
B
R

IC
S

D
S

-0
3
-1

3
M

.
N

y
g
a
a
rd

:
D

o
m

a
in

T
h

eo
ry

fo
r

C
o
n

cu
rren

cy

BRICS
Basic Research in Computer Science

Domain Theory for Concurrency

Mikkel Nygaard

BRICS Dissertation Series DS-03-13

ISSN 1396-7002 November 2003

Copyright c© 2003, Mikkel Nygaard.

BRICS, Department of Computer Science

University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-

cations. Copies may be obtained by contacting:

BRICS

Department of Computer Science

University of Aarhus

Ny Munkegade, building 540

DK–8000 Aarhus C

Denmark

Telephone: +45 8942 3360

Telefax: +45 8942 3255

Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide

Web and anonymous FTP through these URLs:

http://www.brics.dk

ftp://ftp.brics.dk

This document in subdirectory DS/03/13/

Domain Theory for Concurrency

Mikkel Nygaard

PhD Dissertation

Department of Computer Science

University of Aarhus

Denmark

Domain Theory for Concurrency

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Mikkel Nygaard
July 31st, 2003

(Revised on December 4th, 2003)

Abstract

Concurrent computation can be given an abstract mathematical treatment
very similar to that provided for sequential computation by domain theory
and denotational semantics of Scott and Strachey.

A simple domain theory for concurrency is presented. Based on a cat-
egorical model of linear logic and associated comonads, it highlights the
role of linearity in concurrent computation. Two choices of comonad yield
two expressive metalanguages for higher-order processes, both arising from
canonical constructions in the model. Their denotational semantics are fully
abstract with respect to contextual equivalence.

One language, called HOPLA for Higher-Order Process LAnguage, de-
rives from an exponential of linear logic. It can be viewed as an extension of
the simply-typed lambda calculus with CCS-like nondeterministic sum and
prefix operations, in which types express the form of computation path of
which a process is capable. HOPLA can directly encode calculi like CCS,
CCS with process passing, and mobile ambients with public names, and
it can be given a straightforward operational semantics supporting a stan-
dard bisimulation congruence. The denotational and operational semantics
are related with simple proofs of soundness and adequacy. Full abstraction
implies that contextual equivalence coincides with logical equivalence for a
fragment of Hennessy-Milner logic, linking up with simulation equivalence.

The other language is called Affine HOPLA and is based on a weakening
comonad that yields a model of affine-linear logic. This language adds to
HOPLA an interesting tensor operation at the price of linearity constraints
on the occurrences of variables. The tensor can be understood as a jux-
taposition of independent processes, and allows Affine HOPLA to encode
processes of the kind found in treatments of nondeterministic dataflow.

The domain theory can be generalised to presheaf models, providing a
more refined treatment of nondeterministic branching and supporting no-
tions of bisimulation. The operational semantics for HOPLA is guided by
the idea that derivations of transitions in the operational semantics should
correspond to elements of the presheaf denotations. Similar guidelines lead
to an operational semantics for the first-order fragment of Affine HOPLA.
An extension of the operational semantics to the full language is based on
a stable denotational semantics which associates to each computation the
minimal input necessary for it. Such a semantics is provided, based on event
structures; it agrees with the presheaf semantics at first order and exposes
the tensor operation as a simple parallel composition of event structures.

The categorical model obtained from presheaves is very rich in struc-
ture and points towards more expressive languages than HOPLA and Affine
HOPLA—in particular concerning extensions to cover independence mod-
els. The thesis concludes with a discussion of related work towards a fully
fledged domain theory for concurrency.

v

Acknowledgments

Thanks to

my supervisor, Glynn Winskel, for four years of joint work under
his expert leadership—and for introducing me to some of the
good things in life besides research, like Jalfrezi and Habit Ale;

my committee members Pierre-Louis Curien and Guy McCusker
for their thoughtful and detailed comments, corrections and sug-
gestions for improving the thesis;

Pino Rosolini and the people at DISI, University of Genoa, for
their hospitality during my stay there and for helpful comments
on my work—and especially to Mat́ıas Menni for his friendship;

Marcelo Fiore for his insightful suggestions at my Part A exam;

Erik Meineche Schmidt and Mogens Nielsen for their early en-
couragement;

the staff and students at Daimi/BRICS for creating a stimulating
working environment;

“Læsegruppen” and “Frokostklubben” for forcing me to have a
life besides my studies (or, at least for trying);

my family for boldly asking questions about my research even
though my answers were often incomprehensible.

Last, but certainly not least, I wish to thank my wife Mette for her support,
her patience, and her unwavering faith in me.

Mikkel Nygaard
Århus, Denmark
December 2003

vi

Contents

1 Introduction 1
1.1 Sequential Computation . 2
1.2 Concurrent Computation . 12
1.3 Towards a Domain Theory for Concurrency 18

I Path Semantics 25

2 Domain Theory from Path Sets 27
2.1 Processes as Path Sets . 27
2.2 Nondeterministic Domains . 29
2.3 Linear and Nonlinear Maps 30

3 HOPLA 37
3.1 Denotational Semantics . 40
3.2 Useful Identities . 44
3.3 Full Abstraction . 51
3.4 Operational Semantics . 52
3.5 Simulation . 61
3.6 Expressive Power . 68

4 Affine HOPLA 73
4.1 Denotational Semantics . 75
4.2 Useful Identities . 77
4.3 Full Abstraction . 79
4.4 Operational Semantics . 80
4.5 Expressive Power . 92

vii

II Presheaf Semantics 95

5 Domain Theory from Presheaves 97
5.1 Processes as Presheaves . 98
5.2 Presheaf Categories . 99
5.3 Linear and Nonlinear Maps 102

6 Strong Correspondence 105
6.1 Finitary HOPLA . 106
6.2 Full HOPLA . 108
6.3 Affine HOPLA . 116

7 Event-Structure Representation 119
7.1 Event Structures . 120
7.2 Representations . 122
7.3 Stable Denotational Semantics 129
7.4 Stable Operational Semantics 132
7.5 Higher-Order Processes . 145

8 Conclusion 149
8.1 Summary . 149
8.2 Related Work . 150

viii

Chapter 1

Introduction

Theories of sequential computation concern transformations of input to out-
put following a well-defined sequence of basic computational steps. Sequen-
tial programs implement mathematical functions mapping from the set of
possible inputs to the set of possible outputs. The class of functions aris-
ing in this way is very well understood. Even before the first computer was
built, the work of Church, Kleene, and Turing had established the notion of
computable function, captured by the untyped lambda calculus, recursive
functions, and Turing machines in unison [21, 45, 89].

While these basic models give little guidance on how to design and reason
about programming languages, domain theory and denotational semantics
of Scott and Strachey provide a global mathematical setting for sequential
computation, building on top of the foundational theories [82]. It places
programming languages in connection with each other; connects with the
mathematical worlds of algebra, topology, and logic; and inspires program-
ming languages, type disciplines, and methods of reasoning.

However, the majority of real computer systems are not merely comput-
ing output from input. Rather, their main purpose is to be in ongoing interac-
tion with the environment, and the central aspect of their behaviour is there-
fore their changing patterns of interaction over time. So the input/output
paradigm of sequential computation is not immediately applicable.

Theories of concurrent computation concern the behaviour of systems of
communicating, autonomous processes. In contrast to sequential computa-
tion, there is no class of “computable processes” with universal status, and
the global mathematical guidance provided by a domain theory is missing.
As a consequence, theories of concurrency form a rather fragmented picture.

The point of the thesis is to show that this state of affairs need not
persist. We develop a simple domain theory for processes. It inspires process
programming languages whose denotational semantics will map programs
to mathematical functions on processes, thus combining the input/output
paradigm with the notion of a process interacting with its environment.

1

2 CHAPTER 1. INTRODUCTION

Section 1.1 recalls the prominent features of Scott and Strachey’s ap-
proach, focusing on the structure it provides to theories of sequential com-
putation. This is contrasted with the situation in concurrent computation in
Section 1.2 where seemingly incompatible theories are abundant. The work
described in the thesis is part of a broader programme of research towards
a unifying theory. This effort is outlined in Section 1.3 which also gives an
overview of the thesis.

1.1 Sequential Computation

The purpose of this section is to establish some notation and give an overview
of those concepts from sequential computation that we wish to advance to
a concurrent setting. We’ll take for granted a basic understanding of the
untyped lambda calculus including concepts like free and bound variables,
substitution, α, β, η-equivalence, and β-reduction (see [71] for an elementary
account or [6] for more information).

1.1.1 Denotational Semantics

Following Strachey [85] the meaning, or denotation, of a program construct is
a representation of its contribution to overall behaviour, specified in the un-
typed lambda calculus. For instance, commands in imperative programming
languages may be represented as partial mappings from states to states, a
state being a function s from variable names (or locations) to values. Names
and simple values may be represented using Church numerals or similar en-
codings which allow equality tests, but it is customary to leave out such
detail and write e.g.

JskipK = λs.s and Ji := 7K = λs.λx.[x = i⇒ 7, s x] . (1.1)

The notation [b ⇒ t1, t2] stands for the encoding of a conditional which
equals (reduces to) t1 if b is true and t2 otherwise. We’ll use similar notation
for similar kinds of tests throughout the thesis.

A hallmark of denotational semantics is compositionality, meaning that
the denotation of a compound program construct is given inductively in
terms of the denotations of its constituents. As an example, the meaning of
a command sequence c ; c′ can be given as the functional composition of the
meanings of c and c′, i.e.

Jc ; c′K = Jc′K ◦ JcK = λs.Jc′K(JcKs) . (1.2)

Consider now a loop while b do c with b denoting a map JbK from states to
booleans. The loop should have the same semantics as its unfolding,

Jwhile b do cK = Jif b then (c ; while b do c) else skipK . (1.3)

1.1. SEQUENTIAL COMPUTATION 3

Therefore, the denotation w of the loop should satisfy

w = fw where f = λc′.λs.[JbKs⇒ c′(JcKs), s]. (1.4)

This clearly does not work as a definition because w recurs on the right-
hand side of the equation w = fw. But the untyped lambda calculus has a
fixed-point operator

Y ≡def λf.(λx.f x x) (λx.f x x) , (1.5)

satisfying Y f = f(Y f) for all lambda terms f . We can then define w =def

Y f , and so w = Y f = f(Y f) = fw as wanted. Denotations of other kinds
of infinite computational behaviour, like recursive procedures, can be given
compositionally in a similar way.

1.1.2 Domains

Of course, the above is really just a translation of one programming lan-
guage, a command language, into another, the untyped lambda calculus.
Mathematical foundations are provided by Scott’s famous construction of a
model for the untyped lambda calculus [80] using certain ordered structures,
called domains. Domains come in many variants, see [3]. Here, a domain D
will be a complete partial order (cpo) with a least element, written ⊥. Com-
pleteness of D means that any ω-chain, i.e. any ordered chain

d0 ≤D d1 ≤D · · · ≤D dn ≤D · · · (1.6)

in D indexed by the natural numbers ω = {0, 1, 2, . . .}, has a least upper
bound in D, written

⊔
n∈ω dn. A monotone map f : D→ E between domains

is said to be continuous if it preserves the completeness structure

⊔
n∈ω fdn = f(

⊔
n∈ω dn) for all ω-chains (dn)n∈ω in D. (1.7)

Continuous endofunctions f : D → D on domains D are of special interest
because they admit least fixed-points, obtained as fixD f =

⊔
n∈ω (fn⊥).

This gives an alternative to the Y combinator of the untyped lambda cal-
culus, in the form of a typed fixed-point operator fixD : (D → D) → D for
each domain D. Here, D → D is the domain of continuous maps f : D → D
under pointwise ordering, i.e.

f ≤D→D g ⇐⇒ ∀d ∈ D. fd ≤D gd . (1.8)

Using domains in denotational semantics, program constructs denote ele-
ments of domains. The construction of a model for the untyped lambda cal-
culus then involves finding a domain D in which to interpret lambda terms.
Considering the self-application xx as in the Y -combinator, note that if the
second occurrence of x has type D, and the whole term xx has type D,

4 CHAPTER 1. INTRODUCTION

then the first occurrence of x must be assigned both the type D and the
type D → D. Thus, we need at least an isomorphism D ∼= (D → D), and
Scott’s fundamental contribution was to construct a nontrivial solution to
this recursive domain equation.

Some intuition about domains can be obtained by considering the com-
mands of the previous section. They may be mapped to elements of the
domain C =def S → S where S is a domain representing states. It is well-
known that some commands do not terminate when run in certain states,
and their denotation will then map such states to the least element ⊥ ∈ S,
thought of as an “undefined” state, or rather, no knowledge about a state.
The ordering of C can then be understood intuitively as one of information:
a map S → S can be considered more informative than another if it yields
more informative output on each input. The denotation of the while loop
considered in the previous section is obtained as the least fixed-point fixC f
of the continuous map f : C→ C defined in (1.4). The approximation fn⊥
of the fixed-point is the denotation of the n’th unfolding of the loop with
zero unfoldings represented by ⊥ ∈ C, the everywhere ⊥ map. Thus, the
ω-chain (fn⊥)n∈ω is intuitively a chain of increasing information about the
denotation of the while loop.

1.1.3 Universal Constructions

Scott’s construction gave birth to domain theory which in fact does a lot
more than provide a model for the untyped lambda calculus. Indeed, it
forms an informative mathematical world in which one can give denota-
tional semantics to programming languages by mapping program constructs
to elements of domains, while the domains themselves function as “types” of
constructs. It is therefore important to study the possible constructions on
domains, and it is customary to employ category theory for this. Category
theory is an effective tool for investigating structure, guided by the notion
of universal construction. Such constructions are characterised by their “be-
haviour” rather than by their “implementation” in a way similar to abstract
data types. Introductions to category theory are [70, 9] while the classic
reference remains Mac Lane’s book [51].

For simplicity we’ll consider just cpos and continuous maps between
them. Continuous functions between cpos compose as functions and the
identity function 1C : C → C is continuous for any cpo C. Thus, cpos and
continuous functions form a category, which we’ll call Cpo.

This category has products given at objects A and B by the cartesian
product A×B of posets with associated projections fst : A×B→ A and snd :
A × B → B. This “implements” the following “behaviour”, characterising
the implementation up to isomorphism: any pair of maps f : C → A and
g : C → B from some object C in Cpo can be tupled together to form a
unique map 〈f, g〉 : C → A × B with the property that fst ◦ 〈f, g〉 = f and

1.1. SEQUENTIAL COMPUTATION 5

snd ◦ 〈f, g〉 = g. Given h : A→ A′ and k : B→ B′, we’ll write h× k for the
unique map 〈h ◦ fst , k ◦ snd 〉 : A×B→ A′×B′. The empty product is given
by the singleton cpo 1 = {⊥} and, as the terminal object, is associated with
unique maps ⊥C : C→ 1, constantly ⊥, for any cpo C.

Exponentials are obtained as the poset of continuous maps A → B,
ordered pointwise as defined by (1.8). Associated to this object is a map
app : (A → B) × A → B, given as app(f, a) =def fa. The construction
satisfies the universal property that given any map g : C× A→ B in Cpo,
there is a unique map curry g : C→ (A→ B) such that app◦(curry g×1A) =
g. Since Cpo has finite products and exponentials, it is cartesian closed
and thereby a model of intuitionistic propositional logic (see [46] or [86]
for more information on the correspondence between intuitionistic logic and
categorical structure).

The category Cpo also has coproducts, given at objects A and B by
the disjoint juxtaposition of cpos, A + B. There are obvious injection maps
inl : A→ A+B and inr : B→ A+B. Given maps f : A→ C and g : B→ C
in Cpo there is a unique map [f, g] : A + B → C such that [f, g] ◦ inl = f
and [f, g] ◦ inr = g. The empty coproduct, i.e. initial object, is given by the
empty cpo O. The empty map ∅C : O → C is the unique map from O to
any cpo C.

1.1.4 Simply-Typed Lambda Calculus

We now illustrate how one can use universal constructions to define the
denotational semantics of a programming language. The simply-typed lambda
calculus is directly suggested by the constructions available in Cpo. Types
are given by the grammar

A, B ::= A→ B | 1 | A× B | A + B . (1.9)

—and are interpreted as objects of Cpo in the obvious way. The raw syntax
of terms is given by

t, u ::= x, y, z, . . . (variables)
| λx.t | t u (abstraction and application)
| ⊥ | (t, u) | fst t | snd t (unit, pairing and projections)
| inl t | inr t | (injections)
| [u > inl x⇒ t1, inr x⇒ t2] (match for sums)

(1.10)

The variables x in a match term [u > inl x ⇒ t1, inr x ⇒ t2] are binding
occurrences and so bind later occurrences of the variable in the bodies t1
and t2, respectively.

Assume that the variables x1, . . . , xk are distinct. A syntactic judgement
x1 : A1, . . . , xk : Ak ⊢ t : B stands for a map

Jx1 : A1, . . . , xk : Ak ⊢ t : BK : A1 × · · · × Ak → B (1.11)

6 CHAPTER 1. INTRODUCTION

in Cpo. We’ll write Γ, or Λ, for an environment list x1 : A1, . . . , xk : Ak and

often abbreviate the denotation to A1×· · ·×Ak
t
−→ B, or even Γ

t
−→ B. When

Γ is empty, the corresponding product is the singleton cpo 1.

The term-formation rules are displayed below alongside their interpre-
tations as constructors on maps of Cpo, taking the maps denoted by the
premises to that denoted by the conclusion (cf. [12]). We assume that the
variables in any environment list are distinct.

Structural rules. The rules handling environment lists are given as follows:

x : A ⊢ x : A A
1A−→ A

(1.12)

Γ ⊢ t : B

Γ, x : A ⊢ t : B

Γ
t
−→ B

Γ× A
1Γ×⊥A−−−−→ Γ× 1

rB−→ Γ
t
−→ B

(1.13)

Γ, y : B, x : A,Λ ⊢ t : C

Γ, x : A, y : B,Λ ⊢ t : C

Γ× B× A× Λ
t
−→ C

Γ× A× B× Λ
t◦(1Γ×sA,B×1Λ)
−−−−−−−−−−→ C

(1.14)

Γ, x : A, y : A ⊢ t : B

Γ, z : A ⊢ t[z/x, z/y] : B

Γ×A× A
t
−→ B

Γ× A
1Γ×∆A−−−−→ Γ× A× A

t
−→ B

(1.15)

The rules for weakening (1.13) and exchange (1.14) make use of the obvious
isomorphisms rB : B × 1 ∼= B (right unit) and sA,B : A × B ∼= B × A
(symmetry). In the rule for contraction (1.15), the variable z must be fresh;
the map ∆A is the usual diagonal, given as 〈1A, 1A〉.

Function space. Interpreted using exponentials of Cpo:

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B

Γ× A
t
−→ B

Γ
curry t
−−−−→ A→ B

(1.16)

Γ ⊢ t : A→ B Λ ⊢ u : A

Γ,Λ ⊢ t u : B

Γ
t
−→ A→ B Λ

u
−→ A

Γ× Λ
t×u
−−→ (A→ B)× A

app
−−→ B

(1.17)

Products. Interpreted using products of Cpo:

Γ ⊢ ⊥ : 1 Γ
⊥Γ−−→ 1

(1.18)

Γ ⊢ t : A Λ ⊢ u : B

Γ,Λ ⊢ (t, u) : A× B

Γ
t
−→ A Λ

u
−→ B

Γ× Λ
t×u
−−→ A× B

(1.19)

Γ ⊢ t : A× B

Γ ⊢ fst t : A

Γ
t
−→ A× B

Γ
t
−→ A× B

fst
−→ A

(1.20)

Γ ⊢ t : A× B

Γ ⊢ snd t : B

Γ
t
−→ A× B

Γ
t
−→ A× B

snd
−−→ B

(1.21)

1.1. SEQUENTIAL COMPUTATION 7

Sums. Interpreted using coproducts of Cpo:

Γ ⊢ t : A

Γ ⊢ inl t : A + B

Γ
t
−→ A

Γ
t
−→ A

inl
−−→ A + B

(1.22)

Γ ⊢ t : B

Γ ⊢ inr t : A + B

Γ
t
−→ B

Γ
t
−→ B

inr
−−→ A + B

(1.23)

Γ, x : A ⊢ t1 : C Γ, x : B ⊢ t2 : C Λ ⊢ u : A + B

Γ,Λ ⊢ [u > inl x⇒ t1, inr x⇒ t2] : C

Γ× A
t1−→ C Γ× B

t2−→ C Λ
u
−→ A + B

Γ× Λ
1Γ×u
−−−→ Γ× (A + B)

distΓ,A,B−−−−−→ Γ× A + Γ× B
[t1,t2]−−−→ C

(1.24)

In the last rule, the map distΓ,A,B is the isomorphism witnessing that prod-
ucts distribute over sums in Cpo.

There is analogy between type constructors →,×,+ and logical connec-
tives →,∧,∨: typing derivations Γ ⊢ t : A correspond to proofs of A from
assumptions Γ in intuitionistic logic. This is the so-called Curry-Howard
isomorphism (see [86], Ch. 2.4, or [46] for a full account).

By induction on the rules above, one can prove a substitution lemma,
essentially saying that β-reduction is valid:

Lemma 1.1 (Substitution) Suppose Γ, x : A ⊢ t : B and Λ ⊢ u : A
with Γ and Λ disjoint. Then Γ,Λ ⊢ t[u/x] : B with denotation given by the
composition

Γ× Λ
1Γ×u
−−−→ Γ× A

t
−→ B . (1.25)

Proposition 1.2 By the equational properties of the universal construc-
tions and the substitution lemma we get the following “β-equivalences”:

JΓ ⊢ (λx.t) u : BK = JΓ ⊢ t[u/x] : BK

JΓ ⊢ fst(t, u) : AK = JΓ ⊢ t : AK

JΓ ⊢ snd(t, u) : BK = JΓ ⊢ u : BK

JΓ ⊢ [inl u > inl x⇒ t1, inr x⇒ t2] : CK = JΓ ⊢ t1[u/x] : CK

JΓ ⊢ [inr u > inl x⇒ t1, inr x⇒ t2] : CK = JΓ ⊢ t2[u/x] : CK

(1.26)

Proposition 1.3 By the uniqueness properties of the universal construc-
tions we get the following “η-equivalences”:

JΓ ⊢ λx.(t x) : A→ BK = JΓ ⊢ t : A→ BK

JΓ ⊢ ⊥ : 1K = JΓ ⊢ t : 1K

JΓ ⊢ (fst t, snd t) : A× BK = JΓ ⊢ t : A× BK

JΓ ⊢ [u > inl x⇒ inl x, inr x⇒ inr x] : A + BK = JΓ ⊢ u : A + BK

(1.27)

8 CHAPTER 1. INTRODUCTION

1.1.5 A Metalanguage

The denotational semantics of a given programming language can be speci-
fied along the lines above by assigning to every kind of program construct a
suitable domain and a compositional mapping J−K sending individual con-
structs of that kind to elements of the chosen domain. Since most such do-
mains tend to be function spaces, it quickly becomes cumbersome to check
that J−K always maps to continuous functions. This problem can be ad-
dressed by providing a metalanguage for sequential programming. We show
once and for all that the terms of the metalanguage denote continuous func-
tions and so, by specifying the denotational semantics of each programming
language of our interest in the metalanguage, we can rest assured that J−K
maps every construct of function space type to a continuous map.

Based directly on canonical constructions, the simply typed lambda cal-
culus would be a good candidate for a metalanguage, if not for the fact that
it lacks fixed-point operators because types are interpreted as cpos rather
than domains. However, any cpo C can be turned into domain C⊥ by adding
a new least element ⊥ below a copy of C. Each element c ∈ C gives rise to an
element ⌊c⌋ of C⊥, distinct from ⊥. The ordering of C⊥ is given by ⊥ ≤C⊥

d
for all d ∈ C⊥ and ⌊c⌋ ≤C⊥

⌊c′⌋ iff c ≤C c′. We write Dom for the full
subcategory of Cpo given by those objects that are domains. Dom inherits
cartesian closed structure from Cpo, and using a combination of the univer-
sal constructions above and lifting one can obtain a typed lambda calculus
with a fixed-point operator at every type so that we can interpret the typing
rule

Γ, x : A ⊢ t : A

Γ ⊢ rec x.t : A
(1.28)

We’ll not go into the details here. Chapter 11 of Winskel’s book [95] gives
more information on how different uses of lifting give rise to different calculi
with different evaluation strategies like “call-by-value” or “call-by-name”.
Our metalanguage will employ a “lazy” strategy where subterms are only
evaluated as needed.

In addition to recursion on terms we need to add recursive types to deal
with infinite data types like the natural numbers. In the full metalanguage,
types are given by the grammar

T ::= T1 → T2 | 1 | T1 × T2 | T1 + T2 | T | µT.T . (1.29)

The symbol T is drawn from a set of type variables used in defining recursive
types; closed type expressions are interpreted as domains. The expression
µT.T is interpreted as “the least” solution to the defining equation T = T in
which the expression T may contain T . We shall confuse a closed expression
for a domain with the domain itself. Recursive domain equations of this form
can be solved using information systems [81, 48], characterising solutions (at
least) up to an isomorphism abs : T[µT.T/T] ∼= µT.T whose inverse we call

1.1. SEQUENTIAL COMPUTATION 9

rep. The associated typing rules are given by

Γ ⊢ t : T[µT.T/T]

Γ ⊢ abs t : µT.T

Γ ⊢ t : µT.T

Γ ⊢ rep t : T[µT.T/T]
(1.30)

One can prove an analogue of the substitution lemma for the extended lan-
guage and add equations

JΓ ⊢ rec x.t : AK = JΓ ⊢ t[rec x.t/x] : AK

JΓ ⊢ rep(abs t) : T[µT.T/T]K = JΓ ⊢ t : T[µT.T/T]K
(1.31)

to Proposition 1.2. (On the other hand, items 1 and 3 of Proposition 1.3 will
fail because of our lazy evaluation strategy.)

Example 1.4 The natural numbers can be defined by N ≡def µN.1 + N .
The constant zero and operations of successor and addition (curried) can be
defined by

Zero ≡def abs(inl ⊥)

Succ ≡def λn. abs(inr n)

Add ≡def rec f.λn.λm.[rep n > inl x⇒ m, inr x⇒ Succ(f x m)]

(1.32)

We have ⊢ Zero : N and ⊢ Succ : N→ N, and ⊢ Add : N→ N→ N.

In programming languages like ML or Haskell, data type constructors
and pattern matching are used to eliminate the need for abs and rep. In ML
one would write

datatype N = Zero | Succ of N

fun Add(Zero) m = m

| Add(Succ x) m = Succ(Add x m)

(1.33)

The ability to mirror functional programming in this way illustrates the
expressiveness of the metalanguage. ✷

1.1.6 Operational Semantics

As it stands, using the metalanguage is inferior to Strachey’s original ap-
proach in one respect: β-reduction in the untyped lambda calculus provides
an executable specification of a language, against which an implementation
can be contrasted. Fortunately, the metalanguage also admits such an oper-
ational interpretation, building on Proposition 1.2 and (1.31).

The operational semantics defines an evaluation relation A : t ⇓ v where
⊢ t : A and v is a value, i.e. a closed, well-formed term generated by the
grammar

v ::= λx.t | (t, u) | inl t | inr t | abs v . (1.34)

10 CHAPTER 1. INTRODUCTION

The denotations of values satisfy J⊢ v : AK >A ⊥; intuitively, values represent
positive information. The evaluation relation is defined inductively using a
structural operational semantics [75]; we leave out obvious symmetric rules:

A : v ⇓ v

A : t[rec x.t/x] ⇓ v

A : rec x.t ⇓ v

A→ B : t ⇓ λx.t′ A : t′[u/x] ⇓ v

B : t u ⇓ v

A× B : t ⇓ (t′, t′′) A : t′ ⇓ v

A : fst t ⇓ v

A + B : u ⇓ inl u′ C : t1[u
′/x] ⇓ v

C : [u > inl x⇒ t1, inr x⇒ t2] ⇓ v

T[µT.T/T] : t ⇓ v

µT.T : abs t ⇓ abs v

µT.T : t ⇓ abs v

T[µT.T/T] : rep t ⇓ v

(1.35)

Proposition 1.5 The operational semantics satisfies:

• Determinacy: suppose A : t ⇓ v and A : t ⇓ v′. Then v ≡ v′.

• Type-correctness: suppose ⊢ t : A and A : t ⇓ v. Then ⊢ v : A.

Both properties are proved by induction on the derivation rules.

1.1.7 Relating Operational and Denotational Semantics

Often, small programming languages considered for research purposes are
defined directly using an operational semantics without an underlying deno-
tational semantics.1 One reason for this is that operational semantics is very
flexible and so ideal for a first exploration of programming concepts. But
flexibility is a two-edged sword, leading also to ad hoc constructions. This
becomes apparent when one tries to relate and formally compare different
languages. Without a link to the global mathematical setting provided by
domain theory, one is left with syntactic translations which can be hard to
find, justify, and understand.

Another problem with a purely syntactic approach is the lack of good
reasoning methods. Consider two open terms Γ ⊢ t1 : A and Γ ⊢ t2 : A and
suppose that we would prefer one to the other for performance reasons. To
verify that such an optimisation is sound, we need to show that the two
terms are equivalent in all contexts, so that no amount of programming can
tell them apart. It is not hard to see that this follows iff the two terms are
contextually equivalent [61], as defined below.

We define a program to be a closed term of type N. If C is a term with
holes into which a term Γ ⊢ t : A may be put to form a program ⊢ C(t) : N,

1The (operational) semantics of full-scale languages tend to be defined only informally,
using prose. Standard ML is a noteworthy exception to this [59].

1.1. SEQUENTIAL COMPUTATION 11

we call C a (Γ, A)-program context. Suppose Γ ⊢ t1 : A and Γ ⊢ t2 : A. We
write Γ ⊢ t1 ❁∼ t2 : A iff for all (Γ, A)-program contexts C we have

N : C(t1) ⇓ Zero =⇒ N : C(t2) ⇓ Zero (1.36)

The terms t1 and t2 are said to be contextually equivalent if we have both
Γ ⊢ t1 ❁∼ t2 : A and Γ ⊢ t2 ❁∼ t1 : A.

Unfortunately, it can be quite hard to prove contextual equivalence be-
cause of the quantification over all program contexts. It is often much easier
to show that two terms have the same denotation, and so a suitable link to
the denotational semantics becomes very useful. Two standard results can
be shown:

Proposition 1.6 (Soundness) Suppose ⊢ t : A. Then

A : t ⇓ v =⇒ J⊢ t : AK = J⊢ v : AK . (1.37)

Proposition 1.7 (Adequacy) Suppose ⊢ t : A. Then

J⊢ t : AK 6= ⊥ ⇐⇒ ∃v. A : t ⇓ v . (1.38)

Soundness is proved by induction on the derivation rules using Proposi-
tion 1.2 and (1.31). Adequacy is quite a bit harder, involving logical relations
and a trick to deal with recursive types which exploits the representation
using information systems and also makes clever use of the abs and rep
constructors, see [95], Ch. 13.

It follows from soundness and adequacy that if two terms have the same
denotation, then they are contextually equivalent. This result is sometimes
called computational adequacy [72]:

Theorem 1.8 (Computational Adequacy)

JΓ ⊢ t1 : AK ≤Γ→A JΓ ⊢ t2 : AK =⇒ Γ ⊢ t1 ❁∼ t2 : A (1.39)

Depending on the exact nature of the denotational semantics, one may also
be able to show the converse of the implication (1.39). This is called full
abstraction and is a kind of holy grail of semantics, because it is normally
very difficult to obtain [39]. Indeed, the denotational semantics of the me-
talanguage is not fully abstract. It contains elements like “parallel or” [74],
which are not definable in the metalanguage, but which can nevertheless
distinguish between terms that the operational semantics cannot. Berry’s
“stable” domain theory [8] rules out elements like parallel or by demanding
that the output of every function is associated with a unique, minimal input.
But other problematic elements remain and there is no known domain-based
fully abstract semantics for a language such as the metalanguage. Curiously
enough, the problem seems to be to capture within domain theory the se-
quentiality of sequential computation.

12 CHAPTER 1. INTRODUCTION

1.2 Concurrent Computation

Broadly speaking, approaches to concurrency either start from the syntax of
a process calculus or are based on a specific mathematical model of processes.
We indicate the diversity of both approaches below.

1.2.1 Process Calculi

In 1972, Milner tried to apply standard semantic techniques like those we
have seen to a concurrent programming language—and failed [57]. In par-
ticular, Milner found that viewing a program as a function over memory
states, and thus identifying the programs

p1 ≡def x := 1 and p2 ≡def x := 0 ; x := x + 1 , (1.40)

only makes sense if the program has full control over memory. Interference
from another program, say x := 1, will not change the behaviour of program
p1, but will make program p2 behave nondeterministically, changing x to
either 1 or 2.

Here, the problem is the interaction between storage and a number
of programs. The same kind of problem arises with interactions between
programs, between machines, and indeed, between a machine and its user.
This led Milner to search for something more fundamental—a new calculus
with interaction, or communication, as the central idea. A primitive no-
tion of indivisible interaction was put forward independently by Milner and
Hoare [56, 36]; in Milner’s case embodied in his “Calculus of Communicating
Systems”, or CCS. Like the basic lambda calculus, it is untyped.

Let N be a set of names and N̄ =def {n̄ : n ∈ N} the set of “comple-
mented” names. Let l range over labels L =def N∪N̄ , with complementation
extended to L by taking ¯̄n =def n. We let α range over the set of actions
A =def L ∪ {τ} where τ does not occur in L. The syntax of CCS processes
is given by

t, u ::= x, y, z, . . . (variables)
| rec x.t (recursion)
| Σi∈Iti (nondeterministic sum)
| α.t (prefixing by atomic action α)
| t|u (parallel composition)
| t \ S (restriction from names in S ⊆ N)
| t[r] (relabelling using r : N → N)

(1.41)

In a nondeterministic sum the indexing set I may be an arbitrary set; we
write ∅ when I is empty and t1 + · · ·+ tk for a typical finite sum.

Relabelling functions r : N → N are extended to all of A by taking
rl̄ =def

¯(rl) and rτ =def τ . An operational semantics defines a transition

1.2. CONCURRENT COMPUTATION 13

relation t
α
−→ t′ between closed CCS terms, using actions as labels.

t[rec x.t/x]
α
−→ t′

rec x.t
α
−→ t′

tj
α
−→ t′

Σi∈Iti
α
−→ t′

j ∈ I
α.t

α
−→ t

t
α
−→ t′

t|u
α
−→ t′|u

t
l
−→ t′ u

l̄
−→ u′

t|u
τ
−→ t′|u′

u
α
−→ u′

t|u
α
−→ t|u′

t
α
−→ t′

t \ S
α
−→ t′ \ S

α 6∈ S ∪ S̄
t

α
−→ t′

t[r]
rα
−→ t′[r]

(1.42)

Intuitively, t
n
−→ t′ means that process t is willing to offer a communication

on a channel named n ∈ N , after which it will continue as the process
t′. “Channel” should be understood in a very broad sense, cf. the example

below or Milner’s book [57]. If in addition u
n̄
−→ u′ so that process u is willing

to offer a complementary communication on the same channel, then these
processes can communicate, signalling to the environment with the special
action τ that a communication has taken place. As τ is not in L, no further
communication involving this transition can take place.

Example 1.9 We model two beer/coffee vending machines and a customer
in CCS. Names are given by the set N = {a, b, c}, standing for “accept
money”, “beer”, and “coffee”. The first vending machine, V1 below, can
either sell beer or coffee, the choice made by the machine as the money is
accepted. For machine V2 both possibilities are still available after the first
action of accepting money. The customer just wants a beer.

V1 ≡def a.b.∅ + a.c.∅

V2 ≡def a.(b.∅ + c.∅)

C ≡def ā.b̄.∅

(1.43)

The vending machines can serve only a single customer after which they both
become inactive. Longer-lasting machines can be specified using recursion,
e.g. rec x.a.(b.x + c.x). Following the operational semantics, we obtain the
following transitions from process V1|C:

V1|C
τ
−→ b.∅|b̄.∅ and V1|C

τ
−→ c.∅|b̄.∅ (1.44)

Note that the system encounters a deadlock in the state c.∅|b̄.∅ where the
machine insists on delivering coffee which the customer will not accept. By
contrast,

V2|C
τ
−→ (b.∅ + c.∅)|b̄.∅ , (1.45)

and so no such deadlock can occur starting from V2|C. ✷

14 CHAPTER 1. INTRODUCTION

CCS is accompanied by a notion of process equivalence, based on simu-
lation, that is, the ability of one process to mirror the behaviour of another.
The equivalence distinguishes between the processes V1 and V2 above intu-
itively because V1 is unable to simulate V2. Formally, a relation R between
processes is a bisimulation [68, 57] if the following holds. If t1 R t2, then

1. if t1
α
−→ t′1, then t2

α
−→ t′2 for some t′2 such that t′1 R t′2;

2. if t2
α
−→ t′2, then t1

α
−→ t′1 for some t′1 such that t′1 R t′2.

Bisimilarity, written ∼, is the largest bisimulation. If we only demand that
the second item above is satisfied, then R is called a simulation and t1 is
said to simulate t2. If t2 also simulates t1, then t1 and t2 are said to be
simulation equivalent. Note that simulation equivalence is strictly weaker
than bisimilarity because the simulations used need not be reverse images.

Example 1.10 The two vending machines V1 and V2 of Example 1.9 are
not bisimilar, because if R relates V1 and V2, then by requirement 1. it
should also relate b.∅ and b.∅ + c.∅. But then requirement 2. fails because
the latter process can perform a c-action which cannot be matched by the
former. The machine V2 simulates V1, but the converse is not true. ✷

Bisimilarity is a congruence for CCS so that whenever t1 ∼ t2, then C(t1) ∼
C(t2) for any context C. This allows the same kind of local reasoning possible
with denotational semantics, cf. Section 1.1.7: there is no need to quantify
over all contexts to show that we may replace t1 by t2 in any program.

Bisimilarity has a logical characterisation based on Hennessy-Milner
logic [31], a modal logic with formulae given by

φ ::= 〈α〉φ |
∧

i∈I φi | ¬φ . (1.46)

The notion of satisfaction, written t � φ, is defined by

t � 〈α〉φ ⇐⇒def ∃t
′. t

α
−→ t′ and t′ � φ

t �
∧

i∈I φi ⇐⇒def t � φi for each i ∈ I

t � ¬φ ⇐⇒def t � φ does not hold.

(1.47)

We write ⊤ and φ1 ∧ · · · ∧ φn for the empty and finite conjunctions, respec-
tively. The formula ⊤ is satisfied by any process.

Two processes are bisimilar iff they satisfy exactly the same formulae.
The fragment of Hennessy-Milner logic obtained by leaving out negation is
characteristic for simulation equivalence, while restricting the logic to finite
conjunctions restricts its characterising power to image-finite processes, so
processes t where the set {t′ : t

α
−→ t′} is finite for each α [31, 90].

Example 1.11 The formula 〈a〉(〈b〉⊤ ∧ 〈c〉⊤) is satisfied by V2, but not by
V1, witnessing that the two machines are neither bisimilar, nor simulation
equivalent. ✷

1.2. CONCURRENT COMPUTATION 15

b.∅
b

##H
HHH

a.b.∅ + a.c.∅

a
55lllllll

a))SSSSSSS
∅ a.(b.∅ + c.∅)

a // b.∅ + c.∅

b

��

c

??
∅

c.∅
c

::vvvvv

Figure 1.1: The two vending machines as transition systems

Milner’s seminal work has led to the study of a variety of process calculi
and suitable notions of bisimulation, following the pattern above (see [23] for
an annotated bibliography). In many cases the calculi are much more com-
plicated than CCS, e.g. allowing communication of processes as in Thom-
sen’s CHOCS [88] or new-name generation as in the π-calculus [60, 79],
and it quickly becomes difficult to give a reasonable definition of bisimula-
tion which can be shown to yield a congruence (this is particularly so when
higher-order features are combined with name-generation [77, 78]). A good
case in point is Cardelli and Gordon’s Ambient Calculus [14] where the cal-
culus and the notion of bisimulation need to be adjusted to each other, in
what seems to be an ad hoc fashion [55]. A lot of energy is used on these “lo-
cal optimisations” to specific process calculi, optimisations that may obscure
connections and the global picture—being based on operational semantics
alone, it is already hard to relate and compare different calculi. So the lessons
learnt often remain isolated for lack of the commonality a global framework
would provide.

1.2.2 Process Models

One could hope that a suitable mathematical model of processes would
provide that global framework. But over the years researchers in concurrency
theory have produced a large number of different process models which has
just made the picture even more fragmented. We list a few:

A transition system is a quadruple (S, i,A, tran) where S is a set of states
with i ∈ S the initial state, A is an alphabet of labels, and tran ⊆ S×A×S
the transition relation. It is common to write s

α
−→ s′ for (s, α, s′) ∈ tran .

CCS gives rise to a transition system for each closed process term t: states
are all closed terms with t the initial state, labels are actions, and transitions
are derived by the operational rules. The two vending machine processes of
Example 1.9 give rise to the transition systems in Figure 1.1. It is customary
to leave out unreachable states in such pictures. Note that the definition of
bisimulation in the previous section makes sense for any transition system:
two transition systems are bisimilar if there is a bisimulation relating their
initial states.

16 CHAPTER 1. INTRODUCTION

b.∅
b // ∅ ∅

a.b.∅ + a.c.∅

a
55lllllll

a))SSSSSSS
a.(b.∅ + c.∅)

a // b.∅ + c.∅

b
77oooooo

c ''O
OOOOO

c.∅
c
// ∅ ∅

Figure 1.2: The two vending machines as synchronisation trees

A synchronisation tree [56] is a transition system whose underlying graph
is a tree with the initial state as root. Any transition system can be unfolded
into a synchronisation tree by unwinding loops, removing unreachable states,
and duplicating states which are reachable in more than one way. The two
transition systems of Figure 1.1 unfold into the trees of Figure 1.2.

A trace set [37] is simply a prefix-closed set X of finite words over some
alphabet. Any synchronisation tree over the label set A gives rise to a trace
set over A, containing all words obtained by concatenating the labels of a
finite path from the root to some node in the tree. Conversely, a trace set
X over A gives rise to a synchronisation tree over A with states being the
elements of X, the root given by the empty string ǫ, and the transition
relation given by s

α
−→ s′ iff sα = s′ for any s, s′ ∈ X and α ∈ A. Trace sets

abstract away from the nondeterministic branching behaviour of processes.
Indeed, our two vending machine processes give rise to the same trace set,
{ǫ, a, ab, ac}, so they are trace equivalent even though they are not simulation
equivalent.

The above three models are interleaving models, which means that they
reduce parallelism to nondeterminism. In our vending-machine terminology,
the models do not distinguish between two vending machines running in
parallel, one ready to serve beer the other ready to serve coffee, and a single
vending machine which can serve both in any order,

b.∅|c.∅ vs. b.c.∅ + c.b.∅ . (1.48)

But among the variety of models for concurrency, one can discern an increas-
ing use of independence models (or causal, or partial-order models) accord-
ing to which these two processes are different. Independence models thread
through partial-order model checking [69], security protocols [87], nondeter-
ministic dataflow [24], self-timed circuits [26], term-rewriting, game seman-
tics [4], and the analysis of distributed algorithms [47]. While interleaving
models have been given a domain-theoretic treatment using powerdomains
and domains of resumptions [73, 30], this approach will fall short of ac-
commodating independence models, because it insists on a nondeterministic
choice of actions one at a time.

1.2. CONCURRENT COMPUTATION 17

Key independence models include: Petri nets [10, 11] and asynchronous
transition systems [5, 84] which are closely related and can be understood
as transition systems with an independence structure added; event struc-
tures [94] which can be obtained by unfolding such transition systems as
with synchronisation trees above; and Mazurkiewicz trace sets [52] which
are trace sets with an independence structure on the underlying alphabet.

To give a flavour of independence models (and because we’ll need it later)
we give the definition of a particular kind of event structures, namely “prime
event structures with binary conflict”, hereafter just called event structures.

An event structure [94] is a triple E = (E,≤,#) where E is a set of
events upon which a partial order ≤ of causality and a binary, symmetric,
irreflexive relation # of conflict are defined. This data must satisfy

(i) ∀e ∈ E. ⌈e⌉ =def {e
′ : e′ ≤ e} is finite.

(ii) ∀e, e′, e′′ ∈ E. e#e′ ≤ e′′ =⇒ e#e′′.

A configuration of E is a subset x ⊆ E which is

(i) down-closed: ∀e ∈ x. ⌈e⌉ ⊆ x.

(ii) consistent: ∀e, e′ ∈ x. ¬(e#e′).

An event structure models a process as follows: the set E contains the set
of events that can possibly occur during the execution of the process. The
causality relation expresses that some events depend on each other, while
the conflict relation expresses that some events exclude each other (here in
a binary fashion). A configuration represents a point in the execution of the
process, collecting the events that have occurred so far.

Example 1.12 The CCS process b.∅|c.∅ can be modelled as an event
structure with two events, serving beer (b) and coffee (c). These events nei-
ther depend on nor exclude each other, and so the causality relation is the
identity while the conflict relation is empty. The configurations are ∅, {b},
{c}, and {b, c}.

