking

for each section s E (I I C F) (c) and t E (I I C F) (D) .

Of course, we must show that this definition makes sense. First of all, let us check that (I I C F) ~ (f) (s) E

(I I C F) (o) . Suppose s E (I I C F) (c) = II(F(C, -)) and let t x = (I I C F) ~ (f) (s)x = FL(f , i dx) (sx) ,

we wish to show that t x E II(F(D, -)). Suppose g E D E P (x , y) . Then

FL(idD,g) (tx) = F L (i d ~ , 9) (F L (f i d ~) (s ~))

= ~ ~ (f , idx) (FL(ido ,g) (sx)I

I F L (f , i dx) ((s y 1)
= t y .

This proves monotonicity. To prove continuity, suppose gi E D ~ ' (x ~ , X) and the functions gf o g p form

a directed collection such that Vi g4 o gp = idx, then

C L
so (H F) (f)(s) E (IICF)(D).

C R Now suppose t E (IIC F)(D) = II(F(D, -)) and let sx = (11 F) (f)(t)x = FR(f , idx)(tx). We

wish to show that s E (IIC F)(c) = II(F(D, -)). Suppose g E DEP(x, Y). Then

This proves monotonicity. To prove continuity, suppose g; E DEP(xi, X) and the functions gf o gr form

a directed collection such that Vi gf o gr = idx. To keep the notation siniple, let

4; = F(f , idxi) E D~'(F(c, x i) , F(D, x i))

ai = F(idD7 gi) € D E P (F (~ , Xi), F(D, X))

Pi = F(idc, g;) E DEP(F(c, Xi), F(C, x))

4 = F (f , idx) E D E P (~ (c , X), F(D, X))

Note that

Since Via: o ap = ~ ~ F (D , x) and Vi PF o p? = idF(c,x), We have

C R NOW, let s x = (I I ~ F) ~ (~) (~) ~ = +R(tx) and sxi = (I I F) (f) (t) x , = 4R(tx i) . 'I''hen

That is, s x = V; ~ ~ (i d ~ , ~) (s ~ ,) and therefore s E (IIC~)(c) = II(F(D, -)).

We have now shown that the definitions of (I I ' F) ~ (f) and (I I C F) ~ (f) make sense. The proof

that (I Ic F)(f) E ~ ~ ~ ((1 1 ' F)(c) , (I I C F) (D)) and the proof that I IC F is a continuous functor are both

routine.

Notation: Later we shall be concerned with functors F : C x DEP -+ DEP and the associated IIC in the

case where C = (D ~ ~) ~ . In this case we shall write IIm for IIC.

3.5 Information systems.

The inspiration for our work came originally from Girard's paper [8]. There he uses a representation

of qualitative domains with morphisms stable functions and rigid embeddings to give a model for the

second-order A-calculus. For domains, we can use the representation of information systems in a similar

way to give an interesting, elementary contruction of IIF for a functor F on domains. We give a sketch

of the approach based on the presentation of information systems in [12] following [23]. Because the

proofs are straightforward and not essential for what follows we omit them.

Recall the definition of an information system:

Definition: An inJonnation system is defined to be a structure (A , Con, I-), where A is a countable set

(the tokens), Con is a non-null subset of finite subsets of A (the consistent sets) and I- is a subset of

Con x A (the entailment relation) which satisfy:

X C Y E Con implies X E Con

a E A implies {a) E Con

X !- a implies X U {a) E Con

X E Con and a E X implies X t- a

(X , Y E Con a n d V b ~ Y . XI- b a n d y t-c)impliesXt-c.

An information system determines a domain:

Proposition 10 The elements of an information system (A, Con, I-) are defined to be those subsets x of A

which satisfy:

X C x implies X E Con for any finite set X,

X C_ x and X I- aimplies a E s.

Ordering the elements by inclusion we obtain a domain (A1 withjinite elementsprecisely the sets { a E A 1
3 X c Y. X I- a}, obtained from X E Con.

A domain determines an information system:

Definition: Let D be a domain. Define I D = (BD, Con, t-) where BD is the set of finite elements of D

and Con and I- are defined as follows:

X E Con iff X c BD and X is finite and X is bounded,

~ I - e i f f ~ € ~ o n a n d e < V ~ .

Proposition 11 Let D be a domain. Then I D is an information system with domain of elements (ID1

isomorphic to D. The isomorphism pair is

tl : D -t J I D J given by tl : d H { e E BD I e 5 d } ,

4 : [ID1 -t Dgivenby 4 : x H Vs.
As is well-known a continuous function f between domains is determined by its action on finite

elements and so by the relation f 0 between finite elements that it induces, a relation defined as follows.

Definition: Let f : D + E be a continuous function between domains. Define f O = {(d, e) E BD x BE (

e l f(d)).

Embeddings between domains correspond to the following kinds of mappings between the finite

elements of the associated information systems.

Proposition 12 Let f : D + E be a continuousfunction between domains D and E. The function f is

an embedding iff

f O is a 1-1 function BD -t BE,

X E ConD iff f X E ConE, for all finite subsets X of BD, and

X I-D d iff f X F E f (d), for all elements d andfinite subsets X of BD.

To define the information system of ITF of a continuous functor on domains, as earlier, we use S, a

countable category equivalent to the full subcategory of finite domains with embedding-projection pairs.