On the other hand, the process b.c.∅+ c.b.∅ will be modelled using four
events, b1, c1, b2, and c2, with b1 ≤ c1 and c2 ≤ b2 and events indexed by 1
in conflict with events indexed by 2. The configurations are ∅, {b1}, {b1, c1},
{c2}, and {c2, b2}. ✷

Interestingly, event structures are also representations of domains and match
well with Berry’s stable domain theory [91].

Nondeterministic dataflow [24, 43] is a rather different model, describing
reactive systems with input and output ports, interacting with the environ-
ment by reading values, e.g. letters of an alphabet, on the input ports and
producing values on the output ports, see the top part of Figure 1.3. An es-
sential idea of the dataflow paradigm is that a collection of networks can be

18 CHAPTER 1. INTRODUCTION

aa //

bb //
Merge

abab // abab // Fork

abab //

abab //

aa //

bb //
Merge

abab // Fork

abab //

abab //

Figure 1.3: Nondeterministic dataflow

combined into a single, larger network, possibly connecting some of the free
input and output ports as in the bottom part of the figure. The wires can
be understood as unbounded first-in-first-out buffers. It is usually assumed
that two wires cannot be connected to the same port. Connecting two ports
of the same network yields a feedback loop, an operation called trace [33].
Kahn [43] observed that one could give a semantics to deterministic dataflow
using an interleaving model, whereas it has been recognised [13, 33] that an
independence model is useful in the nondeterministic case.

1.3 Towards a Domain Theory for Concurrency

With a plethora of models around, it is hardly surprising that relations be-
tween different approaches are often unclear, hampering technology trans-
fer. Indeed, ideas may be rediscovered; for example, special event structures
reappear as “strand spaces” in reasoning about security protocols [87, 22].
We discuss recent work towards providing more structure to the field.

1.3.1 Categorical Structure

The work presented in the handbook chapter [96] by Winskel and Nielsen
concentrates on understanding the structure of different models and how
they relate. Again, category theory has been the natural tool for this task.
With the exception of dataflow, each model above is turned into a category
whose morphisms stand for “simulations”. For example, individual transition
systems form the objects of the category T. Assuming a common alphabet A
for brevity, if T1 = (S1, i1, A, tran1) and T2 = (S2, i2, A, tran2) are transition
systems, a morphism f : T1 → T2 in T is a function f : S1 → S2 such
that fi1 = i2 and s1

α
−→ s′1 ∈ tran1 implies fs1

α
−→ fs′1 ∈ tran2. Hence,

f expresses how T1 may be simulated by T2. Synchronisation trees form a
subcategory S of T and the operation of unfolding results in a right adjoint to
the inclusion functor S →֒ T. The other models are related in a similar way.
In particular, the interleaving models can be seen as independence models
with trivial independence structure; also here, the associated functors are
part of adjunctions.

1.3. TOWARDS A DOMAIN THEORY FOR CONCURRENCY 19

The presentation of models as categories not only makes precise how they
relate. Operations like nondeterministic sum and parallel composition found
in process calculi can be exposed as universal constructions in the categorical
models. This can be used to give uniform semantics across different calculi
and, exploiting preservation properties of adjoints, to relate semantics of a
calculus across different models [96].

1.3.2 Bisimulation from Open Maps

Joyal, Nielsen, and Winskel gave further impetus to the approach by a
sweeping definition of bisimulation across the categorical models using open
maps [42]. The idea is to single out those maps of the categories that not
only preserve behaviour, but also reflect it. In the case of a map f : T1 → T2

between the transition systems above, this would mean that if fs1
α
−→ s′2 ∈

tran2, then there exists s′1 ∈ S1 such that s1
α
−→ s′1 ∈ tran1 and fs′1 = s′2. It

should be clear that this is equivalent to demanding that (the graph of) f
is functional bisimulation between the two transition systems, i.e. a bisimu-
lation which is also a function.

To see what this requirement amounts to in categorical terms, consider
first a finite sequence of transitions in T1:

p1 : i1
α1−→ r1

α2−→ r2
α3−→ · · ·

αn−−→ s1 . (1.49)

Since f is a morphism T1 → T2, this induces a simulating sequence in T2:

p2 : i2
α1−→ fr1

α2−→ fr2
α3−→ · · ·

αn−−→ fs1 . (1.50)

Now, if f also reflects behaviour, then any extension of p2, say

q2 : i2
α1−→ fr1

α2−→ fr2
α3−→ · · ·

αn−−→ fs1
α
−→ s′2 , (1.51)

can be reflected by an extension of p1,

q1 : i1
α1−→ r1

α2−→ r2
α3−→ · · ·

αn−−→ s1
α
−→ s′1 . (1.52)

Moreover, s′1 can be chosen to be compatible with q2 under f i.e. fs′1 = s′2.
Now, the four sequences above are themselves transition systems, and so are
objects of T. Clearly, we have p1

∼= p2 and q1
∼= q2 in T, and we’ll refer to

them as just p and q below. That q extends p is witnessed by an obvious
morphism e : p→ q in T, and because p is a sequence of T1 and q a sequence
of T2 we have morphisms x : p → T1 and y : q → T2, so that the square
on the left below commutes. Commutativity just rephrases the fact that the
simulation by T2 of p can be extended to the simulation of q.

p x //

e

��

T1

f
��

p x //

e

��

T1

f
��

q
y

// T2 q
y

//

z
??

T2

(1.53)

20 CHAPTER 1. INTRODUCTION

The reflection requirement can then be stated by saying that any such com-
mutative square can be split into two commutative triangles as on the right
above. Commutativity of the upper triangle expresses that the sequence in
T1 that simulates q is an extension of the sequence simulating p. The lower
triangle amounts to saying that this extension is compatible under f with
the sequence simulating q in T2.

It is reasonable to think of objects like p and q as computation paths
with respect to the model of transition systems, because they correspond
to sequences of transitions. In general let M be any category of models and
let P be any subcategory P →֒ M of M whose objects and morphisms are
thought of as computation paths and ways that they extend each other.
We define P-open maps to be those morphisms f in M such that for all
morphisms e : p → q in P, any commuting square like that on the left of
(1.53) can be split into two commuting triangles as on the right.

Open maps account only for functional bisimulations, and to get all
possible bisimulations, two models X and Y of M are said to be open map

bisimilar iff there exists a span X
f
←− Z

g
−→ Y of open maps between them.

In the case of transition systems and the subcategory of finite sequences,
open-map bisimilarity coincides with Park and Milner’s notion as defined
in Section 1.2.1. Reasonable equivalences are obtained for other models as
well, given suitable choices of subcategories of paths, see [42].

1.3.3 Presheaf Models

Of course, the freedom in the choice of the path category P can be problem-
atic as there is no reason to expect all models to furnish a “natural” choice
as in the case above. Once more, category theory provides a helpful sugges-
tion. There is a well-studied class of categories, called presheaf categories,2

with a canonical choice of path category.

The objects of a presheaf category, presheaves, can be understood as the
collection of processes constructed from the underlying path category by
freely adding coproducts (nondeterministic sums of paths) and coequalisers
(gluing paths together by identifying subpaths), thereby creating “sheaves”
of computation paths—or processes with branching behaviour. An alterna-
tive view is that a presheaf, seen as a process, assigns to each computation
path the set of ways it is simulated by, or “realised by”, the process.

Taking the path category to be finite sequences of transitions as above,
the presheaf category is the category of synchronisation forests, that is,
objects are sets of synchronisations trees, because a presheaf may assign
more than one way of simulating the empty transition sequence. Restricting

2A note on the terminology “open map”: in presheaf categories, open maps as defined
above satisfy Joyal and Moerdijk’s axioms [41] for open maps in toposes, of which presheaf
categories are a prime example.

1.3. TOWARDS A DOMAIN THEORY FOR CONCURRENCY 21

to “rooted” presheaves, so presheaves that correspond to synchronisation
trees, open-map bisimilarity coincides again with Park and Milner’s notion.

Guided by these intuitions and the categorical situation, Joyal, Nielsen,
and Winskel suggested presheaves as a general model of processes. Pre-
sheaf models were subsequently studied by Winskel and his PhD students
Cattani [19] and Hildebrandt [35] together with a number of coworkers.
This work has shown that presheaf models are expressive enough to en-
compass, and generalise, a wide range of existing models and notions from
concurrent computation, including CCS-like languages, their models, and
equivalences [97, 16, 25, 34], higher-order features [98], nondeterministic
dataflow [33], independence models [100], and name-generation [17].

1.3.4 Domain Theory for Concurrency

A domain theory which handled higher-order processes, independence mod-
els, name-generation, and possessed an operational interpretation would pro-
vide a global mathematical framework for most theories of concurrency. In
light of the work above it would seem that presheaf models make a good
candidate for such a framework.

Cattani and Winskel have drawn attention to a 2-categorical model of
linear logic and associated pseudo-comonads, based on presheaves [20]. Lin-
ear maps preserve open-map bisimilarity, but are too restricted to model
many important process operations, including prefixing. From a weakening
comonad one derives a model of affine-linear logic (in the sense of Jacobs [40])
whose morphisms, affine maps, allow prefixing and still preserve open-map
bisimilarity.

This led Winskel to the discovery of an expressive metalanguage for con-
currency [98]. As terms of this language are interpreted as affine maps,
open-map bisimilarity is automatically a congruence. Affine-linearity re-
stricts copying and while it allows a process to ignore its input, it does not
allow it to investigate the behaviour of the input in more than one context.
This matches the general situation in a distributed setting where processes
interact as peers with very little control over one another.

The starting point for the work presented below was the hope that an
operational semantics for the affine language would provide a general opera-
tional understanding of presheaf models. A first result [63, 64] was an opera-
tional semantics for the first-order fragment of the affine language guided by
the idea that derivations of transitions in the operational semantics should
correspond to realisers in the presheaf denotations [19]. The operational
semantics indicated that the tensor of affine-linear logic should be under-
stood as a parallel composition of independent processes. This intuition was
backed up by an event-structure representation of definable presheaves, in
which the tensor operation corresponds to the simple parallel composition
of event structures got by juxtaposition [63].

22 CHAPTER 1. INTRODUCTION

It proved difficult to extend the operational semantics for the affine
language beyond first order, and we were led to consider another pseudo-
comonad, an exponential of linear logic, giving rise to a model of intuition-
istic logic and another expressive metalanguage [65]. This language, called
HOPLA for Higher-Order Process LAnguage, can be viewed as a simply-
typed lambda calculus extended with CCS-like nondeterministic sum and
prefix operations. In contrast to the affine metalanguage, which we call Affine
HOPLA below, HOPLA allows a process to copy its input and investigate
the behaviour of it in different contexts. Intuitively, a HOPLA process re-
ceives the code of an input process and so is in full control of its execution.

Affine HOPLA can be viewed as a variation of HOPLA obtained by
adding the tensor at the cost of linearity constraints on variables.

HOPLA supports a straightforward operational semantics, again guided
by the presheaf model. However, as HOPLA and its operational semantics
are very simple, it was felt that the presentation of its denotational semantics
suffered from a significant overhead in terms of the category theory needed.
As it turned out, both HOPLA and Affine HOPLA can be obtained working
within a much simpler domain theory, avoiding the 2-categorical structure.

Presheaf models are directly based on computation paths, a line which
has been followed in what seemed originally to be a different direction. In
Hennessy’s semantics for CCS with process passing [32], a process denotes
the set of its computation paths. We’ll call this kind of semantics a path
semantics because of its similarity to trace semantics; in both cases, pro-
cesses denote downwards-closed sets of computation paths and the corre-
sponding notion of process equivalence, called path equivalence, is given by
equality of such sets. Computation paths, however, may have more structure
than traditional traces, e.g. allowing path semantics to take nondeterminis-
tic branching into account in a limited way. In fact, path equivalence can be
linked to simulation equivalence for image-finite processes [67].

Path semantics and presheaf semantics can be seen as variations on a
common idea: that a process denotes a form of characteristic function in
which the truth values are sets of realisers. A path set may be viewed as
a special presheaf that yields at most one realiser for each path. The extra
structure of presheaves, saying how each computation path may be realised,
allows the incorporation of complete branching information.

Though path sets are considerably simpler than presheaves they fur-
nish models which are sufficiently rich in structure to show how both the
above languages arise from canonical constructions on path sets [66, 67]. The
path semantics admits simple proofs of full abstraction, showing that path
equivalence coincides with contextual equivalence. Still, the path semantics
cannot stand alone. It provides little guidance for operational semantics; it
does not capture enough branching information to characterise bisimulation;
and there are extensions to deal with independence models which cannot be
catered for.

1.3. TOWARDS A DOMAIN THEORY FOR CONCURRENCY 23

1.3.5 Overview

The thesis is based on the author’s progress report [63] and four papers
coauthored with Glynn Winskel:

[64] Linearity in process languages. Presented at LICS’02.

[65] HOPLA—a higher-order process language. Presented at CONCUR’02.

[66] Full abstraction for HOPLA. Presented at CONCUR’03.

[67] Domain theory for concurrency. To appear in Theoretical Computer
Science special issue on domain theory.

Part I concentrates on the simple domain theory for concurrency based
on path sets while Part II discusses the guidance provided by the extra
structure of presheaves.

Chapter 2 shows how path sets give rise to a simpler version of the
abovementioned categorical model of linear logic with associated comonads,
avoiding the 2-categorical structure [67].

Chapter 3 presents the metalanguage HOPLA [65, 66] and shows how
its operations arise from canonical constructions in the underlying path set
model, using an exponential of linear logic. The path semantics is shown
fully abstract such that contextual equivalence coincides with path equiva-
lence. The language is given a straightforward operational semantics which
is endowed with a standard bisimulation congruence. The denotational and
operational semantics are related with pleasingly simple proofs of sound-
ness and adequacy. Contextual equivalence is shown to coincide with logi-
cal equivalence for the fragment of Hennessy-Milner logic that characterises
simulation equivalence. The expressive power of HOPLA is indicated by
encodings of calculi like CCS, CCS with process passing, and mobile am-
bients with public names. Work is in progress on extending HOPLA with
name-generation [101].

Chapter 4 presents the affine metalanguage, which is here called Affine
HOPLA [98, 64, 67]. It adds to HOPLA an interesting tensor operation at
the price of linearity constraints on the occurrences of variables. Again its
denotational semantics, directly based on canonical constructions on path
sets using a weakening comonad, is shown fully abstract. An interleaving
operational semantics for the first-order fragment of the language is pro-
vided along with proofs of soundness and adequacy. It is shown how the
tensor operation allows Affine HOPLA to encode nondeterministic dataflow
processes without feedback loops.

Chapter 5 shows how the extra structure of presheaves is used to capture
the branching behaviour of processes, and provides a brief overview of the
2-categorical models considered by Cattani and Winskel.

24 CHAPTER 1. INTRODUCTION

Chapter 6 proves correspondence results relating derivations in the op-
erational semantics of the two languages above to realisers in their presheaf
denotations [63, 64, 65].

Chapter 7 is based on unpublished work from [63]. It studies the inde-
pendence structure of the tensor operation of Affine HOPLA by defining an
event-structure semantics of the language which at first order provides a rep-
resentation of the presheaf denotations. Here, the tensor operation denotes
the simple parallel composition of event structures got by juxtaposition.
The event-structure semantics is analogous to Berry’s stable denotational
semantics, and diverges from the presheaf semantics at higher order. Based
on the representation, an alternative, “stable” operational semantics is given
to the first-order fragment of Affine HOPLA. Derivations correspond to con-
figurations in event-structures and so to elements of presheaves. The stable
semantics agrees with the operational semantics from Chapter 4 and shows
how to refine it with independence structure. Further, it can be extended to
higher-order processes although there is at present no proof of correspon-
dence with the denotational semantics for the extension.

Chapter 8 concludes with a summary of the thesis and a discussion of
related work towards a fully fledged domain theory for concurrency, in par-
ticular concerning name-generation, independence models, and bisimilarity.

Part I

Path Semantics

25

Chapter 2

Domain Theory from

Path Sets

This chapter presents a simple domain theory based on path sets. Section 2.1
introduces path semantics of processes and highlights the difference between
path semantics and traditional trace semantics. In the path semantics, pro-
cesses are represented as elements of “nondeterministic domains”, the prop-
erties of which are investigated in Section 2.2. The observation that non-
deterministic domains are free completions highlights a natural notion of
map between domains and leads to a categorical model of linear logic in
Section 2.3. Maps of this category, “linear maps”, are rather restricted—
important operations like prefixing are not linear—and following the disci-
pline of linear logic we therefore consider linear maps whose domain is under
a comonad. One choice of comonad, an exponential of linear logic, gives rise
to Scott-continuous maps and a model of intuitionistic logic; another choice
yields a model of affine-linear logic. Constructions in both these models are
induced by those of the linear category via adjunctions.

2.1 Processes as Path Sets

In the path semantics, processes are represented as sets of computation
paths. Paths are elements of preorders P called path orders which function
as process types, each describing the set of possible paths for processes of
that type together with their sub-path ordering. A process of type P is then
represented as a downwards-closed subset X ⊆ P, called a path set.

To illustrate, consider the path order A+ given by the poset of nonempty
strings over some set A = {a, b, c, . . .} of actions, ordered by the prefix
ordering. If the elements of A are atomic actions of processes like those
of CCS, a path set over A+ represents such a process by the set of finite
sequences of actions that the process can perform. This is just the trace
semantics of [37], except that trace sets include the empty string whereas our

27

28 CHAPTER 2. DOMAIN THEORY FROM PATH SETS

computation paths will be non-empty. Nondeterministic sum is interpreted
by union of path sets with the inactive process ∅ represented as the empty
set of paths. Prefixing by the action α ∈ A maps a path set X ⊆ A+ to the
path set {α} ∪ {αs : s ∈ X}. Like trace semantics, this gives an abstract
representation of processes.

Example 2.1 Consider again the CCS processes from Example 1.9:

a.b.∅ + a.c.∅ and a.(b.∅ + c.∅) . (2.1)

By the above, both interpreted as the path set {a, ab, ac}. ✷

The two processes of the example can be distinguished by refining the notion
of path. Rather than strings of atomic actions, we may consider paths defined
inductively by the rule below, using a judgement p : P to mean that path p
is an element of the path order P.

p1 : P · · · pk : P α ∈ A

α{p1, . . . , pk} : P
(2.2)

Intuitively, a process can perform the path α{p1, . . . , pk} if it can perform
the action α and, following that, is able to perform each of the paths in the
set {p1, . . . , pk}. The ordering ≤P on P can be defined inductively based on
the following preorder defined for arbitrary subsets X,X ′ of P:

X �P X ′ ⇐⇒ ∀p ∈ X.∃p′ ∈ X ′. p ≤P p′ . (2.3)

So, with P,P ′ ranging over finite subset of P, we define αP ≤P βP ′ iff α = β
and P �P P ′.

Using P rather than A+ we change the interpretation of prefixing so
that prefixing by the action α ∈ A now maps a path set X ⊆ P to the set
{αP : P �P X}. The interpretation of nondeterministic sum is unchanged.

Example 2.2 Our example processes are now represented by the path sets

{a∅, a{b∅}, a{c∅}} and {a∅, a{b∅}, a{c∅}, a{b∅, c∅}} (2.4)

respectively. The extra element in the denotation of a.(b.∅ + c.∅) distin-
guishes between them. ✷

The path order P and the associated notion of prefixing may seem a bit
contrived at this point, but the definitions are actually based on canonical
constructions on path sets, see Section 2.3.1 below. Moreover, we show in
Section 3.5.1 that path equivalence with respect to path orders like P can
be linked to simulation equivalence. Indeed, two image-finite CCS processes
over the alphabet A may simulate each other iff their representations as path
sets over P are identical.

2.2. NONDETERMINISTIC DOMAINS 29

2.2 Nondeterministic Domains

Path sets over a path order P may be ordered by inclusion to form a poset
P̂ which we’ll think of as a domain of meanings of processes of type P. The
poset P̂ has many interesting properties. First of all, it is a complete lattice
with joins given by union. In the sense of Hennessy and Plotkin [30], P̂ is
a “nondeterministic domain”, with joins used to interpret nondeterministic
sums of processes. Accordingly, given a family (Xi)i∈I of elements of P̂,
we sometimes write Σi∈IXi for their join. A typical finite join is written
X1 + · · · + Xk while the empty join is the empty path set, the inactive
process, written ∅.

A second important property of P̂ is that any X ∈ P̂ is the join of certain
“prime” elements below it; P̂ is a prime algebraic complete lattice [62]. Primes
are down-closures

yPp = {p′ : p′ ≤P p} (2.5)

of individual elements p ∈ P, representing a process that may perform the
computation path p. The map yP reflects as well as preserves order, so that
p ≤P p′ iff yPp ⊆ yPp′, and yP thus “embeds” P in P̂. We clearly have
yPp ⊆ X iff p ∈ X and prime algebraicity of P̂ amounts to saying that any
X ∈ P̂ is the union of its elements:

X =
⋃

p∈X yPp . (2.6)

Finally, P̂ is characterised abstractly as the free join-completion of P,
meaning (i) it is join-complete and (ii) given any join-complete poset C
and a monotone map f : P → C, there is a unique join-preserving map
f † : P̂→ C such that the diagram on the left below commutes.

P
yP //

f $$I
IIIIII P̂

f†

��

C

f †X =
⋃

p∈X fp . (2.7)

We call f † the extension of f along yP. Uniqueness of f † follows from (2.6).
Notice that we may instantiate C to any poset of the form Q̂, drawing

our attention to join-preserving maps P̂ → Q̂. By the freeness property
(2.7), join-preserving maps P̂ → Q̂ are in bijective correspondence with
monotone maps P → Q̂. Each element Y of Q̂ can be represented using its
“characteristic function”, a monotone map fY : Qop → 2 from the opposite
order to the simple poset 0 < 1 such that Y = {q : fY q = 1} and Q̂ ∼=
[Qop,2]. Uncurrying then yields the following chain:

[P, Q̂] ∼= [P, [Qop,2]] ∼= [P×Qop,2] = [(Pop ×Q)op,2] ∼= ̂Pop ×Q . (2.8)

So the order Pop × Q provides a function space type. We’ll now investigate
what additional type structure is at hand.

30 CHAPTER 2. DOMAIN THEORY FROM PATH SETS

2.3 Linear and Nonlinear Maps

Write Lin for the category with path orders P, Q, . . . as objects and join-
preserving maps P̂ → Q̂ as arrows. It turns out Lin has enough structure
to be understood as a categorical model of Girard’s linear logic [27, 83].
Accordingly, we’ll call arrows of Lin linear maps.

Linear maps are represented by elements of ̂Pop ×Q and so by down-
wards-closed subsets of the order Pop × Q. This relational presentation ex-
poses an involution central in understanding Lin as a categorical model of
classical linear logic. The involution of linear logic, yielding P⊥ on an object
P, is given by Pop; clearly, downwards-closed subsets of Pop ×Q correspond
to downwards-closed subsets of (Qop)op × Pop, showing how maps P → Q
correspond to maps Q⊥ → P⊥ in Lin. The tensor product of P and Q is
given by the product of preorders P×Q; the singleton order 1 is a unit for
tensor. Linear function space P ⊸ Q is then obtained as Pop ×Q. Products
P&Q are given by P+Q, the disjoint juxtaposition of preorders. An element

of P̂ & Q can be identified with a pair (X,Y) with X ∈ P̂ and Y ∈ Q̂, which
provides the projections π1 : P & Q → P and π2 : P & Q→ Q in Lin. More
general, not just binary, products &i∈I Pi with projections πj, for j ∈ I, are
defined similarly. From the universal property of products, a collection of
maps fi : P → Pi, for i ∈ I, can be tupled together to form a unique map
〈fi〉i∈I : P → &i∈I Pi with the property that πj ◦ 〈fi〉i∈I = fj for all j ∈ I.
The empty product is given by the empty order O and, as the terminal ob-
ject, is associated with unique maps ∅P : P→ O, constantly ∅, for any path
order P. All told, Lin is a ∗-autonomous category, so a symmetric monoidal
closed category with a dualising object, and has finite products (indeed, all
products) as required by Seely’s definition of a model of linear logic [83].

In fact, Lin also has all coproducts, also given on objects P and Q by
the juxtaposition P + Q and so coinciding with products. Injection maps
in1 : P → P + Q and in2 : Q → P + Q in Lin derive from the ob-
vious injections into the disjoint sum of preorders. The empty coproduct
is the empty order O which is then a zero object. This collapse of prod-
ucts and coproducts highlights that Lin has arbitrary biproducts. Via the

isomorphism Lin(P, Q) ∼= ̂Pop ×Q, each homset of Lin can be seen as a
commutative monoid with neutral element the always ∅ map, itself written
∅ : P → Q, and multiplication given by union, written +. Composition in
Lin is bilinear in that, given f, f ′ : P → Q and g, g′ : Q → R, we have
(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′. Further, given a family
of objects (Pα)α∈A, we have for each β ∈ A a diagram

Pβ
inβ

// Σα∈APα

πβ
oo

such that

πβ ◦ inβ = 1Pβ
,

πβ ◦ inα = ∅ if α 6= β, and

Σα∈A(inα ◦ πα) = 1Σα∈APα .

(2.9)

2.3. LINEAR AND NONLINEAR MAPS 31

Processes of type Σα∈APα may intuitively perform computation paths in
any of the component path orders Pα.

We see that Lin is rich in structure. But linear maps alone are too
restrictive. Being join-preserving, they in particular preserve the empty join.
So, unlike e.g. prefixing, linear maps always send the inactive process ∅ to
itself.

2.3.1 Continuous Maps

Looking for a broader notion of maps between nondeterministic domains
we follow the discipline of linear logic and consider non-linear maps, i.e.
maps whose domain is under an exponential, !. One choice of a suitable
exponential for Lin is got by taking !P to be the preorder obtained as the
free finite-join completion of P. Concretely, !P can be defined to have finite
subsets of P as elements with ordering given by (2.3).

Example 2.3 The path order P of Section 2.1 is built using this exponential
and a particular choice of biproduct given by tagging with actions α ∈ A.
Because of its inductive definition, we may think of it as the least solution
to the equation P = Σα∈A!P. This will be made precise in Section 3.1. ✷

When !P is quotiented by the equivalence induced by the preorder we obtain
a poset which is the free finite-join completion of P. By further using the
obvious inclusion of this completion into P̂, we get a map iP : !P→ P̂ with

iP{p1, . . . , pn} = yPp1 + · · ·+ yPpn . (2.10)

Such finite sums of primes are the finite (isolated, compact) elements of P̂.
The map iP assumes the role of yP above. For any X ∈ P̂ and P ∈ !P, we
have iPP ⊆ X iff P �P X, and X is the directed join of the finite elements
below it:

X =
⋃

P�PX iPP . (2.11)

Further, P̂ is the free directed-join completion of !P.1 This means that given
any monotone map f : !P → C for some directed-join complete poset C,
there is a unique directed-join preserving (i.e. Scott continuous) map f ‡ :
P̂→ C such that the diagram below commutes.

!P
iP //

f $$I
IIIIII P̂

f‡

��

C

f ‡X =
⋃

P�PX fP . (2.12)

1This is also known as the ideal completion of !P. We note that bP is obtained by applying
the “Hoare powerdomain” to the ideal completion of P [92]. No other powerdomains are
considered here, but it may be possible e.g. to use the Smyth powerdomain to characterise
the “must” rather than the “may” behaviour of processes.

32 CHAPTER 2. DOMAIN THEORY FROM PATH SETS

Uniqueness of f ‡, called the extension of f along iP, follows from (2.11). As
before, we can replace C by a nondeterministic domain Q̂ and by the freeness
properties (2.7) and (2.12), there is a bijective correspondence between linear
maps !P→ Q and continuous maps P̂→ Q̂.

We define the category Cts to have path orders P, Q, . . . as objects and
continuous maps P̂→ Q̂ as arrows. These arrows allow more process opera-
tions, including prefixing, to be expressed.

The structure of Cts is induced by that of Lin via an adjunction be-
tween the two categories. As linear maps are continuous, Cts has Lin as a
subcategory, one which shares the same objects. We saw above that there is
a bijection

Lin(!P, Q) ∼= Cts(P, Q) . (2.13)

This is in fact natural in P and Q so an adjunction with the inclusion Lin →֒
Cts as right adjoint. Via (2.12) the map y!P : !P → !̂P extends to a map

ηP = y‡!P : P → !P in Cts. Conversely, iP : !P → P̂ extends to a map

εP = i†P : !P → P in Lin using (2.7). These maps are the unit and counit,
respectively, of the adjunction:

ηPX =
⋃

P�PX y!PP

= {P ∈ !P : P �P X}

εPX =
⋃

P∈X iPP
= {p ∈ P : ∃P ∈ X. p ∈ P}

(2.14)

Example 2.4 The prefix operation associated with the path order P of Sec-
tion 2.1 is defined using the unit together with injections into the biproduct.
In Chapter 3 we’ll use the unit to interpret an anonymous action prefix op-
eration and the counit to interpret a corresponding destructor. ✷

The left adjoint is the functor ! : Cts → Lin given on arrows f : P → Q
by (ηQ ◦ f ◦ iP)† : !P → !Q. The bijection (2.13) then maps g : !P → Q
in Lin to ḡ = g ◦ ηP : P → Q in Cts while its inverse maps f : P → Q
in Cts to f̄ = εQ ◦ !f in Lin. We call ḡ and f̄ the transpose of g and f ,
respectively; of course, transposing twice yields back the original map. As
Lin is a subcategory of Cts, the counit is also a map in Cts and we have
εP ◦ ηP = 1P while X ⊆ ηP(εPX) for X ∈ !̂P.

Right adjoints preserve products, and so Cts has finite products given as
in Lin. Hence, Cts is a symmetric monoidal category like Lin, and in fact,
our adjunction is symmetric monoidal. In detail, there are isomorphisms of
path orders,

k : 1 ∼= !O and mP,Q : !P× !Q ∼= !(P & Q) , (2.15)

with mP,Q mapping a pair (P,Q) ∈ !P × !Q to the union in1 P ∪ in2 Q;
any element of !(P & Q) can be written on this form. These isomorphisms
induce isomorphisms with the same names in Lin with m natural. Moreover,
k and m commute with the associativity, symmetry and unit maps of Lin

2.3. LINEAR AND NONLINEAR MAPS 33

and Cts, such as sLin

P,Q : P × Q ∼= Q × P and rCts

Q : Q & O ∼= Q, making
! symmetric monoidal. It then follows [54] that the inclusion Lin →֒ Cts
is symmetric monoidal as well, and that the unit and counit are monoidal
transformations. Thus, there are maps

l : O→ 1 and nP,Q : P & Q→ P×Q (2.16)

in Cts, with n natural, corresponding to k and m above; l maps ∅ to {∗}
while nP,Q is the extension h‡ of the map h(in1 P ∪ in2 Q) = iPP × iQQ.
The unit also makes the diagrams below commute and the counit satisfies
similar properties.

P & Q
ηP&ηQ

vvmmmmmmmm ηP&Q

((Q
QQQQQQQ

O
l //

ηO $$I
IIIIII 1

k
��

!P & !Q n!P,!Q

// !P× !Q mP,Q

// !(P & Q) !O

(2.17)

The diagram on the left can be written as strP,Q ◦ (1P & ηQ) = ηP&Q where
str , the strength of ! viewed as a monad on Cts, is the natural transformation

P & !Q
ηP&1!Q

// !P & !Q
n!P,!Q

// !P× !Q
mP,Q

// !(P & Q) . (2.18)

Each map strP,Q is linear in its second argument. Assuming f : P′ → P and
gi : Q′ → !Q for each i ∈ I, we have:

strP,Q ◦ (f & Σi∈Igi)
= mP,Q ◦ n!P,!Q ◦ (ηP & 1!Q) ◦ (f & Σi∈Igi)
= mP,Q ◦ n!P,!Q ◦ (ηPf & Σi∈Igi)
= mP,Q ◦ (ηPf × Σi∈Igi) ◦ nP,Q (nat. of n)
= mP,Q ◦Σi∈I(ηPf × gi) ◦ nP,Q (bilinearity of ×)
= Σi∈ImP,Q ◦ (ηPf × gi) ◦ nP,Q (linearity of mP,Q)
= Σi∈ImP,Q ◦ n!P,!Q ◦ (ηPf & gi) (nat. of n)
= Σi∈ImP,Q ◦ n!P,!Q ◦ (ηP & 1!Q) ◦ (f & gi)
= Σi∈IstrP,Q ◦ (f & gi)

Finally, recall that the category Lin is symmetric monoidal closed so that
the functor (Q ⊸ −) is right adjoint to (−×Q) for any object Q. Together
with the natural isomorphism m this provides a right adjoint (Q → −),
defined by (!Q ⊸ −), to the functor (−& Q) in Cts via the chain

Cts(P & Q, R) ∼= Lin(!(P & Q), R) ∼= Lin(!P× !Q, R)
∼= Lin(!P, !Q ⊸ R) ∼= Cts(P, !Q ⊸ R) = Cts(P, Q→ R) (2.19)

—natural in P and R. This demonstrates that Cts is cartesian closed, as is
well known. The adjunction between Lin and Cts now satisfies the condi-
tions put forward by Benton for a categorical model of intuitionistic linear
logic, strengthening those of Seely [7, 83]; see also [54] for a recent survey of
such models.

34 CHAPTER 2. DOMAIN THEORY FROM PATH SETS

2.3.2 Affine Maps

The move from Lin to Cts has allowed us to interpret prefixing. In fact, we
can do much the same more cheaply.

The category Cts is obtained from Lin using an exponential which allows
arbitrary copying in linear logic. An element P ∈ !P consists of several,
possibly no, computation paths of P. An element of the path order !P can
therefore be understood intuitively as describing a compound computation
path associated with running several copies of a process of type P. Maps
P → Q of Cts, corresponding to maps !P → Q of Lin, allow their input to
be copied.

However, copying is generally restricted in a distributed computation. A
communication received is most often the result of a single run of the process
communicated with. Of course, process code can be sent and copied. But
generally the receiver has no possibility of rewinding or copying the state
of an ongoing computation. On the other hand, ignoring another process
is often easy. For this reason, many operations of distributed computation
have the following property [64]:

Affine linearity: a computation path of the process arising from
the application of an operation to an input process has resulted
from at most one computation path of the input process.

Note in particular that prefix operations are affine in this sense: if we wish
to observe just the initial action of a CCS process a.t, no computation path
of t is needed, though observing any longer path will involve a (single) com-
putation path of t.

Recall the diagram (2.7) which says that linear maps P → Q are de-
termined by their values on single paths, elements of P. Via the adjunction
between Lin and Cts, continuous maps P → Q are determined by their
values on compound paths in !P (diagram (2.12)). To summarise:

• linear operations use a single path of the input;

• affine operations use at most one path of the input;

• continuous operations use any number of paths of the input.

Affine maps are defined by their values on singleton copies of paths to-
gether with the empty path. Accordingly, affine maps derive from the lifting
operation (−)⊥ adding a new element ⊥, to be thought of as the empty
computation path, below a copy of a path order P to produce a path order
P⊥. Abstractly, P⊥ is the empty-join completion of P; concretely, we can
take P⊥ to contain the empty set, written ⊥, together with singletons {p}
for p ∈ P, ordered by �P.

2.3. LINEAR AND NONLINEAR MAPS 35

Example 2.5 The path order A+ of non-empty strings over A with prefix
ordering discussed in Section 2.1 is obtained, to within isomorphism, as the
least solution to the equation P = Σα∈AP⊥. ✷

There is an obvious inclusion of the poset obtained as the empty-join com-
pletion of P into P̂, and so we obtain a map jP : P⊥ → P̂ given by

jP⊥ = ∅ and jP{p} = yPp . (2.20)

We’ll use P to range over P⊥ in the remainder of this chapter. The map jP

assumes the role of iP; for any X ∈ P̂ and P ∈ P⊥ we have jPP ⊆ X iff
P �P X, and from (2.6) we get

X =
⋃

p∈X yPp = ∅ ∪
⋃

p∈X yPp =
⋃

P�PX jPP . (2.21)

This join is manifestly nonempty and in fact, P̂ is the free closure of P⊥ under
nonempty joins. This means that given any monotone map f : P⊥ → C
for some nonempty-join complete poset C, there is a unique nonempty-
join preserving (i.e. affine) map f § : P̂ → C such that the diagram below
commutes:

P⊥
jP //

f %%J
JJJJJJ P̂

f§

��

C

f §X =
⋃

P�PX fP . (2.22)

Uniqueness of f §, called the extension of f along jP, follows from (2.21). As
before, we can replace C by a nondeterministic domain Q̂ and by the freeness
properties (2.7) and (2.22), there is a bijective correspondence between linear
maps P⊥ → Q and affine maps P̂→ Q̂.

We define the category Aff to have path orders P, Q, . . . as objects and
affine maps P̂ → Q̂ as arrows. Again, the structure of Aff is induced by
that of Lin via an adjunction between the two categories with the inclusion
Lin →֒ Aff (linear maps are affine) as right adjoint:

Lin(P⊥, Q) ∼= Aff(P, Q) . (2.23)

The unit ηP : P → P⊥ in Aff , the counit εP : P⊥ → P in Lin, and the left
adjoint (−)⊥ : Aff → Lin are obtained precisely as in Section 2.3.1:

ηPX =
⋃

P�PX yP⊥
P

= {P ∈ P⊥ : P �P X}
= {∅} ∪ {{p} : p ∈ X}

εPX =
⋃

P∈X jPP
= {p ∈ P : ∃P ∈ X. p ∈ P}
= {p ∈ P : {p} ∈ X}

(2.24)

Example 2.6 This time, the unit together with tagging can be used to
interpret the usual prefix operations associated with the path order A+.
Again, we’ll base an anonymous action prefix operation directly on the unit
in Chapter 4. ✷

36 CHAPTER 2. DOMAIN THEORY FROM PATH SETS

The category Aff inherits products Σα∈APα from Lin in the same way as
Cts does. However, unlike Cts, the category Aff is not cartesian closed
because P⊥ × Q⊥ and (P & Q)⊥ are not isomorphic in Lin. On the other
hand we can easily define a tensor operation ⊗ on Aff such that the path
orders P⊥ ×Q⊥ and (P⊗Q)⊥ become isomorphic: simply take P⊗Q to be
(P⊥ × Q⊥) \ {(⊥,⊥)}. Paths of P ⊗ Q then consist of a (possibly empty)

path of P and a (possibly empty) path of Q, and so a path set X ∈ P̂⊗Q
can be thought of as a process performing two parallel computation paths,
one of type P and one of type Q. On arrows f : P → P′ and g : Q → Q′

in Aff , we define f ⊗ g : P ⊗ Q → P′ ⊗ Q′ as the extension h§ of the map

h : P⊥ ×Q⊥
∼= (P⊗Q)⊥ → P̂′ ⊗Q′ defined by

(P ′, Q′) ∈ h(P,Q) ⇐⇒ P ′ ∈ f⊥(yP⊥
P) and Q′ ∈ g⊥(yQ⊥

Q) . (2.25)

The unit of tensor is the empty path order O. Elements X ∈ P̂ correspond
to maps X̄ : O → P in Aff and with Y ∈ Q̂, we’ll write X ⊗ Y for the

element of P̂⊗Q pointed to by the map X̄ ⊗ Ȳ .
The tensor makes Aff a symmetric monoidal category, and again, the

adjunction (2.23) is symmetric monoidal. The obvious isomorphisms of path
orders,

1 ∼= O⊥ and P⊥ ×Q⊥
∼= (P⊗Q)⊥ , (2.26)

induce natural isomorphisms in Lin and we obtain a monoidal strength
P⊗Q⊥ → (P⊗Q)⊥ precisely as for Cts.

Finally, the monoidal closed structure of Lin together with the natural
isomorphism P⊥×Q⊥

∼= (P⊗Q)⊥ provide a right adjoint (Q ⊸ −), defined
by (Q⊥ ⊸ −), to the functor (−⊗Q) in Aff via the chain

Aff(P⊗Q, R) ∼= Lin((P ⊗Q)⊥, R) ∼= Lin(P⊥ ×Q⊥, R)
∼= Lin(P⊥, Q⊥ ⊸ R) ∼= Aff(P, Q⊥ ⊸ R) = Aff(P, Q ⊸ R) (2.27)

—natural in P and R. This demonstrates that Aff is symmetric monoidal
closed and since the unit of the tensor is terminal, a model of affine linear
logic, as already observed by Jacobs [40].

Chapter 3

HOPLA—A Higher-Order

Process Language

HOPLA (Higher-Order Process LAnguage [65, 66, 67]) is an economic yet ex-
pressive language for higher-order nondeterministic processes. The language
is typed. The type of a process describes the possible computation paths the
process can perform. Computation paths may be of the kind considered in
Example 2.2, but they may also represent the input-output behaviour of a
process as in Hennessy’s work [32]. A typing judgement

x1 : P1, . . . , xk : Pk ⊢ t : Q (3.1)

means that a process t yields computation paths in Q once processes with
computation paths in P1, . . . , Pk are assigned to the variables x1, . . . , xk

respectively. The types P are built using function space, sum, an anonymous
action prefix type, and recursive definition. The language can be viewed as an
extension of the simply-typed lambda calculus. Indeed, it will be interpreted
in the cartesian closed category Cts with types being interpreted as path
orders and judgements like (3.1) interpreted as arrows

P1 & · · · & Pk → Q (3.2)

of Cts. In general, the language allows processes to be copied and discarded
arbitrarily. In particular, the language will allow us to write terms which
take a process as argument, copy it, and then set those copies in parallel
composition with each other. However some operations are by nature linear
in certain arguments. Linearity, detected in the denotational semantics as
being interpreted in the subcategory Lin of Cts, amounts to the property
of preserving nondeterministic sums.

The denotational semantics, given in Section 3.1, is canonical in the
sense that the operations of the language arise from canonical constructions
in the underlying model. Universal properties of these constructions induce

37

38 CHAPTER 3. HOPLA

a number of useful results about the semantics which are collected in Sec-
tion 3.2. Section 3.3 shows that the denotational semantics is fully abstract,
characterising contextual equivalence as path equivalence. HOPLA supports
a straightforward operational semantics, given in Section 3.4 together with
simple proofs of soundness and adequacy. A standard notion of bisimulation
is shown to be a congruence in Section 3.5 while full abstraction links contex-
tual equivalence to simulation equivalence via a fragment of Hennessy-Milner
logic. It is notable that although we can express many kinds of concurrent
processes in the language, the language itself does not have many features
typical of process calculi built-in, beyond that of a nondeterministic sum
and prefix operations. In particular, parallel composition of processes a la
CCS can be defined in HOPLA, and is not a primitive construct. Section 3.6
contains encodings of CCS, CCS with process passing and mobile ambients
with public names.

Before formally defining the language, we discuss informally the con-
structs associated with the sum and prefix types—the remainder of the lan-
guage is just the simply-typed lambda calculus plus nondeterministic sums,
and so the sum and prefix types are central to expressiveness.

The sum type constructed from a family of types (Pα)α∈A is written
Σα∈APα. Interpreted using the biproduct of Lin, the sum is both a product
and a coproduct. It is associated with injection (“tagging”) term construc-
tors, producing a term βt of sum type from a term t of type Pβ, with β ∈ A.
Conversely, projection term constructors produce a term πβt of type Pβ from
a term t of the sum type above. Injections and projections are interpreted
as the structural maps of the biproduct of Lin, cf. (2.9). Accordingly, the
semantics will identify the process πβ(βt) with the process t and πα(βt)
with the inactive process ∅, if α 6= β. Moreover, injections and projec-
tions distribute over nondeterministic sum by linearity, and so the processes
β(Σi∈Iti) and Σi∈I(βti) are identified, as are πβ(Σi∈Iti) and Σi∈I(πβti).

A prefix type has the form !P; it describes computation paths in which
first an anonymous action, which we call “!”, is performed before resuming
as a computation path in P. The prefix type is associated with a prefix
operation taking a process t of type P to !t of type !P, as well as a prefix
match [u > !x ⇒ t], where u has prefix type !P, the variable x has type
P, and t generally involves x. The term [u > !x ⇒ t] matches u against
the pattern !x and passes the results of successful matches for x on to t. In
particular, first prefixing and then matching yields a single successful match
in that the processes [!u > !x⇒ t] and t[u/x] are identified. Prefix match is
linear in the argument u so that the possibly multiple results of successful
matches are nondeterministically summed together; the interpretations of
[Σi∈Iui > !x⇒ t] and Σi∈I [ui > !x⇒ t] are identical.

Using the sum type to give names to anonymous actions, we can encode
CCS-like processes. Recall from Example 2.3 the recursive type of CCS pro-
cesses given by the equation P = Σα∈A!P. From a CCS process, a term t of

39

type P, we obtain a term !t of type !P by anonymous prefixing, and then β!t
of type Σα∈A!P by tagging with any β ∈ A. Identifying the recursive type P
with its unfolding Σα∈A!P, we then have β!t of type P, corresponding to the
CCS process obtained by prefixing t by the action β.

Example 3.1 Our CCS processes a.b.∅ + a.c.∅ and a.(b.∅ + c.∅) can be
translated to the HOPLA terms

u1 ≡def a!b!∅ + a!c!∅ and u2 ≡def a!(b!∅ + c!∅) , (3.3)

both of type P. The following process identities are easily deduced from the
properties of projection and prefix match:

[πau1 > !x⇒ t] = t[b!∅/x] + t[c!∅/x]

[πau2 > !x⇒ t] = t[(b!∅ + c!∅)/x]

[πbui > !x⇒ t] = [πcui > !x⇒ t] = ∅ for i = 1, 2

(3.4)

Projection and prefix match in combination can thus be used to test whether
a process of type P can perform a given CCS action. By linearity, each
possible successor gives rise to a different component of a nondeterministic
sum; if there are no successors, we get the inactive process.

A nonlinear term can be used to test for the ability to perform two
different actions. If t ≡ [πbx > !x′ ⇒ [πcx > !x′′ ⇒ !∅]] we get

t[b!∅/x] + t[c!∅/x] = ∅

t[(b!∅ + c!∅)/x] = !∅
(3.5)

Note how the two occurrences of x in t allow the process t(−) to copy its
input and then force each copy to take a different computation path. Intu-
itively, t(−) uses two computation paths of its input and is thus not linear
(cf. the discussion in Section 2.3.2); semantically, t(−) does not preserve
nondeterministic sums, as (3.5) shows, and so its interpretation lies outside
Lin.

So HOPLA has contexts that are strong enough to distinguish between
our two vending machine processes. The full abstraction result of Section 3.3
shows that this follows from the fact that the path set interpretations of these
processes are different, cf. Example 2.2. ✷

The example illustrates a way of combining the sum and prefix types which
yields the “prefix-sum” type of the original treatment of HOPLA [65]. The
decomposition embodied in HOPLA as defined below increases the expres-
siveness of the language (for example, to include the type used by Winskel for
CCS with late value-passing [97]), while still ensuring that every operation
in the language has a canonical semantics.

40 CHAPTER 3. HOPLA

3.1 Denotational Semantics

Types are given by the grammar

T ::= T1 → T2 | Σα∈ATα | !T | T | µj
~T .~T . (3.6)

The symbol T is drawn from a set of type variables used in defining recursive
types; closed type expressions are interpreted as path orders. Using vector
notation, µj

~T .~T abbreviates µjT1, . . . , Tk.(T1, . . . , Tk) and is interpreted as
the j-component, for 1 ≤ j ≤ k, of “the least” solution to the defining
equations T1 = T1, . . . , Tk = Tk, in which the expressions T1, . . . , Tk may
contain the Tj ’s. We shall write µ~T .~T as an abbreviation for the k-tuple with

j-component µj
~T .~T, and confuse a closed expression for a path order with

the path order itself. Simultaneous recursive equations for path orders can
be solved using information systems [81, 48]. Here, it will be convenient to
give a concrete, inductive characterisation based on a language of paths:

p, q ::= P 7→ q | βp | P | abs p . (3.7)

Above, P ranges over finite sets of paths. We use P 7→ q as notation for pairs
in the function space (!P)op×Q. The language is complemented by formation
rules using judgements p : P, meaning that p belongs to P, displayed below
alongside rules defining the ordering on P using judgements p ≤P p′. Recall
that P �P P ′ means ∀p ∈ P.∃p′ ∈ P ′. p ≤P p′.

P : !P q : Q

P 7→ q : P→ Q

P ′ ≤!P P q ≤Q q′

P 7→ q ≤P→Q P ′ 7→ q′

p : Pβ β ∈ A

βp : Σα∈APα

p ≤Pβ
p′

βp ≤Σα∈APα βp′

p1 : P · · · pn : P

{p1, . . . , pn} : !P

P �P P ′

P ≤!P P ′

p : Tj[µ~T .~T/~T]

abs p : µj
~T .~T

p ≤
Tj [µ~T .~T/~T]

p′

abs p ≤
µj

~T .~T
abs p′

(3.8)

Using information systems as in [48] yields the same representation, except
for the tagging with abs in recursive types, done to help in the proof of
adequacy in Section 3.4.1. So rather than the straight equality between a
recursive type and its unfolding which we are used to from [48], we get an
isomorphism abs : Tj [µ~T .~T/~T] ∼= µj

~T .~T whose inverse we call rep.

Example 3.2 The least solution to the equation P = Σα∈A!P of Exam-
ple 2.3 is formally written µT.Σα∈A!T . By composing the rules for the sum
and prefix types above we obtain a rule for deriving its elements which is
identical to (2.2) except for the abs tag:

p1 : P · · · pk : P α ∈ A

abs α{p1, . . . , pk} : P
(3.9)

✷

3.1. DENOTATIONAL SEMANTICS 41

The raw syntax of HOPLA terms is given by

t, u ::= x, y, z, . . . (variables)
| rec x.t (recursive definition)
| Σi∈Iti (nondeterministic sum)
| λx.t | t u (abstraction and application)
| βt | πβt (injection and projection)
| !t | [u > !x⇒ t] (prefix operation and match)
| abs t | rep t (folding and unfolding)

(3.10)

The variable x in a match term [u > !x ⇒ t] is a binding occurrence with
scope t.

Let P1, . . . , Pk, Q be closed type expressions and assume that the vari-
ables x1, . . . , xk are distinct. A syntactic judgement

x1 : P1, . . . , xk : Pk ⊢ t : Q (3.11)

stands for a map

Jx1 : P1, . . . , xk : Pk ⊢ t : QK : P1 & · · ·& Pk → Q (3.12)

in Cts. We’ll write Γ, or Λ, for an environment list x1 : P1, . . . , xk : Pk and

most often abbreviate the denotation to P1 & · · · & Pk
t
−→ Q, or Γ

t
−→ Q, or

even JtK, suppressing the typing information. When the environment list is
empty, the corresponding product is the empty path order O.

The term-formation rules are displayed below alongside their interpre-
tations as constructors on maps of Cts, taking the maps denoted by the
premises to that denoted by the conclusion (cf. [12]). We assume that the
variables in any environment list which appears are distinct.

Structural rules. The rules handling environment lists are given as follows:

x : P ⊢ x : P P
1P−→ P

(3.13)

Γ ⊢ t : Q

Γ, x : P ⊢ t : Q

Γ
t
−→ Q

Γ & P
1Γ&∅P−−−−→ Γ & O

rCts

Q−−−→ Γ
t
−→ Q

(3.14)

Γ, y : Q, x : P,Λ ⊢ t : R

Γ, x : P, y : Q,Λ ⊢ t : R

Γ & Q & P & Λ
t
−→ R

Γ & P & Q & Λ
t◦(1Γ&sCts

P,Q
&1Λ)

−−−−−−−−−−→ R
(3.15)

Γ, x : P, y : P ⊢ t : Q

Γ, z : P ⊢ t[z/x, z/y] : Q

Γ & P & P
t
−→ Q

Γ & P
1Γ&∆P−−−−→ Γ & P & P

t
−→ Q

(3.16)

In the formation rule for contraction (3.16), the variable z must be fresh;
the map ∆P is the usual diagonal, given as 〈1P, 1P〉. We’ll write ∆k

P : P→ Pk

for the obvious extension to k components, Pk = P & · · · & P. Note that
∆0

P = ∅P : P→ O and ∆1
P = 1P : P→ P.

42 CHAPTER 3. HOPLA

Recursive definition. Since each P̂ is a complete lattice, it admits least fixed-
points of continuous maps. If f : P̂ → P̂ is continuous, it has a least fixed-
point, fix f ∈ P̂, obtained as

⋃
n∈ω fn(∅).

Γ, x : P ⊢ t : P

Γ ⊢ rec x.t : P

Γ & P
t
−→ P

Γ
fix f
−−→ P

(3.17)

Here, fix f is the fixed-point in Cts(Γ, P) ∼= Γ̂→ P of the continuous oper-
ation f mapping g : Γ→ P in Cts to the composition

Γ
∆Γ−−→ Γ & Γ

1Γ&g
−−−→ Γ & P

t
−→ P . (3.18)

Nondeterministic sum. Each path order P is associated with a join operation,
Σ : &i∈I P → P in Cts taking a tuple 〈ti〉i∈I to the join Σi∈Iti in P̂. We’ll
write ∅ and t1 + · · ·+ tk for finite sums.

Γ ⊢ tj : P all j ∈ I

Γ ⊢ Σi∈Iti : P

Γ
tj−→ P all j ∈ I

Γ
〈ti〉i∈I−−−−→ &i∈I P

Σ
−→ P

(3.19)

Function space. As noted at the end of Section 2.3.1, the category Cts is
cartesian closed with function space P→ Q. Thus, there is a 1-1 correspon-
dence curry from maps P & Q → R to maps P → (Q → R) in Cts; its
inverse is called uncurry . We obtain application, app : (P→ Q) & P→ Q as
uncurry(1P→Q).

Γ, x : P ⊢ t : Q

Γ ⊢ λx.t : P→ Q

Γ & P
t
−→ Q

Γ
curry t
−−−−→ P→ Q

(3.20)

Γ ⊢ t : P→ Q Λ ⊢ u : P

Γ,Λ ⊢ t u : Q

Γ
t
−→ P→ Q Λ

u
−→ P

Γ & Λ
t&u
−−→ (P→ Q) & P

app
−−→ Q

(3.21)

Sum type. The category Cts does not have coproducts, but we can build
a useful sum type out of the biproduct of Lin. The properties of (2.9) are
obviously also satisfied in Cts, even though the construction is universal
only in the subcategory of linear maps because composition is generally not
bilinear in Cts. We’ll write O and P1 + · · ·+Pk for the empty and finite sum
types. The product P1 & P2 of [65] with pairing (t, u) and projection terms
fst t, snd t can be encoded, respectively, as the type P1 + P2, and the terms
1t + 2u and π1t, π2t.

Γ ⊢ t : Pβ β ∈ A

Γ ⊢ βt : Σα∈APα

Γ
t
−→ Pβ β ∈ A

Γ
t
−→ Pβ

inβ−−→ Σα∈APα

(3.22)

Γ ⊢ t : Σα∈APα β ∈ A

Γ ⊢ πβt : Pβ

Γ
t
−→ Σα∈APα β ∈ A

Γ
t
−→ Σα∈APα

πβ−→ Pβ

(3.23)

3.1. DENOTATIONAL SEMANTICS 43

Prefixing. The adjunction between Lin and Cts provides a type constructor,
!(−), for which the unit ηP : P → !P and counit εP : !P → P may interpret
term constructors and deconstructors, respectively. The behaviour of ηP with
respect to maps of Cts fits that of an anonymous prefix operation.

Γ ⊢ u : P

Γ ⊢ !u : !P

Γ
u
−→ P

Γ
u
−→ P

ηP−→ !P
(3.24)

By the universal property of ηP, if t of type Q has a free variable of type
P, and so is interpreted as a map t : P → Q in Cts, then the transpose
t = εQ ◦ !t is the unique map !P → Q in Lin such that t = t ◦ ηP. With
u of type !P, we’ll interpret the prefix match [u > !x ⇒ t] as tu. Then, if
u ≡ !u′ for some u′ of type P, our interpretation yields t(ηPu′) = tu′ and so
by the substitution lemma (Lemma 3.4 below), the match is identified with
t[u′/x] as wanted. Moreover, by linearity of t, the match will distribute over
nondeterministic sum.

The above clearly generalises to the case where u is an open term, but
if t has free variables other than x, we need to make use of the strength
map (2.18) to distribute the exponential over the corresponding product.
Proposition 3.8 below shows that the general definition also satisfies the
required properties.

Γ, x : P ⊢ t : Q Λ ⊢ u : !P

Γ,Λ ⊢ [u > !x⇒ t] : Q
Γ & P

t
−→ Q Λ

u
−→ !P

Γ & Λ
1Γ&u
−−−→ Γ & !P

strΓ,P−−−→ !(Γ & P)
t
−→ Q

(3.25)

Recursive types. Folding and unfolding recursive types is accompanied by
term constructors abs and rep:

Γ ⊢ t : Tj[µ~T .~T/~T]

Γ ⊢ abs t : µj
~T .~T

Γ
t
−→ Tj[µ~T .~T/~T]

Γ
t
−→ Tj[µ~T .~T/~T]

abs
−−→ µj

~T .~T
(3.26)

Γ ⊢ t : µj
~T .~T

Γ ⊢ rep t : Tj[µ~T .~T/~T]

Γ
t
−→ µj

~T .~T

Γ
t
−→ µj

~T .~T
rep
−−→ Tj[µ~T .~T/~T]

(3.27)

Example 3.3 The translation in Example 3.1 of the CCS processes a.b.∅+
a.c.∅ and a.(b.∅ + c.∅) did not use the abstract syntax abs for folding the
recursive type P = Σα∈A!P. Formally, the translations and their interpreta-
tions are as follows (cf. Example 2.2):

Jabs(a! abs(b!∅)) + abs(a! abs(c!∅))K
= {abs a∅, abs a{abs b∅}, abs a{abs c∅}}

Jabs(a!(abs(b!∅) + abs(c!∅)))K
= {abs a∅, abs a{abs b∅}, abs a{abs c∅}, abs a{abs b∅, abs c∅}}

(3.28)

We’ll continue to dispense with both abs and rep in examples for clarity. ✷

44 CHAPTER 3. HOPLA

3.2 Useful Identities

We provide some technical results about the path semantics which are used
in later proofs. They are also useful for reasoning about encodings of process
calculi, see Section 3.6 below.

Lemma 3.4 (Substitution) Suppose Γ, x : P ⊢ t : Q and Λ ⊢ u : P with
Γ and Λ disjoint. Then Γ,Λ ⊢ t[u/x] : Q with denotation given by the
composition

Γ & Λ
1Γ&u
−−−→ Γ & P

t
−→ Q . (3.29)

Proof. By rule-induction on the term formation rules above using the in-
duction hypothesis

Suppose Γ′ ⊢ t : Q with Γ′ a permutation of Γ, x1 : P, . . . , xk : P.
Let p : Γ & Pk ∼= Γ′ be the associated isomorphism. If Λ ⊢ u : P
with Γ and Λ disjoint, then Γ,Λ ⊢ t[u/x1, . . . , u/xk] : Q with
denotation given by

Γ & Λ
1Γ&(∆k

P
◦u)

−−−−−−−→ Γ & Pk p
−→ Γ′ t

−→ Q . (3.30)

The substitution lemma itself follows from the statement above by taking
Γ′ ≡ Γ, x : P. We’ll abbreviate the generic substitution [u/x1, . . . , u/xk] to
[u] and ∆k

P ◦ JuK to hk.

Identity (case 1). Suppose x : P ⊢ x : P is derived using the rule for identity.
Let Λ ⊢ u : P. As k = 1 in this case, we want to show that Λ ⊢ x[u/x] : P.
But x[u/x] ≡ u and so we are done.

Semantically we have JuK = 1P ◦∆1
P ◦ JuK as wanted.

Identity (case 2). Suppose y : Q ⊢ y : Q is derived using the rule for identity.
Let Λ ⊢ u : P with y not occurring in Λ. As k = 0 in this case we want to
show that y : Q,Λ ⊢ y : Q. This can be derived from y : Q ⊢ y : Q by
repeated use of weakening.

The semantic result follows because

1Q ◦ rCts

Q ◦ (1Q & ∅Λ) = 1Q ◦ rCts

Q ◦ (1Q & h0) (3.31)

by naturality of ∅ = ∆0
P.

Weakening (case 1). Suppose Γ′, x : P ⊢ t : Q is obtained by weakening from
Γ′ ⊢ t : Q and that Γ′ is a permutation of Γ, x1 : P, . . . , xk : P. Let Λ ⊢ u : P
with Γ and Λ disjoint. We want to show that Γ,Λ ⊢ t[u/x1, . . . , u/xk, u/x] :
Q. As x does not occur freely in t, we have t[u/x1, . . . , u/xk, u/x] ≡ t[u],
and by the induction hypothesis, Γ,Λ ⊢ t[u] : Q as wanted.

3.2. USEFUL IDENTITIES 45

Up to exchange we must show that Jt[u]K equals JtK ◦ rCts

Γ&Pk ◦ (1Γ&Pk &

∅P) ◦ (1Γ & hk+1). We have

JtK ◦ rCts

Γ&Pk ◦ (1Γ&Pk & ∅P) ◦ (1Γ & hk+1)

= JtK ◦ (1Γ & (rCts

Pk ◦ (1Pk & ∅P)) ◦ (1Γ & hk+1))

= JtK ◦ (1Γ & (rCts

Pk ◦ (1Pk & ∅P) ◦ hk+1))

= JtK ◦ (1Γ & (rCts

Pk ◦ (1Pk & ∅P) ◦∆k+1
P ◦ JuK))

= JtK ◦ (1Γ & ∆k
P ◦ JuK)

= JtK ◦ (1Γ & hk)
= Jt[u]K (ind. hyp.)

—as wanted.

Weakening (case 2). Suppose Γ′, y : Q ⊢ t : R is obtained by weakening from
Γ′ ⊢ t : R and that Γ′, y : Q is a permutation of Γ, x1 : P, . . . , xk : P. Here,
Γ ≡ Γ1, y : Q,Γ2. Let Λ ⊢ u : P with Γ and Λ disjoint. We want to show that
Γ,Λ ⊢ t[u] : R. By the induction hypothesis, we have Γ1,Γ2,Λ ⊢ t[u] : R
and so we obtain Γ1,Γ2,Λ, y : Q ⊢ t[u] : R by weakening. Repeated use of
exchange then yields the wanted derivation.

Up to use of exchange we need to show that Jt[u]K ◦ rCts

Γ&Λ ◦ (1Γ&Λ & ∅Q)
equals JtK ◦ rCts

Γ&Pk ◦ (1Γ&Pk & ∅Q) ◦ (1Γ & hk & 1Q). We have

JtK ◦ rCts

Γ&Pk ◦ (1Γ&Pk & ∅Q) ◦ (1Γ & hk & 1Q)

= JtK ◦ rCts

Γ&Pk ◦ (1Γ & hk & 1O) ◦ (1Γ&Λ & ∅Q)

= JtK ◦ (1Γ & hk) ◦ rCts

Γ&Λ ◦ (1Γ&Λ & ∅Q) (nat. of rCts)
= Jt[u]K ◦ rCts

Γ&Λ ◦ (1Γ&Λ & ∅Q) (ind. hyp.)

—as wanted.

Exchange. Directly from the induction hypothesis.

Contraction (case 1). Suppose that Γ′, z : P ⊢ t[z/x, z/y] : Q is obtained
by contraction from Γ′, x : P, y : P ⊢ t : Q and that Γ′ is a permuta-
tion of Γ, x1 : P, . . . , xk : P. Let Λ ⊢ u : P with Γ and Λ disjoint. We
want to show that Γ,Λ ⊢ t[z/x, z/y][u/x1, . . . , u/xk, u/z] : Q. By the in-
duction hypothesis we have Γ,Λ ⊢ t[u/x1, . . . , u/xk, u/x, u/y] : Q and as
t[z/x, z/y][u/x1, . . . , u/xk, u/z] ≡ t[u/x1, . . . , u/xk, u/x, u/y] we are done.

Assuming Γ′ ≡ Γ, x1 : P, . . . , xk : P for simplicity, we must show that
Jt[u/x1, . . . , u/xk, u/x, u/y]K equals JtK◦(1Γ&Pk &∆P)◦(1Γ &hk+1). We have

JtK ◦ (1Γ&Pk & ∆P) ◦ (1Γ & hk+1)
= JtK ◦ (1Γ & ((1Pk & ∆P) ◦ hk+1))
= JtK ◦ (1Γ & hk+2)
= Jt[u/x1, . . . , u/xk, u/x, u/y]K (ind. hyp.)

Contraction (case 2). Suppose that Γ′, z : Q ⊢ t[z/x, z/y] : R is obtained by
contraction from Γ′, x : Q, y : Q ⊢ t : R and that Γ′, z : Q is a permutation of

46 CHAPTER 3. HOPLA

Γ, x1 : P, . . . , xk : P. Here, Γ ≡ Γ1, z : Q,Γ2. Let Λ ⊢ u : P with Γ and Λ dis-
joint. By renaming x and y if necessary, we may assume that these variables
do not occur freely in u. We want to show that Γ,Λ ⊢ t[z/x, z/y][u] : Q.
By the induction hypothesis we have Γ1,Γ2, x : Q, y : Q,Λ ⊢ t[u] : R. Re-
peated use of exchange yields Γ1,Γ2,Λ, x : Q, y : Q ⊢ t[u] : R and thus, by
contraction, Γ1,Γ2,Λ, z : Q ⊢ t[u][z/x, z/y]. As x, y do not occur freely in u,
we have t[z/x, z/y][u] ≡ t[u][z/x, z/y] and exchange then yields the wanted
derivation.

Up to exchange we must show that Jt[u]K ◦ (1Γ & ∆Q & 1Λ) equals JtK ◦
(1Γ &∆Q&1Pk)◦(1Γ &hk). This is immediate from the induction hypothesis.

Recursive definition. Suppose that Γ′ ⊢ rec x.t : Q is obtained from Γ′, x :
Q ⊢ t : Q and that Γ′ is a permutation of Γ, x1 : P, . . . , xk : P. Let Λ ⊢ u : P
with Γ and Λ disjoint. By renaming x if necessary, we may assume that x
does not occur freely in u. We want to show that Γ,Λ ⊢ (rec x.t)[u] : Q.
By the induction hypothesis, Γ, x : Q,Λ ⊢ t[u] : Q and so by exchange,
Γ,Λ, x : Q ⊢ t[u] : Q. This yields Γ,Λ ⊢ rec x.(t[u]) : Q. Since x does not
occur freely in u, (rec x.t)[u] ≡ rec x.(t[u]) and we are done.

Up to exchange we need to show that Jrec x.(t[u])K = Jrec x.tK◦(1Γ &hk).
Here, Jrec x.(t[u])K = fix fu where fu maps g : Γ & Λ & Q → Q to Jt[u]K ◦
(1Γ&Λ&g)◦∆Γ&Λ whereas Jrec x.tK = fix f with f mapping g : Γ&Pk&Q→ Q
to JtK ◦ (1Γ&Pk & g) ◦∆Γ&Pk . We show by mathematical induction that for
each n ∈ ω, we have fn

u ∅ = fn∅ ◦ (1Γ & hk):

Basis. By naturality of ∅ as f0
u∅ = ∅Γ&Λ and f0∅ = ∅Γ&Pk .

Step. We have

fn+1∅ ◦ (1Γ & hk)
= JtK ◦ (1Γ&Pk & fn∅) ◦∆Γ&Pk ◦ (1Γ & hk)
= JtK ◦ (1Γ&Pk & fn∅) ◦ ((1Γ & hk) & (1Γ & hk)) ◦∆Γ&Λ (nat. of ∆)
= JtK ◦ ((1Γ & hk) & (fn∅ ◦ (1Γ & hk))) ◦∆Γ&Λ

= JtK ◦ ((1Γ & hk) & fn
u ∅) ◦∆Γ&Λ (ind. hyp. for n)

= JtK ◦ (1Γ & hk & 1Q) ◦ (1Γ&Λ & fn
u ∅) ◦∆Γ&Λ

= Jt[u]K ◦ (1Γ&Λ & fn
u ∅) ◦∆Γ&Λ (ind. hyp.)

= fn+1
u ∅

—as wanted.

By mathematical induction, we have the wanted equality for all n ∈ ω from
which the equality for the fixed-points follow.

Nondeterministic sum. Suppose that Γ′ ⊢ Σi∈Iti : Q is obtained from Γ′ ⊢
tj : Q for all j ∈ I and that Γ′ is a permutation of Γ, x1 : P, . . . , xk : P. Let
Λ ⊢ u : P with Γ and Λ disjoint. We want to show that Γ,Λ ⊢ (Σi∈Iti)[u] : Q.
By the induction hypotheses, we have Γ,Λ ⊢ tj[u] : Q for all j ∈ I and so
Γ,Λ ⊢ Σi∈I(ti[u]) : Q. Since (Σi∈Iti)[u] ≡ Σi∈I(ti[u]) we are done.

3.2. USEFUL IDENTITIES 47

Up to exchange we need to show that Σ ◦ 〈ti[u]〉i∈I = Σ ◦ 〈JtiK〉i∈I ◦ (1Γ &
hk). We have

Σ ◦ 〈JtiK〉i∈I ◦ (1Γ & hk)
= Σ ◦ 〈JtiK ◦ (1Γ & hk)〉i∈I

= Σ ◦ 〈Jti[u]K〉i∈I (ind. hyp.)

—as wanted.

Abstraction. Suppose that Γ′ ⊢ λx.t : Q → R is obtained from Γ′, x : Q ⊢
t : R and that Γ′ is a permutation of Γ, x1 : P, . . . , xk : P. Let Λ ⊢ u : P
with Γ and Λ disjoint. By renaming x if necessary, we may assume that x
does not occur freely in u. We want to show that Γ,Λ ⊢ (λx.t)[u] : Q→ R.
By the induction hypothesis, Γ, x : Q,Λ ⊢ t[u] : R and so by exchange,
Γ,Λ, x : Q ⊢ t[u] : R. This yields Γ,Λ ⊢ λx.(t[u]) : Q→ R. Since x does not
occur freely in u, (λx.t)[u] ≡ λx.(t[u]) and we are done.

Up to exchange we must show that curry(Jt[u]K) = curryJtK ◦ (1Γ & hk).
We have

app ◦ ((curryJtK ◦ (1Γ & hk)) & 1Q)
= app ◦ (curryJtK & 1Q) ◦ (1Γ & hk & 1Q)
= JtK ◦ (1Γ & hk & 1Q) (prop. of curry)
= Jt[u]K (ind. hyp.)

The wanted equality then follows from the universal property of curry .

Application. Suppose that Γ′
1,Γ

′
2 ⊢ t1 t2 : R is obtained from Γ′

1 ⊢ t1 : Q→ R
and Γ′

2 ⊢ t2 : Q and that Γ′
i is a permutation of Γi, x1 : P, . . . , xki

: P for
i = 1, 2. Let Λ ⊢ u : P with Γ1,Γ2 and Λ disjoint. We want to show that
Γ1,Γ2,Λ ⊢ (t1 t2)[u] : R. By the induction hypotheses, we have Γ1,Λ ⊢
t1[u] : Q → R and Γ2,Λ ⊢ t2[u] : Q. By renaming the variables of Λ and
u to fresh names in the latter derivation we get Γ2,Λ

′ ⊢ t2[u
′] : Q and

so Γ1,Λ,Γ2,Λ
′ ⊢ (t1[u]) (t2[u

′]) : R by the typing rule for application. By
repeated use of exchange and contraction we get Γ1,Γ2,Λ ⊢ (t1[u]) (t1[u]) : R
and as (t1 t2)[u] ≡ (t1[u]) (t2[u]) we are done.

Assume for simplicity that Γ1 and Γ2 are empty. We must then show
that app ◦ (Jt1[u]K & Jt2[u]K) ◦∆Λ equals app ◦ (Jt1K& Jt2K) ◦hk1+k2. We have

app ◦ (Jt1K & Jt2K) ◦ hk1+k2

= app ◦ (Jt1K & Jt2K) ◦∆k1+k2

P ◦ JuK

= app ◦ (Jt1K & Jt2K) ◦ (∆k1

P & ∆k2

P) ◦∆P ◦ JuK

= app ◦ (Jt1K & Jt2K) ◦ (∆k1

P & ∆k2

P) ◦ (JuK & JuK) ◦∆Λ (nat. of ∆)
= app ◦ ((Jt1K ◦ hk1) & (Jt2K ◦ hk2)) ◦∆Λ

= app ◦ (Jt1[u]K & Jt2[u]K) ◦∆Λ (ind. hyp.)

—as wanted.

Injection. Suppose that Γ′ ⊢ βt : Σα∈APα is obtained from Γ′ ⊢ t : Pβ and
that Γ′ is a permutation of Γ, x1 : P, . . . , xk : P. Let Λ ⊢ u : P with Γ and

48 CHAPTER 3. HOPLA

Λ disjoint. We want to show that Γ,Λ ⊢ (βt)[u] : Σα∈APα. By the induction
hypothesis, we have Γ,Λ ⊢ t[u] : Pβ and so Γ,Λ ⊢ β(t[u]) : Σα∈APα. Since
(βt)[u] ≡ β(t[u]) we are done.

Up to exchange we need to show that inβ ◦Jt[u]K = inβ ◦JtK ◦ (1Γ & hk).
This is immediate using the induction hypothesis.

Prefix match. Suppose that Γ′
1,Γ

′
2 ⊢ [t2 > !x ⇒ t1] : R is obtained from

Γ′
1, x : Q ⊢ t1 : R and Γ′

2 ⊢ t2 : !Q and that Γ′
i is a permutation of

Γi, x1 : P, . . . , xki
: P for i = 1, 2. Let Λ ⊢ u : P with Γ1,Γ2 and Λ disjoint.

By renaming x if necessary, we may assume that x does not occur freely in
u. We want to show that Γ1,Γ2,Λ ⊢ [t2 > !x ⇒ t1][u] : R. By the induc-
tion hypotheses, we have Γ1, x : Q,Λ ⊢ t1[u] : R and Γ2,Λ ⊢ t2[u] : !Q. By
repeated use of exchange on the former derivation and by renaming the vari-
ables of Λ and u to fresh names in the latter derivation we get Γ1,Λ,Γ2,Λ

′ ⊢
[t2[u

′] > !x⇒ t1[u]] : R by the typing rule for prefix match. Using exchange
and contraction repeatedly we get Γ1,Γ2,Λ ⊢ [t2[u] > !x⇒ t1[u]] : R and as
[t2 > !x⇒ t1][u] ≡ [t2[u] > !x⇒ t1[u]] by the assumption on x, we are done.

Assume for simplicity that Γ1 and Γ2 are empty. We must then show that
Jt1[u]K◦strΛ,Q ◦(1Λ & Jt2[u]K)◦∆Λ equals Jt1K◦strPk1 ,Q ◦(1Pk & Jt2K)◦h

k1+k2 .
We have

Jt1K ◦ strPk1 ,Q ◦ (1Pk1 & Jt2K) ◦ hk1+k2

= Jt1K ◦ strPk1 ,Q ◦ (1Pk1 & Jt2K) ◦ (hk1 & hk2) ◦∆Λ (nat. of ∆)

= Jt1K ◦ strPk1 ,Q ◦ (hk1 & (Jt2K ◦ hk2)) ◦∆Λ

= Jt1K ◦ strPk1 ,Q ◦ (hk1 & Jt2[u]K) ◦∆Λ (ind. hyp.)

= Jt1K ◦ strPk1 ,Q ◦ (hk1 & 1!Q) ◦ (1Λ & Jt2[u]K) ◦∆Λ

= Jt1K ◦ !(hk1 & 1Q) ◦ strΛ,Q ◦ (1Λ & Jt2[u]K) ◦∆Λ (nat. of str)
= εR ◦ !Jt1K ◦ !(hk1 & 1Q) ◦ strΛ,Q ◦ (1Λ & Jt2[u]K) ◦∆Λ

= εR ◦ !(Jt1K ◦ (hk1 & 1Q)) ◦ strΛ,Q ◦ (1Λ & Jt2[u]K) ◦∆Λ (! a functor)
= εR ◦ !(Jt1[u]K) ◦ strΛ,Q ◦ (1Λ & Jt2[u]K) ◦∆Λ (ind. hyp.)

= Jt1[u]K ◦ strΛ,Q ◦ (1Λ & Jt2[u]K) ◦∆Λ

—as wanted.

The remaining cases (projection, prefixing, folding, and unfolding) are hand-
led similarly to injection. By rule-induction, the proof is complete. ✷

Proposition 3.5 Suppose Γ, x : P ⊢ t : P. Then

Jrec x.tK = Jt[rec x.t/x]K (3.32)

Proof. By renaming variables y of Γ to y′ and y′′ we get Γ′, x : P ⊢ t′ : P and
Γ′′, x : P ⊢ t′′ : P with Γ′ and Γ′′ disjoint. Then by the substitution lemma,
Γ′,Γ′′ ⊢ t′[rec x.t′′/x] : P with denotation

Γ′ & Γ′′ 1Γ′&rec x.t′′
−−−−−−−→ Γ′ & P

t′
−→ P . (3.33)

3.2. USEFUL IDENTITIES 49

By suitable use of exchange and contraction, substituting y for y′ and y′′,
we get Γ ⊢ t[rec x.t/x] : P with denotation

Γ
∆Γ−−→ Γ & Γ

1Γ&rec x.t
−−−−−−→ Γ & P

t
−→ P . (3.34)

This is the same as f(fix f) where fix f is the denotation of rec x.t, and by
property of the fixed-point, f(fix f) = fix f as wanted. ✷

Proposition 3.6 (i) Suppose Γ, x : P ⊢ t : Q and Λ ⊢ u : P with Γ and Λ
disjoint. Then

J(λx.t) uK = Jt[u/x]K . (3.35)

(ii) Suppose Γ ⊢ t : P→ Q. Then

Jλx.(t x)K = JtK . (3.36)

(iii) Suppose Γ, x : P ⊢ ti : Q for all i ∈ I. Then

Jλx.(Σi∈Iti)K = JΣi∈I(λx.ti)K . (3.37)

(iv) Suppose Γ ⊢ ti : P→ Q for all i ∈ I. Then for any suitable u we have

J(Σi∈Iti) uK = JΣi∈I(ti u)K . (3.38)

Proof. (i) We calculate as follows:

J(λx.t) uK
= app ◦ (curryJtK & JuK)
= app ◦ (curryJtK & 1P) ◦ (1Γ & JuK)
= JtK ◦ (1Γ & JuK) (univ. prop. of curry)
= Jt[u/x]K (substitution lemma)

(ii) We calculate as follows:

Jλx.(t x)K
= curry(app ◦ (JtK & 1P))
= JtK (univ. prop. of curry)

(iii) and (iv) are obtained using linearity of curry and uncurry . ✷

Proposition 3.7 (i) Suppose Γ ⊢ t : Pβ for some β ∈ A. Then

Jπβ(βt)K = JtK and Jπα(βt)K = ∅ if α 6= β. (3.39)

(ii) Suppose Γ ⊢ t : Σα∈APα. Then

JΣα∈Aα(πα(t))K = JtK . (3.40)

(iii) Suppose Γ ⊢ ti : Pβ for all i ∈ I and some β ∈ A. Then

Jβ(Σi∈Iti)K = JΣi∈I(βti)K . (3.41)

(iv) Suppose Γ ⊢ ti : Σα∈APα for all i ∈ I. Then for each β ∈ A,

Jπβ(Σi∈Iti)K = JΣi∈I(πβti)K . (3.42)

50 CHAPTER 3. HOPLA

Proof. (i) and (ii) follow from the properties of the biproduct while (iii) and
(iv) are obtained using linearity of inβ and πβ. ✷

Proposition 3.8 (i) Suppose Γ, x : P ⊢ t : Q and Λ ⊢ u : P with Γ and Λ
disjoint. Then

J[!u > !x⇒ t]K = Jt[u/x]K . (3.43)

(ii) Suppose Γ, x : P ⊢ t : Q and Λ ⊢ ui : !P for all i ∈ I with Γ and Λ
disjoint. Then

J[Σi∈Iui > !x⇒ t]K = JΣi∈I [ui > !x⇒ t]K . (3.44)

Proof. (i) We calculate as follows:

J[!u > !x⇒ t]K

= JtK ◦ strΓ,P ◦ (1Γ & (ηP ◦ JuK))

= JtK ◦ strΓ,P ◦ (1Γ & ηP) ◦ (1Γ & JuK)

= JtK ◦ ηΓ&P ◦ (1Γ & JuK) (by (2.17))
= JtK ◦ (1Γ & JuK) (univ. prop. of η)
= Jt[u/x]K (substitution lemma)

(ii) We calculate as follows:

J[Σi∈Iui > !x⇒ t]K

= JtK ◦ strΓ,P ◦ (1Γ & Σi∈IJuiK)

= JtK ◦ Σi∈IstrΓ,P ◦ (1Γ & JuiK) (linearity of 2nd arg. of str)

= Σi∈I(JtK ◦ strΓ,P ◦ (1Γ & JuiK)) (linearity of JtK)
= JΣi∈I [ui > !x⇒ t]K

—as wanted. ✷

Proposition 3.9 (i) Suppose Γ ⊢ t : Tj[µ~T .~T/~T]. Then

Jrep(abs t)K = JtK . (3.45)

(ii) Suppose Γ ⊢ t : µj
~T .~T. Then

Jabs(rep t)K = JtK . (3.46)

(iii) Suppose Γ ⊢ ti : Tj[µ~T .~T/~T] for all i ∈ I. Then

Jabs(Σi∈Iti)K = JΣi∈I(abs ti)K . (3.47)

(iv) Suppose Γ ⊢ ti : µj
~T .~T for all i ∈ I. Then

Jrep(Σi∈Iti)K = JΣi∈I(rep ti)K . (3.48)

Proof. The maps abs and rep are inverses and both linear. ✷

3.3. FULL ABSTRACTION 51

3.3 Full Abstraction

We’ll show that path equivalence captures a notion of contextual equiva-
lence, defined using the denotational semantics. An operational formulation
is given after we prove adequacy in Section 3.4.1. Contextual equivalence is
formally a type-respecting relation between typing judgements. Whenever
such a relation R relates

Γ1 ⊢ t1 : P1 and Γ2 ⊢ t2 : P2 , (3.49)

we have syntactic identities Γ1 ≡ Γ2 ≡ Γ and P1 ≡ P2 ≡ P. We’ll then use
the notation Γ ⊢ t1 R t2 : P. Below, all our relations will respect types and
we’ll sometimes write just t1 R t2 when the typing information is irrelevant
or clear from context.

We define a program to be a closed term t of type !O. This type has two
values, ∅ and {∅}, and so is the simplest type which allows the denotational
semantics to distinguish between processes, sometimes called to “make ob-
servations”. Here, making observations of a program t amounts to saying
whether JtK = ∅ or not.

A (Γ, P)-program context C is a term with holes into which a term t
with Γ ⊢ t : P may be put to form a program ⊢ C(t) : !O. The observations
made by the denotational semantics give rise to a type-respecting contextual
preorder. Suppose Γ ⊢ t1 : P and Γ ⊢ t2 : P. We say that t1 and t2 are related
by contextual preorder, written t1 ❁∼ t2, iff for all (Γ, P)-program contexts C,
we have JC(t1)K 6= ∅ =⇒ JC(t2)K 6= ∅. If both t1 ❁∼ t2 and t2 ❁∼ t1, we say
that t1 and t2 are contextually equivalent.

The full abstraction result below implies that contextual equivalence
coincides with path equivalence. We formulate it using the associated pre-
orders:

Theorem 3.10 (Full Abstraction) Suppose Γ ⊢ t1 : P and Γ ⊢ t2 : P.
Then

Jt1K ⊆ Jt2K ⇐⇒ t1 ❁∼ t2 . (3.50)

Proof. Suppose Jt1K ⊆ Jt2K and let C be a (Γ, P)-program context with
JC(t1)K 6= ∅. As Jt1K ⊆ Jt2K we have JC(t2)K 6= ∅ by compositionality and
monotonicity, and so t1 ❁∼ t2 as wanted.

To prove the converse we define for each path p : P a closed term tp
of type P and a (O, P)-program context Cp that respectively “realise” and
“consume” the path p, by induction on the structure of p.1 We’ll also need

1We have recently become aware that this technique has been applied by Guy McCusker
to prove full abstraction for a version of Idealized Algol [53].

52 CHAPTER 3. HOPLA

realisers t′P and consumers C ′
P of finite sets of paths:

tP 7→q ≡def λx.[C ′
P (x) > !x′ ⇒ tq]

tβp ≡def βtp

tP ≡def !t′P

tabs p ≡def abs tp

CP 7→q ≡def Cq(− t′P)

Cβp ≡def Cp(πβ−)

CP ≡def [− > !x⇒ C ′
P (x)]

Cabs p ≡def Cp(rep −)

t′{p1,...,pn}
≡def tp1

+ · · · + tpn

C ′
{p1,...,pn}

≡def [Cp1
> !x1 ⇒ · · · ⇒ [Cpn > !xn ⇒ !∅] · · ·]

(3.51)

Note that t′∅ ≡ ∅ and C ′
∅ ≡ !∅. Although the syntax of t′P and C ′

P depends
on a choice of permutation of the elements of P , the semantics obtained
for different permutations is the same. Indeed, we have (z being a fresh
variable):

JtpK = yPp

Jt′P K = iPP

Jλz.Cp(z)K = yP→!O({p} 7→ ∅)

Jλz.C ′
P (z)K = yP→!O(P 7→ ∅)

(3.52)

It then follows from the substitution lemma that for any p : P and ⊢ t : P,

p ∈ JtK ⇐⇒ JCp(t)K 6= ∅ . (3.53)

Suppose t1 ❁∼ t2 with t1 and t2 closed. Given any p ∈ Jt1K we have JCp(t1)K 6=
∅ and so using t1 ❁∼ t2, we get JCp(t2)K 6= ∅, so that p ∈ Jt2K. It follows that
Jt1K ⊆ Jt2K.

As for open terms, suppose Γ ≡ x1 : P1, . . . , xk : Pk. Writing λ~x.t1 for
the closed term λx1. · · ·λxk.t1 and likewise for t2, we get

t1 ❁∼ t2 =⇒ λ~x.t1 ❁∼ λ~x.t2
=⇒ Jλ~x.t1K ⊆ Jλ~x.t2K
=⇒ Jt1K ⊆ Jt2K .

(3.54)

The proof is complete. ✷

3.4 Operational Semantics

HOPLA can be given an operational semantics using actions defined by

a ::= u 7→ a | βa | ! | abs a . (3.55)

Here, u is a closed term and β ranges over labels associated with sum types.
Actions are assigned types using judgements of the form P : a : P′. Intu-
itively, performing the action a turns a process of type P into a process of
type P′.

⊢ u : P Q : a : P′

P→ Q : u 7→ a : P′

Pβ : a : P′ β ∈ A

Σα∈APα : βa : P′

!P : ! : P

Tj[µ~T .~T/~T] : a : P′

µj
~T .~T : abs a : P′

(3.56)

3.4. OPERATIONAL SEMANTICS 53

Notice that in P : a : P′, the type P′ is unique given P and a. The operational
rules define a relation P : t

a
−→ t′ where ⊢ t : P and P : a : P′.2

P : t[rec x.t/x]
a
−→ t′

P : rec x.t
a
−→ t′

P : tj
a
−→ t′

P : Σi∈Iti
a
−→ t′

j ∈ I

Q : t[u/x]
a
−→ t′

P→ Q : λx.t
u 7→a
−−−→ t′

P→ Q : t
u 7→a
−−−→ t′

Q : t u
a
−→ t′

Pβ : t
a
−→ t′

Σα∈APα : βt
βa
−→ t′

Σα∈APα : t
βa
−→ t′

Pβ : πβt
a
−→ t′

!P : !t
!
−→ t

!P : u
!
−→ u′ Q : t[u′/x]

a
−→ t′

Q : [u > !x⇒ t]
a
−→ t′

Tj[µ~T .~T/~T] : t
a
−→ t′

µj
~T .~T : abs t

abs a
−−−→ t′

µj
~T .~T : t

abs a
−−−→ t′

Tj[µ~T .~T/~T] : rep t
a
−→ t′

(3.57)

Example 3.11 The four derivation fragments below show how the opera-
tional semantics validates “β-equivalence”:

Q : t[u/x]
a
−→ t′

P→ Q : λx.t
u 7→a
−−−→ t′

Q : (λx.t) u
a
−→ t′

Pβ : t
a
−→ t′

Σα∈APα : βt
βa
−→ t′

Pβ : πβ(βt)
a
−→ t′

!P : !u
!
−→ u Q : t[u/x]

a
−→ t′

Q : [!u > !x⇒ t]
a
−→ t′

Tj[µ~T .~T/~T] : t
a
−→ t′

µj
~T .~T : abs t

abs a
−−−→ t′

Tj[µ~T .~T/~T] : rep(abs t)
a
−→ t′

(3.58)

The actions u 7→ a, βa, and abs a carry information about deconstructor
contexts up the derivation tree. Similar use of labels appears e.g. in [28]. ✷

The operational rules are type-correct:

Proposition 3.12 If P : t
a
−→ t′ with P : a : P′, then ⊢ t′ : P′.

Proof. By rule-induction on the operational rules.

Abstraction. Suppose P → Q : λx.t
u 7→a
−−−→ t′ is derived from Q : t[u/x]

a
−→ t′

with P 7→ Q : u 7→ a : P′. By typing of actions, we have ⊢ u : P and
Q : a : P′. The induction hypothesis then yields ⊢ t′ : P′ as wanted. Note
also that the substitution t[u/x] is well-formed as x : P ⊢ t : Q follows from
⊢ λx.t : P→ Q by the typing rules.

2The explicit types in the operational rules were missing in the rules given in [65]. They
are needed to ensure that the types of t and a agree in transitions.

54 CHAPTER 3. HOPLA

Application. Suppose Q : t u
a
−→ t′ is derived from P → Q : t

u 7→a
−−−→ t′ with

Q : a : P′. By the premise and typing rules, we have ⊢ t : P→ Q and ⊢ u : P,
such that P→ Q : u 7→ a : P′. The induction hypothesis then yields ⊢ t′ : P′

as wanted.

Prefixing. Suppose !P : !t
!
−→ t with !P : ! : P. Then ⊢ !t : !P and so by the

typing rules, ⊢ t : P as wanted.

Prefix match. Suppose Q : [u > !x⇒ t]
a
−→ t′ is derived from !P : u

!
−→ u′ and

Q : t[u′/x]
a
−→ t′ with Q : a : P′. By the induction hypothesis applied to the

right premise, we get ⊢ t′ : P′ as wanted. Note also that we have ⊢ u : !P and
therefore ⊢ u′ : P by the induction hypothesis for the left premise. Thus, as
x : P ⊢ t : Q, the substitution t[u′/x] is well-formed.