Definition: Let F : D~~ -t DEP be a continuous functor on domains. Take T+ to consist of those pairs

(X, b) where X E S and b E B q X) . For W, a finite subset of T+, define

W E Con iff W E S. {(F f)Lb I 3X. (X, b) E W and f E DEP(x, Y)) E ConFy.

Define the tokens T to be those elements (X, b) of T+ for which {(X, b)) E Con. For W E Con and

(Y, c) E T, define

W I- (Y, c) iff { (~ f) ~ b (3X. (X, b) E W and f E D ~ ~ (x , Y)) I - F y b.

Finally, define IIIF to be (C, Con, t-).

Theorem 13 Let F : DEP + DEP be a continuous functor on domains. Then

(i) 111 F is an information system.

(ii) I I F 2 IIIIF(with isomorphism pair 8 : I I F + lIIIFl and 4 : IIIIFI + I I F given by

+(x) = (t y) y E ~ ~ ~ where

t y = {(F f)Lb I 3 X . f : X + Y and (X, b) E x). I

4 Basic combinators.

Here we introduce the notation and results we shall use to provide a semantics for the polymorphic

A-calculus. We are concerned with functors on the category DEP. Suppose Fl,. . . , F, are continuous

functors from (DEP)" into DEP. We claim that pi, the projection map defined earlier, is a section of

#(Fly . . . , F,) =+ Fj. To check this, suppose f E (D ~ ~) " (X , Y). Then

It is clear that pi will be a continuous section.

Let P, F, G : (DEP)" + DEP be continuous functors. Suppose s is a continuous section of the functor

P =. (F =+ G) : (DEP)" + DEP and t is a continuous section of the functor P * F : (DEP)m + DEP.

We define a continuous section apply(s, t) of P + G by the equation

where x E P (X) . To show that apply(s,t) really is a section, suppose f E (DEP)"(x,y). Then

To see that apply(s, t) is continuous, suppose f; E D ~ ~ (x ~ , X) and the functions f? o fiR form a directed

collection such that Vi f: o f? = idx, then

= V cL (fi)((sxi (pR(fi)(x)))(txi (pR(fi) (x))))
i

R .
= V G L (f i) (((~ * GlR(fi)((p * (F * G)) L (f i) (s ~ i) (x))) (~ (f,)((P * ~) ~ (f ~) (t ~ ,) (x))))

i

L .
= V G (f M F * G)R(fi)(sx(x)))(~R(fi)(tX(x))))

i

Let
P : (DEP)rn + DEP,

F : (D ~ ~) ~ x DEP + DEP, and

G : (DEP)" + DEP

be continuous functors. Suppose t is a continuous section of the functor

We define a continuous section Apply(t7 G) of the functor

P + (F o (id(Dep).. , G)) : (D ~ ~) ~ + DEP

by the equation

A ~ ~ l ~ (t , G)x(x) = ~x(x)G(x)

where x E P(X). We check that Apply(t, G) is indeed a section; suppose f E (DEP)"(x, Y), then

where the penuItimate step follows from the fact that ty(x) is a section of F(Y, -) and G(f) E

DEP(G(x), G(Y)). To see that Apply(t, G) is continuous, suppose fi E DEP(xi ,X) and the functions

f: o f? form a directed collection such that Vi fiL o f: = idx, then

Let P, F, G : (DEP)" + D~~ be continuous functors and suppose t is a continuous section of the

functor P # F + G : (D ~ ~) ~ + D ~ ~ . Then we define a continuous section curry(t) of the functor

P =+ (F + G) by setting

curr~(t>x(x>(Y> = tx(x,y)

for x E P(X) and y E F(X). To see that this does define a section, suppose f E (D ~ ~) " (X , Y). Then

To see that curry(t) is continuous, suppose fa E D ~ ~ (X ~ , X) and the functions f: o f p fonn a directed

collection such that V; f;L o f;R = idx, then

Let P : (DEP)" + DEP, F : (DEP)m x D~~ + D~~ and suppose t is a continuous section of (P o

Fst) + F. Let X E (DEP)m and x E P(X). We define C ~ r r y (t) ~ (~) to be the continuous section of

F (X, -) given by the equation

Curry(t)x(x)z = ~(x,z)(x).

This makes sense because t(x,Z) is a continuous functor in 2. We wish to show .that Curry(t) is a section

of P + IIm F. In other words, we want to show that

where f E (D ~ ~) ~ (x , Y) . Let x E P (X) and suppoose Z E DEP. Then

To see that Curry(t) is continuous, suppose f; E DEP(X;,X) and the functions f: 0 fp form a directed

collection such that Vi ft o fiR = idx, then

Notation: Suppose

P : (DEP)rn + DEP,

F : (DEP)rn + DEP, and

G : (DEP)" + DEP

are functors. Given continuous sections

s € I I (P # F = + G)

t E I I (P =. F) ,

we define a continuous section

[t]s E I I (P + G)

by setting

([tls)x(x) = a~ply(curry(s), t) = sx(x , tx(x)). 1

We will need the following Lemma later:

Lemma 14 1. If th(p , b) = t x (p) and sh(p, b, a) = sx(p, a , b) for every X , p, a and b, then

cu rry([tt]st) = [t](curry(s)).

2. I f t iXr) = t x , then Curry([tt]s) = [t](Curry(s)).

3. apply([tIr, P I S) = [tl(apply(r, 4).

4- Apply([tIs, G) = [tl(Apply(s, G)).

Proof: 1.

Notation: Suppose

P, Ii : (DEP)" + DEP and

F : (D ~ ~) " X DEP + DEP

are continuous functors and

t E TI((P o Fst) F) ,

then we define a continuous section

by setting

([K] t) X (x) = A P P ~ Y (C ~ ~ ~ Y (~) , K) X (X) = t (~ , ~ (~)) (x) .

We will need the following Lemma later:

Lemma 15 I . c u r r y ([l i] t) = [K] (cur ry (t)) .

2. Ift ix,z,y) = t(X,y,Z) for each X , Y and 2, then Cur ry ([K 0 Fst] t t) = [K] (Cur ry (t)) .

3. app ly ([K Is , [Kit) = [Icl(aPPlY(s,t)).

4. A P P ~ Y ([~ ~] ~ , H 0 (Id, I {)) = [K I (A P P ~ Y (~ , H I) .

Proof: 1.

5 Syntax of the polymorphic A-calculus.

The types of the polymorphic A-calculus are given by the following abstract syntax:

and the terms of the calculus are described as follows:

M ::= x I Ax : a . M 1 M1(M2) (Aa. M (M{a).

We distinguish a subcollection of well-typed terms of the calculus to be those terms M for which

t- M : a is derivable from the typing rules listed below. The sequent5 in the typing rules are of the form

H kc M : a where H = X I : 01,. . . a, is a (possibly empty) list of typings for variables which must

include all of the free term variables of M, and C = a l , . . . , a, is a list of type variables which must

include all of the free type variables that appear in al , . . . , a, and M. We use I-E M as an abbreviation

for H M where H is the empty list and H t- M as abbreviation for H kc M where C is the empty

list.

Typing rules for the polymorphic A-calculus.

projection:

+ introduction:

II introduction:

+ elimination:

II elimination:

Restrictions:

H kc Aa. M : IIa. a

r In the projection rule, .the variable x does not appear in H1 or Hz.

In the II introduction rule, there is no free occurrence of a in the type of any variable in H.

r In the II elimination rule, all free variiables of 0 2 are in C.

The terms of the calculus (in particular, the well-typed terms) are taken to satisfy a collection of

equational rules of the form H k c MI = M2 where H and C are lists of variable typings and type

variables as descibed above. Again, we assume that H lists all of the free term variables that appear in

M and C includes all of the free type variables that appear in H and M. The rules are given as follows:

Equational rules for the polymorphic A-calculus.

reflexivity: HI , x : a , H2 kc x = x : a

type f :

congruence:

type congruence:

It is not difficult to see that from these rules, a lambda expression M satisfies H kc M : a if and

only if it satisfies H t-c M = M : a. Thus, for the remaining axioms, we use H kc M : a as an

abbreviation for H kc M = M : a.

symmetry:

transitivity:

type P:

type 77:

Restrictions:

H kc, , M : 0 1

H kc (Aa. M){a2} = [a2/a]M : [a2/a]al

In the reflexivity axiom, the variable x does not appear in HI or Hz.

In the type [rule, there is no free occurrence of a in the type of a variable in H.

In the type P rule, there is no free occurrence of a in the type of a variable in H

In the 7 rule, the variable x does not occur free in M

In the type 7 rule, the variable a does not occur free in M.

6 Semantics of the polymorphic A-calculus.

In this section we provide a detailed description of a semantics for the polymorphic A-calculus, whose

syntax was described in the previous section. We end by showing that our model interprets types differently

from the models based on finitary projections described earlier and we show that the equational theory of

our model is different from that of any such model.

If m 2 i 2 1, then define Pilm : (DEP)" + DEP to be the i'th projection, i.e. the continuous

functor whose action on objects is given by P","(D~, . . . , Dm) = Di and whose action on arrows is

Pi*"(fl, . . . , f") = f;.

If C = al , . . . , a, is a list of type variables then %[[kc a] will be a continuous functor from (DEP)"

into DEP. The semantic function S[-1 is defined inductively as follows:

We also assign a meaning to a sequent H kc a by the equation:

Example: The type of the polymorphic identity is given as follows:

%[I- IIa. a + a] = II1(S[I-, a + a])

= nl(s[ka a] + %[ka an)

- - Jp(p1,l +. p1J > I

We now define the semantics of the sequents of the calculus. In general, the value

will be a continuous section of the functor

The semantic equations are given as follows:

For the second equations, one must suppose that the variable x doesn't appear free in H . To see that the

third line makes sense, we note the following:

Lemma 16 I f a does not appear free in the type a , then %[kc, , a] = %[kc a] o Fst.