The remaining cases are handled similarly. ✷

In accordance with the above, we’ll write P : t
a
−→ t′ : P′ when P : t

a
−→ t′ and

P : a : P′.

3.4.1 Soundness and Adequacy

The operational semantics gives rise to another notion of observation that
can be made of a process: we may observe the action P : a : P′ when
deriving P : t

a
−→ t′ : P′. We’ll start by reducing such general observations to

observations of !-transitions (Lemma 3.13 below) in order to simplify stating
and proving soundness and adequacy results.

Intuitively the reduction comes about by applying the deconstructor con-
texts carried by the action a to the process t, cf. the remark of Example 3.11.
Formally, we define a syntactic operator a∗ by structural induction on a in
the left column below. For convenience, the right column defines correspond-
ing linear maps a∗ : P→ !P′ with the property that a∗JtK = Ja∗tK whenever
P : a : P′ and ⊢ t : P.

(u 7→ a)∗t ≡def a∗(t u)

(βa)∗t ≡def a∗(πβt)

!∗t ≡def t

(abs a)∗t ≡def a∗(rep t)

(u 7→ a)∗ =def a∗ ◦ app ◦ (−& JuK)

(βa)∗ =def a∗ ◦ πβ

!∗ =def 1!P

(abs a)∗ =def a∗ ◦ rep

(3.59)

Lemma 3.13 P : t
a
−→ t′ : P′ ⇐⇒ !P′ : a∗t

!
−→ t′ : P′.

Proof. By structural induction on a exploiting the fact that there is only one
operational rule deriving transitions from each of the constructs application
t u, injection βt, and folding abs t so that

P→ Q : t
u 7→a
−−−→ t′ : P′ ⇐⇒ Q : t u

a
−→ t′ : P′

Σα∈APα : t
βa
−→ t′ : P′ ⇐⇒ Pβ : πβt

a
−→ t′ : P′

µj
~T .~T : t

abs a
−−−→ t′ : P′ ⇐⇒ Tj[µ~T .~T/~T] : rep t

a
−→ t′ : P′

(3.60)

3.4. OPERATIONAL SEMANTICS 55

Function space. We argue as follows:

P→ Q : t
u 7→a
−−−→ t′ : P′

⇐⇒ Q : t u
a
−→ t′ : P′ (by (3.60))

⇐⇒ !P′ : a∗(t u)
!
−→ t′ : P′ (ind. hyp.)

⇐⇒ !P′ : (u 7→ a)∗t
!
−→ t′ : P′ (def. of (u 7→ a)∗t)

Sum. We argue as follows:

Σα∈APα : t
βa
−→ t′ : P′

⇐⇒ Pβ : πβt
a
−→ t′ : P′ (by (3.60))

⇐⇒ !P′ : a∗(πβt)
!
−→ t′ : P′ (ind. hyp.)

⇐⇒ !P′ : (βa)∗t
!
−→ t′ : P′ (def. of (βa)∗t)

Prefix. We argue as follows:

!P : t
!
−→ t′ : P

⇐⇒ !P : !∗t
!
−→ t′ : P (def. of !∗t)

Recursion. We argue as follows:

µj
~T .~T : t

abs a
−−−→ t′ : P′

⇐⇒ Tj[µ~T .~T/~T] : rep t
a
−→ t′ : P′ (by (3.60))

⇐⇒ !P′ : a∗(rep t)
!
−→ t′ : P′ (ind. hyp.)

⇐⇒ !P′ : (abs a)∗t
!
−→ t′ : P′ (def. of (abs a)∗t)

The structural induction is complete. ✷

Proposition 3.14 (Soundness) If P : t
a
−→ t′ : P′, then J!t′K ⊆ a∗JtK.

Proof. By rule-induction on the transition rules. We’ll dispense with the
typing information in transitions for clarity.

Recursive definition. Suppose rec x.t
a
−→ t′ is derived from t[rec x.t/x]

a
−→ t′.

By the induction hypothesis and Proposition 3.5,

J!t′K ⊆ a∗Jt[rec x.t/x]K = a∗Jrec x.tK . (3.61)

Nondeterministic sum. Suppose Σi∈Iti
a
−→ t′ is derived from tj

a
−→ t′ for some

j ∈ I. By the induction hypothesis and linearity of a∗,

J!t′K ⊆ a∗JtjK = Ja∗tjK ⊆ JΣi∈Ia
∗tiK = a∗JΣi∈ItiK . (3.62)

Abstraction. Suppose λx.t
u 7→a
−−−→ t′ is derived from t[u/x]

a
−→ t′. By the in-

duction hypothesis and Proposition 3.6,

J!t′K ⊆ a∗Jt[u/x]K = a∗J(λx.t) uK = (u 7→ a)∗Jλx.tK . (3.63)

56 CHAPTER 3. HOPLA

Application. Suppose t u
a
−→ t′ is derived from t

u 7→a
−−−→ t′. By the induction

hypothesis,
J!t′K ⊆ (u 7→ a)∗JtK = a∗Jt uK . (3.64)

Injection. Suppose βt
βa
−→ t′ is derived from t

a
−→ t′. By the induction hy-

pothesis and Proposition 3.7,

J!t′K ⊆ a∗JtK = a∗Jπβ(βt)K = (βa)∗JβtK . (3.65)

Projection. Suppose πβt
a
−→ t′ is derived from t

βa
−→ t′. By the induction

hypothesis,
J!t′K ⊆ (βa)∗JtK = a∗JπβtK . (3.66)

Prefixing. Consider the transition !t
!
−→ t. By definition, J!tK = !∗J!tK.

Prefix match. Suppose [u > !x ⇒ t]
a
−→ t′ is derived from u

!
−→ u′ and

t[u′/x]
a
−→ t′. By the induction hypothesis for u, we have J!u′K ⊆ !∗JuK = JuK,

and so by the induction hypothesis for t, Proposition 3.8, and monotonicity,

J!t′K ⊆ a∗Jt[u′/x]K = a∗J[!u′ > !x⇒ t]K ⊆ a∗J[u > !x⇒ t]K . (3.67)

Fold. Suppose abs t
abs a
−−−→ t′ is derived from t

a
−→ t′. By the induction hypoth-

esis and Proposition 3.9,

J!t′K ⊆ a∗JtK = a∗Jrep(abs t)K = (abs a)∗Jabs tK . (3.68)

Unfold. Suppose rep t
a
−→ t′ is derived from t

abs a
−−−→ t′. By the induction

hypothesis,
J!t′K ⊆ (abs a)∗JtK = a∗Jrep tK . (3.69)

The rule-induction is complete. ✷

We prove adequacy by using logical relations X ⊆P t between subsets X ⊆ P
and closed terms of type P. Intuitively, X ⊆P t means that all paths in X can
be “operationally realised” by t. Because of recursive types, these relations
cannot be defined by structural induction on the type P and we therefore
employ a trick essentially due to Martin-Löf (see [95], Ch. 13). We define
auxiliary relations p ∈P t between paths p : P and closed terms t of type P,
by induction on the structure of p:

X ⊆P t ⇐⇒def ∀p ∈ X. p ∈P t

P 7→ q ∈P→Q t ⇐⇒def ∀u. (P ⊆P u =⇒ q ∈Q t u)

βp ∈Σα∈APα t ⇐⇒def p ∈Pβ
πβt

P ∈!P t ⇐⇒def ∃t
′. !P : t

!
−→ t′ : P and P ⊆P t′

abs p ∈
µj

~T .~T
t ⇐⇒def p ∈

Tj [µ~T .~T/~T]
rep t

(3.70)

3.4. OPERATIONAL SEMANTICS 57

Lemma 3.15 (Main Lemma) Suppose ⊢ t : P. Then JtK ⊆P t.

Proof. We need two technical results, which can both be proved by induction
on the structure of paths. One says that ∈P is closed on the left by ≤P, the
other that ∈P is closed on the right by the relation ❁∼1, defined by t1 ❁∼1 t2
iff P : t1

a
−→ t′ : P′ implies P : t2

a
−→ t′ : P′.

Lemma 3.16 If p ≤P p′ and p′ ∈P t, then p ∈P t.

Lemma 3.17 If p ∈P t1 and t1 ❁∼1 t2, then p ∈P t2.

It follows from Lemma 3.16 that for any subset X of P we have X ⊆P t
iff the down-closure of X, written X̄, satisfies X̄ ⊆P t. Lemma 3.17 will be
used freely below.

The proof of the main lemma proceeds by structural induction on terms
using the induction hypothesis

Suppose x1 : P1, . . . , xk : Pk ⊢ t : P and let ⊢ sj : Pj with Xj ⊆Pj

sj for 1 ≤ j ≤ k. Then JtK(X̄1, . . . , X̄k) ⊆P t[s1/x1, . . . , sk/xk].

We’ll abbreviate x1 : P1, . . . , xk : Pk to Γ, (X̄1, . . . , X̄k) to X, and the
substitution [s1/x1, . . . , sk/xk] to [s].

Variable. Let Γ ⊢ xj : Pj, with j between 1 and k, and ⊢ sj : Pj with
Xj ⊆Pj

sj for 1 ≤ j ≤ k. We must show that JxjKX ⊆Pj
xj[s]. Now,

JxjKX = X̄j and xj [s] ≡ sj so this amounts to X̄j ⊆Pj
sj which by the

remarks above is equivalent to Xj ⊆Pj
sj.

Recursive definition. Let Γ ⊢ rec x.t : P and ⊢ sj : Pj with Xj ⊆Pj
sj for

1 ≤ j ≤ k. We must show that Jrec x.tKX ⊆P rec x.t[s]. Now, Jrec x.tKX =
(fix f)X where f maps g : Γ→ P to the composition

Γ
∆Γ−−→ Γ & Γ

1Γ&g
−−−→ Γ & P

t
−→ P . (3.71)

We’ll show by induction on n that fn(∅)X ⊆P rec x.t[s] for all n ∈ ω. Having
done so we may argue as follows: Since

Jrec x.tKX = (fix f)X = (
⋃

n∈ω fn∅)X =
⋃

n∈ω ((fn∅)X) , (3.72)

we have that p ∈ Jrec x.tKX implies the existence of an n ∈ ω such that
p ∈ (fn∅)X. Therefore Jrec x.tKX ⊆P rec x.t[s] as wanted.

Basis. Here, (f0∅)X = ∅. By definition of ⊆P we get ∅ ⊆P t for any type
P and term ⊢ t : P.

Step. Suppose (fn∅)X ⊆P rec x.t[s]. By the assumption of the lemma, Xj ⊆P

sj for each 1 ≤ j ≤ k, and so by the induction hypothesis of the structural
induction,

JtK(X, (fn∅)X) ⊆P t[s][rec x.t[s]/x] . (3.73)

58 CHAPTER 3. HOPLA

So if p ∈ (fn+1∅)X, then since (fn+1∅)X = JtK(X, (fn∅)X) we have
p ∈P t[s][rec x.t[s]/x]. By the transition rules we have t[s][rec x.t[s]/x] ❁∼1

rec x.t[s], and so p ∈P rec x.t[s]. We conclude (fn+1∅)X ⊆P rec x.t[s] and
the mathematical induction is complete.

Nondeterministic sum. Let Γ ⊢ Σi∈Iti : P and ⊢ sj : Pj with Xj ⊆Pj
sj for

1 ≤ j ≤ k. We must show that JΣi∈ItiKX ⊆P Σi∈Iti[s]. Now, JΣi∈ItiKX =
Σi∈IJtiKX . So if p ∈ JΣi∈ItiKX, there exists j ∈ I with p ∈ JtjKX. Using
the induction hypothesis for tj we have p ∈P tj[s]. By the transition rules,
tj [s] ❁∼1 Σi∈Iti[s] and so p ∈P Σi∈Iti[s] as wanted.

Abstraction. Let Γ ⊢ λx.t : P→ Q and ⊢ sj : Pj with Xj ⊆Pj
sj for 1 ≤ j ≤

k. We must show that Jλx.tKX ⊆P→Q (λx.t)[s]. So let P 7→ q ∈ Jλx.tKX. By
the denotational semantics, we then have q ∈ JtK(X, iPP). We must show
that P 7→ q ∈P→Q (λx.t)[s]. So suppose ⊢ u : P with P ⊆P u. We must then
show q ∈Q (λx.t)[s] u. By the transition rules, t[s][u/x] ❁∼1 (λx.t)[s] u and
so it is sufficient to show q ∈Q t[s][u/x]. Now, by the induction hypothesis,
we know that JtK(X, iPP) ⊆Q t[s][u/x] and so, with q ∈ JtK(X, iPP), we are
done.

Application. Let Γ ⊢ t u : Q and ⊢ sj : Pj with Xj ⊆Pj
sj for 1 ≤ j ≤ k.

We must show that Jt uKX ⊆Q (t u)[s]. So suppose q ∈ Jt uKX. By the
denotational semantics, there exists P ∈ !P such that P 7→ q ∈ JtKX and
P ⊆ JuKX. By the induction hypothesis for t, we have JtKX ⊆P→Q t[s] and
so P 7→ q ∈P→Q t[s]. This means that given any ⊢ u′ : P with P ⊆P u′,
we have q ∈Q t[s] u′. Now using the induction hypothesis for u we get
that JuKX ⊆P u[s] and so, since P ⊆ JuKX, we have P ⊆P u[s] so that
q ∈Q t[s] u[s] ≡ (t u)[s] as wanted.

Injection. Let Γ ⊢ βt : Σα∈APα and ⊢ sj : Pj with Xj ⊆Pj
sj for 1 ≤ j ≤ k.

We must show that JβtKX ⊆Σα∈APα (βt)[s]. So suppose βp ∈ JβtKX; by
the denotational semantics, p ∈ JtKX. We must then show that βp ∈Σα∈APα

(βt)[s] which means that p ∈Pβ
πβ(βt[s]). By the transition rules, we have

t[s] ❁∼1 πβ(βt[s]) so it is sufficient to show that p ∈Pβ
t[s]. By the induction

hypothesis, JtKX ⊆Pβ
t[s] and so, since p ∈ JtKX we have p ∈Pβ

t[s] as
wanted.

Projection. Let Γ ⊢ πβt : Pβ with Γ ⊢ t : Σα∈APα and β ∈ A, and ⊢ sj : Pj

with Xj ⊆Pj
sj for 1 ≤ j ≤ k. We must show that JπβtKX ⊆Pβ

πβt[s].
So suppose p ∈ JπβtKX; by the denotational semantics, βp ∈ JtKX. By the
induction hypothesis, JtKX ⊆Σα∈APα t[s] and so βp ∈Σα∈APα t[s] which means
that p ∈Pβ

πβt[s] as wanted.

Prefixing. Let Γ ⊢ !t : !P and ⊢ sj : Pj with Xj ⊆Pj
sj for 1 ≤ j ≤ k. We

must show that J!tKX ⊆!P !t[s]. So suppose P ∈ J!tKX; by the denotational
semantics, P ⊆ JtKX. We must then show that P ∈!P !t[s], and so since the

transition rules provide a derivation !P : !t[s]
!
−→ t[s] : P, it is enough to show

3.4. OPERATIONAL SEMANTICS 59

that P ⊆P t[s]. Now, by the induction hypothesis, JtKX ⊆P t[s] and so, since
P ⊆ JtKX we have P ⊆P t[s] as wanted.

Prefix match. Let Γ ⊢ [u > !x ⇒ t] : Q and ⊢ sj : Pj with Xj ⊆Pj
sj for

1 ≤ j ≤ k. By renaming x if necessary, we may assume that x is not one of
the xj. We must show that J[u > !x⇒ t]KX ⊆Q [u > !x⇒ t][s]. So suppose
q ∈ J[u > !x ⇒ t]KX; by the denotational semantics, there exists P ∈ !P
such that q ∈ JtK(X, iPP) and P ∈ JuKX. By the induction hypothesis for
u we have JuKX ⊆!P u[s] and so since P ∈ JuKX, there exists u′ such that

!P : u[s]
!
−→ u′ : P and P ⊆P u′. Hence, by the induction hypothesis for

t we have JtK(X, iPP) ⊆Q t[s][u′/x] and so since q ∈ JtK(X, iPP) we have
q ∈Q t[s][u′/x]. Now, by the transition rules, t[s][u′/x] ❁∼1 [u > !x ⇒ t][s]
and so q ∈Q [u > !x⇒ t][s] as wanted.

Fold. Let Γ ⊢ abs t : µj
~T .~T and ⊢ sj : Pj with Xj ⊆Pj

sj for 1 ≤ j ≤ k.
We must show that Jabs tKX ⊆

µj
~P .~T

abs t[s]. So suppose abs q ∈ Jabs tKX

such that q ∈ JtKX. By the induction hypothesis, q ∈
Tj [µ~T .~T/~T]

t[s] and

since t[s] ❁∼1 rep abs t[s], we have q ∈
Tj [µ~T .~T/~T] rep abs t[s] which means that

abs q ∈µj
~P .~T abs t[s] as wanted.

Unfold. Let Γ ⊢ rep t : Tj[µ~T .~T/~T] and ⊢ sj : Pj with Xj ⊆Pj
sj for 1 ≤ j ≤

k. We must show that Jrep tKX ⊆
Tj [µ~T .~T/~T] rep t[s]. So suppose q ∈ Jrep tKX

such that abs q ∈ JtKX. By the induction hypothesis, abs q ∈µj
~T .~T t[s] and

so q ∈
Tj [µ~T .~T/~T] rep t[s] as wanted.

The structural induction is complete. ✷

Proposition 3.18 (Adequacy) Suppose ⊢ t : P and P : a : P′. Then

a∗JtK 6= ∅ ⇐⇒ ∃t′. P : t
a
−→ t′ : P′ . (3.74)

Proof. The “⇐” direction follows from soundness. For the converse, assume
a∗JtK = Ja∗tK 6= ∅. Then because Ja∗tK is a downwards-closed subset of
!P′ which has least element ∅, we must have ∅ ∈ Ja∗tK. Thus ∅ ∈!P a∗t
by the main lemma, which implies the existence of a term t′ such that

!P′ : a∗t
!
−→ t′ : P′. Thus, P : t

a
−→ t′ : P′ by Lemma 3.13. ✷

3.4.2 Full Abstraction w.r.t. Operational Semantics

Adequacy allows an operational formulation of contextual equivalence. In
addition to observing arbitrary transitions and transitions of processes of

prefix type, we may observe just transitions !O : t
!
−→ t′ : O of programs.

We’ll write this as t
!
−→. The three notions of observation are equivalent

according to

∃t′. P : t
a
−→ t′ : P′ ⇐⇒ ∃t′. !P′ : a∗t

!
−→ t′ : P′

⇐⇒ [a∗t > !x⇒ !∅]
!
−→

(3.75)

60 CHAPTER 3. HOPLA

By adequacy, we have t
!
−→ iff JtK 6= ∅. Hence, two terms t1 and t2 with

Γ ⊢ t1 : P and Γ ⊢ t2 : P are related by contextual preorder iff for all

(Γ, P)-program contexts C, we have C(t1)
!
−→ =⇒ C(t2)

!
−→.

Full abstraction is often formulated in terms of this operational preorder.
With t1 and t2 as above, the inclusion Jt1K ⊆ Jt2K holds iff for all (Γ, P)-

program contexts C, we have C(t1)
!
−→ =⇒ C(t2)

!
−→.

3.4.3 A Correspondence Result

Consider a process t of prefix type !P and its successors t′ after transitions

!P : t
!
−→ t′ : P. If we take the nondeterministic sum of all the t′’s prefixed by

!, we should end up with a process behaving identically to t, so Σt′J!t
′K = JtK

where t′ ranges over terms such that !P : t
!
−→ t′ : P. Using Lemma 3.13 and

the linear maps a∗ : P→ !P′ we can generalise this to a statement pertaining
to all types (Theorem 3.20 below). This result subsumes both soundness and
adequacy and to prove it, we need to strengthen the main lemma:

Lemma 3.19 Suppose ⊢ t : P and p ∈ P. Then p ∈P t ⇐⇒ p ∈ JtK (and
hence X ⊆P t ⇐⇒ X ⊆ JtK).

Proof. The “⇒” direction follows from the main lemma. The converse is
shown by induction on the structure of paths:

Function space. Suppose P 7→ q ∈P→Q t. From the proof of full abstraction,
we get a term t′P with Jt′P K = iPP , so that P ⊆ Jt′P K and thus P ⊆P t′P by
the main lemma. The definition of ∈P→Q then yields q ∈Q t t′P and by the
induction hypothesis we obtain q ∈ Jt t′P K from which P 7→ q ∈ JtK follows.

Sum type. Suppose βp ∈Σα∈APα t. By definition, this means that p ∈Pβ
πβt,

and so by the induction hypothesis, p ∈ JπβtK from which βp ∈ JtK follows.

Prefix type. Suppose P ∈!P t. By definition, there exists a term t′ such that

!P : t
!
−→ t′ : P and P ⊆P t′. Applying the induction hypothesis to all paths

p ∈ P , we get P ⊆ Jt′K from which P ∈ J!t′K follows. By soundness, J!t′K ⊆ JtK
and so P ∈ JtK as wanted.

Recursive types. Suppose abs p ∈
µj

~T .~T
t. By definition, this means that

p ∈
Tj [µ~T .~T/~T]

rep t, and so by the induction hypothesis, p ∈ Jrep tK from

which abs p ∈ JtK follows.

The induction is complete. ✷

Theorem 3.20 (Correspondence) Let ⊢ t : P and P : a : P′. Then
Σt′J!t

′K = a∗JtK where t′ ranges over terms such that P : t
a
−→ t′ : P′.

3.5. SIMULATION 61

Proof. The inclusion Σt′J!t
′K ⊆ a∗JtK is just a reformulation of soundness.

For the converse, assume that P ∈ a∗JtK = Ja∗tK. Then by the main lemma
we have P ∈!P′ a∗t. By definition, this means that there exists a term t′ such

that !P′ : a∗t
!
−→ t′ : P′ and P ⊆P′ t′. By Lemma 3.13, we get P : t

a
−→ t′ : P′

and Lemma 3.19 yields P ⊆ Jt′K from which P ∈ J!t′K follows. ✷

In Chapter 6 the correspondence result is strengthened to what we call
“strong correspondence”, relating derivations in the operational semantics
to realisers in presheaf denotations.

3.5 Simulation

We’ll consider three standard notions of process equivalence, all based on
typed simulation. A type-respecting relation R on closed terms is a bisimu-
lation if the following holds. If ⊢ t1 R t2 : P, then

1. if P : t1
a
−→ t′1 : P′, then P : t2

a
−→ t′2 : P′ for some t′2 such that ⊢ t′1 R t′2 : P′;

2. if P : t2
a
−→ t′2 : P′, then P : t1

a
−→ t′1 : P′ for some t′1 such that ⊢ t′1 R t′2 : P′.

As in Section 1.2.1 bisimilarity, written ∼, is the largest bisimulation, and
if only the second item above is satisfied, then R is called a simulation.

3.5.1 Simulation Equivalence

The path semantics does not capture enough of the branching behaviour
of processes to characterise bisimilarity (for that, the presheaf semantics is
needed, see Part II). As an example, the processes !∅+!!∅ and !!∅ have the
same denotation, but are clearly not bisimilar. However, using Hennessy-
Milner logic we can link path equivalence to simulation. In detail, we con-
sider the fragment of Hennessy-Milner logic given by possibility and finite
conjunctions; as noted it is characteristic for simulation equivalence in the
case of image-finite processes [31]. With a ranging over actions, formulae are
given by the grammar

φ ::= 〈a〉φ |
∧

i≤n φi . (3.76)

The empty conjunction is written ⊤ and we sometimes write φ1 ∧ · · · ∧ φn

for a conjunction
∧

i≤n φi. We type formulae using judgements φ : P, the
idea being that only processes of type P should be described by formulae of
type P.

P : a : P′ φ : P′

〈a〉φ : P

φi : P all i ≤ n∧
i≤n φi : P

(3.77)

A typed notion of satisfaction, written t � φ : P, is defined by

t � 〈a〉φ : P ⇐⇒def ∃t
′. P : t

a
−→ t′ : P′ and t′ � φ : P′

t �
∧

i≤n φi : P ⇐⇒def t � φi : P for each i ≤ n .
(3.78)

62 CHAPTER 3. HOPLA

Note that ⊤ : P and t � ⊤ : P for all ⊢ t : P.
Closed terms t1, t2 of the same type P are related by logical preorder,

written t1 ❁∼L t2, iff for all formulae φ : P we have t1 � φ : P =⇒ t2 �

φ : P. If both t1 ❁∼L t2 and t2 ❁∼L t1, we say that t1 and t2 are logically
equivalent. Using adequacy and by adapting the proof of full abstraction, we
can show that logical equivalence coincides with contextual equivalence as
do the associated preorders:

Theorem 3.21 For closed terms t1 and t2 of the same type P,

t1 ❁∼ t2 ⇐⇒ t1 ❁∼L t2 . (3.79)

Proof. To each formula φ : P we can construct a (O, P)-program context Cφ

with the property that

!O : Cφ(t)
!
−→⇐⇒ t � φ : P . (3.80)

Define

C〈u 7→a〉φ ≡def C〈a〉φ(− u) ,

C〈βa〉φ ≡def C〈a〉φ(πβ−) ,

C〈!〉φ ≡def [− > !x⇒ Cφ(x)] ,

C〈abs a〉φ ≡def C〈a〉φ(rep −) ,

C∧
i≤n φi

≡def [Cφ1
> !x1 ⇒ · · · ⇒ [Cφn

> !xn ⇒ !∅] · · ·] .

(3.81)

It follows by (3.80) that t1 ❁∼L t2 iff for all formulae φ : P we have that

Cφ(t1)
!
−→ implies Cφ(t2)

!
−→. The direction “⇒” then follows by adequacy.

For the converse, we observe that the program contexts Cp used in the
full-abstraction proof are all subsumed by the contexts Cφ. In detail, using
the terms t′P realising finite sets of paths, we can define actions P : ap : P′

and formulae φp : P by induction on paths p : P such that Cp ≡ C〈ap〉φp
:

aP 7→q ≡def t′P 7→ aq

aβp ≡def βap

aP ≡def !

aabs p ≡def abs ap

φP 7→q ≡def φq

φβp ≡def φp

φP ≡def
∧

p∈P 〈ap〉φp

φabs p ≡def φp

(3.82)

With p : P and ⊢ t : P we obtain p ∈ JtK iff JC〈ap〉φp
(t)K 6= ∅ as in the

proof of full abstraction, and so by adequacy and (3.80), we have p ∈ JtK iff
t � 〈ap〉φp : P. It follows that t1 ❁∼L t2 implies Jt1K ⊆ Jt2K, and so t1 ❁∼ t2. ✷

We note that the proof above establishes a link between paths and actions:

p ∈ JtK ⇐⇒ P : t
ap−→ t′ : P′ and t′ � φp : P′ . (3.83)

Example 3.22 The context C〈a!〉(〈b!〉⊤∧〈c!〉⊤) is given by

[πa− > !x⇒ [πbx > !x′ ⇒ [πcx > !x′′ ⇒ !∅]]] . (3.84)

It was used in Example 3.1 to distinguish between the CCS processes a.b.∅+
a.c.∅ and a.(b.∅ + c.∅). ✷

3.5. SIMULATION 63

3.5.2 Bisimilarity

We start by listing some unsurprising results about bisimilarity, mirroring
those of Section 3.2. Types are left out for brevity.

Proposition 3.23 For closed, well-formed terms we have

rec x.t ∼ t[rec x.t/x]

(λx.t) u ∼ t[u/x]

λx.(t x) ∼ t

λx.(Σi∈I ti) ∼ Σi∈I(λx.ti)

(Σi∈Iti) u ∼ Σi∈I(ti u)

πβ(βt) ∼ t

πα(βt) ∼ ∅ if α 6= β

Σα∈Aα(παt) ∼ t where ⊢ t : Σα∈APα

β(Σi∈I ti) ∼ Σi∈I(βti)

πβ(Σi∈Iti) ∼ Σi∈I(πβti)

[!u > !x⇒ t] ∼ t[u/x]

[Σi∈Iui > !x⇒ t] ∼ Σi∈I [ui > !x⇒ t]

rep(abs t) ∼ t

abs(rep t) ∼ t

abs(Σi∈Iti) ∼ Σi∈I(abs ti)

rep(Σi∈Iti) ∼ Σi∈I(rep ti)

(3.85)

Proof. In each postulated case t1 ∼ t2, the identity relation extended by the
pair (t1, t2) is a bisimulation. ✷

We’ll now show that bisimilarity is a congruence for HOPLA. Some no-
tation concerning type-respecting relations is needed. Suppose Γ is an en-
vironment list x1 : P1, . . . , xk : Pk. A Γ-closure is a substitution [~u/~x] such
that for 1 ≤ j ≤ k, ⊢ uj : Pj. If R relates only closed terms, we write Ro for
its open extension, relating Γ ⊢ t1 : P and Γ ⊢ t2 : P if for all Γ-closures [~u/~x]
we have ⊢ t1[~u/~x] R t2[~u/~x] : P. Further, we’ll write Rc for the restriction of
a type-respecting relation R to closed terms. For a type-respecting relation
R we write R also for the induced relation on actions, given inductively by

⊢ u1 R u2 : P Q : a1 R a2 : P′

P→ Q : u1 7→ a1 R u2 7→ a2 : P′

Pβ : a1 R a2 : P′ β ∈ A

Σα∈APα : βa1 R βa2 : P′

!P : ! R ! : P

Tj[µ~T .~T/~T] : a1 R a2 : P′

µj
~T .~T : abs a1 R abs a2 : P′

(3.86)

64 CHAPTER 3. HOPLA

Theorem 3.24 Bisimilarity is a congruence.

Proof. We employ Howe’s method [38] as adapted to a typed setting by
Gordon [28], except that because our typing environments Γ,Λ, . . . are lists
rather than finite mappings, we need to add structural rules to the definition
of the “precongruence candidate”, shown in Figure 3.1. Following Howe we
now have: (i) ∼̂ is reflexive; (ii) ∼̂ is operator respecting; (iii) ∼o⊆∼̂; (iv) if
Γ ⊢ t ∼̂ t′ : P and Γ ⊢ t′ ∼o w : P, then Γ ⊢ t ∼̂ w : P; (v) if Γ, x : P ⊢ t ∼̂ t′ :
Q and Λ ⊢ u ∼̂ u′ : P with Γ and Λ disjoint, then Γ,Λ ⊢ t[u/x] ∼̂ t′[u′/x] : Q;
(vi) since ∼ is an equivalence relation, the transitive closure ∼̂+ of ∼̂ is
symmetric, and therefore, so is ∼̂+

c .
Now we just need to show that ∼̂c is a simulation, because then ∼̂+

c is a
bisimulation by (vi), and so ∼̂+

c ⊆∼. In particular, ∼̂c⊆∼. By (i) and (v), it
follows that ∼̂⊆∼o, and so by (iii), ∼̂=∼o. Hence, ∼ is a congruence because
it is an equivalence relation and by (ii) it is operator respecting.

We prove below that ∼̂c is a simulation by induction on the derivations of
the operational semantics. In fact, we need an induction hypothesis slightly
stronger than one might expect:

if ⊢ t1 ∼̂c t2 : P and P : t1
a1−→ t′1 : P′, then for all actions a2 with

P : a1 ∼̂c a2 : P′ we have P : t2
a2−→ t′2 : P′ for some t′2 such that

⊢ t′1 ∼̂c t′2 : P′.

By (i), P : a ∼̂c a : P′ for all actions P : a : P′, and so ∼̂c is a simulation
if the above holds. The need for the stronger hypothesis will become clear
in the case of application.

Each case is proved in the same way: Assuming Γ ⊢ t1 : P and ⊢ C(t1) ∼̂c

t2 : P for some term-constructor C, possibly involving binding, we obtain
from the definition of ∼̂ the existence of a term s with Γ ⊢ t1 ∼̂ s : P and
⊢ C(s) ∼ t2 : P. Under the assumption P : C(t1)

a1−→ t′1 : P′ and with a2

any action such that P : a1 ∼̂c a2 : P′, we show that there is a transition
P : C(s)

a2−→ s′ : P′ with ⊢ t′1 ∼̂c s′ : P′. Having showed this, we in all cases

conclude as follows: since ⊢ C(s) ∼ t2 : P there is a transition P : t2
a2−→ t′2 : P′

with ⊢ s′ ∼ t′2 : P. Hence ⊢ t′1 ∼̂c t′2 : P′ follows from ⊢ t′1 ∼̂c s′ : P′ by (iv).
To avoid repetition, this latter part will be left out below.

Recursive definition. Suppose ⊢ rec x.t1 ∼̂c t2 : P and that P : rec x.t
a1−→ t′1 :

P′ is derived from P : t1[rec x.t1/x]
a1−→ t′1 : P′. Let a2 be any action with

P : a1 ∼̂c a2 : P′. Since ⊢ rec x.t1 ∼̂c t2 : P there exists a term x : P ⊢ s : P
such that x : P ⊢ t1 ∼̂ s : P and ⊢ rec x.s ∼ t2 : P. By (ii) we have
⊢ rec x.t1 ∼̂c rec x.s : P and using (v) we therefore get ⊢ t1[rec x.t1/x] ∼̂c

s[rec x.s/x] : P. By the induction hypothesis we get P : s[rec x.s/x]
a2−→ s′ : P′

with ⊢ t′1 ∼̂c s′ : P′, and hence also P : rec x.s
a2−→ s′ : P′.

Nondeterministic sum. Suppose ⊢ Σi∈Iti ∼̂c t2 : P and that P : Σi∈Iti
a1−→

t′1 : P′ is derived from P : tj
a1−→ t′1 : P′ for some j ∈ I. Let a2 be any action

3.5. SIMULATION 65

Γ ⊢ x ∼o t′′ : P

Γ ⊢ x ∼̂ t′′ : P

Γ ⊢ t ∼̂ t′ : Q

Γ, x : P ⊢ t ∼̂ t′ : Q

Γ, y : Q, x : P,Λ ⊢ t ∼̂ t′ : R

Γ, x : P, y : Q,Λ ⊢ t ∼̂ t′ : R

Γ, x : P, y : P ⊢ t ∼̂ t′ : Q z fresh

Γ, z : P ⊢ t[z/x, z/y] ∼̂ t′[z/x, z/y] : Q

Γ, x : P ⊢ t ∼̂ t′ : P Γ ⊢ rec x.t′ ∼o t′′ : P

Γ ⊢ rec x.t ∼̂ t′′ : P

Γ ⊢ tj ∼̂ t′j : P all j ∈ I Γ ⊢ Σi∈It
′
i ∼

o t′′ : P

Γ ⊢ Σi∈Iti ∼̂ t′′ : P

Γ, x : P ⊢ t ∼̂ t′ : Q Γ ⊢ λx.t′ ∼o t′′ : P→ Q

Γ ⊢ λx.t ∼̂ t′′ : P→ Q

Γ ⊢ t ∼̂ t′ : P→ Q ∆ ⊢ u ∼̂ u′ : P Γ,∆ ⊢ t′ u′ ∼o t′′ : Q

Γ,∆ ⊢ t u ∼̂ t′′ : Q

Γ ⊢ t ∼̂ t′ : Pβ Γ ⊢ βt′ ∼o t′′ : Σα∈APα

Γ ⊢ βt ∼̂ t′′ : Σα∈APα

Γ ⊢ t ∼̂ t′ : Σα∈APα Γ ⊢ πβt′ ∼o t′′ : Pβ

Γ ⊢ πβt ∼̂ t′′ : Pβ

Γ ⊢ t ∼̂ t′ : P Γ ⊢ !t′ ∼o t′′ : !P

Γ ⊢ !t ∼̂ t′′ : !P

Γ, x : P ⊢ t ∼̂ t′ : Q ∆ ⊢ u ∼̂ u′ : !P Γ,∆ ⊢ [u′ > !x⇒ t′] ∼o t′′ : Q

Γ,∆ ⊢ [u > !x⇒ t] ∼̂ t′′ : Q

Γ ⊢ t ∼̂ t′ : Tj[µ~T .~T/~T] Γ ⊢ abs t′ ∼o t′′ : µj
~T .~T

Γ ⊢ abs t ∼̂ t′′ : µj
~T .~T

Γ ⊢ t ∼̂ t′ : µj
~T .~T Γ ⊢ rep t′ ∼o t′′ : Tj [µ~T .~T/~T]

Γ ⊢ rep t ∼̂ t′′ : Tj[µ~T .~T/~T]

Figure 3.1: The precongruence candidate

66 CHAPTER 3. HOPLA

with P : a1 ∼̂c a2 : P′. Since ⊢ Σi∈Iti ∼̂c t2 : P there exist terms ⊢ si : P such
that ⊢ ti ∼̂c si : P for each i ∈ I, and ⊢ Σi∈Isi ∼ t2 : P. By the induction
hypothesis applied to sj we get P : sj

a2−→ s′ : P′ with ⊢ t′1 ∼̂c s′ : P′, and

hence also P : Σi∈Isi
a2−→ s′ : P′.

Abstraction. Suppose ⊢ λx.t1 ∼̂c t2 : P → Q and that P → Q : λx.t
u1 7→a1−−−−→

t′1 : P′ is derived from Q : t1[u1/x]
a1−→ t′1 : P′. Let u2 7→ a2 be any action

with P → Q : u1 7→ a1 ∼̂c u2 7→ a2 : P′. In particular, ⊢ u1 ∼̂c u2 : P. Since
⊢ λx.t1 ∼̂c t2 : P there exists a term x : P ⊢ s : Q such that x : P ⊢ t1 ∼̂ s : Q
and ⊢ λx.s ∼ t2 : P → Q. Using (v) we have ⊢ t1[u1/x] ∼̂c s[u2/x] : Q. By
the induction hypothesis we get Q : s[u2/x]

a2−→ s′ : P′ with ⊢ t′1 ∼̂c s′ : P′,

and hence also P→ Q : λx.s
u2 7→a2−−−−→ s′ : P′.

Application. Suppose ⊢ t1 u1 ∼̂c t2 : Q and that Q : t1 u1
a1−→ t′1 : P′

is derived from P → Q : t1
u1 7→a1−−−−→ t′1 : P′. Let a2 be any action with

Q : a1 ∼̂c a2 : P′. Since ⊢ t1 u1 ∼̂c t2 : Q there exist terms ⊢ st : P → Q
and ⊢ su : P such that ⊢ t1 ∼̂c st : P → Q and ⊢ u1 ∼̂c su : P and
⊢ st su ∼ t2 : Q. By the induction hypothesis we get P→ Q : st

su 7→a2−−−−→ s′ : P′

with ⊢ t′1 ∼̂c s′ : P′, and hence also Q : st su
a2−→ s′ : P′. Notice how the

stronger induction hypothesis allows us to choose the label su 7→ a2 rather
than u1 7→ a2 so that we could obtain a transition from st su.

Injection and projection. Suppose ⊢ βt1 ∼̂c t2 : Σα∈APα and that Σα∈APα :

βt1
βa1−−→ t′1 : P′ is derived from Pβ : t1

a1−→ t′1 : P′. Let βa2 be any action
with Σα∈APα : βa1 ∼̂c βa2 : P′. Since ⊢ βt1 ∼̂c t2 : Σα∈APα there exists a
term ⊢ s : Pβ such that ⊢ t1 ∼̂c s : Pβ and ⊢ βs ∼ t2 : Σα∈APα. By the

induction hypothesis we get Pβ : s
a2−→ s′ : P′ with ⊢ t′1 ∼̂c s′ : P′, and hence

also Σα∈APα : βs
βa2−−→ s′ : P′.

Projection is handled symmetrically.

Prefixing. Suppose ⊢ !t1 ∼̂c t2 : !P so that !P : !t1
!
−→ t1 : P. Since ⊢ !t1 ∼̂c

t2 : !P there exists a term ⊢ s : P such that ⊢ t1 ∼̂c s : P and ⊢ !s ∼ t2 : !P.

We get a transition !P : !s
!
−→ s′ : P by the operational rules.

Prefix match. Suppose ⊢ [u1 > !x ⇒ t1] ∼̂c t2 : Q and that Q : [u1 > !x ⇒

t1]
a1−→ t′1 : P′ is derived from !P : u1

!
−→ u′

1 : P and Q : t1[u
′
1/x]

a1−→ t′1 : P′.
Let a2 be any action with Q : a1 ∼̂c a2 : P′. Since ⊢ [u1 > !x⇒ t1] ∼̂c t2 : Q
there exist terms x : P ⊢ st : Q and ⊢ su : !P such that x : P ⊢ t1 ∼̂c st : Q
and ⊢ u1 ∼̂c su : !P and ⊢ [su > !x ⇒ st] ∼ t2 : Q. By the induction

hypothesis applied to u1, su we get !P : su
!
−→ s′u : P such that ⊢ u′

1 ∼̂c s′u : P.
Using (v) we get ⊢ t1[u

′
1/x] ∼̂c st[s

′
u/x] : Q and applying the induction

hypothesis in this case yields Q : st[s
′
u/x]

a2−→ s′ : P′ with ⊢ t′1 ∼̂c s′ : P′, and

hence also Q : [su > !x⇒ st]
a2−→ s′ : P′.

Fold and unfold. Analogous to injection and projection.

The induction is complete. ✷

3.5. SIMULATION 67

Corollary 3.25 The following are equivalent:

(i) ⊢ t1 ∼ t2 : P→ Q;

(ii) ⊢ t1 u1 ∼ t2 u2 : Q for all closed terms u1, u2 with ⊢ u1 ∼ u2 : P.

(iii) ⊢ t1 u ∼ t2 u : Q for all closed terms ⊢ u : P;

Proof. That (i) implies (ii) is a direct consequence of Theorem 3.24 while
reflexivity of bisimilarity yields the implication from (ii) to (iii). We’ll show
that (iii) implies (i). So suppose that ⊢ t1 u ∼ t2 u : Q for all closed terms
⊢ u : P. If P → Q : t1

u 7→a
−−−→ t′1 : P′ for some ⊢ u : P, then Q : t1 u

a
−→ t′1 : P′

by the operational rules and so by the assumption that t1 u and t2 u are
bisimilar, we get Q : t2 u

a
−→ t′2 : P′ for some t′2 such that ⊢ t′1 ∼ t′2 : P′. The

other requirement is handled symmetrically. ✷

3.5.3 Applicative Bisimilarity

A type-respecting relation R on closed terms is called an applicative bisimu-
lation [1] if the following holds:

1. If ⊢ t1 R t2 : P→ Q then for all ⊢ u : P we have ⊢ t1 u R t2 u : Q.

2. If ⊢ t1 R t2 : Σα∈APα then ⊢ πβt1 R πβt2 : Pβ for all β ∈ A.

3. If ⊢ t1 R t2 : !P, we have

a. if !P : t1
!
−→ t′1 : P, then !P : t2

!
−→ t′2 : P for some t′2 s.t. ⊢ t′1 R t′2 : P;

b. if !P : t2
!
−→ t′2 : P, then !P : t1

!
−→ t′1 : P for some t′1 s.t. ⊢ t′1 R t′2 : P.

4. If ⊢ t1 R t2 : µj
~T .~T then ⊢ rep t1 R rep t2 : Tj[µ~T .~T/~T].

Applicative bisimilarity, ∼A, is the largest applicative bisimulation.

Proposition 3.26 Bisimilarity and applicative bisimilarity coincide.

Proof. Since ∼ is a congruence, it follows that ∼ is an applicative bisimu-
lation, and so ∼⊆∼A. For the converse, first observe that if ⊢ t1 ∼A t2 : P,
then for all actions P : a : P′, we have ⊢ a∗t1 ∼A a∗t2 : !P′. Now suppose
⊢ t1 ∼A t2 : P and consider a transition P : t1

a
−→ t′1 : P′. Using Lemma 3.13

we get !P′ : a∗t1
!
−→ t′1 : P′, and so !P′ : a∗t2

!
−→ t′2 : P′ for some t′2 such that

⊢ t′1 ∼A t′2 : P′. By Lemma 3.13 again, we get P : t2
a
−→ t′2 : P′. In a symmetric

way we can show that transitions by t2 are matched by those of t1, and so
we conclude that ∼A is a bisimulation. But bisimilarity is the largest such
thing, and so ∼A⊆∼. ✷

68 CHAPTER 3. HOPLA

3.6 Expressive Power

We give a few examples of encodings illustrating the expressive power of
HOPLA. We start by encoding the “prefix-sum” construct of [65], useful for
subsequent examples.

3.6.1 Prefixed Sum

Consider a family of types (Pα)α∈A. Their prefixed sum is the type Σα∈Aα.Pα

which stands for Σα∈A!Pα. This type describes computation paths in which
first an action β ∈ A is performed before resuming as a computation path in
Pβ. The prefixed sum is associated with prefix operations taking a process
t of type Pβ to β.t ≡def β(!t) of type Σα∈Aα.Pα as well as a prefix match
[u > β.x⇒ t] ≡def [πβu > !x⇒ t], where u has prefix-sum type, x has type
Pβ and t generally involves the variable x.