Proof: Straightforward structural induction on a. I

Example: The polymorphic identity function is the following continuous section of 11l(P1>l + P1>l 1:

[t ha. Ax : a. x : Ha. a + a] = c~rry(l[l-, Ax : a. x : a a])

= Curry(curry([x : a l-, x : a]))

= Curry(curry(plJ)). I

Lemma 17 (Permutation) I f we have

(1,. . . , n } = { i l , . . . , in} and

{ l , - - . 7 m } = { j17 . . . , jm}

then
1x1 : 01, ... , x , : an kal , ..., an M : aIl(x1 ,..., X ,) (P I , . . - ~ P ~)

-
- [xi1 : ail 7 . . X i , : sin Fajl ..., a,,,, M : a] (x j l ,..., %,)(pil 7 . . pin)

Proof: Easy structural induction on M . I

Lemma 18 (Substitution) Suppose H k c MI : a1 and H , x : a1 k c M2 : u2, then

Proof: To help reduce the amount of notation needed for the arguments below, let

r = [H l-c [M1/x]M2]

s = [H , x : a1 kc M2 : a2]

t = [H I-c MI : ul]

We must show that r = [tls. Let n and m be the lengths of H and C respectively. The proof is by

structural induction on the term M2. There are six cases.

Case 1: M2 E y $ x. Suppose y is the i'th variable in H. Then T = [H kc y : a2] = pi" =

[t](pi*+') = t .

Case 2: M2 = x. We have T = t and [t]s = [t](pn+lyn+') = t , so T = [tls.

Case 3: M2 - Xy : a. M. Suppose that 0 2 = o + r so that H, y : a kc M : r.

T = [H kc Xy : a. [M l / x] M : a2]

= curry([H, y : u kc [M1/x]M : a])

= curry([[H, y : u Ml : olJ]([H, y : a, x : al kc M : a]) @YP)

= [t](curry([H, x : a l , y : a kc M : a])) (Lemmas 14.1 and 17)

= [tls.

Case 4: M2 = h a . M . Suppose that 6 2 - IIa. a SO that H kc, , M : a.

T = [H k c h a . [M l / s] M : a 2]

= Curry([H kc, , [M1/x]M : a])

= Curry([[H k c , , Ml : a l]] [H, x : a1 kc, a M : a]) OW)

= [t](Curry([H, x : a , kc , , M : a])) (Lemmas 14.2 and 17)

= [tls.

Case 5: M2 = M (N) . Suppose that H kc M : a + 0 2 and H kc N : a.

= [H k c ([M l / x] M) ([M l I x l N) : a21

= apply(%H k c [MlIxIM : a + 0 2 1 , [H k c [MlIxIN : 4)
= apply([t][H, x : a1 kc M : a =. 021, [t][H, a: : a1 k c N : a]) (~YP)

= [t](apply([H, x : al kc M : a + a2] , fH, x : al k c N : a]))

= [tls.

Case 6: M2 = M{a) . Suppose H kc M : r .

T = [H t-c ([M1lxIM){a} : a21

= APP~Y(~[H k c [M l l ~ l M : r] , [kc a])

= APP~Y([~IUH, 2; 0 1 k c M : 71, [k c a])

= [tl(Apply(UH, x ; 0 1 k c M : 70, [k c 4))
= [tls. I

@YP)

(Lemma 14.4)

Lemma 19 [kc [a2/a]al] = [kc all o (Id, I t c a2]) .

Proof: Structural induction on 01. I

Lemma 20 (Type Substitution) Suppose H kc , , M : 01, and a does not appear free in H, then

Proof: To help reduce the amount of notation needed, let

We must show that s = [Klt. The proof is by structural induction on M. There are five cases.

Case 1: M = x. This is trivial.

Case 2: M = Xy : a. N. Suppose a1 = a e- T so that N : T .

s = [H kc Xy : [a2/a]o. [az/a]N : [+/a]al]l

= curry([H, y : [az/a]a t-c [a2/a]N : [a 2 / a] ~ l)

= curry([K][H, y : a kc, a N : T]) (~YP)

= [li](curry([H, y : a kc, a N : T I)) (Lemma 14.1)

= [K]t .

Case 3: M = A@. N. Suppose that a1 = II@. a so that N : a

s = [H tc A@. [a2/a]N : [a2/a]al]

= Curry([H t-c, p [02/"]N : [~ 2 / a l ~ l l)

= Curry([K 0 Fst][H kc, p , a N : 011) (~ Y P)

= [K](Curry([H kc, p N : ai l)) Kernmas 15.2 and 17)

= [Iilt.

Case 4: M = N1(N2). Suppose that N1 : o + al and N2 : a.

= IIH I-c ([a2/aIN1)([a2/alN2) : [f l2lal~l l

= ~ P P ~ Y ([H t-c [a2lalN1 : [o2lal(a =+ a1)l, [H t-c [a2lalN2 : [a2/alal)

= aPPly([K][H kc, a N1 : (0 =+ (T I)] , [K][H kc, a N2 : 01) (~YP)

= [K](apPlY([H kc, a Nl : (0 * al)D, [H kc, a N2 : 01)) (Lemma 15.3)

= [K]t .

Case 5: N{a). Suppose H I-= N : T .

s = [H t-c ([a2lalN){[o2lal.) : [.2/(.1.11

= Apply([H t-c [o2/a]N : [o z l a] ~] , [kc [a2/a]a])

= APP~Y([KJ~H kc, a N : T I , I[ke [a2/alal)

= Apply([KI[H kc, a N : 711, b e 01 0 (Id , K))

= [KI (APP~Y([KIUH kc, a N : 711, ut-c 01))

= [Klt. I

Cnyp)

(Lemma 19)

(Lemma 15.4)

Lemma 21 Suppose H k c M : al + 02. If x does not appear in H , then

[H , x : a1 kc M : a1 + a2] = [H kc M : a1 + a2] o fst.

Proof: By structural induction on M.)

The following is a more dramatic version of Lemma 16:

Lemma 22 Suppose H k c M : a . Ifa I$ C, then [H kc , , M : a] = [H k c M : TIa. a] o Fst.

Proof: By structural induction on M.)

We will say that an equation H k c M I = M2 : a is satisfied by our semantics just in case [H kc

M I : a] = [H kc M I : a] . We are now prepared to state our central result:

Theorem 23 The semantic function [- I) satisJies the rules for the polymorphic A-calculus.

Proof: There are eleven rules altogether. Those whose proofs are non-trivial are the rules /?, type /?,
q and type q. The ,f3 rule and type ,f3 rule are immediate from the Substitution Lemma (18) and Type

Substitution Lemma (20) respectively.

First we consider the q rule:

This is subject to the restriction that the variable x does not occur free in M (and hence does not appear

in H) . We have

[H kc Ax : al. M (x) : a1 * az]
= curry([H, x : al k c M (x) : 0 2 1)

= curry(apply([H, x : al k c M : 01 + 0 2 1 , s nd))

= curry(apply([H k c M : al + a2] o fst, s nd)) (Lemma 21)

= [H k c M : 01 * 021

We now prove the type q ruIe:

H k c M : I I a . a

H t-c Aa. M { a) = M : IIa. a

This is subject to the restriction that the variable a does not occur free in M (and hence does not appear

in C).

[H kc ha. M i a) : n a . G I)

= Curry([H kc , a M { a) : a])

= Curry(Apply([H k c , , M : n a . a] , [k c , , a]))

= Curry(Apply([H kc M : Ha. a] 0 Fst, S n d))

= [H k c M : I Ia . a] . I

(Lemma 22)

Example: We wish to compute the interpretation S[IIcu. a] of the trivial type. This will show that our

model is distinct from the fhitary projection model (and also that the equational theories are distinct,

since the equation X(x : IIa. a) . X(y : IIa. a) . x = X(x : IIa. a). X(y : IIaa). y is valid in our model

and not in the finitary projection model).

Let (t x) be a continuous section of the identity functor. For all f E D E P (x , Y) , we get fL(tx) 5 ty.

Given an arbitrary domain X, let us consider Y = X + X (the coalesced sum), with the two morphisms

(that are left adjoints) in1 : X + Y and inr : X -t Y . Let f 1 (resp. f T) be the morphism in D~~

corresponding to inl (resp. inr). Then, we must have ~ (f l) ~ (t x) < ty and ~ (f r) ~ (t x) < ty which

entails ty =I, and then t x =I.

7 A model of Type:Type.

There are two purposes of this section. Firstly, we want to illustrate the notion of a family of domains

indexed over a domain with the example of domains over a universal domain. Secondly, we want to

explain how the finitary projection model of [I] relates to our model. In order to illustrate the first point,

we shall actually show that the finitary projection model is a model for a more powerful type system than

second-order type system, namely a type system with a type of all types. A more categorical description

of this model may be found in [29].

7.1 A reformulation of Type:Type

The system we use is an extension of intuitionistic type theory [1511, where we add one universe, but

with a slight change in the axioms for type equalities as compared with the version in [15].

We suppose that we have a special type U , which should be thought of as a type of indices for types,

and an operation T over the element of U, to be regarded as a dependent type over U. We suppose that

there exists an element u of type U such that T(u) = U, that is, a name for the type of all types.

We suppose furthermore that there is an "internalisation" of the product operation of dependent types.

Namely, there exists

T : TIa,u.(T(a) -t U) + U,

We ask that these operations are inverses, that is Lambda o App = id, and App o Lambda = id.'

The ordinary formulation [15] is with a type equality rule T(r (a , b)) = II,,T(a).T(b(~)), but this rule

'Notice that it should be possible, from the interpretation of the dependent product and sums over a domain outlined in the

previous section, to give an interpretation of intuitionistic type theory in terns of Scott domains (see [16]). We shall not develop

this here, since the precise verification that it is indeed a model is similar to checking that we get a model for second-order type

theory, and we have given this verification in full detail.

'It is interesting to note that this system is that obtained by representing the T y p e : T y p e calculus in the LF-framework

[lo], and also that it may be seen as providing a syntactic condition for what it means to be a model of T y p e : T y p e following

the ideas of [3].

does not seem to square with a "standard" semantics. For our purpose, the "weaker" system with only

isomorphisms is sufficient. It is significant that the Type : Type system, even with this weaker form

of equality, can be translated syntactically into our formalism (in particular, it is possible to interpret

Girard's paradox [7] in it, and so all types are "syntactically" inhabited).

Rather than describe this syntactic translation in full formal details, let us give some examples. The

universal type of second-order X-calculus lla.a -t a is first translated by Da : Type. Dx : a. a in the

Type : Type system. Then, it becomes T(n(u, Ax. ~ (x , Xy. x))). And so, if M is of this type, and N is of

type T(u) (that is N is a type), we can form the application of M to N by App(u, Ax. ~ (x , Xy. x), M, N).

In the same way, the type IIa. a will be interpreted by T(n(u, id)). Since App and Lambda are inverses,

the p-7-conversion rules will be satisfied.