Proposition 3.27 Using Propositions 3.7 and 3.8, we get:

J[β.u > β.x⇒ t]K = Jt[u/x]K

J[α.u > β.x⇒ t]K = ∅ if α 6= β

J[Σi∈Iui > β.x⇒ t]K = JΣi∈I [ui > β.x⇒ t]K

(3.87)

We’ll write α1.Pα1
+ · · ·+ αk.Pαk

for a typical finite prefixed sum.

Note that the prefixed sum is obtained using the biproduct, so coproduct,
of Lin. This implies that prefixed sum is a “weak coproduct” in Cts. Because
of the universal property of the coproduct in Lin and using the adjunction
between Lin and Cts, there is a chain of isomorphisms

Lin(Σα∈A!Pα, Q) ∼= Πα∈ALin(!Pα, Q) ∼= Πα∈ACts(Pα, Q) (3.88)

—natural in Q. Hence, reading the chain backwards, a tuple 〈fα〉α∈A of maps
from the components of the sum to Q in Cts correspond to a unique linear
map f : Σα∈A!Pα → Q from the prefixed sum in Cts. Thus, the prefixed sum
is a coproduct in Cts but for the fact that the required mediating morphism
is unique only within the subcategory of linear maps.

3.6.2 CCS

As in CCS [57], let N be a set of names, L =def N ∪ N̄ the set of labels,
and A =def L ∪ {τ} the set of actions. The type of CCS processes can then
be specified as the solution to the equation P = Σα∈Aα.P using the prefixed
sum. The terms of CCS are translated into HOPLA by the function HJ−K,

3.6. EXPRESSIVE POWER 69

defined by structural induction below.

HJxK ≡def x

HJrec x.tK ≡def rec x.HJtK

HJΣi∈ItiK ≡def Σi∈IHJtiK

HJα.tK ≡def α.HJtK

HJt|uK ≡def Par HJtK HJuK

HJt \ SK ≡def ResS HJtK

HJt[r]K ≡def Rel r HJtK

(3.89)

Here, the operations of parallel composition Par : P → (P → P) (curried
for convenience), restriction ResS : P → P to names not in S ⊆ N , and
relabelling Rel r : P → P using mapping r : N → N are abbreviations for
the following recursively defined processes:

Par ≡def rec f.λx.λy.Σα[x > α.x′ ⇒ α.(f x′ y)] +
Σα[y > α.y′ ⇒ α.(f x y′)] +
Σl[x > l.x′ ⇒ [y > l̄.y′ ⇒ τ.(f x′ y′)]]

ResS ≡def rec f.λx.Σα6∈(S∪S̄)[x > α.x′ ⇒ α.(f x′)]

Relr ≡def rec f.λx.[x > τ.x′ ⇒ τ.(f x′)] +
Σn[x > n.x′ ⇒ rn.(f x′)] +
Σn[x > n̄.x′ ⇒ r̄n.(f x′)]

(3.90)

The operational semantics for CCS induced by the translation agrees with
that given by Milner:

Proposition 3.28 If t
α
−→ t′ is derivable in CCS then HJtK

α!
−→ HJt′K in

HOPLA. Conversely, if HJtK
a
−→ u in HOPLA, then a ≡ α! and u ≡ HJt′K

for some α, t′ such that t
α
−→ t′ according to CCS.

It follows that the translations of two CCS terms are bisimilar in HOPLA
iff they are strongly bisimilar in CCS.

We can recover Milner’s expansion law [56] directly from the properties
of the prefixed sum. Any process of type P will—up to path equivalence
or bisimilarity—be a sum of prefixed terms. Write t|u for the application
Par t u, where t and u are terms of type P. Suppose

JtK = ΣαΣi∈I(α)α.JtiK and JuK = ΣαΣj∈J(α)α.JujK . (3.91)

Using Propositions 3.5 and 3.6, then 3.27, the path set Jt|uK equals the
denotation of the expansion

ΣαΣi∈I(α)α.(ti|u) + ΣαΣj∈J(α)α.(t|uj) + ΣlΣi∈I(l),j∈J(l̄)τ.(ti|uj) . (3.92)

Using Theorem 3.24 and Proposition 3.23, this can be rephrased with bisi-
milarity instead of path equivalence.

70 CHAPTER 3. HOPLA

3.6.3 Higher-Order CCS

The language considered by Hennessy [32] is like CCS but where processes
are passed at channels with names n ∈ N ; the language can be seen as an
extension of Thomsen’s CHOCS [88]. For a translation into HOPLA, we
follow Hennessy in defining types that satisfy the equations3

P = τ.P + Σn∈N n̄.C + Σn∈Nn.F C = P & P F = P→ P . (3.93)

We are chiefly interested in the parallel composition of processes, ParP,P of
type P & P → P. But parallel composition is really a family of mutually
dependent operations also including components such as ParF,C of type
F & C → P to say how abstractions compose in parallel with concretions
etc. All these components can be tupled together in a product and parallel
composition defined as a simultaneous recursive definition. Writing (−|−) for
all the components of the solution, the denotation of a parallel composition
t|u of processes equals the denotation of the expansion

Σα[t > α.x⇒ α.(x|u)] +
Σα[u > α.y ⇒ α.(t|y)] +
Σn[t > n.f ⇒ [u > n̄.c⇒ τ.((f fst c)| snd c)]] +
Σn[t > n̄.c⇒ [u > n.f ⇒ τ.(snd c|(f fst c))]] .

(3.94)

In the summations, n ∈ N and α ranges over labels n, n̄, τ .
The bisimulation induced on higher-order CCS terms is perhaps the one

to be expected; a corresponding bisimulation relation is defined like an ap-
plicative bisimulation but restricted to the types of processes P, concretions
C, and abstractions F.

3.6.4 Mobile Ambients with Public Names

We can translate the Ambient Calculus with public names [14] into HOPLA
using Winskel’s presheaf semantics of mobile ambients [99]. The translation
follows similar lines to the process-passing language above. Assume a fixed
set of ambient names n ∈ N . Following [15], the syntax of ambients is
extended beyond processes (P) to include concretions (C) and abstractions
(F):

t, u ::= x | repl t | ∅ | t|u | n[t] | τ.t | in n.t | out n.t | mvout n.c |
open n.t | open n.t | mvın n.c | mvin n.f

c ::= (t, u)

f ::= λx.t .

(3.95)

The syntax departs a little from that of [15]. We adopt a slightly different
notation for concretions, (t, u) instead of 〈t〉u, and abstractions, λx.t instead

3See Page 42 for how to encode the binary product P & P.

3.6. EXPRESSIVE POWER 71

of (x)t, to make their translation into HOPLA clear. The constructor repl
means replication. Following a usual convention, any subterm of this form
repl t is closed. As it is intended to behave as t| repl t it can be translated
into HOPLA using recursion once parallel composition (−|−) is defined.

Types for ambients are given recursively by (n ranges over N):

P = τ.P + Σnin n.P + Σnout n.P + Σnmvout n.C +
Σnopen n.P + Σnopen n.P + Σnmvın n.C + Σnmvin n.F

C = P & P

F = P→ P .

(3.96)

As in the previous sections, parallel composition is a family of operations,
one of which is a binary operation between processes, ParP,P : P & P → P.
The family is defined in a simultaneous recursive definition below. Again,
we write (−|−) for all components of the solution.

t|u = Σα[t > α.x⇒ α.(x|u)] + Σα[u > α.y ⇒ α.(t|y)] +
Σn[t > open n.x⇒ [u > open n.y ⇒ τ.(x|y)]] +
Σn[t > open n.x⇒ [u > open n.y ⇒ τ.(x|y)]] +
Σn[t > mvın n.c⇒ [u > mvin n.f ⇒ τ.(snd c|(f fst c))]] +
Σn[t > mvin n.f ⇒ [u > mvın n.c⇒ τ.((f fst c)| snd c)]] .

f |u = λx.((f x)|u)

c|u = (fst c, (snd c|u))

f |c = (f fst c)| snd c

(3.97)

The remaining cases are given symmetrically. We obtain the obvious expan-
sion law for parallel composition in the same way as for CCS.

Also ambient creation can be defined recursively in HOPLA as a an
operation m[−] : P→ P where m ∈ N :

m[t] = [t > τ.x⇒ τ.m[x]] +
Σn[t > in n.x⇒ mvın n.(m[x], ∅)] +
Σn[t > out n.x⇒ mvout n.(m[x], ∅)] +
[t > mvout m.c⇒ τ.(fst c|m[snd c])] +
open m.t +
mvin m.λy.m[t|y] .

(3.98)

The denotations of ambients are determined by their capabilities: an ambi-
ent m[t] can perform the internal (τ) actions of t, enter a parallel ambient
(mvın n) if called upon to do so by an in n-action of t, exit an ambient n
(mvout n) if t so requests through an out n-action, be exited if t so requests
through an mvout m-action, be opened (open m), or be entered by an am-
bient (mvin m); initial actions of other forms are restricted away. Ambient
creation is at least as complicated as parallel composition. This should not

72 CHAPTER 3. HOPLA

be surprising given that ambient creation corresponds intuitively to putting
a process behind (so in parallel with) a wall or membrane which if unopened
mediates in the communications the process can do, converting some actions
to others and restricting some others away. The tree-containment structure
of ambients is captured in the chain of open m’s that they can perform.

We obtain an expansion theorem for ambient creation. For a process t
with JtK = ΣαΣi∈I(α)α.JtiK, where α ranges over atomic actions of ambients,
we have that Jm[t]K equals the denotation of

Σi∈I(τ)τ.m[ti] +

ΣnΣi∈I(in n)mvın n.(m[ti], ∅) +

ΣnΣi∈I(out n)mvout n.(m[ti], ∅) +

Σi∈I(mvout m)τ.(fst ti|m[snd ti]) +

open m.t +
mvin m.(λy.m[t|y]) .

(3.99)

Again, this can be rephrased with bisimilarity instead of path equivalence.

3.6.5 Extensions

Work is in progress on extending HOPLA with name-generation [101]. We
return to this in Chapter 8.

HOPLA has no distinguished invisible action τ , so there is the issue
of how to support more abstract operational equivalences such as weak bi-
simulation. The paper [25] provides a mathematical framework for weak
bisimilarity in the context of presheaf models and may be a good starting
point.

Being based on atomic actions one at a time, HOPLA does not cope well
with independence. In the next chapter, we’ll discuss a language much like
HOPLA, but built on the affine category Aff rather than Cts. The tensor
operation of Aff will allow simple forms of independence to be expressed.

Chapter 4

Affine HOPLA

Affine HOPLA [98, 64, 67] is a typed process language based on the structure
of Aff . The language adds to HOPLA a tensor operation, ⊗, which comes
at the price of linearity constraints on variable occurrences. The tensor can
be understood as a juxtaposition of independent processes; some intuition
can be obtained from nondeterministic dataflow. Consider the processes

x : P, y : Q ⊢ t : R and z : S ⊢ u : P⊗Q . (4.1)

By drawing them as the dataflow networks at the top of Figure 4.1 (labelling
wires with the type of values transmitted), we can understand their tensor
product,

x : P, y : Q, z : S ⊢ t⊗ u : R⊗ P⊗Q (4.2)

as the juxtaposition in the middle part of the figure, and the tensor match

z : S ⊢ [u > x⊗ y ⇒ t] : R (4.3)

as the composition of t and u as in the bottom part, feeding the output of
u into t.

x : P, y : Q ⊢ t : R
P //
Q // t

R //

z : S ⊢ u : P⊗Q
S // u

P //
Q //

x : P, y : Q, z : S ⊢ t⊗ u : R⊗ P⊗Q

P //
Q // t

R //

S // u
P //
Q //

z : S ⊢ [u > x⊗ y ⇒ t] : R
S // u

P //
Q // t

R //

Figure 4.1: Tensor and nondeterministic dataflow

73

74 CHAPTER 4. AFFINE HOPLA

The extension with tensor comes at the price of linearity constraints
on the occurrences of variables. In particular, the language will not allow
us to write an operation that takes a process as input, copies it, and then
sets those copies in parallel composition with each other. Such an operation
would make use of two computation paths of its input, and would not be
affine according to Section 2.3.2.

Note the difference between copying an input process, as a whole, and
copying a particular interaction with it. The Fork -operation of nondeter-
ministic dataflow (Figure 1.3) copies whatever values is sent to it onto two
output streams. Still, it is a linear, and so affine, operation because it has
no way of copying the process that transmits the input, and so any nonde-
terministic choices made by that process will be preserved in the output of
Fork . As an example, attaching Fork to a process that nondeterministically
chooses between outputting letter a and letter b will give rise to either a or
b on both output lines, with no possibility of “cross output”.

We’ll follow the structure of the previous chapter and focus on how Affine
HOPLA departs from HOPLA itself. After giving the denotational semantics
and proving some expected results about it in Sections 4.1 and 4.2, we prove
full abstraction in Section 4.3 by adapting the argument given for HOPLA.
An operational semantics for the first-order fragment of Affine HOPLA is
provided in Section 4.4 together with a proof of correspondence, so soundness
and adequacy. Section 4.5 discusses the expressive power of the language and
shows how to encode processes like Fork .

It has proved very challenging to extend the operational semantics to
higher order. Since a tensor match process [u > x⊗ y ⇒ t] is interpreted as
composition, an affine t may produce output without obtaining input from
u, i.e. [u > x ⊗ y ⇒ t] is affine in u and so does not distribute over non-
deterministic sums like prefix match does. This means that we cannot force
u to make a transition in order for the tensor match to make a transition,
because even if u ≡ ∅, the match need not be inactive. In other words, a
rule like that for prefix match in HOPLA’s operational semantics does not
work for tensor match. We seem obliged to work with rather complicated
environments, built from tensor matches, in the operational semantics and it
is the interaction of the environments with higher-order processes which has
been problematic in giving an operational semantics to full Affine HOPLA.

Another problem caused by the environments is that they complicate
reasoning about the operational semantics. For instance, we would expect
it to satisfy a “diamond property” that if a process can perform an action
in the left and then the right component of a tensor, then it can also do so
in the opposite order. A direct proof would need to take account of changes
made to the environment in transitions, which is not so obvious. We’ll return
to this point in Chapter 7.

Lacking a satisfactory operational semantics, we have not considered
simulation for the affine language.

4.1. DENOTATIONAL SEMANTICS 75

4.1 Denotational Semantics

Types are given by the grammar

T ::= T1 ⊸ T2 | T1 ⊗ T2 | Σα∈ATα | T⊥ | T | µj
~T .~T . (4.4)

Closed type expressions are interpreted as path orders P, Q, . . . as before. The
exponential !(−) has been replaced by the weakening comonad (−)⊥, but
the type P⊥ is still understood intuitively as the type of processes that may
perform an anonymous action, which we’ll still call “!”, before continuing as
a process of type P. For the solution of recursive type definitions we proceed
as for HOPLA, replacing finite sets of paths by sets P of size at most one,
writing ⊥ for the empty set.

p, q ::= P 7→ q | P ⊗Q | βp | P | abs p (4.5)

Here, P ⊗Q stands for a pair of paths P of P⊥ and Q of Q⊥ where at least
one is non-⊥. Formation rules are displayed below alongside rules defining
the ordering. Note that all path orders interpreting types of Affine HOPLA
are posets because, unlike the exponential, the comonad (−)⊥ maps posets
to posets.

P : P⊥ q : Q

P 7→ q : P ⊸ Q

P ′ �P P q ≤Q q′

P 7→ q ≤P⊸Q P ′ 7→ q′

P : P⊥ Q : Q⊥ (P,Q) 6= (⊥,⊥)

P ⊗Q : P⊗Q

P �P P ′ Q �Q Q′

P ⊗Q ≤P⊗Q P ′ ⊗Q′

p : Pβ β ∈ A

βp : Σα∈APα

p ≤Pβ
p′

βp ≤Σα∈APα βp′

⊥ : P⊥

p : P

{p} : P⊥

P �P P ′

P ≤P⊥
P ′

p : Tj[µ~T .~T/~T]

abs p : µj
~T .~T

p ≤
Tj [µ~T .~T/~T]

p′

abs p ≤
µj

~T .~T
abs p′

(4.6)

As we continue to use ! for prefixing terms, the only difference from the
syntax of HOPLA is the addition of term constructors associated with the
tensor type:

t, u ::= x, y, z, . . . (variables)
| rec x.t (recursive definition)
| Σi∈Iti (nondeterministic sum)
| λx.t | t u (abstraction and application)
| t⊗ u | [u > x⊗ y ⇒ t] (tensor operation and match)
| βt | πβt (injection and projection)
| !t | [u > !x⇒ t] (prefix operation and match)
| abs t | rep t (folding and unfolding)

(4.7)

76 CHAPTER 4. AFFINE HOPLA

The use of a pattern match term [u > x⊗y ⇒ t] for tensor is similar to that
in [2]; both variables x and y are binding occurrences with body t.

Let P1, . . . , Pk, Q be closed type expressions and x1, . . . , xk distinct vari-
ables. A syntactic judgement

x1 : P1, . . . , xk : Pk ⊢ t : Q (4.8)

stands for a map

Jx1 : P1, . . . , xk : Pk ⊢ t : QK : P1 ⊗ · · · ⊗ Pk → Q (4.9)

in Aff . When the environment list is empty, the corresponding tensor prod-
uct is the empty path order O. The term-formation rules for the affine lan-
guage are very similar to those for HOPLA, replacing & by ⊗ in the handling
of environment lists and the type constructors !(−) and → by (−)⊥ and ⊸.
We discuss the remaining differences in the following.

New rules are introduced for the tensor operation:

Γ ⊢ t : P Λ ⊢ u : Q

Γ,Λ ⊢ t⊗ u : P⊗Q

Γ
t
−→ P Λ

u
−→ Q

Γ⊗ Λ
t⊗u
−−→ P⊗Q

(4.10)

Γ, x : P, y : Q ⊢ t : R Λ ⊢ u : P⊗Q

Γ,Λ ⊢ [u > x⊗ y ⇒ t] : R

Γ⊗ P⊗Q
t
−→ R Λ

u
−→ P⊗Q

Γ⊗ Λ
1Γ⊗u
−−−→ Γ⊗ P⊗Q

t
−→ R

(4.11)

One important difference is the lack of contraction for the affine language.
This restricts substitution of a common term into distinct variables, and so
copying. The counterpart in the model is the absence of a suitable diagonal
map from objects P to P⊗ P; for example, the map X 7→ X ⊗X from P̂ to

P̂⊗ P is not in general a map in Aff .1 Consider a term t(x, y), with its free
variables x and y shown explicitly, for which

x : P, y : P ⊢ t(x, y) : Q , (4.12)

corresponding to a map P ⊗ P
t
−→ Q in Aff . This does not generally entail

that x : P ⊢ t(x, x) : Q—there may not be a corresponding map in Aff ,
for example if t(x, y) = x ⊗ y. Intuitively, if any computation for t involves
both inputs, then x : P ⊢ t(x, x) : Q would use the same input twice and
therefore cannot be interpreted in Aff . There is a syntactic condition on the

1To see this, assume that P is the prefixed sum α.O + β.O with paths abbreviated to
α, β. Confusing paths with the corresponding primes, the nonempty join α + β is sent by
X 7→ X ⊗X to α⊗α+β ⊗β +α⊗β +β ⊗α instead of α⊗α+β ⊗β as would be needed
to preserve nonempty joins.

4.2. USEFUL IDENTITIES 77

occurrences of variables which ensures that in any computation, at most one
of a set of variables is used.

Let v be a raw term. Say a set of variables V is crossed in v iff there
are subterms of v of the form tensor t ⊗ u, application t u, tensor match
[u > x⊗y ⇒ t], or prefix match [u > !x⇒ t], for which v has free occurrences
of variables from V appearing in both t and u.

If the set {x, y} is not crossed in t(x, y) above, then t uses at most one
of its inputs x, y in each computation; semantically, t is interpreted as a
map P ⊗ P → Q of Aff which behaves identically on input X ⊗ Y and
X ⊗ ∅ + ∅ ⊗ Y for all X,Y ∈ P̂. In this case x : P ⊢ t(x, x) : Q holds (cf.
Lemma 4.1 below) and is interpreted as the composition

P
δP−→ P⊗ P

t
−→ Q (4.13)

—where δP : P → P ⊗ P maps X to X ⊗ ∅ + ∅ ⊗ X. It satisfies the usual
properties of a diagonal [40], except that it is not a natural transformation.
We’ll write δk

P : P → Pk for the obvious generalisation to a k-fold tensor
product Pk = P⊗ · · · ⊗ P. We have δ0 = ∅P : P→ O and δ1 = 1P : P→ P.

We can now give the rule for recursively defined processes:

Γ, x : P ⊢ t : P {x, y} not crossed in t for any y in Γ

Γ ⊢ rec x.t : P

Γ⊗ P
t
−→ P

Γ
fix f
−−→ P

(4.14)

Here, fix f is the fixed-point in Aff(Γ, P) ∼= Γ̂ ⊸ P of the continuous oper-
ation f mapping g : Γ→ P in Aff to the composition

Γ
δΓ−→ Γ⊗ Γ

1Γ⊗g
−−−→ Γ⊗ P

t
−→ P . (4.15)

4.2 Useful Identities

Counterparts of the results for HOPLA of Section 3.2 can be proved for the
affine language. In particular, a general substitution lemma can be formu-
lated as follows:

Lemma 4.1 (Substitution) Suppose Γ, x1 : P, . . . , xk : P ⊢ t : Q with
{x1, . . . , xk} not crossed in t. If Λ ⊢ u : P with Γ and Λ disjoint, then
Γ,Λ ⊢ t[u/x1, . . . , u/xk] : Q with denotation given by the composition

Γ⊗ Λ
1Γ⊗(δk

P◦u)
−−−−−−→ Γ⊗ Pk t

−→ Q . (4.16)

Proof. Similar to the proof for HOPLA, replacing & by ⊗ and ∆ by δ.
Note that naturality of ∆ is used in precisely those cases where HOPLA
allows variables to be crossed (recursion, application and prefix match).
Thus, there is fortunately no need for naturality of δ. We give the cases of
the rule-induction for the tensor constructs, now writing hk for δk ◦ JuK:

78 CHAPTER 4. AFFINE HOPLA

Tensor. Suppose that Γ′
1,Γ

′
2 ⊢ t1 ⊗ t2 : Q ⊗ R is obtained from Γ′

1 ⊢ t1 : Q
and Γ′

2 ⊢ t2 : R. Since the set {x1, . . . , xk} by assumption is not crossed in
t1⊗t2, all of these variables occur freely in t1 or they all occur in t2. Without
loss of generality, let’s assume the former. So let Γ′

1 be a permutation of
Γ1, x1 : P, . . . , xk : P, and Γ a permutation of Γ1,Γ

′
2. Let Λ ⊢ u : P with Γ

and Λ disjoint. We want to show that Γ,Λ ⊢ (t1[u]) ⊗ t2 : Q ⊗ R. By the
induction hypotheses, we have Γ1,Λ ⊢ t1[u] : Q. The typing rule for tensor
then yields Γ1,Λ,Γ2 ⊢ (t1[u]) ⊗ t2 : Q ⊗ R, and repeated use of exchange
then yields Γ,Λ ⊢ (t1[u])⊗ t2 : Q⊗ R as wanted.

Up to exchange we must show that Jt1[u]K ⊗ Jt2K = Jt1K ⊗ Jt2K ◦ (1Γ1
⊗

hk ⊗ 1Γ2
). This follows immediately by the induction hypothesis.

Tensor match. Suppose that Γ′
1,Γ

′
2 ⊢ [t2 > x⊗ y ⇒ t1] : S is obtained from

Γ′
1, x : Q, y : R ⊢ t1 : S and Γ′

2 ⊢ t2 : Q ⊗ R. Since the set {x1, . . . , xk}
by assumption is not crossed in [t2 > x ⊗ y ⇒ t1], all of these variables
occur freely in t1 or they all occur in t2. We assume t1, as the other case
is simpler. So assume that Γ′

1 is a permutation of Γ1, x1 : P, . . . , xk : P
and Γ a permutation of Γ1,Γ

′
2. Let Λ ⊢ u : P with Γ and Λ disjoint. By

renaming x, y if necessary, we may assume that these variables does not
occur freely in u. We want to show that Γ,Λ ⊢ [t2 > x ⊗ y ⇒ t1[u]] : S.
By the induction hypothesis, we have Γ1, x : Q, y : R,Λ ⊢ t1[u] : S. By
repeated use of exchange we get Γ1,Λ, x : Q, y : R ⊢ t1[u] : S and so
Γ1,Λ,Γ2 ⊢ [t2 > x ⊗ y ⇒ t1[u]] : S by the typing rule for tensor match.
Using exchange again we get Γ,Λ ⊢ [t2 > x⊗ y ⇒ t1[u]] : S as wanted.

Up to exchange we must show that Jt1[u]K ◦ (1Γ1⊗Λ ⊗ Jt2K) equals Jt1K ◦
(1Γ1⊗Pk⊗Jt2K)◦(1Γ1

⊗hk⊗1Γ2
). But this follows directly from the induction

hypothesis.

Incorporating the requirement of non-crossed variables, the remaining cases
are very similar to the proof for HOPLA, and we omit them. ✷

An easy rule-induction on the typing rules shows that the substitution
lemma allows single-variable substitutions:

Lemma 4.2 If Γ, x : P,Λ ⊢ t : Q, then {x} is not crossed in t.

Proposition 4.3 Suppose Γ, x : P ⊢ t : P. Then

Jrec x.tK = Jt[rec x.t/x]K (4.17)

Proof. We proceed as in the proof of Proposition 3.5, obtaining Γ′, x :
P ⊢ t′ : P and Γ′′, x : P ⊢ t′′ : P with Γ′ and Γ′′ disjoint by renaming
variables y of Γ to y′ and y′′. By the substitution lemma with k = 1, we get
Γ′,Γ′′ ⊢ t′[rec x.t′′/x] : P, denoting

Γ′ ⊗ Γ′′ 1Γ′⊗rec x.t′′
−−−−−−−→ Γ′ ⊗ P

t′
−→ P . (4.18)

4.3. FULL ABSTRACTION 79

Now, since the sets {x, y} are not crossed in t, {y′, y′′} are not crossed
in t′[rec x.t′′/x]. Hence, by repeated use of exchange and the substitution
lemma with k = 2, we may perform substitutions [y/y′, y/y′′] to obtain
Γ ⊢ t[rec x.t/x] : P with denotation

Γ
δΓ−→ Γ⊗ Γ

1Γ⊗rec x.t
−−−−−−→ Γ⊗ P

t
−→ P . (4.19)

Again, this is the same as f(fix f) = fix f , the denotation of rec x.t. ✷

The properties of abstraction and application, sums, the prefixing con-
structs, and folding and unfolding are the same as for HOPLA.

Proposition 4.4 (i) Suppose Γ, x : P, y : Q ⊢ t : R and Λ1 ⊢ u1 : P
and Λ2 ⊢ u2 : Q with Γ, Λ1, and Λ2 pairwise disjoint. Then Γ,Λ1,Λ2 ⊢
t[u1/x, u2/y] : R and

J[u1 ⊗ u2 > x⊗ y ⇒ t]K = Jt[u1/x, u2/y]K . (4.20)

(ii) Suppose Γ, x : P, y : Q ⊢ ti : R for all i ∈ I. Then for any suitable u we
have

J[u > x⊗ y ⇒ Σi∈Iti]K = JΣi∈I [u > x⊗ y ⇒ ti]K . (4.21)

(iii) Suppose Λ ⊢ ui : P ⊗ Q for all i ∈ I and that I 6= ∅. Then for any
suitable t we have

J[Σi∈Iui > x⊗ y ⇒ t]K = JΣi∈I [ui > x⊗ y ⇒ t]K . (4.22)

(iv) Suppose Λ1 ⊢ u1 : P1 ⊗ Q1 and Λ2, x1 : P1, y1 : Q1 ⊢ u2 : P2 ⊗ Q2. If
further Γ, x2 : P2, y2 : Q2 ⊢ t : R where x1 and x2 do not occur in Γ, we have

J[[u1 > x1 ⊗ y1 ⇒ u2] > x2 ⊗ y2 ⇒ t]K

= J[u1 > x1 ⊗ y1 ⇒ [u2 > x2 ⊗ y2 ⇒ t]]K . (4.23)

Proof. All the properties are consequences of tensor match being interpreted
as composition in Aff . (i) follows by exchange and two applications of the
substitution lemma. (ii) and (iii) hold since composition f ◦g in Aff is linear
in f and affine in g. (iv) follows from associativity of composition. ✷

4.3 Full Abstraction

As we did for HOPLA, we take a program to be a closed term t of type
O⊥, but because of linearity constraints, program contexts will now have at
most one hole. Otherwise, the notion of contextual preorder is the same as in
Section 3.3. Again, contextual equivalence coincides with path equivalence:

80 CHAPTER 4. AFFINE HOPLA

Theorem 4.5 (Full abstraction) For any terms Γ ⊢ t1 : P and Γ ⊢ t2 : P,

Jt1K ⊆ Jt2K ⇐⇒ t1 ❁∼ t2 . (4.24)

Proof. Path “realisers” and “consumers” are defined as in the proof of full
abstraction for HOPLA, restricting the terms t′P and C ′

P to the cases where
P has at most one element. Terms corresponding to paths of tensor type are
defined by

tP⊗Q ≡ t′P ⊗ t′Q

CP⊗Q ≡ [− > x⊗ y ⇒ [C ′
P (x) > !x′ ⇒ C ′

Q(y)]]
(4.25)

For any p : P and P : P we then have (z being a fresh variable):

JtpK = yPp

Jt′P K = jPP

Jλz.Cp(z)K = yP⊸O⊥
({p} 7→ ∅)

Jλz.C ′
P (z)K = yP⊸O⊥

(P 7→ ∅)
(4.26)

We can now proceed as in the proof of Theorem 3.10. ✷

4.4 Operational Semantics

An operational semantics for the first-order fragment2 of Affine HOPLA
uses actions given by

a ::= a⊗⊥ | ⊥⊗ a | βa | ! | abs a . (4.27)

We type actions using typing judgements P : a : P′ as we did for HOPLA;
again, the type P′ is unique given P and a:

P : a : P′

P⊗Q : a⊗⊥ : P′ ⊗Q

Q : a : Q′

P⊗Q : ⊥⊗ a : P⊗Q′

Pβ : a : P′ β ∈ A

Σα∈APα : βa : P′ P⊥ : ! : P

Tj[µ~T .~T/~T] : a : P′

µj
~T .~T : abs a : P′

(4.28)

Since we have left out function space actions like u 7→ a, actions now corre-
spond directly to “atomic” paths. Indeed, let atomic paths p′, q′ be given as
the sublanguage of paths (cf. (4.5)) generated by the grammar

p′, q′ ::= p′ ⊗⊥ | ⊥ ⊗ q′ | βp′ | ⊥ | abs p′ . (4.29)

Letting the path ⊥ of type P⊥ correspond to the action !, we get an obvi-
ous bijective correspondence between atomic paths and the actions above.

2By this we mean the fragment obtained by leaving out function space, so abstraction
and application. We call it the first-order fragment because we are able to handle tensor
match which can be viewed as abstraction and immediate application of a first-order
function.

4.4. OPERATIONAL SEMANTICS 81

Accordingly, we’ll interpret an action P : a : P′ as the corresponding path
so that JP : a : P′K ∈ P. One can observe that P′ is then isomorphic to the
poset of those elements of P that properly extend JP : a : P′K ∈ P, and from
the associated inclusion ia : P′

⊥ →֒ P, sending ⊥ to JP : a : P′K, we get a

map a∗ : P → P′
⊥ in Lin sending X ∈ P̂ to i−1

a X. For the HOPLA actions
βa, !, and abs a, the maps a∗ are in fact just those defined by (3.59). The
action P ⊗Q : a⊗ ⊥ : P′ ⊗Q and its symmetric version give rise to similar
equations, so that we again have a∗JtK = Ja∗tK:

(a⊗⊥)∗t ≡def [t > x⊗ y ⇒ [a∗x > !x′ ⇒ !(x′ ⊗ y)]]

(a⊗⊥)∗ = str ′P′,Q ◦ (a∗ ⊗ 1Q)
(4.30)

Here, str ′P′,Q : P′
⊥ ⊗ Q→ (P′ ⊗Q)⊥ is a symmetric version of the monoidal

strength defined in Chapter 2. A useful result is that

(a⊗⊥)∗ ◦ (1P ⊗ f) = (1P′ ⊗ f)⊥ ◦ (a⊗⊥)∗ (4.31)

for any f : Q′ → Q of Aff :

(a⊗⊥)∗ ◦ (1P ⊗ f)
= str ′P′,Q ◦ (a∗ ⊗ 1Q) ◦ (1P ⊗ f)

= str ′P′,Q ◦ (1P′
⊥
⊗ f) ◦ (a∗ ⊗ 1Q′)

= (1P′ ⊗ f)⊥ ◦ str ′P′,Q′ ◦ (a∗ ⊗ 1Q′) (nat. of str ′)

= (1P′ ⊗ f)⊥ ◦ (a⊗⊥)∗

The operational semantics of HOPLA and the proofs of soundness and
adequacy benefited from the fact that we only ever needed to apply a∗ to
closed terms. In the affine case we are not so fortunate because of the tensor
match. As [u > x⊗ y ⇒ t] is interpreted as the composition JtK ◦ (1Γ ⊗ JuK)
we have

a∗J[u > x⊗ y ⇒ t]K = J[u > x⊗ y ⇒ a∗t]K . (4.32)

This suggests that we let t (an open term) take an a-transition in the “en-
vironment” u > x⊗ y.

Syntactically, environments e are lists of such matches with ǫ the empty
list. As a notational convenience, we’ll write [e ⇒ t] for the term given
inductively by

[ǫ⇒ t] ≡def t

[e, u > x⊗ y ⇒ t] ≡def [e⇒ [u > x⊗ y ⇒ t]]
(4.33)

An environment “exports” a set of variables; the empty environment ǫ ex-
ports the empty set, while e, u > x ⊗ y exports what e exports except the
free variables of u plus x and y, possibly overshadowing variables exported
by e of the same names. We may formalise this using a judgement

e ⊢ x1 : P1, . . . , xk : Pk (4.34)

82 CHAPTER 4. AFFINE HOPLA

(with the xi distinct) which denotes the same path set over P1⊗ · · · ⊗Pk as
the term [e⇒ x1 ⊗ · · · ⊗ xk].

A term t in environment e will be written e Z⇒ t. For e ⊢ Γ,Φ and
Γ ⊢ t : P, we give the judgement

⊢ e Z⇒ t : P; Φ (4.35)

the same denotation as the term [e ⇒ t ⊗ x1 ⊗ · · · ⊗ xk] where the xi are
now the variables exported by e but not free in t. We’ll avoid some of the
book-keeping regarding lists like Φ by treating them as finite mappings from
exported variables to types. So when writing e ⊢ Φ or ⊢ e Z⇒ t : P; Φ below,
we’ll imply no ordering on the variables in Φ.

Incorporating environments, the operational rules are shown in Fig-
ure 4.2. They define a transition relation P : e Z⇒ t

a
−→ e′ Z⇒ t′ with

⊢ e Z⇒ t : P; Φ and P : a : P′. In the first two rules it is assumed that
x, respectively y, is not free in nor overshadowed by the environment e2. In
the rule for tensor match, the variables x and y are implicitly renamed to
avoid overshadowing of exported variables in the environment e, u > x⊗ y.
Transitions do not change the length and variables of environments:

Lemma 4.6 If P : e Z⇒ t
a
−→ e′ Z⇒ t′ with e ≡ u1 > x1⊗y1, . . . , uk > xk⊗yk,

then e′ has the form e ≡ u′
1 > x1⊗ y1, . . . , u

′
k > xk ⊗ yk for some u′

1, . . . , u
′
k.

Proof. By an easy rule-induction on the operational rules. ✷

We’ll write P : t
a
−→ t′ for transitions with empty environment.

The rules are well-typed in the same way as the operational rules of
HOPLA, but additionally, transitions do not change the types of exported
variables:

Lemma 4.7 Suppose ⊢ e Z⇒ t : P; Φ. If P : e Z⇒ t
a
−→ e′ Z⇒ t′ with P : a : P′,

then ⊢ e′ Z⇒ t′ : P′; Φ.

Proof. By rule-induction on the operational rules.

Variable. Suppose ⊢ e1, u > x⊗ y, e2 Z⇒ x : P; Φ and that

P : e1, u > x⊗ y, e2 Z⇒ x
a
−→ e′1, u

′ > x⊗ y, e2 Z⇒ x (4.36)

is derived from

P⊗Q : e1 Z⇒ u
a⊗⊥
−−−→ e′1 Z⇒ u′ (4.37)

with P : a : P′. We then have ⊢ e1 Z⇒ u : P ⊗ Q; Φ1 for some set Φ1.
Moreover, P ⊗ Q : a ⊗ ⊥ : P′ ⊗ Q, and so by the induction hypothesis, we
have ⊢ e′1 Z⇒ u′ : P′ ⊗ Q; Φ1. But then ⊢ e′1, u

′ > x ⊗ y, e2 Z⇒ x : P′; Φ by
typing as wanted.

4.4. OPERATIONAL SEMANTICS 83

P⊗Q : e1 Z⇒ u
a⊗⊥
−−−→ e′1 Z⇒ u′

P : e1, u > x⊗ y, e2 Z⇒ x
a
−→ e′1, u

′ > x⊗ y, e2 Z⇒ x

P⊗Q : e1 Z⇒ u
⊥⊗a
−−−→ e′1 Z⇒ u′

Q : e1, u > x⊗ y, e2 Z⇒ y
a
−→ e′1, u

′ > x⊗ y, e2 Z⇒ y

P : e Z⇒ t[rec x.t/x]
a
−→ e′ Z⇒ t′

P : e Z⇒ rec x.t
a
−→ e′ Z⇒ t′

P : e Z⇒ tj
a
−→ e′ Z⇒ t′

P : e Z⇒ Σi∈Iti
a
−→ e′ Z⇒ t′

j ∈ I

P : e Z⇒ t
a
−→ e′ Z⇒ t′

P⊗Q : e Z⇒ t⊗ u
a⊗⊥
−−−→ e′ Z⇒ t′ ⊗ u

Q : e Z⇒ u
a
−→ e′ Z⇒ u′

P⊗Q : e Z⇒ t⊗ u
⊥⊗a
−−−→ e′ Z⇒ t⊗ u′

P : e, u > x⊗ y Z⇒ t
a
−→ e′, u′ > x⊗ y Z⇒ t′

P : e Z⇒ [u > x⊗ y ⇒ t]
a
−→ e′ Z⇒ [u′ > x⊗ y ⇒ t′]

Pβ : e Z⇒ t
a
−→ e′ Z⇒ t′

Σα∈APα : e Z⇒ βt
βa
−→ e′ Z⇒ t′

Σα∈APα : e Z⇒ t
βa
−→ e′ Z⇒ t′

Pβ : e Z⇒ πβt
a
−→ e′ Z⇒ t′

P⊥ : e Z⇒ !t
!
−→ e Z⇒ t

P⊥ : e Z⇒ u
!
−→ e′ Z⇒ u′ Q : e′ Z⇒ t[u′/x]

a
−→ e′′ Z⇒ t′

Q : e Z⇒ [u > !x⇒ t]
a
−→ e′′ Z⇒ t′

Tj[µ~T .~T/~T] : e Z⇒ t
a
−→ e′ Z⇒ t′

µj
~T .~T : e Z⇒ abs t

abs a
−−−→ e′ Z⇒ t′

µj
~T .~T : e Z⇒ t

abs a
−−−→ e′ Z⇒ t′

Tj [µ~T .~T/~T] : e Z⇒ rep t
a
−→ e′ Z⇒ t′

Figure 4.2: Operational rules for first-order Affine HOPLA

84 CHAPTER 4. AFFINE HOPLA

Tensor. Suppose ⊢ e Z⇒ t⊗ u : P⊗Q; Φ and that

P⊗Q : e Z⇒ t⊗ u
a⊗⊥
−−−→ e′ Z⇒ t′ ⊗ u (4.38)

is derived from

P : e Z⇒ t
a
−→ e′ Z⇒ t′ (4.39)

with P ⊗ Q : a ⊗ ⊥ : P′ ⊗ Q. With Φu the free variables of u we then have
⊢ e Z⇒ t : P; Φ,Φu. Moreover, P : a : P′ and so by the induction hypothesis,
⊢ e′ Z⇒ t′ : P′; Φ,Φu. Typing now yields ⊢ e′ Z⇒ t′ ⊗ u : P′ ⊗Q; Φ as wanted.

Tensor match. Under the assumption that the variables x and y are renamed
if necessary to ensure that they do not overshadow the exported variables
of Φ, we have

⊢ e Z⇒ [u > x⊗ y ⇒ t] : P; Φ iff ⊢ e, u > x⊗ y Z⇒ t : P; Φ . (4.40)

We are done by the induction hypothesis.

The remaining rules are handled similarly. ✷

We’ll write P : e Z⇒ t
a
−→ e′ Z⇒ t′ : P′ when ⊢ e Z⇒ t : P; Φ and P : a : P′.

Although we’ll not need the syntactic operators a∗ below, we show for
completeness that the operational semantics validates a result much like
Lemma 3.13 saying that observations of a-transitions can be reduced to
observations of !-transitions:

Lemma 4.8 Let C be a trivial context generated by the grammar

C ::= − | [C > x⊗ y ⇒ C(x)⊗ C(y)] . (4.41)

Then P : e Z⇒ t
a
−→ e′ Z⇒ t′ : P′ iff P′

⊥ : e Z⇒ a∗t
!
−→ e′ Z⇒ C(t′) : P′ for some

such context C using fresh variables.

Proof. By structural induction on a. We give the details in the case a⊗⊥.
Supposing

P⊗Q : e Z⇒ t
a⊗⊥
−−−→ e′ Z⇒ t′ : P′ ⊗Q , (4.42)

we can derive

P : e, t > x⊗ y Z⇒ x
a
−→ e′, t′ > x⊗ y Z⇒ x : P′ (4.43)

using fresh variables x and y. By the induction hypothesis, this means that
for some context C,

P′
⊥ : e, t > x⊗ y Z⇒ a∗x

!
−→ e′, t′ > x⊗ y Z⇒ C(x) : P′ . (4.44)

4.4. OPERATIONAL SEMANTICS 85

We can the complete a derivation with conclusion

P′
⊥ : e Z⇒ [t > x⊗ y ⇒ [a∗x > !x′ ⇒ !(x′ ⊗ y)]]

!
−→ e′ Z⇒ [t′ > x⊗ y ⇒ C(x)⊗ y] , (4.45)

which is just the same as P′
⊥ : e Z⇒ (a⊗⊥)∗t

!
−→ e′ Z⇒ C ′(t′) : P′ where C ′ is

the context C ′ ≡ [− > x ⊗ y ⇒ C(x) ⊗ y]. The reverse implication follows
the same argument backwards. ✷

4.4.1 A Correspondence Result

We’ll prove correspondence, so soundness and adequacy, by exploiting the
linearity constraints on variable occurrences in the affine language. This
allows us replace the use of logical relations by well-founded induction based
on a size measure on terms [63, 64]. Of course, this method works only for
the language obtained by replacing general recursion by finite unfoldings.
We’ll extend the result to cover full recursion afterwards.

The term recn x.t is typed in the same way as rec x.t and interpreted as
the n’th approximation to the denotation of rec x.t. By induction,

Jrec0 x.tK =def ∅ and Jrecn+1 x.tK =def Jt[recn x.t/x]K . (4.46)

The corresponding operational rule is given by

P : e Z⇒ t[recn x.t/x]
a
−→ e′ Z⇒ t′

P : e Z⇒ recn+1 x.t
a
−→ e′ Z⇒ t′

(4.47)

We define an ordinal size measure on terms in environments, see Figure 4.3.
The need for ordinals arises because of the possibly infinite sum. In the
figure, ⊕ is the “natural addition” of ordinals (see [49], Def. 2.21); this op-
eration is associative, commutative, has identity 0, and is strictly monotone
in each argument.

Because variables that are not crossed occur in different components of
a nondeterministic sum, we can prove

Lemma 4.9 Suppose Γ, x1 : P, . . . , xk : P ⊢ t : Q with {x1, . . . , xk} not
crossed in t. If Λ ⊢ u : P with Γ and Λ disjoint, then |t[u/x1, . . . , u/xk]| ≤
|t| ⊕ |u|.

Proof. By structural induction on t. ✷

Transitions are accompanied by a decrease in size:

Lemma 4.10 Suppose P : e Z⇒ t
a
−→ e′ Z⇒ t′ : P′. Then |e Z⇒ t| > |e′ Z⇒ t′|.