7.2 Semantics in domain theory

We can point at once to one important difference between the finitary projection model and our categorical

model. In it, types are not interpreted directly as arbitrary domains, but as finitary projections of a single

"universal domain". So, for the construction of this model, we must first pick a domain D so that

[D -t Dl is embedded in D by the pair (@,XI!) (as is well-known following Scott, such domains can,

for instance, be built using an inverse limit construction). It is important to note that there are many

such domains, that there is nothing canonical in this choice, and that the influence of this choice over the

model is not clear. This is, however, the only part that is "non canonical" in the construction.

Let D be a domain so that there exists an embedding-projection pair (@, Q) of [D 4 Dl into D. An

element p E D + D is called a finitary projection if, and only if, p 5 id, p o p = p, and the image of p

is a domain with respect to the restriction of the order on D. It is known that the partial order of finitary

projections (with respect to the extensional ordering) is a domain, that we shall write Fp, and that this

domain is embedded in [D -t D] [22]. We obtain an embedding-projection pair (Go, Qo) from Fp into

D, from the composition of this embedding-projection from Fp into [D + D] with (Q, Q). We now take

for the interpretation of the set U the image of Go, which we again call U. This should cause no real

confusion. Notice that we do not interpret the type of types U by the "universal" domain D.

In the sequel, it will be convenient to use the "uncurried" notation " f (x, y)" for " f (x)(y)". If a E U ,

then a defines a finitary projection Qo(a) and hence a subdomain of D, namely the image of this finitary

projection T(a) = {x E D I Qo(a)(x) = x). Notice that T(a) is a subdomain of the "universal domain"

D. Furthermore, a E U, and that if a _< b in U then T(a) is a subdomain of T(b). The family T(x),

x E U, is a good example of a continuous family of domains over a domain.

Each T(a), for a E U, is embedded in the "universal domain" D, where the embedding is the

inclusion map, and the projection is defined by x c-. Qo(a,x). If b E T(a) + U, since D + D is

embedded into D, there is a "canonical" embedding of II,,T(,).T(b(~)) into D. Explicitly, the embedding

is defined in the following way: let f E II,,T(,).T(b(~)), then the image of f under this embedding

is defined by x - f(!Po(x,a)). The definition of the projection is: for f E D + D, the image

of f under the projection is defined by x - !Po(b, f(x)). This embedding will define an element

of Fp, hence an element of U by 90, that we shall write as n(a, b). Explicitly, we have n(a, b) =

@(Ax. Q(Az. Q(b(Q(a, z)), Q(x, Q (a, 2))))). By construction, we have that T(n(a, b)) is isomorphic

to IIx:T(a). T(b(x)) and App, Lambda are notation for the two halves of this isomorphism. We find

that, if c E T(n(a,b)), and d E T(a), then App(c,d) = Q(c,d), and if c E l12:T(a). T(b(x)), then

Lambda(c) = @(Ax. c(Qo(a, x))).

We can then check the desired equalities. For c E T(n(a, b)) we have c = @(Q(c) o (Qo(a))). Indeed,

we have
c = Q(r(a, b), c)

= Q(b(Q(a, z)), Q(c, Q(a, 4))).
Hence Q(c) = Az. Q(b(Q(a, z)), Q(c, Q(a, z))) and Q(c) o Qo(a) = Q(c) since !@(a) o Qo(a) = Q(a),

because a E U, so that

Lambda(App(c)) = @(Q(c) o Qo(a))

= @(Q(c))

For the other equality, we suppose that c E IIx,T(a). T(b(x)), and then

Finally, we build an element u E U so that T(u) = U. We take u = @o(QooQo). Since Qo o QO E Fp,

we have u E U. And x E T(u) if, and only if, x E D and Qo(Qo(x)) = x, hence if, and only if, x E U.

By definition of equality of domain, we get T(u) = U.

Since one can interpret second-order A-calculus in this calculus, we get a model for second-order

A-calculus (and the reader can check that what we get in this way is indeed the model described in [I]).

7.3 An example

As an example, we shall show that, in general, the interpretation of 1Ia.a. which here is T(n(u, id)), is

a non-trivial domain. This is significant because it shows that we get an essentially different model with

the categorical approach, since there the interpretation of IIa.cr is the trivial domain. Since T(n(u, id))

is isomorphic to Il,,u.T(x), it is enough to show that IIx,u.T(x) is not trivial if U is not trivial (that is

if D is not trivial). Let a E U be an element different from I. Then, if x E U, we have Q(x, a) E T(x),

by definition of T(x). It results that Ax. Q(x, a) E IIx:v. T(x), and we have Ax. Q(x, a) # I since

a f I.

The intuitive explanation of the difference between the models is that in the fkitary projection model

we restrict ourselves to domains that are finitary projections of a given "big" domain, and the only

morphisms we allow are inclusions (and not arbitrary embeddings). We thus get a small category that is

isomorphic to the domain Fp(D) of finitary projections over D. This category is a subcategory (but not a

full one) of the category D~~ via the inclusion functor. A dependent type becomes a continuous function

f from Fp(D) = U into itself which defines, by composition with this inclusion functor, a dependent

domain over the domain U. We can then see that the general definition of the product of a dependent

donlain given previously will specialise itself to T(T(u, f)). This explains why the interpretation of

ITa.a is bigger in the finitary projection model: when we consider Fp(D) as "the" category of domains,

we forget the morphisms that are not inclusions (for instance, non-trivial automorphisms). In a sense,

the categorical model is a refinement of this model where we take into account embeddings that are not

inclusions.