86 CHAPTER 4. AFFINE HOPLA

|x| =def 1

| rec0 x.t| =def 1

| recn+1 x.t| =def |t[rec
n x.t/x]| ⊕ 1

|Σi∈Iti| =def (supi∈I |ti|)⊕ 1

|t⊗ u| =def |t| ⊕ |u|

|[u > x⊗ y ⇒ t]| =def |u| ⊕ |t|

|βt| =def |t| ⊕ 1

|πβt| =def |t| ⊕ 1

|!t| =def |t| ⊕ 1

|[u > !x⇒ t]| =def |u| ⊕ |t|

| abs t| =def |t| ⊕ 1

| rep t| =def |t| ⊕ 1

|ǫ| =def 0

|e, u > x⊗ y| =def |e| ⊕ |u|

|e Z⇒ t| =def |e| ⊕ |t|

Figure 4.3: Size measure

Proof. By an easy rule-induction on the operational rules, using Lemma 4.9
for the prefix match rule. ✷

We can now define a well-founded relation which relates the conclusion to
each premise in all rules:

Lemma 4.11 For each rule

· · · e2 Z⇒ t2
a2−→ e′2 Z⇒ t′2 · · ·

e1 Z⇒ t1
a1−→ e′1 Z⇒ t′1

(4.48)

we have e1 Z⇒ t1 ≻ e2 Z⇒ t2 where ≻ is the lexicographic order

e Z⇒ t ≻ e′ Z⇒ t′ ⇐⇒ (|e Z⇒ t| > |e′ Z⇒ t′|) or
(|e Z⇒ t| = |e′ Z⇒ t′|) and (|t| > |t′|)

(4.49)

Proof. By a straightforward case analysis, using Lemma 4.10 for the pre-
fix match rule. The rule for tensor match needs the second clause of the
definition of ≻. ✷

Lemma 4.12 Assume ⊢ t : P in the finitary language and that P : a : P′.
Then Σt′J!t

′K = a∗Jt′K where t′ ranges over terms such that P : t
a
−→ t′ : P′.

4.4. OPERATIONAL SEMANTICS 87

Proof. By well-founded induction on ≻ using the induction hypothesis

Assume ⊢ e Z⇒ t : P; Φ and P : a : P′ and let ~z be the variables
in Φ tensored together. Then we have

(a⊗⊥)∗J[e⇒ t⊗ ~z]K = Σe′,t′J![e
′ ⇒ t′ ⊗ ~z]K (4.50)

—where e′, t′ range over environments and terms such that P :
e Z⇒ t

a
−→ e′ Z⇒ t′ : P′.

We proceed by case analysis on t.

Variable. There are two possible last rules in derivations, depending on the
structure of e. One is

P⊗Q : e1 Z⇒ u
a⊗⊥
−−−→ e′1 Z⇒ u′

P : e1, u > x⊗ y, e2 Z⇒ x
a
−→ e′1, u

′ > x⊗ y, e2 Z⇒ x
(4.51)

It is assumed that the variable x is neither free in nor overshadowed by e2.
Let ~w be the variables exported by e1 but not free in u. We have

(a⊗⊥)∗J[e1, u > x⊗ y, e2 ⇒ x⊗ ~z]K
= (a⊗⊥)∗J[e1, u > x⊗ y ⇒ x⊗ [e2 ⇒ ~z]]K (assumption on x)
= (a⊗⊥)∗ ◦ (1P ⊗ J[e2 ⇒ ~z]K) ◦ (JuK⊗ 1) ◦ Je1K
= (1P′ ⊗ J[e2 ⇒ ~z]K)⊥ ◦ (a⊗⊥)∗ ◦ J[e1 ⇒ u⊗ ~w]K (by (4.31))
= (1P′ ⊗ J[e2 ⇒ ~z]K)⊥ ◦ Σe′,u′J![e′ ⇒ u′ ⊗ ~w]K (ind. hyp.)
= Σe′,u′(1P′ ⊗ J[e2 ⇒ ~z]K)⊥ ◦ J![e′ ⇒ u′ ⊗ ~w]K (linearity)
= Σe′,u′(1P′ ⊗ J[e2 ⇒ ~z]K)⊥ ◦ η ◦ J[e′ ⇒ u′ ⊗ ~w]K
= Σe′,u′η ◦ (1P′ ⊗ J[e2 ⇒ ~z]K) ◦ J[e′ ⇒ u′ ⊗ ~w]K (nat. of η)
= Σe′,u′J![e′, u′ > x⊗ y, e2 ⇒ x⊗ ~z]K (assumption on x)

—as wanted. The other possible rule is handled symmetrically.

Recursive definition. There is one possible last rule:

P : e Z⇒ t[recn x.t/x]
a
−→ e′ Z⇒ t′

P : e Z⇒ recn+1 x.t
a
−→ e′ Z⇒ t′

(4.52)

We have
(a⊗⊥)∗J[e⇒ recn+1 x.t⊗ ~z]K
= (a⊗⊥)∗J[e⇒ t[recn x.t/x]⊗ ~z]K
= Σe′,t′J![e

′ ⇒ t′ ⊗ ~z]K (ind. hyp.)

—as wanted.

Nondeterministic sum. There is one possible last rule:

P : e Z⇒ tj
a
−→ e′ Z⇒ t′

P : e Z⇒ Σi∈Iti
a
−→ e′ Z⇒ t′

j ∈ I (4.53)

88 CHAPTER 4. AFFINE HOPLA

We have

(a⊗⊥)∗J[e⇒ Σi∈Iti ⊗ ~z]K
= (a⊗⊥)∗ ◦ (Σi∈IJtiK⊗ 1) ◦ JeK
= str ′ ◦ (a∗ ⊗ 1) ◦ (Σi∈IJtiK⊗ 1) ◦ JeK
= str ′ ◦ (Σi∈Ia

∗JtiK⊗ 1) ◦ JeK (linearity of a∗)
= Σi∈Istr

′ ◦ (a∗JtiK⊗ 1) ◦ JeK (linearity of 1st arg. of str ′)
= Σi∈Istr

′ ◦ (a∗ ⊗ 1) ◦ J[e⇒ ti ⊗ ~z]K
= Σi∈I(a⊗⊥)∗ ◦ J[e⇒ ti ⊗ ~z]K
= Σi∈IΣe′i,t

′
i
J![e′i ⇒ t′i ⊗ ~z]K (ind. hyp.)

—as wanted.

Tensor. There are two possible last rules, one of which is:

P : e Z⇒ t
a
−→ e′ Z⇒ t′

P⊗Q : e Z⇒ t⊗ u
a⊗⊥
−−−→ e′ Z⇒ t′ ⊗ u

(4.54)

Let ~w be the free variables of u. We have

((a⊗⊥)⊗⊥)∗J[e⇒ (t⊗ u)⊗ ~z]K
= ((a⊗⊥)⊗⊥)∗ ◦ (JtK⊗ JuK⊗ 1) ◦ JeK
= ((a⊗⊥)⊗⊥)∗ ◦ (1P ⊗ JuK⊗ 1) ◦ J[e⇒ t⊗ ~w~z]K
= (1′P ⊗ JuK⊗ 1)⊥ ◦ (a⊗⊥)∗ ◦ J[e⇒ t⊗ ~w~z]K (by (4.31))
= (1′P ⊗ JuK⊗ 1)⊥ ◦Σe′,t′J![e

′ ⇒ t′ ⊗ ~w~z]K (ind. hyp.)
= Σe′,t′(1

′
P ⊗ JuK⊗ 1)⊥ ◦ J![e′ ⇒ t′ ⊗ ~w~z]K (linearity)

= Σe′,t′(1
′
P ⊗ JuK⊗ 1)⊥ ◦ η ◦ J[e′ ⇒ t′ ⊗ ~w~z]K

= Σe′,t′η ◦ (1′P ⊗ JuK⊗ 1) ◦ J[e′ ⇒ t′ ⊗ ~w~z]K (nat. of η)
= Σe′,t′J![e

′ ⇒ (t′ ⊗ u)⊗ ~z]K

—as wanted. The other rule is handled symmetrically.

Tensor match. There is one possible last rule:

P : e, u > x⊗ y Z⇒ t
a
−→ e′, u′ > x⊗ y Z⇒ t′

P : e Z⇒ [u > x⊗ y ⇒ t]
a
−→ e′ Z⇒ [u′ > x⊗ y ⇒ t′]

(4.55)

It is assumed that the variables x, y are renamed if necessary so that they
do not overshadow any variables exported by e. We then have

(a⊗⊥)∗J[e⇒ [u > x⊗ y ⇒ t]⊗ ~z]K
= (a⊗⊥)∗J[e, u > x⊗ y ⇒ t⊗ ~z]K (assumption on x, y)
= Σe′,u′,t′J![e

′, u′ > x⊗ y ⇒ t′ ⊗ ~z]K (ind. hyp.)
= Σe′,u′,t′J![e

′ ⇒ [u′ > x⊗ y ⇒ t′]⊗ ~z]K (assumption on x, y)

—as wanted.

4.4. OPERATIONAL SEMANTICS 89

Injection. There is one possible last rule:

Pβ : e Z⇒ t
a
−→ e′ Z⇒ t′

Σα∈APα : e Z⇒ βt
βa
−→ e′ Z⇒ t′

(4.56)

We have

(βa⊗⊥)∗J[e⇒ βt⊗ ~z]K
= str ′ ◦ ((βa)∗ ⊗ 1) ◦ ((inβ ◦JtK)⊗ 1) ◦ JeK
= str ′ ◦ ((a∗ ◦ πβ ◦ inβ ◦JtK)⊗ 1) ◦ JeK
= str ′ ◦ ((a∗ ◦ JtK)⊗ 1) ◦ JeK
= (a⊗⊥)∗ ◦ J[e⇒ t⊗ ~z]K
= Σe′,t′J![e

′ ⇒ t′ ⊗ ~z]K (ind. hyp.)

—as wanted.

Projection. There is one possible last rule:

Σα∈APα : e Z⇒ t
βa
−→ e′ Z⇒ t′

Pβ : e Z⇒ πβt
a
−→ e′ Z⇒ t′

(4.57)

We have

(a⊗⊥)∗J[e⇒ πβt⊗ ~z]K
= str ′ ◦ (a∗ ⊗ 1) ◦ ((πβ ◦ JtK)⊗ 1) ◦ JeK
= str ′ ◦ ((a∗ ◦ πβ ◦ JtK)⊗ 1) ◦ JeK
= str ′ ◦ (((βa)∗ ◦ JtK)⊗ 1) ◦ JeK
= (βa⊗⊥)∗ ◦ J[e⇒ t⊗ ~z]K
= Σe′,t′J![e

′ ⇒ t′ ⊗ ~z]K (ind. hyp.)

—as wanted.

Prefixing. There is one possible last rule:

P⊥ : e Z⇒ !t
!
−→ e Z⇒ t

(4.58)

We have

(!⊗⊥)∗J[e⇒ !t⊗ ~z]K
= str ′ ◦ (!∗ ⊗ 1) ◦ ((η ◦ JtK)⊗ 1) ◦ JeK
= str ′ ◦ ((η ◦ JtK)⊗ 1) ◦ JeK (!∗ is id)
= str ′ ◦ (η ⊗ 1) ◦ J[e⇒ t⊗ ~z]K
= η ◦ J[e⇒ t⊗ ~z]K (prop. of str ′)
= J![e⇒ t⊗ ~z]K

—as wanted.

90 CHAPTER 4. AFFINE HOPLA

Prefix match. There is one possible last rule:

P⊥ : e Z⇒ u
!
−→ e′ Z⇒ u′ Q : e′ Z⇒ t[u′/x]

a
−→ e′′ Z⇒ t′

Q : e Z⇒ [u > !x⇒ t]
a
−→ e′′ Z⇒ t′

(4.59)

Let ~w be the free variables of t except x. Using symmetry maps we may
assume that [u > !x⇒ t] is interpreted as the composition JtK◦str ′◦(JuK⊗1).
We then have

(a⊗⊥)∗J[e⇒ [u > !x⇒ t]⊗ ~z]K

= (a⊗⊥)∗ ◦ ((JtK ◦ str ′ ◦ (JuK⊗ 1)) ⊗ 1) ◦ JeK

= (a⊗⊥)∗ ◦ JtK ◦ str ′ ◦ J[e⇒ u⊗ ~w~z]K

= (a⊗⊥)∗ ◦ JtK ◦ str ′ ◦ (!∗ ⊗ 1) ◦ J[e⇒ u⊗ ~w~z]K (!∗ is id.)

= (a⊗⊥)∗ ◦ JtK ◦ (!⊗⊥)∗ ◦ J[e⇒ u⊗ ~w~z]K

= (a⊗⊥)∗ ◦ JtK ◦ Σe′,u′J![e′ ⇒ u′ ⊗ ~w~z]K (ind. hyp.)

= Σe′,u′(a⊗⊥)∗ ◦ JtK ◦ J![e′ ⇒ u′ ⊗ ~w~z]K (linearity)

= Σe′,u′(a⊗⊥)∗ ◦ JtK ◦ η ◦ J[e′ ⇒ u′ ⊗ ~w~z]K
= Σe′,u′(a⊗⊥)∗ ◦ JtK ◦ J[e′ ⇒ u′ ⊗ ~w~z]K (univ. prop. of η)
= Σe′,u′(a⊗⊥)∗ ◦ J[e′ ⇒ t[u′/x]⊗ ~z]K (subst. lemma)
= Σe′,u′Σe′′,t′J![e

′′ ⇒ t′ ⊗ ~z]K (ind. hyp.)

—as wanted.

Folding and unfolding. Similar to injection and projection.

By well-founded induction, the proof is complete. ✷

We’ll now prove correspondence for general recursion. We write t(n) for
the term obtained by replacing all subterms of the form rec x.u in t by
recn x.u. We have JtK =

⋃
n∈ω Jt(n)K. Conversely, we write t− for the term

obtained by removing all indices on subterms recn x.u of t. We clearly have
(t(n))− ≡ t and JtK ⊆ Jt−K.

Theorem 4.13 (Correspondence) Let ⊢ t : P in the first-order fragment
with full recursion and P : a : P′. Then Σt′J!t

′K = a∗JtK where t′ ranges over
terms such that P : t

a
−→ t′ : P′.

Proof. It follows by linearity of a∗ and Lemma 4.12 that

a∗JtK = a∗
⋃

n∈ω Jt(n)K =
⋃

n∈ω a∗Jt(n)K =
⋃

n∈ω Σt′nJ!t′nK , (4.60)

where t′n ranges over terms such that P : t(n) a
−→ t′n : P′. Now, each such

transition can be matched by a transition P : (t(n))−
a
−→ (t′n)− : P′. As

(t(n))− ≡ t, the term (t′n)− is just one of the terms t′ in the statement of the
theorem. It follows that Σt′nJ!t′nK ⊆ Σt′J!t

′K for each n and so

a∗JtK =
⋃

n∈ω Σt′nJ!t′nK ⊆ Σt′J!t
′K . (4.61)

4.4. OPERATIONAL SEMANTICS 91

For the converse, suppose P : t
a
−→ t′ : P′. The derivation unfolds each

subterm rec x.u of t a number of times, and because the derivation is finite,
there exists n ∈ ω such that we have a transition P : t(n) a

−→ t′n : P′. Hence,

Σt′J!t
′K ⊆

⋃
n∈ω Σt′nJ!t′nK = a∗JtK (4.62)

as wanted. ✷

4.4.2 Independence

As it stands, the operational semantics gives an interleaving model of the
first-order fragment, taking atomic steps in one tensor component at a time.
This does not fully match the understanding of the tensor operation as
a juxtaposition of independent processes. Given transitions as in the upper
part of the diamond below one would expect to be able to prove the existence
of a term t2 with transitions as in the lower part, completing the diamond:

t1
⊥⊗a2

��>
>>

>>
>>

t

a1⊗⊥
@@��������

⊥⊗a2 ��

t′

t2

a1⊗⊥

??

(4.63)

Formally, one could then exhibit the operational semantics as an asyn-
chronous transition system [5, 84]. We do not have a direct proof of the
diamond property, and a treatment of the independence structure of the
affine language will have to wait to Chapter 7.

4.4.3 Function Space

Although we don’t know how to extend the operational semantics with func-
tion space in general, we may reuse the u 7→ a-actions of HOPLA to define
the rules below with the side-condition that u be a closed term:

Q : e Z⇒ t[u/x]
a
−→ e′ Z⇒ t′

P ⊸ Q : e Z⇒ λx.t
u 7→a
−−−→ e′ Z⇒ t′

P ⊸ Q : e Z⇒ t
u 7→a
−−−→ e′ Z⇒ t′

Q : e Z⇒ t u
a
−→ e′ Z⇒ t′

(4.64)

If u was allowed to be an open term, actions would have free variables
and the remaining rules cannot deal with that. As an example, consider an
attempted derivation of a transition from [λz.t ⊗ u > x⊗ y ⇒ x y]:

λz.t ⊗ u
(y 7→a)⊗⊥
−−−−−−→ ?

λz.t⊗ u > x⊗ y Z⇒ x
y 7→a
−−−→ ?

λz.t ⊗ u > x⊗ y Z⇒ x y
a
−→ ?

[λz.t ⊗ u > x⊗ y ⇒ x y]
a
−→ ?

(4.65)

92 CHAPTER 4. AFFINE HOPLA

At the top, the correspondence between u and y is lost. We do not presently
know how to fix this.

Adding the action u 7→ a with u closed destroys the property that actions
correspond to atomic paths. Still, we may simply use (3.59) and (4.30) as
definitions of a∗, and the proof of correspondence can be extended by taking
the size of actions into account in defining the well-founded relation:

|λx.t| =def |t| ⊕ 1

|t u| =def |t| ⊕ |u| ⊕ 1

|u 7→ a| =def |u| ⊕ |a|

|a⊗⊥| = |⊥ ⊗ a| = |βa| = | abs a| =def |a|

|!| =def 0

|e Z⇒ t
a
−→ | =def |e| ⊕ |t| ⊕ |a|

(4.66)

4.5 Expressive Power

Subject to the linearity constraints on occurrences of variables, the affine
language has much of the expressive power of HOPLA. In particular, the
calculi discussed in Section 3.6 can be encoded with the restriction that
no variable can occur freely on both sides of a parallel composition. The
prefixed sum Σα∈Aα.Pα stands for Σα∈A(Pα)⊥ in Affine HOPLA. Prefixing
β.t is still translated into β!t, but now has a different semantics. For example,
by replacing !(−) with (−)⊥, the solution of the equation P = Σα∈Aα.Pα

defining the type of CCS processes becomes isomorphic to the path order A+

of nonempty strings over the alphabet of CCS actions. Thus, the semantics
of CCS given by the translation into Affine HOPLA is essentially a trace
semantics. This is illustrated by the fact that the two CCS processes a.b.∅+
a.b.∅ and a.(b.∅ + c.∅) are given the same semantics by Affine HOPLA,
but can be told apart using the nonlinear HOPLA context C〈a!〉(〈b!〉⊤∧〈c!〉⊤)

as we saw in Examples 3.1 and 3.22.

4.5.1 Nondeterministic Dataflow

More interestingly, the tensor type of Affine HOPLA allows us to define
processes of the kind found in treatments of nondeterministic dataflow, cf.
Figure 1.3, something which is not possible using HOPLA. To illustrate,
define P recursively as the prefixed sum P = a.P + b.P, so that P essentially
consists of streams (or sequences) of a’s and b’s. We can then define dataflow
processes whose properties can be determined from the properties of the
denotational semantics—in particular using Proposition 4.4:

• A process Two of type P ⊗ P which produces two identical, parallel

4.5. EXPRESSIVE POWER 93

streams of a’s and b’s as output:

Two ≡ rec z.[z > x⊗ y ⇒ (a.x⊗ a.y) + (b.x⊗ b.y)] . (4.67)

The denotation of Two is the set of pairs (s, s′) with s and s′ strings
of a’s and b’s, such that s is a prefix of s′ or vice versa. Notice the
“entanglement” between the two sides of the tensor—choices made on
one side affect choice on the other.

• A process Fork of type P ⊸ (P ⊗ P) which is like Two, except it
produces its two output streams as copies of the input stream.

Fork ≡ rec f.λz.[z > a.z′ ⇒ [f z′ > x⊗ y ⇒ a.x⊗ a.y]] +
[z > b.z′ ⇒ [f z′ > x⊗ y ⇒ b.x⊗ b.y]] .

(4.68)

We have e.g. JFork (a.b.∅)K = Ja.b.∅⊗a.b.∅K and JFork (a.∅+b.∅)K =
Ja.∅⊗ a.∅ + b.∅ ⊗ b.∅K, the latter not containing “cross terms” like
a.∅⊗ b.∅.

• A process Merge of type (P ⊗ P) ⊸ P which merges two streams into
one.

Merge ≡ rec f.λz.[z > x⊗ y ⇒ [x > a.x′ ⇒ a.f (y ⊗ x′)] +
[x > b.x′ ⇒ b.f (y ⊗ x′)]] .

(4.69)

We have e.g. JMerge (a.a.∅⊗ b.b.∅)K = Ja.b.a.b.∅K.

Using the operational semantics with the extension of Section 4.4.3 we may
“execute” the above processes and get transitions like

Fork (a.b.∅)
a⊗⊥
−−−→ [Fork (b.∅) > x⊗ y ⇒ x⊗ a.y] (4.70)

Note how the term “remembers” that an a-action has been made on the
left-hand side of the tensor, ensuring that the other side will behave in the
same way.

4.5.2 Extensions

Possible extensions with name-generation and invisible actions as discussed
for HOPLA apply to Affine HOPLA as well.

The trace operation to represent dataflow processes with feedback loops
is not definable in Affine HOPLA, because then we would have obtained a
compositional relational semantics of nondeterministic dataflow with feed-
back, shown impossible by Brock and Ackerman [13]. However, with a more
refined notion of “relation”, which spells out the different ways in which in-
put and output of a dataflow process are related, such a semantics is in fact
possible [33]. This refinement is obtained by moving to the presheaf version
of the affine category.

94 CHAPTER 4. AFFINE HOPLA

Part II

Presheaf Semantics

95

Chapter 5

Domain Theory from

Presheaves

Consider the two CCS processes a.∅ and a.a.∅. Their translations into
HOPLA and Affine HOPLA denote the path sets {a∅} and {a∅, a{a∅}},
and so we have Ja.∅K ⊆ Ja.a.∅K. Because nondeterministic sum is interpreted
by union, this means that the processes

t ≡ a.∅ + a.a.∅ and u ≡ a.a.∅ (5.1)

will be represented as the same path set. Still, t and u are not bisimilar,
and so neither of the two path semantics captures enough of the branching
structure of processes to characterise bisimilarity.

As noted in the introduction, the domain theory of path sets is a simple
version of an earlier and more informative domain theory based on pre-
sheaves [19, 20]. Recall from Section 2.2 that path sets X ⊆ P correspond
to monotone functions Pop → 2, so in modelling a process as a path set
we are in effect representing the process by a “characteristic function” from
paths to truth values 0 < 1. If instead of these simple truth values we take
sets of realisers, so replacing 2 by the category of sets and functions, Set,
we obtain functors Pop → Set, traditionally called presheaves. Viewed as a
process, the presheaf X : Pop → Set associates to a path p ∈ P the set Xp
whose elements we’ll think of as standing for the ways in which the path can
be realised by the process X. The process t of (5.1) has two different ways
of realising the path a∅ while u has only one, and in this way, a presheaf
representation will distinguish between the two processes.

Following the intuition above, a nondeterministic sum of processes rep-
resented as presheaves is given using disjoint union to keep track of the
different ways paths are realised. The sum Σi∈IXi of presheaves Xi over P
has a contribution Σi∈IXip, the disjoint union of sets, at p ∈ P. The empty
sum of presheaves is the presheaf ∅ with empty contribution at each p ∈ P.

The notion of a presheaf makes sense for any small category P and this

97

98 CHAPTER 5. DOMAIN THEORY FROM PRESHEAVES

extra generality has been exploited in dealing with independence models. In
particular, event structures can be seen as special kinds of presheaves over
categories of pomsets [100]. When P is a category, we’ll think of an arrow
e : p→ p′ in P as expressing the way in which the path p is extended to the
path p′, and we’ll call P a path category.

5.1 Processes as Presheaves

Consider a presheaf X over A+, the path order of nonempty sequences over
some alphabet A = {a, b, . . .}. It is a functor X : (A+)op → Set and so
assigns to each string s ∈ A+ a set, Xs, and to each pair s, s′ with s a prefix
of s′, a function X(s ≤ s′) : Xs′ → Xs in the opposite direction. This can be
understood as follows: when x′ ∈ Xs′ the process X is capable of performing
s′ as realised by x′ (or, in the way x′). Therefore, X must intuitively also be
capable of performing any shorter sequence than s′, and so in particular the
sequence s. What the function X(s ≤ s′) does is simply to map the realiser
x′ for s′ to a realiser x = X(s ≤ s′)x′ for s.

The process t of (5.1) can be represented as a presheaf X as follows.
Because of the nondeterministic sum, there are two ways in which t may
perform the sequence a and one way in which t may perform the sequence
aa. Thus, X will map a to a two-element set, say {1, 2}, and aa to a singleton,
say {1}. No other sequences are possible, so all other elements of A+ are
mapped to the empty set. Just one of the ways of performing a, say 2, may
lead to performing the longer sequence aa, and so X(a ≤ aa) : Xaa → Xa

will map 1 to 2. Likewise, the process u is represented by a presheaf Y
mapping a and aa to a singleton, see Figure 5.1. So using presheaves, the
representations of t and u become different because the presheaves keep track
of nondeterministic branching. This can be further illustrated by noticing
that presheaves over A+ are in bijective correspondence with synchronisation
trees over the underlying alphabet A. Indeed, imagine adding the empty
sequence ǫ to A+, forming the path order A∗ with least element ǫ. If we
agree that any process X can perform the empty sequence in exactly one
way, so that Xǫ = {1}, we add “roots” to Figure 5.1, and by further turning
the branches around, we obtain Figure 5.2. Generally, presheaves X over A∗

correspond to sets of such trees, or a “forest”, with the set of roots given by
Xǫ.

Adding a root to a presheaf amounts to a lifting construction analogous
to what we did in Section 2.3.2. Given a path category P, we may add a new
initial object to obtain the path category P⊥. Associated to this construction
is an operation taking a presheaf X over P to ⌊X⌋ over P⊥, such that ⌊X⌋⊥ is
a singleton and ⌊X⌋⌊p⌋ = Xp. Presheaves obtained, to within isomorphism,
as images of ⌊−⌋ are called rooted.

5.2. PRESHEAF CATEGORIES 99

Proposition 5.1 Any presheaf X over P⊥ has a decomposition as a sum
of rooted presheaves X ∼= Σi∈X⊥⌊Xi⌋, where, for i ∈ X⊥, the presheaf Xi

over P is, to within isomorphism, given as Xip = {x ∈ Xp : (X⊥p)x = i}
where ⊥p is the unique arrow ⊥ → p in P⊥.

For a general presheaf over A∗, the decomposition into rooted components
exhibits the corresponding forest as a set of trees.

The construction of a tree from a presheaf can also be generalised to
arbitrary presheaves. The general construction gives rise to a categorical
version of a transition system, called the category of elements of the presheaf.

Let P be a path category and X : Pop → Set a presheaf over P. The
category of elements of X, written elts X, has as objects pairs (p, x) with
p ∈ P and x ∈ Xp and morphisms of the form e : (p, x) → (p′, x′) where
e : p→ p′ is an arrow of P such that (Xe)x′ = x.

In the case of rooted presheaves over A∗, the synchronisation trees ob-
tained as above become categories of elements when closed under identity
maps and compositions of edges. Figure 5.3 shows the category of elements
of our two presheaves X and Y from above. The identity maps are left out
for clarity.

5.2 Presheaf Categories

The presheaves over a path category P are the objects of the functor category
P̂ = [Pop,Set], with arrows being natural transformations. Spelled out, a
natural transformation f : X → Y between presheaves X and Y over P is
a family (fp)p∈P of functions fp : Xp → Y p, satisfying that for any arrow
e : p→ p′ of P, the square below commutes.

p′ Xp′

Xe
��

fp′
// Y p′

Y e
��

p

e

OO

Xp
fp

// Y p

(5.2)

It is perhaps not entirely obvious what process concept this amounts to, so
we replay it in terms of categories of elements. Since each fp is a function
Xp → Y p, the natural transformation f induces a map elts f between the
objects of elts X and elts Y , sending (p, x) to (p, fpx). Now, naturality of
f is simply the same as functoriality of elts f : that it sends morphisms
(p, x)

e
−→ (p′, x′) of elts X to morphisms (p, fpx)

e
−→ (p′, fp′x

′) of elts Y .
As an example, we can define a natural transformation f : X → Y

between the presheaves given in Figure 5.3, see Figure 5.4. In the figure,
(p, x) fp (p, y) means that fpx = y, or equivalently that elts f maps (p, x)

to (p, y). Since f preserves transitions in the categories of elements, we can
think of it as a functional simulation relation on transition systems.

100 CHAPTER 5. DOMAIN THEORY FROM PRESHEAVES

Xaa : 1

��

Y aa : 1

��

Xa : 1 2 Y a : 1

Figure 5.1: Presheaves X and Y

Xaa : 1 Y aa : 1

Xa : 1 2

OO

Y a : 1

OO

Xǫ : 1

^^=======

@@�������

Y ǫ : 1

OO

Figure 5.2: Presheaves X and Y as synchronisation trees

X : (aa, 1) Y : (aa, 1)

(a, 1) (a, 2)

a≤aa

OO

(a, 1)

a≤aa

OO

(ǫ, 1)

ǫ≤a

__??????? ǫ≤a

>>}}}}}}}}

ǫ≤aa

@@

(ǫ, 1)

ǫ≤a

OO
ǫ≤aa

CC

Figure 5.3: Presheaves X and Y as categories of elements

(aa, 1)

faa

(a, 1)

fa

(a, 2)

OO

fa

(aa, 1)

(ǫ, 1)

__???????

>>}}}}}}}}

fǫ

(a, 1)

OO

(ǫ, 1)

OO

Figure 5.4: Presheaves X and Y and a natural transformation

5.2. PRESHEAF CATEGORIES 101

A presheaf category P̂ has all limits and colimits given pointwise, at a par-
ticular object, by the corresponding limits or colimits of sets. This exposes
the nondeterministic sum Σi∈IXi above as the coproduct of the presheaves
Xi, with ∅ the empty coproduct. Colimits being generalised joins, it is thus
reasonable to view presheaf categories as generalised nondeterministic do-
mains [30, 16, 98].

To each presheaf category P̂ is associated a canonical functor yP : P→ P̂,
standardly called the Yoneda functor, saying how to view paths as processes:

yPp = P(−, p) (5.3)

Images under Yoneda, called representables, provide a straightforward gen-
eralisation of the notion of primes of the nondeterministic domains of Chap-
ter 2. Intuitively, yP maps a computation path p to a process that may
do a single computation of shape p, and a path extension e : p → p′ to a
simulation of this computation by a longer one. Following this intuition, a
natural transformation yPp → X shows how the process X may simulate a
process capable of performing just the path p. But then the set Xp should
intuitively be the same as the set of such natural transformations. This is
the content of

Lemma 5.2 (Yoneda) P̂(yPp,X) ∼= Xp, naturally in X and p.

This classic result directly generalises the equivalence yPp ⊆ X iff p ∈ X
for path sets. One immediate consequence is that the Yoneda functor is full
and faithful, allowing us to view P as essentially a subcategory of P̂.

The situation yP : P →֒ P̂ is a canonical example of the situation P →֒M
that led Joyal, Nielsen, and Winskel to open-map bisimulation [42]. Using
the Yoneda lemma, a map f : X → Y is open iff whenever we have the
situation on the left below, we may “complete the square” as on the right:

(p′, y′) (p′, x′)
fp′

(p′, y′)

(p, x)
fp

(p, y)

e

OO

(p, x)
fp

e

OO

(p, y)

e

OO
(5.4)

With the transition system intuition from above, this just requires f to
reflect as well as preserve transitions, as expected.

The analogue of (2.6) saying that any path set is a union of primes below
it is that any presheaf is a colimit of representables:

X ∼=
∫ (p,x)∈elts X

yPp . (5.5)

The role of the colimit is to “glue together” the paths of X as dictated by
the category of elements of X. The counterpart of the freeness property (2.7)

102 CHAPTER 5. DOMAIN THEORY FROM PRESHEAVES

is that P̂ is the free colimit-completion of P. So for any functor f : P → C,
where C is a category with all colimits, there is a colimit-preserving functor
f † : P̂→ C, determined to within isomorphism, such that f ∼= f † ◦ yP—see
e.g. [50], page 43:

P
yP //

f

∼=

$$I
IIIIII P̂

f†

��

C

f †X =
∫ (p,x)∈elts X

fp . (5.6)

This suggests considering colimit-preserving functors f : P̂ → Q̂ between
presheaf categories. By the freeness property, such functors correspond to
within isomorphism to functors P → Q̂. We thus have the chain of equiva-
lences:

[P, Q̂] = [P, [Qop,Set]] ∼= [P×Qop,Set] = ̂Pop ×Q . (5.7)

Once again, the path category Pop ×Q provides a function space.

5.3 Linear and Nonlinear Maps

We obtain 2-categories Lin, Cts, and Aff intuitively in the same way as
the corresponding categories were obtained in Section 2.3, giving rise to a
2-categorical model of linear logic, and via pseudo-comonads, to models of
intuitionistic logic and affine-linear logic, respectively. We give only a brief
overview below; details can be found in [20].

Write Lin for the 2-category with objects path categories P, Q, . . ., ar-
rows colimit-preserving functors between the associated presheaf categories,
and natural transformations as two-cells. The equivalence of categories

Lin(P, Q) ≃ [P×Qop,Set] (5.8)

provides a relational exposition of maps of Lin (with paths of P and Q
related in a set of ways, rather than just related or not related, as in the
path set case). Again, this exposes (−)op as an involution of linear logic.
It will be useful in Chapter 7 below to use functors P × Qop → Set to
stand for maps of Lin. Such functors are called profunctors (or bimodules,
or distributors, see [9] for an elementary introduction). The bicategory of
profunctors, Prof , is biequivalent to Lin via the equivalence above. We’ll
write f : P −7→ Q when f is a profunctor P× Qop → Set. The composition
of profunctors f : P −7→ Q and g : Q −7→ R is obtained using the coend
formula

(g ◦ f)(p, r) =
∫ q∈Q

f(p, q)× g(q, r) . (5.9)

Intuitively, the role of the coend is to abstract away from the q ∈ Q used in
the communication between processes f and g.

5.3. LINEAR AND NONLINEAR MAPS 103

An analogue of the exponential ! can be obtained by taking !P to be
the free finite-colimit completion of P. It can then be shown that P̂ with
the inclusion functor iP : !P → P̂ is the free filtered-colimit completion
of !P—see [44]. It follows that maps !P → Q in Lin correspond, to within
isomorphism, to filtered-colimit preserving (i.e. continuous) functors P̂→ Q̂.
The operation ! extends to a 2-functor ! : Cts → Lin which is pseudo-
left adjoint to the inclusion Lin →֒ Cts of 2-categories. The unit of the
adjunction is given by ηPX = P̂(iP−,X).

Likewise, P̂ with the inclusion jP : P⊥ → P̂ sending ⊥ to ∅ and acting
as yP elsewhere, is the free connected-colimit completion of P⊥. So maps
P⊥ → Q in Lin correspond, to within isomorphism, to connected-colimit
preserving (i.e. affine) functors P̂→ Q̂. Lifting extends to a 2-functor (−)⊥ :
Aff → Lin; for g : P → Q in Aff , the functor g⊥ : P⊥ → Q⊥ in Lin
takes X ∈ P̂⊥ with decomposition Σi∈X⊥⌊Xi⌋ to f⊥(X) =def Σi∈X⊥⌊f(Xi)⌋,
cf. Proposition 5.1. This functor is a pseudo-left adjoint to the inclusion
Lin →֒ Aff with unit given by the operation ⌊−⌋ from Section 5.1.

Maps P → Q of Aff can be represented by profunctors f : P⊥ −7→ Q
and composition in Aff is mirrored by composition of such profunctors. A
useful way of defining this composition is as follows. By currying we obtain a
functor curry f : P⊥ → Q̂ and, using lifting, a profunctor P⊥ −7→ Q⊥ sending
(P,Q) to ⌊(curry f)P ⌋Q. Now, given also g : Q⊥ −7→ R, the composition
g ◦ f : P⊥ −7→ R can be obtained as the composition g ◦ (⌊(curry f)+⌋−) of
profunctors using (5.9):

(g ◦ f)(P, r) =
∫ Q∈Q⊥ ⌊(curry f)P ⌋Q× g(Q, r) . (5.10)

From the above we see that the categorical situation using presheaves
is the same as for path sets and so the universal constructions and their
properties carry over, only we need to replace straight equality by isomor-
phism. For Affine HOPLA, the interpretation of types as posets of paths
is the same as in the path set case, while for HOPLA itself, we need to
move to path categories, as !P will generally be a category even if P is just a
poset.1 Solutions to recursive type equations can then be obtained as in [18],
characterising solutions up to isomorphism. In fact, our type constructors
preserve inclusions of categories in each argument, and so recursive types
can be interpreted as limits

⋃
n Fn(∅) of ω-chains of inclusions

∅ ⊆ F (∅) ⊆ · · · ⊆ Fn(∅) ⊆ · · · . (5.11)

This makes the interpretation of recursive types identical to that of their
unfoldings, and so we may elide the use of the abs and rep isomorphisms.
We’ll exploit this in the next chapter.

1The operator !(−) preserves the property of being essentially small, i.e. equivalent to

a category whose objects form a set. This is sufficient to ensure that b!P will always be a
category.

104 CHAPTER 5. DOMAIN THEORY FROM PRESHEAVES

With one exception, all the properties of Chapter 2 and Sections 3.2
and 4.2 can be shown to hold up to isomorphism in the presheaf setting.
The exception is the equation

J[Σi∈Iui > x⊗ y ⇒ t]K = JΣi∈I [ui > x⊗ y ⇒ t]K if I 6= ∅, (5.12)

from Section 4.2. It fails because tensor match is affine in the matched term,
but “affine” now means preserving connected colimits, not just nonempty
joins, and sums (coproducts) are manifestly not connected.

This difference in the notion of affine when moving from path sets to
presheaves is central to the distinguishing power of the presheaf semantics.
The interpretation of the term a.x is an affine map, and so allowing affine
maps to preserve nonempty joins validates both

a.(b.∅ + c.∅) = a.b.∅ + a.c.∅ and

a.a.∅ = a.(∅ + a.∅) = a.∅ + a.a.∅ .
(5.13)

The presheaf semantics of Affine HOPLA distinguishes the terms in both
cases. Prefixing is interpreted by the lifting construct ⌊−⌋ of Section 5.1,
and as indicated there, it is analogous to adding a root to a synchronisa-
tion forest, forming a tree. Thus, the presheaf semantics of Affine HOPLA
interprets these processes as the presheaves corresponding to their usual
synchronisation tree representations (Figures 1.2 and 5.2). It follows imme-
diately that the presheaf semantics of HOPLA and Affine HOPLA are not
fully abstract with respect to contextual equivalence, because by the full
abstraction results of Part I, there are no contexts distinguishing between
the terms a.∅ + a.a.∅ and a.a.∅.

Chapter 6

Strong Correspondence

Despite the correspondence results (Theorems 3.20 and 4.13), the path se-
mantics does not really explain the operational semantics of HOPLA and
Affine HOPLA. Indeed, because the processes t and u of (5.1) are equated in
the path semantics, these results would still hold if the operational semantics
had an extra rule like e.g.

a.a.a.∅
a!
−→ a.∅ + a.a.∅

(6.1)

—although this is “clearly wrong”. This chapter provides an explanation for
the operational rules of Chapters 3 and 4 by relating the realisers of presheaf
denotations to derivations in the operational semantics.

For terms ⊢ t : P and actions P : a : P′ the correspondence results state
the equality

Σt′J!t
′K = a∗JtK (6.2)

—where t′ ranges terms such that P : t
a
−→ t′ : P′. A stronger correspondence

can be obtained for the presheaf semantics by replacing the sum Σt′J!t
′K

over successor terms by the sum ΣdJ!tdK over derivations d with conclusion
P : t

a
−→ td : P′. We also need to replace equality by isomorphism,

a∗JtK ∼= ΣdJ!tdK . (6.3)

The operational rules are designed with this “strong correspondence” in
mind [64, 65]. Even by itself, the rule (6.1) would violate strong correspon-
dence because

(a!)∗Ja.a.a.∅K ∼= J!a.a.∅K 6∼= J!(a.∅ + a.a.∅)K . (6.4)

In Section 6.1 we prove the result for finitary HOPLA (leaving out re-
cursive types and recursive process definitions). We have not yet succeeded
in extending the proof to full HOPLA. Work in progress is outlined in Sec-
tion 6.2. Strong correspondence for Affine HOPLA is much easier, see Sec-
tion 6.3.

105

106 CHAPTER 6. STRONG CORRESPONDENCE

6.1 Finitary HOPLA

Without recursive types we can give a simple proof of strong correspondence
for HOPLA. The proof can easily be extended to handle recursively defined
processes, but since these are not very interesting without recursive types,
we leave out recursion on terms as well as on types. The proof uses logical
predicates AP on closed terms of type P, defined by structural induction on
types:

AP→Q(t) ⇐⇒def ∀u. (AP(u) =⇒ AQ(t u))

AΣα∈APα(t) ⇐⇒def ∀β ∈ A. APβ
(πβt)

A!P(t) ⇐⇒def

{
(JtK ∼= ΣdJ!tdK) and

(!P : t
!
−→ t′ : P =⇒ AP(t′))

(6.5)

—where in the sum above d ranges over derivations of !P : t
!
−→ td : P. The

logical predicates extend to actions as follows:

AP(u) A(Q : a : P′)

A(P→ Q : u 7→ a : P′)

A(Pβ : a : P′) β ∈ A

A(Σα∈APα : βa : P′)

A(!P : ! : P)

A(Tj [µ~T .~T/~T] : a : P′)

A(µj
~T .~T : abs a : P′)

(6.6)

By structural induction on types we have

Lemma 6.1 Suppose ⊢ t : P. Then AP(t) iff for all actions P : a : P′ with
A(P : a : P′) we have A!P′(a∗t).

Recall also Lemma 3.13 which says !P′ : a∗t
!
−→ t′ : P′ iff P : t

a
−→ t′ : P′. In fact,

such derivations are in bijective correspondence, and we’ll use this fact freely
below. In addition, we’ll make use of presheaf versions of Propositions 3.6,
3.7, and 3.8 saying that, in the presheaf semantics, we have isomorphisms

J(λx.t) uK ∼= Jt[u/x]K (6.7)

Jπβ(βt)K ∼= JtK (6.8)

J[!u > !x⇒ t]K ∼= Jt[u/x]K (6.9)

Lemma 6.2 (Main Lemma) For all terms ⊢ t : P of finitary HOPLA we
have AP(t).

Proof. By structural induction on terms using the induction hypothesis

Suppose x1 : P1, . . . , xk : Pk ⊢ t : P and let ⊢ sj : Pj with APj
(sj)

for 1 ≤ j ≤ k. Then AP(t[s1/x1, . . . , sk/xk]).

We’ll abbreviate x1 : P1, . . . , xk : Pk to Γ and [s1/x1, . . . , sk/xk] to [s].

6.1. FINITARY HOPLA 107

Variable. Immediate.

Nondeterministic sum. Let Γ ⊢ Σi∈Iti : P and ⊢ sj : Pj with APj
(sj) for

1 ≤ j ≤ k. Using Lemma 6.1 we must show that whenever A(P : a : P′),
we have A!P′(a∗Σi∈Iti[s]). Letting d range over derivations P : Σi∈Iti[s]

a
−→

td : P′ and di over derivations P : ti[s]
a
−→ tdi

: P′ for each i ∈ I, we have
ΣdJ!tdK ∼= Σi∈IΣdi

J!tdi
K by the operational rules, and hence:

Ja∗Σi∈Iti[s]K
∼= a∗Σi∈IJti[s]K
∼= Σi∈IJa

∗ti[s]K (linearity of a∗)
∼= Σi∈IΣdi

J!tdi
K (ind. hyp.)

∼= ΣdJ!tdK

(6.10)

Further, if P : Σi∈Iti[s]
a
−→ t′ : P′, then for some j ∈ I we have P : tj [s]

a
−→ t′ :

P′ and so by the induction hypothesis, AP′(t′) as wanted.

Abstraction. Let Γ ⊢ λx.t : P→ Q and ⊢ sj : Pj with APj
(sj) for 1 ≤ j ≤ k.

Using Lemma 6.1 we must show that whenever A(P → Q : u 7→ a : P′)—
so in particular AP(u)—we have A!P′((u 7→ a)∗(λx.t[s])). Letting d range
over derivations P → Q : λx.t[s]

u 7→a
−−−→ td : P′ and d′ over derivations P :

t[s][u/x]
a
−→ td′ : P′, we have ΣdJ!tdK ∼= Σd′J!td′K by the operational rules, and

hence:
J(u 7→ a)∗(λx.t[s])K
∼= Ja∗(λx.t[s] u)K (def. of (u 7→ a)∗)
∼= Ja∗(t[s][u/x])K (by (6.7))
∼= Σd′J!td′K (ind. hyp.)
∼= ΣdJ!tdK

(6.11)

Further, if P → Q : λx.t[s]
u 7→a
−−−→ t′ : P′, then Q : t[s][u/x]

a
−→ t′ : P′ and so

by the induction hypothesis, AP′(t′) as wanted.

Application. Let Γ ⊢ t u : Q and ⊢ sj : Pj with APj
(sj) for 1 ≤ j ≤ k. By the

induction hypothesis, AP→Q(t[s]) and AP(u[s]) for some P. The definition of
AP→Q yields AQ(t[s] u[s]) as wanted.

Injection. Let Γ ⊢ βt : Σα∈APα and ⊢ sj : Pj with APj
(sj) for 1 ≤ j ≤ k.

Using Lemma 6.1 we must show that whenever A(Σα∈APα : βa : P′) we have

A!P′((βa)∗(βt[s])). Letting d range over derivations Σα∈APα : βt[s]
βa
−→ td : P′

and d′ over derivations Pβ : t
a
−→ td′ : P′, we have ΣdJ!tdK ∼= Σd′J!td′K by the

operational rules, and hence:

J(βa)∗(βt[s])K
∼= Ja∗(πβ(βt[s]))K (def. of (βa)∗)
∼= Ja∗(t[s])K (by (6.8))
∼= Σd′J!td′K (ind. hyp.)
∼= ΣdJ!tdK

(6.12)

108 CHAPTER 6. STRONG CORRESPONDENCE

Further, if Σα∈APα : βt[s]
βa
−→ t′ : P′, then Pβ : t[s]

a
−→ t′ : P′ and so by the

induction hypothesis, AP′(t′) as wanted.

Projection. Let Γ ⊢ πβt : Pβ and ⊢ sj : Pj with APj
(sj) for 1 ≤ j ≤ k. By the

induction hypothesis, AΣα∈APα(t) and so by definition, APβ
(πβt) as wanted.

Prefixing. Let Γ ⊢ !t : !P and ⊢ sj : Pj with APj
(sj) for 1 ≤ j ≤ k.

There is just one derivation !P : !t[s]
!
−→ t[s] : P and we have the identity

J!∗(!t[s])K = J!t[s]K by definition, and AP(t[s]) by the induction hypothesis.

Prefix match Let Γ ⊢ [u > !x ⇒ t] : Q and ⊢ sj : Pj with APj
(sj) for

1 ≤ j ≤ k. Using Lemma 6.1, and renaming x if necessary to make it
distinct from the xj, we must show that whenever A(Q : a : P′) we have
A!P′(a∗[u[s] > !x ⇒ t[s]]). The induction hypothesis for u yields J!∗u[s]K =

Ju[s]K ∼= Σd′J!u
′
d′K and AP(u′

d′) for derivations d′ of !P : u[s]
!
−→ u′

d′ : P.

Letting d range over derivations Q : [u[s] > !x⇒ t[s]]
a
−→ td : P′ and dd′ over

derivations Q : t[s][u′
d′/x]

a
−→ tdd′

: P′, we have ΣdJ!tdK ∼= Σd′Σdd′
J!tdd′

K by
the operational rules and hence,

Ja∗[u[s] > !x⇒ t[s]]K
∼= Ja∗[Σd′ !u

′
d′ > !x⇒ t[s]]K (compositionality)

∼= a∗Σd′Jt[s][u
′
d′/x]K (by (6.9))

∼= Σd′Ja
∗(t[s][u′

d′/x])K (linearity of a∗)
∼= Σd′Σdd′

J!tdd′
K (ind. hyp.)

∼= ΣdJ!tdK

(6.13)

Further, if Q : [u[s] > !x ⇒ t[s]]
a
−→ t′ : P′, then !P : u[s]

!
−→ u′ : P for

some u′ such that AP(u′) by the induction hypothesis for u, and then Q :
t[s][u′/x]

a
−→ t′ : P′ with AQ(t′) by the induction hypothesis for t, as wanted.

The structural induction is complete. ✷

Theorem 6.3 (Strong Correspondence) Suppose ⊢ t : P and P : a : P′

in finite HOPLA. Then a∗JtK ∼= ΣdJ!tdK where d ranges over derivations of
P : t

a
−→ td : P′.

Proof. By the main lemma, we have A!P′(a∗t). Hence, Ja∗tK ∼= Σd′J!td′K where

d′ ranges over derivations of !P′ : a∗t
!
−→ td′ : P′. The result then follows by

Lemma 3.13. ✷

6.2 Full HOPLA

In extending the above result to the full language, in particular including
recursive types, it would be reasonable to try to imitate the use of logical
relations in Section 3.4.1. The relation X ⊆P t between a path set X ⊆ P and

6.2. FULL HOPLA 109

a closed term ⊢ t : P was understood intuitively as saying that all paths p in
X are operationally realised by t, so p ∈P t. Generalising this to presheaves,
we are led to say not only whether or not a path may be realised, but to give
the set of ways it may be realised, i.e. we are led to turn the logical relations
(− ∈P t) into presheaves t̂ ∈ P̂, and then replace X ⊆P t by P̂(X, t̂). By a
straightforward realisability interpretation of (3.70), we would obtain

t̂(P 7→ q) = Πu[P̂(iPP, û), t̂ uq]

t̂(βp) = π̂βtp

t̂P = ΣdP̂(iPP, t̂d)

t̂(abs p) = r̂ep tp

(6.14)

—where d ranges over derivations of !P : t
!
−→ td : P. In particular, the set

t̂(P 7→ q) is obtained by replacing universal quantification with product and
implication by function space in the formula ∀u. P ⊆P u =⇒ q ∈Q t u.

As it stands, there is a problem with this. Since !P is now the free finite-
colimit completion of P, paths P should be interpreted as finite colimits,
not as finite sets of paths. It is therefore not immediately obvious how to
define a formal language of paths (and morphisms between paths) on which
structural induction would make sense.

Because of this problem, we have considered a slightly roundabout ap-
proach, starting with the definition of a nondeterministic evaluation relation
P : t ⇓ v. Here, ⊢ t : P and v is a closed, well-formed term generated by the
grammar

v ::= λx.t | βt | !t | abs v . (6.15)

The evaluation relation is defined by the rules

P : v ⇓ v

P : t[rec x.t/x] ⇓ v

P : rec x.t ⇓ v

P : tj ⇓ v

P : Σi∈Iti ⇓ v
j ∈ I

P→ Q : t ⇓ λx.t′ P : t′[u/x] ⇓ v

Q : t u ⇓ v

Σα∈APα : t ⇓ βt′ Pβ : t′ ⇓ v

Pβ : πβt ⇓ v

!P : u ⇓ !u′ Q : t[u′/x] ⇓ v

Q : [u > !x⇒ t] ⇓ v

Tj [µ~T .~T/~T] : t ⇓ v

µj
~T .~T : abs t ⇓ abs v

µj
~T .~T : t ⇓ abs v

Tj[µ~T .~T/~T] : rep t ⇓ v

(6.16)

By rule-induction we have that P : t ⇓ v implies ⊢ v : P as expected.

Lemma 6.4 Suppose ⊢ t : P. There is a bijective correspondence between
pairs of derivations P : t ⇓ v and P : v

a
−→ t′ : P′ and derivations P : t

a
−→ t′ : P′.

Proof. By induction on d, Figure 6.1 defines a map θ from pairs of derivations
(d, d′) with d a derivation of P : t ⇓ v and d′ a derivation of P : v

a
−→ t′ : P′

110 CHAPTER 6. STRONG CORRESPONDENCE

to derivations θ(d, d′) of P : t
a
−→ t′ : P′. In the figure, types are omitted for

clarity, and we use the notation
d

t ⇓ v
to mean that d is a derivation of t ⇓ v.

Conversely, by induction on d, Figure 6.2 defines a map φ from deriva-
tions d of P : t

a
−→ t′ : P′ to pairs φd = (φ1d, φ2d) where φ1d is a derivation

of P : t ⇓ v and φ2d is a derivation of P : v
a
−→ t′ : P′. It is exploited in

the definition that the unique subderivation of φ2d deriving v0
a0−→ t′ with

v ≡ absn v0 and a ≡ absn a0 is also a subderivation of d itself, so that we
may apply φ inductively to its strict subderivations.

The maps θ and φ are shown to be inverses by two straightforward
inductions on derivations. ✷

For non-value ⊢ t : P, we now define t̂ =def Σdv̂d where d ranges over
derivations d of P : t ⇓ vd. For values v, the presheaves v̂ are defined by well-
founded induction using a lexicographic product of a well-founded relation
on path objects and morphisms and the structural order on values. Here are
first the defining equations:

λ̂x.t(P 7→ q) =def Πu[P̂(iPP, û), t̂[u/x]q]

λ̂x.t(M 7→ n : P 7→ q → P ′ 7→ q′) =def Πu[P̂(iPM, û), t̂[u/x]n]

β̂t(βp) =def t̂p

β̂t(βm : βp→ βp′) =def t̂m

!̂tP =def P̂(iPP, t̂)

!̂t(M : P → P ′) =def P̂(iPM, t̂) = (− ◦ iPM)

âbs vp =def v̂p

âbs v(m : p→ p′) =def v̂m

(6.17)

Here, P ranges over finite colimits, i.e. objects in !P →֒ P̂ while P 7→ q is
used as notation for pairs of P → Q = (!P)op × Q and βp as notation for
images of the injection map inβ : Pβ → Σα∈APα between path categories.

The map λ̂x.t(M 7→ n) maps a tuple 〈fu : P̂(iPP, û)→ t̂[u/x]q′〉u to the tuple

〈t̂[u/x]n ◦ fu ◦ (− ◦ iPM)〉u. We’ll drop the injection iP below for brevity.

Lemma 6.5 The presheaves v̂ are well-defined.

Proof. A well-founded relation on paths is obtained using the axiom of
foundation saying that the relation ∈ is well-founded. In a set-theoretic
encoding, the pairs P 7→ q are sets {P, {P, q}} such that P ∈ P 7→ q and
q ∈2 P 7→ q. The injects βp are pairs (β, p), so sets {β, {β, p}}, so that

6.2. FULL HOPLA 111

θ(v ⇓ v, d′) =def d′

θ(

d
tj ⇓ v

Σi∈Iti ⇓ v
j ∈ I,

d′

v
a
−→ t′

) =def

θ(d, d′)

tj
a
−→ t′

Σi∈Iti
a
−→ t′

j ∈ I

θ(

d
t[rec x.t/x] ⇓ v

rec x.t ⇓ v
,

d′

v
a
−→ t′

) =def

θ(d, d′)

t[rec x.t/x]
a
−→ t′

rec x.t
a
−→ t′

θ(

d1

t ⇓ λx.t′′
d2

t′′[u/x] ⇓ v

t u ⇓ v
,

d′

v
a
−→ t′

) =def

θ(d1,

θ(d2, d
′)

t′′[u/x]
a
−→ t′

λx.t′′
u 7→a
−−−→ t′

)

t
u 7→a
−−−→ t′

t u
a
−→ t′

θ(

d1

t ⇓ βt′′
d2

t′′ ⇓ v

πβt ⇓ v
,

d′

v
a
−→ t′

) =def

θ(d1,

θ(d2, d
′)

t′′
a
−→ t′

βt′′
βa
−→ t′

)

t
βa
−→ t′

πβt
a
−→ t′

θ(

d1

u ⇓ !u′
d2

t[u′/x] ⇓ v

[u > !x⇒ t] ⇓ v
,

d′

v
a
−→ t′

) =def

θ(d1, !u′ !
−→ u′)

u
!
−→ u′

θ(d2, d
′)

t[u′/x]
a
−→ t′

[u > !x⇒ t]
a
−→ t′

θ(

d
t ⇓ v

abs t ⇓ abs v
,

d′

v
a
−→ t′

abs v
abs a
−−−→ t′

) =def

θ(d, d′)

t
a
−→ t′

abs t
abs a
−−−→ t′

θ(

d
t ⇓ abs v

rep t ⇓ v
,

d′

v
a
−→ t′

) =def

θ(d,

d′

v
a
−→ t′

abs v
abs a
−−−→ t′

)

t
abs a
−−−→ t′

rep t
a
−→ t′

Figure 6.1: Definition of θ

112 CHAPTER 6. STRONG CORRESPONDENCE

φ(
d

v
a
−→ t′

) =def (v ⇓ v, d)

φ(

d

tj
a
−→ t′

Σi∈Iti
a
−→ t′

j ∈ I) =def (

φ1d
tj ⇓ v

Σi∈Iti ⇓ v
j ∈ I,

φ2d

v
a
−→ t′

)

φ(

d

t[rec x.t/x]
a
−→ t′

rec x.t
a
−→ t′

) =def (

φ1d
t[rec x.t/x] ⇓ v

rec x.t ⇓ v
,

φ2d

v
a
−→ t′

)

φ(

d

t
u 7→a
−−−→ t′

t u
a
−→ t′

) =def (

φ1d
t ⇓ λx.t′′

φ1d
′

t′′[u/x] ⇓ v

t u ⇓ v
,

φ2d
′

v
a
−→ t′

)

—where d′ is a subderivation of φ2d =

d′

t′′[u/x]
a
−→ t′

λx.t′′
u 7→a
−−−→ t′

φ(

d

t
βa
−→ t′

πβt
a
−→ t′

) =def (

φ1d
t ⇓ βt′′

φ1d
′

t′′ ⇓ v

πβt ⇓ v
,

φ2d
′

v
a
−→ t′

)

—where d′ is a subderivation of φ2d =

d′

t′′
a
−→ t′

βt′′
βa
−→ t′

φ(

d

t
a
−→ t′

abs t
abs a
−−−→ t′

) =def (

φ1d
t ⇓ v

abs t ⇓ abs v
,

φ2d

v
a
−→ t′

abs v
abs a
−−−→ t′

)

φ(

d

t
abs a
−−−→ t′

rep t
a
−→ t′

) =def (

φ1d
t ⇓ abs v

rep t ⇓ v
, d′)

—where d′ is a subderivation of φ2d =

d′

v
a
−→ t′

abs v
abs a
−−−→ t′

Figure 6.2: Definition of φ

6.2. FULL HOPLA 113

p ∈2 βp. Finite colimits P are presheaves, so functors, so pairs of functions,
so sets {P0, {P0, P1}}. Here, P0 is a function on objects, so a set of pairs
(p, x) where x ∈ Pp. Hence, p ∈3 P whenever Pp 6= ∅. We therefore have a
well-founded order ≻=∈+ on paths satisfying

P 7→ q ≻ P

P 7→ q ≻ q

βp ≻ p

P ≻ p if Pp 6= ∅

(6.18)

We extend this order to morphisms using a product construction:

(m : p→ p′) ≻ (n : q → q′) ⇐⇒def (p ≻ q) and (p′ ≻ q′) (6.19)

We now have p ≻ q ⇐⇒ 1p ≻ 1q and we can relate paths and morphisms
using p ≻ m ⇐⇒def 1p ≻ m and m ≻ p ⇐⇒def m ≻ 1p.

Now, in the first three clauses of the definition of the presheaves v̂, we
have that paths/morphisms mentioned on the left-hand side are related by
≻ to those needed on the right-hand side. In particular, to obtain the set
P̂(P, û) we need only consider path objects p of P such that Pp 6= ∅ and
morphisms between such paths. In the fourth clause, the path/morphism
mentioned on the two sides are the same, but the structural size of the value
decreases. Thus, by well-founded induction using the lexicographic product
of ≻ with the structural order on values, the presheaves v̂ are well-defined.

✷

Using this definition of t̂ we can show a result corresponding to the main
lemma (Lemma 3.15) of Section 3.4. We’ll need some auxiliary notation.
First, consider a family 〈f i : Xi → Yi〉i∈I with each f i ∈ P̂(Xi, Yi). We’ll
write Σi∈If

i for the obvious map Σi∈IXi → Σi∈IYi. Second, let f : X → t̂

and g : Y → û be maps in P̂→ Q and P̂, respectively. We want a map
f · g : XY → t̂ u. Application yields a map fg : XY → t̂û. At path q, the
application t̂û is given by the coend formula

∫ P∈!P P̂(P, û)× t̂(P 7→ q)

=
∫ P∈!P

P̂(P, û)× Σdλ̂x.td(P 7→ q)
∼=

∫ P∈!P
Σd(P̂(P, û)× λ̂x.td(P 7→ q))

∼= Σd

∫ P∈!P
P̂(P, û)× λ̂x.td(P 7→ q)

= Σd

∫ P∈!P
P̂(P, û)×Πu[P̂(P, û), ̂td[u/x]q]

For each derivation d of P → Q : t ⇓ λx.td there is a unique morphism hd

from the above coend to ̂td[u/x] because the latter is the vertex of a wedge

114 CHAPTER 6. STRONG CORRESPONDENCE

from the same functor. Indeed, for any M : P → P ′ in !P, the square

P̂(P ′, û)×Πu′ [P̂(P, û′), ̂td[u′/x]q]
(−◦M)×1

//

1×〈fu′ 7→fu′◦(−◦M)〉u′

��

P̂(P, û)×Πu′ [P̂(P, û′), ̂td[u′/x]q]

appu

��

P̂(P ′, û)×
∏

u′ [P̂(P ′, û′), ̂td[u′/x]q] appu

// ̂td[u/x]q

commutes. Here, appu maps (g, 〈fu′〉u′) to fug. We take f ·g to be (Σdhd)◦fg :

XY → Σd
̂td[u/x] = t̂ u.

Lemma 6.6 (Main Lemma) For any ⊢ t : P the set P̂(JtK, t̂) is nonempty.

Proof. By structural induction on open terms using the induction hypothesis

Suppose t has free variables among x1 : P1, . . . , xk : Pk and that
there are closed terms ⊢ sj : Pj for each 1 ≤ j ≤ k. Then, there
is a map

Ht : ΠjP̂j(Xj , ŝj)→ P̂(JtK(X1, . . . ,Xk), ̂t[s1/x1, . . . , sk/xk]) ,
(6.20)

natural in the Xi.

We’ll abbreviate (X1, . . . ,Xk) to X and [s1/x1, . . . , sk/xk] to s, and we’ll
suppress the free variables of t whenever possible.

Variable. Immediate as the projections from the product Πj P̂j(Xj , ŝj) are
natural in the Xi.

Recursion. We want a map f : Jrec x.tK → r̂ec x.t. We’ll start by showing
that for each n ∈ ω there is a map fn : Jrecn x.tK→ r̂ec x.t. Here, Jrecn x.tK
is the n’th approximation to the denotation of Jrec x.tK.

Basis. Jrec0 x.tK is the empty presheaf, and so we may use the empty natural
transformation.

Step. Suppose we have fn : Jrecn x.tK → r̂ec x.t. By the induction hypothe-
sis for the structural induction, there is a natural transformation Ht(f

n) :

JtK(Jrecn x.tK) → ̂t[rec x.t/x]. Now, JtK(Jrecn x.tK) = Jrecn+1 x.tK and there

is an obvious isomorphism θ : ̂t[rec x.t/x] ∼= r̂ec x.t and so we can take
fn+1 = θ ◦Ht(f

n).

The mathematical induction is complete.
For each n ∈ ω, there is a map gn : Jrecn x.tK → Jrecn+1 x.tK given

by induction on n so that g0 is the empty natural transformation while
gn+1 = JtKgn. Thus, we have a diagram of shape ω in P̂ whose colimit is
the denotation of rec x.t. Therefore, if we can show that r̂ec x.t is the vertex

6.2. FULL HOPLA 115

of a corresponding cocone, we are done as we can take f to be the unique
mediating morphism from the colimit to r̂ec x.t. Clearly, it is enough to show
that the following triangle commutes for any n ∈ ω:

Jrecn x.tK
fn

&&M
MMMMMMMMM

gn

��

r̂ec x.t

Jrecn+1 x.tK

fn+1

88qqqqqqqqqq

We proceed by mathematical induction. The base case is obvious since g0 and
f0 are both empty. For the induction step, suppose that the above diagram
commutes. We need to show that fn+2 ◦ gn+1 = fn+1. Now, fn+2 ◦ gn+1 =
θ ◦ Ht(f

n+1) ◦ JtKgn while fn+1 = θ ◦ Ht(f
n) and so the wanted equality

follows by naturality of Ht and the commutativity of the diagram above.
The mathematical induction is complete, and r̂ec x.t is the vertex of a cocone
as wanted.

Nondeterministic sum. We want a map f : JΣi∈ItiK → Σ̂i∈Iti. We have

JΣi∈ItiK ∼= Σi∈IJtiK and Σ̂i∈Iti ∼= Σi∈I t̂i. By the induction hypothesis, there
is a map f i : JtiK→ t̂i for each i ∈ I and we can thus take f = Σi∈Ifi.

Abstraction. We want a map f : Jλx.tK→ λ̂x.t. So we need a function

fP 7→q : Jλx.tK(P 7→ q)→ Πu[P̂(P, û), t̂[u/x]q] (6.21)

natural in P 7→ q. Note that Jλx.tK(P 7→ q) ∼= (JtKP)q. By the induction
hypothesis, Ht provides for each u and g : P → û a natural transformation

Ht(g) : JtK(P) → t̂[u/x]. So given y ∈ (JtKP)q we take fP 7→qy to be at
component u the map g 7→ Ht(g)qy. Naturality in q follows from naturality
of Ht(g) while naturality in P follows from naturality of Ht.

Application. We want a map f : Jt uK → t̂ u. By the induction hypothesis,
there are maps g : JtK→ t̂ and h : JuK→ û. We can then take f = g · h.

Prefixing. We want a map f : J!tK → !̂t. By the induction hypothesis, there
is a map g : JtK → t̂. We have J!tK ∼= ηPJtK and !̂t = P̂(iP−, t̂) ∼= ηPt̂, and so
we take f = ηPg.

Prefix match. We want a map f : J[u > !x ⇒ t]K → ̂[u > !x⇒ t]. By the
induction hypothesis for u there is a map g : JuK → û. Letting d range
over derivations !P : u ⇓ !ud, we have JuK ∼= ΣdXd and g ∼= Σdgd such that

gd : Xd → !̂ud. Note that since !̂ud
∼= ηPûd we have εPgd : εPXd → ûd. From

116 CHAPTER 6. STRONG CORRESPONDENCE

the denotational semantics, we have

J[u > !x⇒ t]Kq
∼=

∫ P∈!P
JuKP × (JtKP)q

∼=
∫ P∈!P

(ΣdXd)P × (JtKP)q
∼= Σd

∫ P∈!P
XdP × (JtKP)q

For each derivation d, the canonical map Xd → ηP(εPXd) (corresponding to
the fact that X ⊆ ηP(εPX) for path sets) induces a unique mediating map
hd from the above coend to the coend

∫ P∈!P
(ηP(εPXd))P × (JtKP)q

∼=
∫ P∈!P

P̂(P, εPXd)× (JtKP)q
∼= (JtK(εPXd))q

By the induction hypothesis for t we get from Ht(εPgd) a natural trans-

formation fd : JtK(εPXd) → ̂t[ud/x] and so we may take f = Σd(fd ◦ hd)

because ̂[u > !x⇒ t] ∼= Σd
̂t[ud/x].

The remaining cases are treated similarly. ✷

What we would like to do now is to combine the above result with the
approach from Section 6.1, using a logical predicate BP on natural transfor-
mations f : X → t̂ which at prefix type would ensure that we got not just
any map JtK→ t̂, but a suitable bijection giving strong correspondence from
the main lemma.

We expect to define the predicates BP(f : X → v̂) as ∀p ∈ P. BP(f, p)
where the predicates BP(f : X → v̂, p) are defined by well-founded induction
on the lexicographic product used to show well-definedness of the presheaves
v̂. For f : X → t̂ where t is not a value, we have that each derivation d of
t ⇓ vd provides a map fd : Xd → v̂d with f ∼= Σdfd, and we would then define
BP(f) in terms of BP(fd). A proof along these lines is work in progress.

An alternative way of obtaining the main lemma is also possible, avoiding
the nondeterministic evaluation. Rather, it is based on a direct definition
of the presheaves t̂ much as in (6.14), but with a different treatment of
recursive types. This approach uses a realisability version of Lemma 3.17
which is flexible enough that we may be able to adjust to make it behave
well with respect to suitable logical predicates BP.

6.3 Affine HOPLA

If ⊢ t : P and P : a : P′ in Affine HOPLA, then a∗JtK is a presheaf over P′
⊥.

By Proposition 5.1, a∗JtK has a rooted component decomposition,

Σi∈(a∗JtK⊥)⌊Xi⌋ (6.22)

6.3. AFFINE HOPLA 117

with each Xi ∈ P̂′. As lifting interprets prefixing, proving strong corre-
spondence amounts to showing that the elements i of a∗JtK⊥ correspond
bijectively to derivations di of P : t

a
−→ tdi

: P′ with Jtdi
K ∼= Xi.

Theorem 6.7 (Strong Correspondence) Suppose ⊢ t : P and P : a : P′

in Affine HOPLA. Then a∗JtK ∼= ΣdJ!tdK where d ranges over derivations of
P : t

a
−→ td : P′.

Proof. (Sketch) For Affine HOPLA with finite unfoldings of recursively de-
fined processes, we can use well-founded induction on the size measure (4.49),
essentially repeating the proof of Lemma 4.12 showing correspondence for
finite unfoldings. In the presheaf semantics, recursively defined processes
of type P are interpreted using ω-colimits of the form

∫ n∈ω
fn∅ where

f : P → P is composed from the universal constructions of Aff . Now, all
these constructions preserve natural transformations whose components are
injections, and so the colimit has contribution at p ∈ P given up to isomor-
phism by

⋃
n∈ω (fn∅)p. This allows us to use the same kind of reasoning

here as in the proof of Theorem 4.13, extending the result to full recursion.
✷

118 CHAPTER 6. STRONG CORRESPONDENCE

Chapter 7

Event-Structure

Representation

We now study the independence structure of the tensor operation of Affine
HOPLA by giving an event-structure semantics to the language [63]. At
first order it agrees with the presheaf semantics with realisers of presheaves
corresponding to finite configurations of the representing event structure.
The representation of open terms of Affine HOPLA associates to each such
configuration the minimal input needed for the corresponding realisation.
This is analogous to Berry’s stability requirement (cf. Section 1.1.7). There,
stability was meant to avoid functions like “parallel or”, but both HOPLA
and Affine HOPLA seem to allow such functions to be expressed. Consider
the following term:

λx.[x > a.x′ ⇒ c.∅] + [x > b.x′ ⇒ c.∅] . (7.1)

In the path semantics, this term is interpreted as a function mapping ∅ to ∅
and both {a∅} and {b∅} to {c∅}. The function is thus not stable, because
the path set {a∅, b∅} dominates the inputs, yet there is no unique minimal
input associated to the output {c∅}.

But intuitively, each way of realising that output, of which there are two,
is associated with minimal input paths a∅ and b∅, respectively. Again, the
presheaf semantics is needed to distinguish between these different realisa-
tions of the same computation path. In the presheaf semantics there is not
just one c∅-output, but rather one for each realisation of a∅ in the input
and one for each realisation of b∅ in the input.

Section 7.1 reviews event structures, some basic constructions, and no-
tions of morphism. This is put to use in Section 7.2 to provide representations
of the path orders used in the first-order fragment of Affine HOPLA and cer-
tain kinds of profunctors between them. Section 7.3 then shows that the rep-
resentable profunctors include those that are denotable in the first-order lan-
guage. This provides an alternative denotational semantics of the fragment.

119

120 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

An alternative operational semantics for the first-order fragment is consid-
ered in Section 7.4. It allows an easy proof of the diamond property discussed
in Section 4.4.2. Section 7.5 briefly outlines how the event-structure deno-
tational semantics extends to higher types, at the loss of correspondence to
the presheaf semantics. A tentative extension of the operational semantics
with fully general rules for function space is also provided.

7.1 Event Structures

We repeat the definition of event structures from the introduction, but use
Girard’s notation: consistency a

` is the complement of conflict ` = #, the
reflexive closure of which is written `

a with complement a. Specifying one
relation clearly determines all of them. So an event structure is a triple
E = (E,≤,`) where E is a set of events upon which a partial order ≤ of
causality and a binary, symmetric, irreflexive relation ` of conflict is defined.
This data must satisfy

(i) ∀e ∈ E. ⌈e⌉ =def {e
′ : e′ ≤ e} is finite.

(ii) ∀e, e′, e′′ ∈ E. e ` e′ ≤ e′′ =⇒ e ` e′′.

A configuration of E is a subset x ⊆ E which is

(i) downwards-closed: ∀e ∈ x. ⌈e⌉ ⊆ x.

(ii) consistent: ∀e, e′ ∈ x. e a
` e′.

We’ll write C(E) for the partial order of finite configurations of E, ordered
by inclusion. Note that the empty set belongs to C(E) (so C(E) is pointed)
as does ⌈e⌉ for any e ∈ E. Two configurations x and x′ of C(E) are said to
be compatible, written x ↑ x′, if there exists a configuration y ∈ C(E) with
x ⊆ y and x′ ⊆ y.

Event structures can be viewed as the elements of a cpo and so admit
least fixed-points of continuous operations [94]. Let E1 = (E1,≤1,`1) and
E2 = (E2,≤2,`2) be event structures. We say that E1 is a substructure of
E2, written E1 E E2, if

(i) E1 ⊆ E2

(ii) ∀e ∈ E1. ⌈e⌉1 = ⌈e⌉2

(iii) ∀e, e′ ∈ E1. e `1 e′ ⇐⇒ e `2 e′

Clearly, if E1 E E2 and E1 = E2, then E1 and E2 are the same event struc-
ture. Event structures ordered by E form a large cpo (i.e. a cpo except for
the fact that the elements form a proper class rather than a set). The least
element is O = (∅, ∅, ∅), and the least upper bound of an ω-chain (En)n∈ω

7.1. EVENT STRUCTURES 121

with En = (En,≤n,`n) is (
⋃

n En,
⋃

n≤n,
⋃

n `n). This extends to tuples of
event structures in the obvious point-wise way. An operation f on tuples of
event structures is therefore monotone (continuous) iff it is monotone (con-
tinuous) in each argument separately. So it suffices to check monotonicity
or continuity of unary operations, and a monotone, unary operation f is
continuous iff it is continuous on events, so for any ω-chain as above, each
event of f(

⋃
n En) is an event of

⋃
n f(En).

We list some basic constructions on event structures which are clearly
monotone:

Sum. Given Ei = (Ei,≤i,`i) for i ∈ I, define Σi∈IEi to have

Events: the disjoint union of the Ei. For concreteness, let E =
⋃

i∈I {i} × Ei.

Causality: (i, e) ≤ (i′, e′) ⇐⇒def i = i′ and e ≤i e′.

Conflict: (i, e) ` (i′, e′) ⇐⇒def i 6= i′ or (i = i′ and e `i e′).

A subset of E is a configuration iff it is of the form {i}×xi where xi ∈ C(Ei)
for some i ∈ I. The poset C(Σi∈IEi) is therefore the coalesced sum of posets
C(Ei).

For each i ∈ I, assume an ω-chain (En
i)n∈ω. Events of Σi∈I

⋃
n En

i have
the form (i, e) where i ∈ I and e is an event of

⋃
n En

i , so that for some
n ∈ ω, we have that e is an event of En

i . But then for that same n, the pair
(i, e) is an event of Σi∈IEn

i , and so (i, e) is an event of
⋃

n Σi∈IE
n
i . Since⋃

n Σi∈IE
n
i E Σi∈I

⋃
n En

i by monotonicity, we have
⋃

n Σi∈IEn
i = Σi∈I

⋃
n En

i

as wanted.

Tensor. Given Ei = (Ei,≤i,`i) for i = 1, 2, define E1 ⊗ E2 to have

Events: E = {1} × E1 ∪ {2} × E2, the disjoint union of the Ei.

Causality: (i, e) ≤ (i′, e′) ⇐⇒def i = i′ and e ≤i e′.

Conflict: (i, e) ` (i′, e′) ⇐⇒def i = i′ and e `i e′.

A subset of E is a configuration iff it is of the form {1}×x1∪{2}×x2 where
xi ∈ C(Ei) for i = 1, 2. Therefore, C(E1 ⊗ E2) ∼= C(E1)× C(E2).

Given an ω-chain (En)n∈ω, an event of (
⋃

n En)⊗ E′ may have the form
(1, e) where e is an event of En for some n ∈ ω. Then for that same n, the
pair (1, e) is an event of En ⊗ E′ and so of

⋃
n (En ⊗ E′). All other events of

(
⋃

n En)⊗E′ have the form (2, e) where e is an event of E′. Then (2, e) is an
event of En⊗E′ for each n and so an event of

⋃
n∈ω En ⊗ E′. Thus, (−⊗E′)

is continuous. Continuity in the other argument is obtained symmetrically.

Lifting. Given E = (E,≤,`), define E⊥ to have

Events: E⊥ = {∅} ∪ {⌈e⌉ : e ∈ E}.

Causality: given by inclusion.

Conflict: given by incompatibility.

122 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

A subset of E⊥ is a configuration iff it is empty or of the form ⌊x⌋ =
{∅} ∪ {⌈e⌉ : e ∈ x} where x ∈ C(E). Therefore, C(E⊥) ∼= C(E)⊥.

Given an ω-chain (En)n∈ω, an event of (
⋃

n En)⊥ may be of the form ⌈e⌉
where e is an event of

⋃
n En and so of En for some n ∈ ω. For this same n,

we have that ⌈e⌉ is an event of (En)⊥ and so of
⋃

n (En⊥). The only other
event of (

⋃
n En)⊥ is ∅ which is an event of En⊥ for all n and so an event

of
⋃

n (En⊥). Thus lifting is continuous.

7.2 Representations

We may use the above constructions to give meaning to the types of the
first-order fragment of Affine HOPLA. Let ζ range over finite maps from
type variables to event structures. We then define

JT1 ⊗ T2Kζ =def JT1Kζ ⊗ JT2Kζ

JΣα∈ATαKζ =def Σα∈AJTαKζ

JT⊥Kζ =def (JTKζ)⊥

JT Kζ =def ζT

Jµj
~T .~TKζ =def µjf

(7.2)

—where µjf is the j’th component, for 1 ≤ j ≤ k, of the least fixed-point

of the mapping f sending a k-tuple of event structures ~E to the k-tuple

(JT1K(ζ[~T 7→ ~E]), . . . , JTkK(ζ[~T 7→ ~E])) . (7.3)

We’ll confuse a closed expression P for an event structure with the event
structure itself. By induction on the syntax of types we can show that C(P)
is isomorphic to the corresponding path order P⊥ according to Chapter 4.
We’ll use the path notation from that chapter for the configurations of the
event structure P with p : P ranging over nonempty configurations and
P : P over all configurations. This has the unfortunate consequence that
P now both stands for nonempty configurations of P⊥ and possibly empty
configurations of P. We’ll use !P : P⊥ for the former to avoid confusion.
We’ll write P ≤P P ′ when P is a subconfiguration of P ′.

As for terms of Affine HOPLA, consider first a presheaf X : Qop → Set
over some path order Q. By constructing its category of elements we obtain
a monotone function (both Q and elts X are posets) o : elts X → Q sending
(q, x) to q. This map is a discrete fibration. In general, a functor o : X→ Q
is a discrete fibration if whenever q ≤ q′ in Q and ox′ = q′ for some object
x′ ∈ X, there is a unique arrow x′|q → x′ in X mapped by o to q ≤ q′:

X

o

��

x′|q
_

��

// x′
_

��

Q q // q′

(7.4)

7.2. REPRESENTATIONS 123

The “discreteness” of this fibration lies in the uniqueness of the arrow into
x′ above q ≤ q′. In the case X = elts X, we take (q′, x′)|q = (q,X(q ≤ q′)x′).

Via the functor elts , the category of presheaves Q̂ is equivalent to the
category of discrete fibrations over Q [29]. The right adjoint to elts maps a
discrete fibration o : X→ Q to a presheaf X ∈ Q̂ by taking (for x′ above q′)

Xq = {x ∈ X : ox = q} and X(q ≤ q′)x′ = x′|q . (7.5)

We can represent discrete fibrations, and so presheaves, using the “strict
morphisms” of [100], here called output morphisms. An output morphism
o : E1 → E2 is a map o : E1 → E2 such that e a1 e′ implies oe a2

oe′ and o⌈e⌉ = ⌈oe⌉ for all e, e′ ∈ E1. Output morphisms compose and
extend directly to strict and monotone maps of configurations. The identity
morphism 1E : E → E is an output morphism as is the inclusion E1 →֒ E2

associated with the substructure relation E1 E E2.

Lemma 7.1 Let o : E → Q be an output morphism. The extension to
configurations o : C(E)→ C(Q) is a discrete fibration.

Proof. Consider two configurations Q ⊆ Q′ = ox′ of Q. We must show that
there is a unique subconfiguration x = x′|Q of x′ with ox = Q. Let x be the
subset {e ∈ x′ : oe ∈ Q} ⊆ x′. Since o is injective on consistent subsets, this
is the unique subset of x′ with image Q, and so we just need to show that x
is itself a configuration of E. When e ∈ x we have e ∈ x′ and oe ∈ Q. Since x′

and Q are configurations and so downwards-closed, ⌈e⌉ ⊆ x′ and ⌈oe⌉ ⊆ Q.
As o is an output morphism we have ⌈oe⌉ = o⌈e⌉ from which it follows that
⌈e⌉ ⊆ x, and x is downwards-closed. Consistency of x is immediate as x is a
subset of the configuration x′. ✷

So output morphisms o : E → Q give rise to discrete fibrations o : C(E) →
C(Q) and so to presheaves over the path order Q⊥

∼= C(Q). Because o is
strict, each such presheaf will be rooted and thus isomorphic to ⌊X⌋ for
some presheaf X over the path order Q such that elts⌊X⌋ ∼= C(E). While
not all presheaves over Q can be represented in this way, we are able to
represent all closed terms of Affine HOPLA at ground type Q.

Of course, to give a compositional event-structure semantics to the lan-
guage, we need to show how to interpret open terms, so we need a repre-
sentation of profunctors P⊥ −7→ Q, for path orders P⊥ and Q, using event
structures. Again, we can get some help from category theory. We ignore
lifting for a moment. The category Prof (P, Q) of profunctors f : P −7→ Q
is equivalent to the category Bifib(P, Q) of discrete bifibrations1 from P
to Q [76]. Starting from a profunctor f , one constructs a “category of ele-
ments” elts f by taking as objects triples (p, x, q) with x ∈ f(p, q) and arrows

1Thanks to Marcelo Fiore for making us aware of this connection.

124 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

(p, x, q) ≤ (p′, x′, q′) whenever p ≤P p′ and q ≤Q q′ and f(p ≤P p′, q)x =
f(p′, q ≤Q q′)x′. The obvious projections ι : elts f → P and o : elts f → Q

yield a span P
ι
←− elts f

o
−→ Q with ι an opfibration (a dual notion of fibration,

associated with an operator |p
′
for objects above p ≤ p′) and o a fibration.

The span satisfies certain coherence and discreteness axioms to the effect
that starting from such a span P

ι
←− X

o
−→ Q, we can construct a profunctor

g : P −7→ Q by taking

g(p, q) = {x ∈ X : ιx = p and ox = q} and

g(p ≤P p′, q ≤Q q′)x′ = (x′|p
′

)|q = (x′|q)|
p′

(7.6)

for x′ above p and q′. If X is elts f , we have f ∼= g. Bifibrations compose by
first constructing the pullback

Y
π1

~~

π2

X1

ι1

��~~
~~

~~
~~ o1

 A
AA

AA
AA

A
X2

ι2

~~}}
}}

}}
}} o2

 @
@@

@@
@@

@

P Q R

(7.7)

—and then quotienting Y in a way similar to what happens in the coend
formula (5.9) to ensure that the span given by ι = ι1 ◦ π1 and o = o2 ◦ π2

is again a bifibration. We’ll not go into more detail here, because we lack a
way of representing opfibrations using maps of event structures.

But consider stable profunctors f : P⊥ −7→ Q, those that, when curried
to functors curry f : P⊥ → Q̂, preserve pullbacks. Then, because P⊥ has
all pullbacks (via the isomorphism P⊥

∼= C(P), they are given by intersec-
tion of compatible configurations), for each x ∈ f(P, q) there is a unique,
minimal P0 ≤P⊥

P such that x0 ∈ f(P0, q) and f(P0 ≤ P, q)x0 = x. Ac-
cordingly, we “collapse” the category of elements elts f on the input side,
and retain only those triples (P0, x0, q) which are input-minimal. This turns
ι into an ordinary monotone map and restores o as a discrete fibration, be-
cause the collapse is isomorphic to the category of elements of the presheaf∫ P∈P⊥ (curry f)P ∈ Q̂. Thus, we can reuse the output morphisms on the
output side while the ι map will be represented by an input morphism:

Let E1 = (E1,≤1,`1) and E2 = (E2,≤2,`2) be event structures. An
input morphism ι : E1 → E2 is a map ι : E1 → C(E2) such that e ≤1 e′ =⇒
ιe ⊆ ιe′ and e a

`1 e′ =⇒ ιe ↑ ιe′ for all e, e′ ∈ E1. The extension to a
map C(E1)→ C(E2), got by ι†x =def

⋃
e∈x ιe, is monotone and strict. Input

morphisms ι1 : E1 → E2 and ι2 : E2 → E3 compose as ι†2 ◦ ι1. The map
⌈−⌉ : E→ C(E) is an input morphism E→ E for any event structure E; its
extension ⌈−⌉† is the identity on C(E). Note also that the composition ι ◦ o
of an input morphism and an output morphism is again an input morphism.

7.2. REPRESENTATIONS 125

In this way we are led to consider spans P
ι
←− E

o
−→ Q of event structures

with ι and o input and output morphisms, respectively. Guided by the above,
such a span induces a rooted, stable profunctor f : C(P) −7→ C(Q) by taking

f(P,Q) = {x ∈ C(E) : ι†x ⊆ P and ox = Q} and

f(P ⊆ P ′, Q ⊆ Q′)x′ = x′|Q .
(7.8)

Note that |P
′

is replaced by the identity map because f(P ⊆ P ′, Q) is an
inclusion for all Q ∈ C(Q). That f is rooted means that f(P,⊥) is a singleton
for any P ∈ C(P). Via the isomorphism C(P) ∼= P⊥, rooted profunctors
C(P) −7→ C(Q) correspond to profunctors P⊥ −7→ Q between path orders.
We’ll use the notation 〈ι, E, o〉 : P → Q for a span P

ι
←− E

o
−→ Q and write

〈ι, E, o〉 for the represented profunctor P⊥ −7→ Q. When f = 〈ι, E, o〉 we
have

elts⌊
∫ P∈P⊥ (curry f)P⌋ ∼= C(E) . (7.9)

We’ll write Spn(P, Q) for the category whose objects are spans 〈ι, E, o〉 :
P→ Q and whose arrows o : 〈ι1, E1, o1〉 → 〈ι2, E2, o2〉 are output morphisms
between vertices of spans such that the diagram below commutes up to use
of ⊇ on the input side:

E1

ι1

����
��

��
�� o1

��@
@@

@@
@@

@

⊇ o

��

P Q

E2

ι2

__???????? o2

??~~~~~~~~

ι1e ⊇ ι2(oe) and o1e = o2(oe) (7.10)

Such morphisms of spans correspond to natural transformations between
the represented profunctors.2

Proposition 7.2 The functor (−) : Spn(P, Q) → Prof (P⊥, Q) is full and
faithful.

Proof. Consider a morphism of spans as in (7.10) above and write

f1 = 〈ι1, E1, o1〉 and f2 = 〈ι2, E2, o2〉 (7.11)

for the represented profunctors. We construct a natural transformation o :
f1 → f2 by taking oP,Q to be o extended to a map on configurations. If

x ∈ f1(P,Q) then ι†1x ⊆ P and o1x = Q and we have

ι†2(ox) =
⋃

e∈x ι2(oe) ⊆
⋃

e∈x ι1e = ι†1x ⊆ P (7.12)

2One can also show that the span morphisms that make the diagram above commute
on the nose correspond to natural transformations whose naturality squares are pullbacks.
Since this condition is just a rephrasing of Berry’s stability requirement, such morphisms
may be more appropriate.

126 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

and o2(ox) = o1x = Q. Hence, ox ∈ f2(P,Q) as wanted. As for naturality of
o, consider the square

P

��

Q f1(P,Q)
oP,Q

//

(−)|Q′

��

f2(P,Q)

(−)|Q′

��

P ′ Q′

OO

f1(P
′, Q′)

oP ′,Q′

// f2(P
′, Q′)

(7.13)

Let x ∈ f1(P,Q). Since o2 ◦ o = o1 we have

(ox)|Q′ = {e ∈ ox : o2e ∈ Q′} = o{e ∈ x : o2(oe) ∈ Q′} = o(x|Q′) (7.14)

—as wanted.
Conversely, consider a natural transformation o : f1 → f2. Given any

event e of E1 we have ⌈e⌉ ∈ f1(ι1e, o1⌈e⌉) and so o⌈e⌉ ∈ f2(ι1e, o1⌈e⌉) since
o is a natural transformation. With o1 an output morphism, this means
that o2(o⌈e⌉) = o1⌈e⌉ = ⌈o1e⌉. As o2 is also an output morphism, we have
that o⌈e⌉ = ⌈e′⌉ for some e′ such that o2e

′ = o1e. We now define oe =
e′ and immediately obtain o2 ◦ o = o1 and ⌈oe⌉ = ⌈e′⌉ = o⌈e⌉. Further,

since ⌈oe⌉ = o⌈e⌉ ∈ f2(ι1e, o1⌈e⌉), we have ι2(oe) = ι†2⌈oe⌉ ⊆ ι1e. Thus
the diagram of (7.10) commutes in the way wanted. Finally, o preserves
consistency as it maps configurations to configurations, and if oe = oe′, then
o1e = o2(oe) = o2(oe

′) = o1e
′ from which e = e′ follows as o1 is an output

morphism. Thus o preserves a1 and is therefore an output morphism.
The above two maps are inverses. The direction starting from a mor-

phism of spans is obvious. For the converse, we need to show that a natural
transformation o : f1 → f2 is completely determined by its values on prime
configurations. So let x ∈ f1(P,Q). For any e′ ∈ ox, naturality of o implies
that (ox)|⌈oe′⌉ = ⌈e′⌉ = o⌈e⌉ for some e ∈ x. Thus, ox =

⋃
e∈x o⌈e⌉ and we

are done. ✷

So Spn(P, Q) embeds in Prof (P⊥, Q). It would be nice at this point to
give an independent characterisation of the represented profunctors, perhaps
allowing us to work more abstractly below. However, we don’t have that yet.