8 Questions and comparisons with related work.

We want first to describe why Girard's model [8], [4] follows the same pattern as our present model. The

idea is to translate all our definitions to the stable framework of [2]. That is, instead of requiring the

continuity of functors and functions, we require further that pull-backs are preserved, a property called

stability. In place of the extensional ordering on functions, we take the stable ordering. In place of

natural transformations between functors we take cartesian natural transformations. We can then work in

the category DIE' [2,8], or in the full subcategories of qualitative domains or coherent spaces [8]. The

relationship with the work of J.Y. Girard is then explained by a general result due to E. Moggi, which

we state in the following special case:

Proposition 24 Let F be a stable functorfrom to DI~', then a fzmily (tX)X,DI~~ is a continuous

and stable section of F if, and only it is uniform, that is F(f)R(ty) = t x whenever f E DI~'(x,Y).

We need first to express what a stable section is. A simple calculation of pull-backs in the Grothendieck

fibration of F shows that (f, g, u, v) is a pull-back diagram, with f E (T, t) -+ (X, x), g E (T, t) + (Y, y),

u E (X,x) -t (2 , t) and v E (Y, y) + (Z , t) (that is, f E DIEP(T,x), g E DIEP(T,y), u E

DIEP(x, Z), v E DIEP(y, Z), and ~ (f) ~ (t ~) 5 t ~ , ~ (g) ~ (t ~) I t ~ , F (u) ~ (~ x) i t~ and ~ (v) ~ (t ~) I
tz), if, and only if, t~ = ~ (f) ~ (t x) A ~ (~) ~ (t *) . The key fact is that if f E DI~'(x,Y) then we can

always find a domain Z and two morphisms u, v E DIEP(y, 2) such that they form a pull-back diagram.

This is clear if we think in terms of the representation using event structures of dI-domains (see section

3 of [4]). By expressing the stability condition for this diagram, we get the uniformity of (tx).

The stable model leads to a ''smaller" interpretation. For instance, in all the known stable models,

the interpretation of IIa.a -+ cr is the two-point domain. In the model presented in this paper, this

turns out to be infinite since it contains the following "continuous" operations indexed by an integer n:

fx(x) = x if x bounds more than n finite elements, and fx(x) =I if x does not bound more than

n finite elements (these are examples of "parametric" operations that are not uniform). It is not clear

whether or not these "non uniform" operations are interesting. It seems that all the terms we get form the

syntax of the second-order A-calculus are uniform, and so the stable model may be helpful in producing

fully abstract models.

A question raised by the last example is whether or not the interpretation of a given syntactic type

is an effectively given domain [26]. We do not even know actually what is the precise form of the

interpretation of IIa.cr -t cr (are there other elements than the ones given?). This question may be asked

of the stable models too [8,4]. It was one of the motivations in introducing the notion of coherent domain

[8], since, in this case it is possible to give an "explicit" description of the interpretation of the syntactic

types.

An important general question is the connection between these "models" and the general definition of

a model for second-order A-calculus given in [3]. A surprising point is that, strictly speaking, the present

model, and Girard's models as well, are not models in the sense of Bruce and Meyer (this was pointed

out to us by E. Moggi). Indeed, it seems essential that the collection of types is interpreted as a category,

and not as a set. This cannot be done if we follow verbatim the Bruce and Meyer definition. This is to

be contrasted with the finitary projection model of [I], which is a model for Bruce and Meyer definition.

This adds weight to the proposal of Seely of a more general definition of model [24,5], and, indeed, our

construction is a model [5] in his sense. It would be also possible to generalise slightly the definition

of Bruce and Meyer following the ideas developed in [2], so that this definition becomes equivalent to

Seely's definition.

We may ask also what are the relationship with other known models for polymorphisms. For instance,

the ideal model of [13], or models in the effective topos (see for instance [Ill). In contrast with the

effective topos model [l I], our model is a direct extension of that commonly used in denotational semantics

of programming languages and it allows us to handle recursion at all types.

In our construction, we made the choice to use the category of embedding-projection pairs rather than

arbitrary left adjoints. The constructions go through in the same way for with this category in place of

embeddings. For instance, we get a simple model by taking complete algebraic lattices and left adjoints,

model where the interpretation of the polymorphic identity type has only three points, as expected (see

[5] for a brief description of this model). We do not understand the relationship between this model and

.the one presented in detail here. Notice that this choice does not appear in the stable case (as noticed by

A. Pitts), due to the following remark: if a stable function f : D -t D is greater than idD for the stable

ordering, then, this function is equal to the identity. Indeed, we have, for x E D, x 5 f (x) hence, by

stability, x = f (x) A i d D (f (x)), that is, x = f (3). From this, we deduce that a left adjoint is, in the

stable case, an embedding.

We have explained the central role Grothendieck fibrations and continuous sections play in the inter-

pretation of polymorphism. Our presentation has been deliberately based on examples, and on one model

in particular; a new model for polymorphism has been worked out in considerable detail. From another

point of view, we have probably not been abstract enough. It is not yet clear what the right framework

is in which to encompass and relate the full range of models, and what techniques to use to home-in on

the model appropriate to meet certain requirements like full-abstraction.

References

[I] Amadio, R., Bruce, K. B., Longo, G., Thefinitary projection model for second order lambda calculus

and solutions to higher order domain equations. In: Logic in Computer Science, edited by A. Meyer,

IEEE Computer Society Press, 1986, pp. 122-130.

[2] Berry, G., Stable models of typed A-calculi. In: Fifth International Colloquium on Automata,

Languages and Programs, Springer-Verlag, Lecture Notes in Computer Science, vol. 62, 1978,

pp. 72-89.

[3] Bruce, K. and Meyer, A., The semantics of polymorphic lambda-calculus. In: Semantics of Data

Qpes, edited by G. Kahn, D.B. MacQueen and G. Plotkin, Lecture Notes in Computer Science,

vol. 173, Springer-Verlag, 1984, pp. 131-144.

[4] Coquand Th., Gunter C. and Winskel G., dl-domains as a model of polymorphism. To appear in the

proceedings of the Third Workshop on the Mathematical Foundations of Programming Language

Semantics, New Orleans, LA 1987.

[5] Coquand, T., and Ehrhard, T., An equational presentation of higher-order logic. In the proceedings

of the conference "Category theory and computer science", Edinburgh, September 1987, Springer

Lecture Notes in Computer Science.

[6] Fairbairn, J., Design and implementation of a simple typed language based on the lambda-calculus.

University of Cambridge Computer Laboratory Technical Report, no. 75, 1985, 107pp.

[7] Girard, J. Y., Interpretation fonctionelle et elimination des coupures de l'arithmetique d'ordre

supCrieur. Thkse d'Etat, Universitt? Paris VII, 1972.

[8] Girard, J. Y., The system F of variable types, fifteen years later. Theoretical Computer Science,

vol. 45, 1986.

[9] Gunter, C. A., Universalprofinite domains. Information and Computing, vol. 72 (1987), pp. 1-30.

[lo] R. Harper, F. Honsell, G. Plotkin. A Framework for Defining Logics. LICS, 1987.

[l l] Hyland, J.M.E. The Effective Topos. in The L.E.J. Brouwer Centenary Synlposium, North-Holland,

1982.

[12] Winskel, G. and Larsen, K., Using information systems to solve recursive domain equations effec-

tively. In the proceedings of the conference on Abstract Datatypes, Sophia-Antipolis, France in June

1984, Springer Lecture Notes in Computer Science, 173.

[13] Macqueen, D., Sethi, R., Plotkin, G.D., An Ideal Model For Recursive Polymolphic Types. POPL,

1984.

[14] Martin-Lof, P., An Intuitionistic Theory of Types. Unpublished manuscript, 1971.

[IS] Martin-Lof, P., Intuitionistic Type Theory. Bibliopolis, 1980.

[16] Martin-Liif, P., The domain interpretation of type theory. Lecture notes form the workshop on

semantics of programming languages, Goteborg, 1983.

[17] McCracken, N., An Investigation of a Programming Language with a Polymorphic Type Struc-

ture, Doctoral Dissertation, Syracuse University, 1979.

[18] Pitts, A., Polymorphism is set-theoretic constructively. In the proceedings of the conference "Category

theory and computer science", Edinburgh, September 1987, Springer Lecture Notes in Computer

Science.

[19] Plotkin, G.D., Complete partial orders, a tool for making meanings. Lecture notes for the Pisa

Summerschool, 1978.

[20] Reynolds, J. C., Polymorphism is not set-theoretic. In: Semantics of Data Types, edited by G. Kahn,

D.B. MacQueen and G. Plotkin, Lecture Notes in Computer Science, vol. 173, Springer-Verlag,

1984, pp. 145-156.

[21] Reynolds, J. C., Towards a theory of type structures. In: Colloque sur la Programmation, Springer-

Verlag, Lecture Notes in Computer Science 19, 1974, pp. 408425.

[22] Scott, D. S., Some ordered sets in computer science. In: Ordered Sets, edited by I. Rival., D. Reidel

Publishing Company, 198 1, pp. 677-7 1 8.

[23] Scott, D. S., Domains for Denotational Semantics. ICALP 1982, Springer Lecture notes in Computer

Science, 140, 1982.

[24] Seely, R., Categorical semantics for higher order polymorphic lambda calculus. Manuscript, 1986,

3 3 ~ ~ .

[25] Smith, J., Non derivability of Peano Axioms in Type Theory without Universes. Unpublished

manuscript.

[26] Smyth, M., Effectively given domains. Theoretical Computer Science, vol. 5, pp. 257-274, 1977.

[271 Smyth, M., The largest cartesian-closed category of domains. Theoretical Computer Science, 1983.

[28] Smyth, M. B. and Plotkin, G. D, The category-theoretic solution of recursive domain equations.

SIAM Journal of Computing, vol. 11 (1982), pp. 761-783.

[29] Taylor, P., Recursive domains, indexed category theory and polymorphism. Ph.D. Thesis in

mathematics, University of Cambridge, 1987.

	Domain Theoretic Models of Polymorphism
	Recommended Citation

	Domain Theoretic Models of Polymorphism
	Abstract
	Comments

	tmp.1190148235.pdf.O9WO7