Note that by restricting morphisms of Spn(P, Q) to those induced by
the substructure relation, we obtain a large cpo ordered by 〈ι1, E1, o1〉 E

〈ι2, E2, o2〉 iff E1 E E2 and ι1, o1 are the restrictions of ι2, o2 to the events of
E1. This allows us to give meaning to recursively defined spans.

Our spans compose by adjoining a pullback in a way similar to bifibra-
tions, but without the need for quotienting at the vertex. Given spans

E1

ι1

����
��

��
�� o1

��@
@@

@@
@@

@
E2

ι2

��~~
~~

~~
~~ o2

��@
@@

@@
@@

@

P Q R

(7.15)

7.2. REPRESENTATIONS 127

with Ei = (Ei,≤i,`i) for i = 1, 2, we construct first a span 〈π1, E, π2〉 :
E1 → E2 by defining E to have

Events: E = {(x, e) ∈ C(E1)× E2 : o1x = ι2e}.

Causality: (x, e) ≤ (x′, e′) ⇐⇒def x ⊆ x′ and e ≤2 e′.

Consistency: (x, e) a
` (x′, e′) ⇐⇒def x ↑ x′ and e a

`2 e′.

The maps π1, π2 are the first and second projections from C(E1) × E2. As
the proposition below shows, this amounts to adjoining a pullback to the
diagram above, working within the category of posets and monotone maps.

Proposition 7.3 The map π1 : E → E1 is an input morphism and π2 :
E → E2 is an output morphism. The map (π†

1−, π2−) is an isomorphism

C(E) ∼= {(x1, x2) ∈ C(E1)× C(E2) : o1x1 = ι†2x2}.

Proof. First note that if c is a configuration of E, then

∀(x, e), (x′, e) ∈ E. (x, e) ∈ c and (x′, e) ∈ c =⇒ x = x′ . (7.16)

Indeed, if x and x′ are compatible, so that x ∪ x′ is a consistent subset of
E2, there can be only one subset of x∪ x′ with image ι2e under o1 as this is
an output morphism. Hence, we must have x = x′.

The map π1 : E → E1 is an input morphism by construction. To show
that π2 is an output morphism, suppose (x, e) a (x′, e′). Then x ↑ x′ and
e a

` e′ but (x, e) 6= (x′, e′). By (7.16), e = e′ implies x = x′ which is a
contradiction and so e 6= e′. But then e a2 e′ as wanted. Now consider
e′ ∈ ⌈π2(x, e)⌉ = ⌈e⌉. We need to show that e′ ∈ π2⌈(x, e)⌉. By definition
of the events of E we have o1x = ι2e and so ι2e

′ ⊆ o1x which implies the
existence of a unique subconfiguration x′ = x|ιe′ of x with o1x

′ = ι2e
′.

Hence (x′, e′) ∈ E with (x′, e′) ≤ (x, e) and so e′ ∈ π2⌈(x, e)⌉ as wanted. For
the converse, it suffices to observe that π2 preserves causality.

Let c ∈ C(E). By the above, π†
1c ∈ C(E1) and π2c ∈ C(E2). Further,

o1(π
†
1c) = ι†2(π2c) because this is true for any subset of E. Hence, mapping

c to the pair (π†
1c, π2c), we get one part of the wanted isomorphism.

For the converse, consider x1 ∈ C(E1) and x2 ∈ C(E2) with o1x1 = ι†2x2.
Define c ⊆ E by c =def {(x, e) ∈ E. x ⊆ x1 and e ∈ x2}. Consistency of
c follows because all first components are compatible, being subsets of x1,
and all second components are consistent, being elements of x2. Downwards-
closure of c follows from downwards-closure of x2. Hence, c ∈ C(E).

We just need to show that the above two mappings are mutual inverses.
Mapping c ∈ C(E) to (π†

1c, π2c) and then to c′ = {(x, e) ∈ E. x ⊆ π†
1c and

e ∈ π2c}, we have at least c ⊆ c′. Given any (x′, e) ∈ c′, we have (x, e) ∈ c for
some x, and so x = x′ by (7.16). Hence c′ = c. Conversely, mapping the pair

(x1, x2) ∈ C(E1) × C(E2) with o1x1 = ι†2x2 to c = {(x, e) ∈ E. x ⊆ x1 and

128 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

e ∈ x2}, and then to (π†
1c, π2c), we have at least π†

1c ⊆ x1 and π2c ⊆ x2. If

e ∈ x2, then ι2e ⊆ ι†2x2 = o1x1, and so there exists a unique subconfiguration
x = x1|ιe of x1 with o1x = ι2e. Thus, (x, e) ∈ E and so (x, e) ∈ c such that

e ∈ π2c. We conclude π2c = x2. But now we have o1(π
†
1c) = ι†2(π2c) = ι†2x2,

but there is only one subset of x1 with this property, namely x1 itself. So
x1 = π†

1c and we are done. ✷

Because of the way input and output morphisms compose, we have that the
maps ι : E→ P and o : E→ R, given by ι = ι†1 ◦ π1 and o = o2 ◦ π2, form a
span 〈ι, E, o〉 : P → R which we’ll take as the composition of the two spans
of (7.15).

Proposition 7.4 In the situation above, 〈ι, E, o〉 ∼= 〈ι2, E2, o2〉 ◦ 〈ι1, E1, o2〉.

Proof. With fi = 〈ιi, Ei, oi〉, the composition f2 ◦f1 is given at (P, r) by the
coend (5.10), ∫ Q∈Q⊥ ⌊(curry f1)P ⌋Q× f2(Q, r) . (7.17)

Being a coend in set, this is isomorphic to a suitable quotient of

⋃
Q∈Q⊥

⌊(curry f1)P ⌋Q× {Q} × f2(Q, r) . (7.18)

As f2 is stable, we can use the minimal inputs of f2 as representatives of the
equivalence classes, and describe the composition as the profunctor

(P, r) 7→ {(x1, x2) :
x1 ∈ ⌊(curry f1)P ⌋Q0

x2 ∈ f2(Q0, r) input-minimal
} . (7.19)

By the properties of the representations of f1 and f2, this is isomorphic to
the profunctor

(P, r) 7→ {(x1, x2) :
x1 ∈ C(E1) and ι†1x1 ⊆ P
x2 ∈ C(E2) and o2x2 = r

o1x1 = ι†2x2

} . (7.20)

Now, using Proposition 7.3, this yields at each (P, r) at set isomorphic to

{c ∈ C(E) : ι†c ⊆ P and oc = r} (7.21)

—as wanted. Naturality in P is immediate because each naturality square
is built from inclusions and the above isomorphism. As for naturality in
r, suppose that r′ ⊆ r. If (x1, x2) is a pair in (7.20) with o2x2 = r, then
x′

2 = x2|r′ is the unique subconfiguration of x2 with o2x
′
2 = r′. This induces a

unique subconfiguration x′
1 = x1|ι†x′

of x1 with o1x

′
1 = ι†2x

′
2. Since ι†1x1 ⊆ P

we also have ι†1x
′
1 ⊆ P , and so (x′

1, x
′
2) belongs to the image of (P, r′) of the

profunctor (7.20). We need to show that the corresponding configurations

7.3. STABLE DENOTATIONAL SEMANTICS 129

c and c′ with (x1, x2) = (π†
1c, π2c) and (x′

1, x
′
2) = (π†

1c
′, π2c

′) are related as
c′ = c|r′ , and for this we just need to show that c′ ⊆ c and oc′ = r′. For the

former, we have π†
1c

′ = x′
1 ⊆ x1 = π†

1c and π2c
′ = x′

2 ⊆ x2 = π2c. Hence,
if (x′, e) ∈ c′, then (x, e) ∈ c for some x with x, x′ ⊆ x1 and so x′ = x by
(7.16). So c′ ⊆ c. The latter is obtained as oc′ = o2 ◦ π2c

′ = o2x
′
2 = r′. ✷

The identity profunctor P −7→ P, given by P(−,+), is represented by the
span 〈⌈−⌉, P, 1P〉. Using this identity and the above composition, we expect
Spn to be biequivalent to a suitable sub-bicategory of Prof .

7.3 Stable Denotational Semantics

We can mirror the constructions on maps of Aff from Section 2.3.2 us-
ing E-continuous constructions on spans to get an event structure version
of the presheaf denotational semantics of Affine HOPLA at first order.
Spans 〈ι, E, o〉 : P → Q represent maps P → Q of Aff via the equiva-
lence Aff(P, Q) ≃ Prof (P⊥, Q). We’ll use the notation 〈ι, E, o〉 also for the
represented map of Aff .

Identity. The span representing the identity map P → P of Aff is given by
〈⌈−⌉, P, 1P〉 : P→ P.

Products. The product path order &i∈I Pi is represented using the sum
Σi∈IPi of event structures. Projections πj : &i∈I Pi → Pj are represented
by spans 〈⌈(j,−)⌉, Pj , 1Pj

〉. Given a family of spans 〈ιi, Ei, oi〉 representing
maps fi : P → Pi, i ∈ I in Aff , we can construct a representation of the
unique-up-to-isomorphism map 〈fi〉i∈I : P → &i∈I Pi in the form of a span
〈ι,Σi∈IEi, o〉 by defining ι(i, e) = ιie and o(i, e) = (i, oie).

The empty product is given by the empty event structure O and the
unique map ∅P : P→ O of Aff is represented by the empty span 〈∅, O, ∅〉.

The nondeterministic sum map Σ : &i∈I P → P is represented by the
span 〈⌈−⌉,Σi∈IP, o〉 with o(i, e) = e.

Tensor. Given spans 〈ιi, Ei, oi〉 : Pi → Qi representing the maps fi : Pi → Qi

for i = 1, 2, we obtain a representation of the tensor product f1 ⊗ f2 : P1 ⊗
P2 → Q1⊗Q2 using the span 〈ι1⊗ ι2, E1⊗E2, o1⊗o2〉 where (ι1⊗ ι2)(i, e) =
{i} × ιie and (o1 ⊗ o2)(i, e) = (i, oie).

The unit for the tensor construction is the empty event structure O.
Right identities rAff

P : P⊗O→ P are represented by spans 〈⌈(1,−)⌉, P, 1P〉.
Left identities are represented similarly.

The symmetry map sAff

P0,P1
: P0⊗P1 → P1⊗P0 is represented by the span

〈⌈−⌉, P0 ⊗ P1, (1− i,−)〉.

The weak diagonals δP : P → P ⊗ P are represented using spans 〈ι, P +
P, o〉 : P→ P⊗ P defined by ι(i, e) = ⌈e⌉ and o(i, e) = (i, e).

130 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

Sums. The sum type path order Σα∈APα and its projections are represented
in the same way as for the product above. Injections inβ : Pβ → Σα∈APα

are represented by spans 〈⌈−⌉, Pβ , (β,−)〉.

Prefixing. The prefix type path order P⊥ is represented by the lifting of the
corresponding event structure. The unit ηP : P → P⊥ of Aff is represented
by the span 〈ι, P⊥, 1P⊥

〉 with ι the obvious inclusion of events of P⊥ as
configurations of P. Conversely, the counit εP : P⊥ → P is represented by
the span 〈⌊⌈−⌉⌋, P, 1P〉.

If f : P → Q is represented by the span 〈ι, E, o〉, then f⊥ : P⊥ → Q⊥

is represented by the span 〈⌊ι†−⌋, E⊥, o〉 : P⊥ → Q⊥. Then a nonempty
configuration ⌊x⌋ ∈ C(E⊥), corresponding to x ∈ C(E), has image ⌊ι†x⌋
under the input morphism and ⌊ox⌋ under the output morphism.

The strength maps strP,Q : P⊗Q⊥ → (P⊗Q)⊥ are represented by spans
〈ιstr , P ⊗ Q, ⌈−⌉〉 with ιstr (1, e) = ⌈e⌉ ⊗ {∅} and ιstr (2, e) = ⊥ ⊗ ⌈e⌉. With
this definition, a nonempty configuration P ⊗ Q of the vertex has image
P ⊗ !Q under ι†str .

Recursive definitions. By the remarks in the proof of Theorem 6.7, the least
fixed-points in Spn(P, P) yield the same results as ω-colimits in Aff(P, P)
for the constructions above.

With Γ ⊢ t : Q we’ll write PJtK for the map Γ → Q of Aff obtained
by the same rules that defined the path semantics in Section 4.1, but now
using the presheaf version. Similarly, we’ll write EJtK for the span Γ → Q
obtained by the rules, interpreting morphisms as spans. By a straightforward
induction on the typing derivation of t we then have

Proposition 7.5 Suppose t is a well-formed term of the first-order fragment
of Affine HOPLA. Then EJtK ∼= PJtK.

Let 〈ι, E, o〉 be the span interpreting Γ ⊢ t : P with Γ ≡ x1 : P1, . . . , xk :
Pk. If Γ ≡ P1 ⊗ · · · ⊗ Pk with Pj : Pj for 1 ≤ j ≤ k, and P : P we’ll write
EJtK(γ, P) for the set of configurations x ∈ E with ι†x = γ and ox = P .
Propositions 7.6 and 7.7 below provide a characterisation of these sets.

Proposition 7.6 (i) For any Γ ⊢ t : P, we have EJtK(⊥,⊥) = {∅}.

(ii) EJx : P ⊢ x : PK(P,P) = {P} while EJx : P ⊢ x : PK(P,P ′) = ∅ if
P 6= P ′.

(iii) If Γ, x : P ⊢ t : Q is obtained from Γ ⊢ t : Q by weakening, then
EJΓ, x : P ⊢ t : QK(γ ⊗ ⊥, Q) ∼= EJΓ ⊢ t : QK(γ,Q), while EJΓ, x : P ⊢
t : QK(γ ⊗ p,Q) = ∅ for any p : P.

(iv) If Γ, x : P, y : Q,∆ ⊢ t : R is obtained from Γ, y : Q, x : P,∆ ⊢ t : R by
exchange, then EJΓ, x : P, y : Q,∆ ⊢ t : RK(γ⊗P ⊗Q⊗ δ,R) ∼= EJΓ, y :
Q, x : P,∆ ⊢ t : RK(γ ⊗Q⊗ P ⊗ δ,R).

7.3. STABLE DENOTATIONAL SEMANTICS 131

Proof. (i) The empty configuration is the unique configuration with empty
image under an output morphism. (ii) The identity span has vertex P and
input and output morphisms are both identity maps on configurations. (iii)
If Γ ⊢ t : Q is interpreted by 〈ι, E, o〉, then using weakening, Γ, x : P ⊢ t : Q
is interpreted using the composition

Γ⊗O
⌈−⌉⊗∅

zzuuuuuuuuu
1Γ⊗∅

$$J
JJJJJJJJ

Γ
⌈(1,−)⌉

||yy
yy

yy
yy

y
1Γ

��=
==

==
==

= E
ι

����
��

��
�� o

��>
>>

>>
>>

Γ⊗ P Γ⊗O Γ Q

(7.22)

By Proposition 7.3, the configurations of the composition correspond bi-
jectively to triples ((γ1,⊥), γ2, c), with γ1 and γ2 configurations of Γ and
c ∈ C(E), satisfying (1Γ ⊗ ∅)(γ1, ∅) = ⌈(1,−)⌉†γ2 and 1Γγ2 = ι†c. Then
γ1 = ⌈−⌉†γ2 = γ2 = ι†c. Thus, the configurations of the composition are
in bijective correspondence with the configurations of E. Let c ∈ C(E). The
configuration of the composition corresponding to c is sent by the input
morphism to (⌈−⌉⊗∅)†(ι†c⊗⊥) = ι†c⊗⊥ and by the output morphism to
oc as wanted. (iv) Similar to (iii). ✷

Proposition 7.7

EJrec x.tK(γ, p) ∼= EJt[rec x.t/x]K(γ, p)

EJΣi∈ItiK(γ, p) ∼= Σi∈IEJtiK(γ, p)

EJt⊗ uK(γ ⊗ δ, P ⊗Q) ∼= EJtK(γ, P)× EJuK(δ,Q)

EJ[u > x⊗ y ⇒ t]K(γ ⊗ δ, r) ∼= ΣP,QEJtK(γ ⊗ P ⊗Q, r)× EJuK(δ, P ⊗Q)

EJβtK(γ, βp) ∼= EJtK(γ, p)

EJπβtK(γ, p) ∼= EJtK(γ, βp)

EJ!tK(γ, !P) ∼= EJtK(γ, P)

EJ[u > !x⇒ t]K(γ ⊗ δ, q) ∼= ΣPEJtK(γ ⊗ P, q)× EJuK(δ, !P)

EJabs tK(γ, abs p) ∼= EJtK(γ, p)

EJrep tK(γ, p) ∼= EJtK(γ, abs p)
(7.23)

Proof. We give the proof for prefix match, the other cases are handled
similarly. In Section 4.1 we defined J[u > !x ⇒ t]K to be the composition
εQ◦JtK⊥◦strΓ,P◦(1Γ⊗JuK). Thus, if EJuK = 〈ιu, Eu, ou〉 and EJtK = 〈ιt, Et, ot〉,
we obtain EJ[u > !x⇒ t]K by composition of four spans, the first two of which
are

Γ⊗ Eu

⌈−⌉⊗ιu

yytt
ttt

tttt
t

1Γ⊗ou

%%K
KKKKKKKKK

Γ⊗ P
ιstr

zztt
tt

tt
ttt

t
⌈−⌉

%%K
KKKKKKKKK

Γ⊗∆ Γ⊗ P⊥ (Γ⊗ P)⊥

(7.24)

132 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

By Proposition 7.3, the nonempty configurations of the composition corre-
spond to pairs ((γ1, y), (γ2, P)) where (1Γ⊗ou)(γ1⊗y) = ι†str (γ2, P) = γ2⊗!P .
So γ1 = γ2 and ouy = !P . Thus, the nonempty configurations are in bijective
correspondence with pairs (γ, y) with γ a configuration of Γ and y ∈ C(Eu)

such that ouy = !P for some P . Such a pair is associated with input γ⊗ ι†uy
and output ⌊γ ⊗ P ⌋.

The two remaining spans are given by

(Et)⊥
⌊ι†t−⌋

yysssssssss
ot

""E
EEEEEEE

Q
⌊⌈−⌉⌋

��~~
~~

~~
~~ 1Q

��=
==

==
==

=

(Γ ⊗ P)⊥ Q⊥ Q

(7.25)

Again by Proposition 7.3, the nonempty configurations of this span are in
bijective correspondence with pairs (⌊x⌋, q) with x ∈ C(Et) and q : Q such
that otx = q. Thus, the nonempty configurations are in bijective correspon-
dence with the configurations of Et, and x ∈ C(Et) is associated with input
⌊ιtx⌋ and output otx.

By a final use of Proposition 7.3, we see that the nonempty configurations
of EJ[u > !x⇒ t]K are in bijective correspondence with pairs ((γ, y), x) with

ouy = !P and ⌈−⌉(γ⊗P) = ⌊γ⊗P ⌋ = ⌊ιtx⌋, so that ι†tx = γ⊗P . Thus, the
nonempty configurations are in bijective correspondence with pairs (x, y)

with x ∈ C(Et) and y ∈ C(Eu) such that ι†tx = γ⊗P and oux = !P for some

γ, P . The associated input is given by γ ⊗ ι†uy and the output is given by
otx. We are done. ✷

7.4 Stable Operational Semantics

The above propositions suggest an alternative operational semantics for first-
order Affine HOPLA, obviating the need for the environments of Section 4.4
by exploiting stability. It is at the cost of having transitions between open
terms. Consider an open term Γ ⊢ t : P and its interpretation as a span
EJtK = 〈ι, E, o〉 : Γ → P. For each element x of the set EJtK(γ, P) we’ll have

a derivation of a transition of the form γ ⊢ t
P
−→ t′. Moreover, EJt′K will to

within isomorphism be obtained from EJtK as the “span above x”, defined
in Section 7.4.1.

Thus, the operational rules not only derive transitions but also a syn-
tactic representation of the unique minimal input needed for each derived
transition. Hence we call the operational semantics “stable”.

7.4.1 The “Above” Operation

Given E = (E,≤,`) and a configuration x ∈ C(E), define E/x to have

7.4. STABLE OPERATIONAL SEMANTICS 133

Events: E/x = {e ∈ E : ∀e′ ∈ x. e a e′}

Causality: obtained by restricting ≤

Conflict: obtained by restricting `

A subset x′ ⊆ E/x is a configuration iff x ∪ x′ is a configuration of E.
Moreover, x and x′ are disjoint, so the poset C(E/x) is isomorphic to the
poset (C(E))/x of elements of C(E) above x. This construction extends to
spans:

Lemma 7.8 Given s = 〈ι, E, o〉 : P → Q and x ∈ C(E) we get a span
s/x = 〈ι/x, E/x, o/x〉 : P/(ι†x) → Q/(ox) by taking (ι/x)e = ιe \ ι†x and
(o/x)e = oe.

Proof. Let e be an event of E/x. We must show that (ι/x)e = ιe \ ι†x is
a configuration of P/(ι†x). Now P is a configuration here iff ι†x ∪ P is a
configuration of P. We have ι†x ∪ (ιe \ ι†x) = ι†x ∪ ιe = ι†(x ∪ {e}). Since
ι is an input morphism E → P, this is a configuration of P if x ∪ {e} is
consistent, which it is since e aE e′ for all e′ ∈ x. So ι/x maps events of
E/x to configurations of P/(ι†x). That ι/x is an input morphism follows
immediately from ι being an input morphism.

We must also show that (o/x)e = oe is an event of Q/(ox). So given
any eQ ∈ ox, we must show that oe aQ eQ. Now, eQ = oe′ for some e′ ∈ x,
and by definition of E/x, we have e aE e′ from which oe aQ oe′ = eQ

follows as o is an output morphism. So o/x sends events of E/x to events of
Q/(ox). Moreover, o/x preserves causality and a because o does, and finally,
if eQ ∈ ⌈(o/x)e⌉, then eQ ∈ ⌈oe⌉ \ (ox) and so eQ ∈ o⌈e⌉ \ (ox) which means
that eQ ∈ (o/x)⌈e⌉ as wanted. ✷

For a configuration P : P the event structure P/P is again the interpretation
of a type for which P/P is taken to be a synonym according to

P/⊥ ≡def P

(P⊗Q)/(P ⊗Q) ≡def (P/P)⊗ (Q/Q)

(Σα∈APα)/(βp) ≡def Pβ/p

P⊥/(!P) ≡def P/P

(µj
~T .~T)/(abs p) ≡def (Tj[µ~T .~T/~T])/p

(7.26)

7.4.2 Operational Rules

Consider an environment list Γ ≡ x1 : P1, . . . , xk : Pk. We’ll write γ : Γ if
the path list γ ≡ x1 : P1, . . . , xk : Pk has Pj : Pj for 1 ≤ j ≤ k. In this case,
we shall write Γ/γ for the environment list x1 : P1/P1, . . . , xk : Pk/Pk, and
confuse γ with the configuration P1⊗ · · ·⊗Pk of P1⊗ · · ·⊗Pk which in turn
is confused with Γ.

134 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

A reasonable way to define the operational rules would be to have transi-

tions of the form γ ⊢ t
P
−→ t′ with Γ ⊢ t : P and γ : Γ and P : P. However, then

one would need rules like those below for handling weakening and exchange.

γ ⊢ t
Q
−→ t′

γ, x : ⊥ ⊢ t
Q
−→ t′

γ, y : Q,x : P, δ ⊢ t
R
−→ t′

γ, x : P, y : Q, δ ⊢ t
R
−→ t′

(7.27)

Clearly, with such rules we have no hope of obtaining a bijective correspon-
dence between derivations and configurations. Therefore, we’ll use a global
type environment Φ, assigning types to all variables, and corresponding path
maps φ : Φ with φx a path of type Φx for all variables x. The everywhere
⊥ path map is itself written ⊥, and we have ⊥ : Φ for any Φ. We’ll write
Γ ⊂ Φ if Γ is an environment list which agrees with Φ in the sense that if
x : P occurs in Γ, then Φ(x) = P. Any path map γ : Φ which assigns ⊥
to all variables not mentioned in Γ can be viewed as a path list γ : Γ, and
conversely, any path list γ : Γ extends to a path map γ : Φ by mapping all
variables not in Γ to ⊥. If γ : Φ and δ : Φ restrict to γ : Γ and δ : ∆ with
Γ and ∆ disjoint, we’ll write γ, δ : Φ for the path map obtained from the
concatenation of the lists γ and δ.

The operational rules are shown in Figure 7.1. The semantics is param-
eterised by a global typing environment Φ which is left implicit. For each

such Φ, the transition relation γ ⊢ P : t
P
−→ t′ is defined for path maps γ,

terms t, and paths P such that for some Γ ⊂ Φ, we have γ : Γ and Γ ⊢ t : P.
The rules are type-correct:

Proposition 7.9 Suppose γ ⊢ P : t
P
−→ t′ using global typing environment

Φ. For any Γ ⊂ Φ such that γ : Γ and Γ ⊢ t : P, we have Γ/γ ⊢ t′ : P/P .

Proof. By rule-induction on the operational rules.

Bottom. Consider the transition ⊥ ⊢ P : t
⊥
−→ t. If Γ ⊂ Φ and Γ ⊢ t : P then

since Γ/⊥ ≡ Γ and P/⊥ ≡ P, we are done.

Variable. Consider the transition x : p ⊢ P : x
p
−→ x. If Γ ⊂ Φ with Γ ⊢ x : P,

then Γ ≡ Γ1, x : P,Γ2 for some Γ1,Γ2. We have p : P and so Γ1/⊥, x :
P/p,Γ2/bot ⊢ x : P/p as wanted.

Tensor. Suppose that γ, δ ⊢ P ⊗ Q : t ⊗ u
P⊗Q
−−−→ t′ ⊗ u′ is derived from

γ ⊢ P : t
P
−→ t′ and δ ⊢ Q : u

Q
−→ u′. By the induction hypotheses we get

Γ/γ ⊢ t′ : P/P and ∆/δ ⊢ u′ : Q/Q and so by the typing rule for tensor,
Γ/γ,∆/δ ⊢ t′ ⊗ u′ : P/P ⊗ Q/Q. Since P/P ⊗ Q/Q ≡ (P ⊗ Q)/(P ⊗Q) we
are done.

Tensor match. Suppose that γ, δ ⊢ R : [u > x⊗ y ⇒ t]
r
−→ [u′ > x⊗ y ⇒ t′]

is derived from γ, x : P, y : Q ⊢ R : t
r
−→ t′ and δ ⊢ P ⊗ Q : u

P⊗Q
−−−→ u′.

7.4. STABLE OPERATIONAL SEMANTICS 135

⊥ ⊢ P : t
⊥
−→ t x : p ⊢ P : x

p
−→ x

γ ⊢ P : t[rec x.t/x]
p
−→ t′

γ ⊢ P : rec x.t
p
−→ t′

γ ⊢ P : tj
p
−→ t′

γ ⊢ P : Σi∈Iti
p
−→ t′

j ∈ I

γ ⊢ P : t
P
−→ t′ δ ⊢ Q : u

Q
−→ u′ (P,Q) 6= (⊥,⊥)

γ, δ ⊢ P⊗Q : t⊗ u
P⊗Q
−−−→ t′ ⊗ u′

γ, x : P, y : Q ⊢ R : t
r
−→ t′ δ ⊢ P⊗Q : u

P⊗Q
−−−→ u′

γ, δ ⊢ R : [u > x⊗ y ⇒ t]
r
−→ [u′ > x⊗ y ⇒ t′]

γ ⊢ Pβ : t
p
−→ t′

γ ⊢ Σα∈APα : βt
βp
−→ t′

γ ⊢ Σα∈APα : t
βp
−→ t′

γ ⊢ Pβ : πβt
p
−→ t′

γ ⊢ P : t
P
−→ t′

γ ⊢ P⊥ : !t
!P
−→ t′

γ, x : P ⊢ Q : t
q
−→ t′ δ ⊢ P⊥ : u

!P
−→ u′

γ, δ ⊢ Q : [u > !x⇒ t]
q
−→ t′[u′/x]

γ ⊢ Tj [µ~T .~T/~T] : t
p
−→ t′

γ ⊢ µj
~T .~T : abs t

abs p
−−−→ t′

γ ⊢ µj
~T .~T : t

abs p
−−−→ t′

γ ⊢ Tj[µ~T .~T/~T] : rep t
p
−→ t′

Figure 7.1: Stable operational semantics for first-order Affine HOPLA

By the induction hypotheses for t, we get Γ/γ, x : P/P, y : Q/Q ⊢ t′ :
R/r, while the hypothesis for u yields ∆/δ ⊢ u′ : (P ⊗ Q)/(P ⊗ Q). Since
(P⊗Q)/(P ⊗Q) ≡ (P/P)⊗ (Q/Q), the typing rule for tensor match yields
Γ/γ,∆/δ ⊢ [u′ > x⊗ y ⇒ t′] : R/r as wanted.

Prefixing. Suppose that γ ⊢ P⊥ : !t
!P
−→ t′ is derived from γ ⊢ P : t

P
−→ t′. By

the induction hypothesis, we get Γ/γ ⊢ t′ : P/P and since P/P ≡ P⊥/(!P)
we are done.

Prefix match. Suppose that γ, δ ⊢ Q : [u > !x⇒ t]
q
−→ t′[u′/x] is derived from

γ, x : P ⊢ Q : t
q
−→ t′ and δ ⊢ P⊥ : u

!P
−→ u′. By the induction hypothesis

for t, we get Γ/γ, x : P/P ⊢ t′ : Q/q, while the hypothesis for u yields
∆/δ ⊢ u′ : P⊥/(!P). As P⊥/(!P) ≡ P/P , the substitution lemma yields
Γ/γ,∆/δ ⊢ t′[u′/x] : Q/q as wanted.

The remaining rules are handled similarly. ✷

A strong correspondence result relating derivations to configurations is
obtained directly from Propositions 7.6 and 7.7.

Theorem 7.10 (Strong Correspondence) Let Γ ⊢ t : P with Γ ⊂ Φ.

There is a bijection between the set Dγ,t,P of derivations of γ ⊢ P : t
P
−→ t′,

for some t′, using Φ and the set EJΓ ⊢ t : PK(γ, P).

136 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

Proof. For any Γ ⊢ t : P there is a unique derivation of ⊥ ⊢ P : t
⊥
−→ t,

because using any other last rule than the axiom for ⊥-transitions, the path
on the transition is non-⊥. This derivation is mapped to the unique element
of EJtK(⊥,⊥) cf. Proposition 7.6, part (i).

Hence, we just need to relate other derivations to nonempty configura-
tions. Recursion is treated using finite unfoldings as in Section 4.4.1 and we
omit those details here. The proof otherwise proceeds by structural induc-
tion on t:

Identity. For any p : P there is a unique derivation of x : p ⊢ P : x
p
−→ x.

Writing γ for the path list γ : Γ obtained by extending x : p, we map
this derivation to the unique configuration corresponding to p in EJΓ ⊢ x :
PK(γ, p) cf. Proposition 7.6, parts (ii) and (iii).

Nondeterministic sum. We have

Dγ,Σi∈I ti,p
∼= Σi∈IDγ,ti,p
∼= Σi∈IEJtiK(γ, p) (ind. hyp.)
∼= EJΣi∈ItiK(γ, p) (Prop. 7.7)

—as wanted.

Tensor. We have

D(γ,δ),t⊗u,P⊗Q
∼= Dγ,t,P ×Dδ,u,Q
∼= EJtK(γ, P)× EJuK(δ,Q) (ind. hyp.)
∼= EJt⊗ uK(P,Q) (Prop. 7.7)

—as wanted.

Tensor match. We have

D(γ,δ),[u>x⊗y⇒t],r
∼= ΣP,QD(γ,x:P,y:Q),t,r ×Dδ,u,P⊗Q
∼= ΣP,QEJtK(γ ⊗ P ⊗Q, r)× EJuK(δ, P ⊗Q) (ind. hyp.)
∼= EJ[u > x⊗ y ⇒ t]K(γ ⊗ δ, r) (Prop. 7.7)

—as wanted.

Prefix. We have

Dγ,!t,!P
∼= Dγ,t,P
∼= EJtK(γ, P) (ind. hyp.)
∼= EJ!tK(γ, !P) (Prop. 7.7)

—as wanted.

7.4. STABLE OPERATIONAL SEMANTICS 137

Prefix match. We have

D(γ,δ),[u>!x⇒t],q
∼= ΣP D(γ,x:P),t,q ×Dδ,u,!P
∼= ΣPEJtK(γ ⊗ P, q)× EJuK(δ, !P) (ind. hyp.)
∼= EJ[u > !x⇒ t]K(γ ⊗ δ, q) (Prop. 7.7)

—as wanted.

The remaining cases are treated similarly. ✷

The theorem says nothing about the successor term t′ of transitions

γ ⊢ t
P
−→ t′. However, the next section shows that we are able to compose

derivations and to restrict them to obtain derivations with smaller output.
As this matches the corresponding operations on configurations, a soundness
result will follow, cf. Proposition 7.12 below.

7.4.3 Operations on Derivations

We’ll now consider composition and restriction as syntactic operations on
derivations. The former corresponds to extension of configurations by the
addition of more compatible events, and the latter corresponds to the re-
striction operation on configurations induced by output maps. For defining
composition on derivations, we need a technical lemma:

Lemma 7.11 Suppose Γ, x : P ⊢ t : Q. If ∆ ⊢ u : P with Γ and ∆ disjoint,

then γ, δ ⊢ Q : t[u/x]
Q
−→ t′′ iff γ, x : P ⊢ Q : t

Q
−→ t′ and δ ⊢ P : u

P
−→ u′, and

moreover, t′′ ≡ t′[u′/x].

Proof. For Q 6≡ ⊥ the result is proved by structural induction on t using
the induction hypothesis

Suppose Γ, x1 : P, . . . , xk : P ⊢ t : Q with {x1, . . . , xk} not
crossed in t. If ∆ ⊢ u : P with Γ and ∆ disjoint, then γ, δ ⊢ Q :
t[u/x1, . . . , u/xk]

q
−→ t′′ iff γ, xj : P,⊥ ⊢ Q : t

q
−→ t′, some 1 ≤ j ≤

k, and δ ⊢ P : u
P
−→ u′, and moreover, t′′ ≡ t′[u′/x1, . . . , u

′/xk].

For Q ≡ ⊥, the result follows using the rule for ⊥-transitions. ✷

Given P : P and P ′ : (P/P) we’ll write P ; P ′ for the path of P obtained
as the configuration P ∪ P ′. We treat ; as a syntactic operator on paths
according to:

⊥ ; P ≡def P ; ⊥ ≡def P

(P ⊗Q) ; (P ′ ⊗Q′) ≡def (P ; P ′)⊗ (Q ; Q′)

(βp) ; p′ ≡def β(p ; p′)

(!P) ; p′ ≡def !(P ; p′)

(abs p) ; p′ ≡def abs(p ; p′)

(7.28)

138 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

Composition of paths extends to composition of path lists in the obvious

way. Suppose d is a derivation of γ ⊢ P : t
P
−→ t′ and d′ is a derivation of

γ′ ⊢ P : t′
P ′

−→ t′′. Then d ; d′ as defined in Figures 7.2 and 7.3 is a derivation

of γ ; γ′ ⊢ P : t
P ;P ′

−−−→ t′′. To save space, typing information is omitted in the
figures.

With d a derivation of γ′ ⊢ P : t
P ′

−→ t′′ with P ≤P P ′ we’ll write

d|P for the restricted derivation of γ ⊢ P : t
P
−→ t′, defined in Figures 7.4

and 7.5. Note that we have d ; d′ ≡ d′′ for some d′ iff d ≡ d′′|P for some
P . The “residual” derivation d′ can be obtained by reading the equations
d ; d′ ≡def d′′ defining composition as a definition of d′.

These operations allow us to extend the bijection θ from the strong
correspondence result to a complete representation of spans using deriva-
tions. If d′′ = d ; d′ then θd and θd′ are disjoint with θd′′ = θd ∪ θd′, and
θ(d|P) = (θd)|P . This is enough to determine spans up to isomorphism. Con-
sider the interpretation 〈ι, E, o〉 of Γ ⊢ t : P. By the strong correspondence
result, and the properties of output morphisms, events of E correspond to
derivations γ ⊢ P : t

p
−→ t′ where p is a prime configuration of P. The path

list γ and label p yield the images of the event under ι and o. If events e and
e′ are represented by derivations de and de′ , we have e ≤ e′ iff de ≡ de′ |oe,
and e a

` e′ iff there exists a derivation d with d|oe ≡ de and d|oe′ ≡ de′ .
We can now prove

Proposition 7.12 (Soundness) Let Γ ⊢ t : P with Γ ⊂ Φ. Given any

derivation d of γ ⊢ t
P
−→ t′ using Φ we have EJΓ/γ ⊢ t′ : P/P K ∼= EJΓ ⊢ t :

PK/(θd).

Proof. Let EJΓ ⊢ t : PK be the span 〈ι, E, o〉 and EJΓ/γ ⊢ t′ : P/P K the
span 〈ι′, E′, o′〉. By the above, the latter is represented by the derivations

d′ of γ′ ⊢ P/P : t′
P ′

−→ t′′. All such derivations can be precomposed with
the derivation d and thereby represent precisely the configurations of E
extending θd. Thus, we have E′ ∼= E/(θd). Consider an event e of E′. By the
isomorphism E′ ∼= E/(θd) we know that x = {e} ∪ θd belongs to E (using e
also for the event of E corresponding to e of E′). Hence we have a derivation
dx of γx ⊢ P : t

px−→ tx representing x so that ι†x = γx and ox = px. This
derivation restricts to d since x restricts to θd. Thus, we have a residual
derivation of γe ⊢ P/P : t′

pe−→ tx with γ ; γe ≡ γx and P ; pe ≡ px, and we
also have oe = pe. Moreover, dx restricts to d⌈e⌉ as x restricts to o⌈e⌉. This

means that we have a derivation γ⌈e⌉ ⊢ P : t
pe−→ t⌈e⌉ with γ⌈e⌉ ∪ γ = γx.

Thus,
ι′e = γe = γx \ γ = γ⌈e⌉ \ γ = ιe \ ι†(θd) and

o′e = pe = oe .
(7.29)

Using Lemma 7.8, we are done. ✷

7.4. STABLE OPERATIONAL SEMANTICS 139

⊥ ⊢ t
⊥
−→ t

; d ≡def d ≡def d ;
⊥ ⊢ t

⊥
−→ t

x : p ⊢ x
p
−→ x

;
x : p′ ⊢ x

p′
−→ x

≡def

x : p ; p′ ⊢ x
p;p′
−−→ x

d

γ ⊢ t[rec x.t/x]
p
−→ t′

γ ⊢ rec x.t
p
−→ t′

;
d′

γ′ ⊢ t′
p′
−→ t′′

≡def

d ; d′

γ ; γ′ ⊢ t[rec x.t/x]
p;p′
−−→ t′′

γ ; γ′ ⊢ rec x.t
p;p′
−−→ t′′

d

γ ⊢ tj
p
−→ t′

γ ⊢ Σi∈Iti
p
−→ t′

j ∈ I ;
d′

γ′ ⊢ t′
p′
−→ t′′

≡def

d ; d′

γ ; γ′ ⊢ tj
p;p′
−−→ t′′

γ ; γ′ ⊢ Σi∈Iti
p;p′
−−→ t′′

j ∈ I

dt

γ ⊢ t
P
−→ t′

du

δ ⊢ u
Q
−→ u′

γ, δ ⊢ t⊗ u
P⊗Q
−−−→ t′ ⊗ u′

;

d′t

γ′ ⊢ t′
P ′

−→ t′′
d′u

δ′ ⊢ u′ Q′

−→ u′′

γ′, δ′ ⊢ t′ ⊗ u′ P ′⊗Q′

−−−−→ t′′ ⊗ u′′

≡def

dt ; d′t

γ ; γ′ ⊢ t
P ;P ′

−−−→ t′′
du ; d′u

δ ; δ′ ⊢ u
Q;Q′

−−−→ u′′

(γ ; γ′), (δ ; δ′) ⊢ t⊗ u
(P ;P ′)⊗(Q;Q′)
−−−−−−−−−→ t′′ ⊗ u′′

dt

γ, x : P, y : Q ⊢ t
r
−→ t′

du

δ ⊢ u
P⊗Q
−−−→ u′

γ, δ ⊢ [u > x⊗ y ⇒ t]
r
−→ [u′ > x⊗ y ⇒ t′]

;

d′t

γ′, x : P ′, y : Q′ ⊢ t′
r′
−→ t′′

d′u

δ′ ⊢ u′ P ′⊗Q′

−−−−→ u′′

γ′, δ′ ⊢ [u′ > x⊗ y ⇒ t′]
r′
−→ [u′′ > x⊗ y ⇒ t′′]

≡def

dt ; d′t

(γ ; γ′), x : P ; P ′, y : Q ; Q′ ⊢ t
r;r′
−−→ t′′

du ; d′u

δ ; δ′ ⊢ u
(P ;P ′)⊗(Q;Q′)
−−−−−−−−−→ u′′

(γ ; γ′), (δ ; δ′) ⊢ [u > x⊗ y ⇒ t]
r;r′
−−→ [u′′ > x⊗ y ⇒ t′′]

Figure 7.2: Composition of derivations

140 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

d

γ ⊢ t
p
−→ t′

γ ⊢ βt
βp
−→ t′

;
d′

γ′ ⊢ t′
p′
−→ t′′

≡def

d ; d′

γ ; γ′ ⊢ t
p;p′
−−→ t′′

γ ; γ′ ⊢ βt
β(p;p′)
−−−−→ t′′

d

γ ⊢ t
βp
−→ t′

γ ⊢ πβt
p
−→ t′

;
d′

γ′ ⊢ t′
p′
−→ t′′

≡def

d ; d′

γ ; γ′ ⊢ t
β(p;p′)
−−−−→ t′′

γ ; γ′ ⊢ πβt
p;p′
−−→ t′′

d

γ ⊢ t
P
−→ t′

γ ⊢ !t
!P
−→ t′

;
d′

γ′ ⊢ t′
P ′

−→ t′′
≡def

d ; d′

γ ; γ′ ⊢ t
P ;P ′

−−−→ t′′

γ ; γ′ ⊢ !t
!(P ;P ′)
−−−−→ t′′

dt

γ, x : P ⊢ t
q
−→ t′

du

δ ⊢ u
!P
−→ u′

γ, δ ⊢ [u > !x⇒ t]
q
−→ t′[u′/x]

;
d

γ′, δ′ ⊢ t′[u′/x]
q′
−→ v

≡def

dt ; d′t

(γ ; γ′), x : P ; P ′ ⊢ t
q;q′
−−→ t′′

du ; d′u

δ ; δ′ ⊢ u
!(P ;P ′)
−−−−→ u′′

(γ ; γ′), (δ ; δ′) ⊢ [u > !x⇒ t]
q;q′
−−→ t′′[u′′/x]

—where
d′t

γ′, x : P ′ ⊢ t′
q′
−→ t′′

and
d′u

δ′ ⊢ u′ P ′

−→ u′′
, with v ≡ t′′[u′′/x], are in-

duced by d using Lemma 7.11.

d

γ ⊢ t
p
−→ t′

γ ⊢ abs t
abs p
−−−→ t′

;
d′

γ′ ⊢ t′
p′
−→ t′′

≡def

d ; d′

γ ; γ′ ⊢ t
p;p′
−−→ t′′

γ ; γ′ ⊢ abs t
abs(p;p′)
−−−−−→ t′′

d

γ ⊢ t
abs p
−−−→ t′

γ ⊢ rep t
p
−→ t′

;
d′

γ′ ⊢ t′
p′
−→ t′′

≡def

d ; d′

γ ; γ′ ⊢ t
abs(p;p′)
−−−−−→ t′′

γ ; γ′ ⊢ rep t
p;p′
−−→ t′′

Figure 7.3: Composition of derivations (continued)

7.4. STABLE OPERATIONAL SEMANTICS 141

d|⊥ ≡def d

⊥, x : p′ ⊢ x
p′
−→ x

∣∣∣∣∣
p

≡def
⊥, x : p ⊢ x

p
−→ x

d

γ′ ⊢ t[rec x.t/x]
p′
−→ t′′

γ′ ⊢ rec x.t
p′
−→ t′′

∣∣∣∣∣∣∣∣∣∣
p

≡def

d|p
γ ⊢ t[rec x.t/x]

p
−→ t′

γ ⊢ rec x.t
p
−→ t′

d

γ′ ⊢ tj
p′
−→ t′′

γ′ ⊢ Σi∈Iti
p′
−→ t′′

j ∈ I

∣∣∣∣∣∣∣∣∣∣
p

≡def

d|p
γ ⊢ tj

p
−→ t′

γ ⊢ Σi∈Itj
p
−→ t′

j ∈ I

dt

γ′ ⊢ t
P ′

−→ t′′
du

δ′ ⊢ u
Q′

−→ u′′

γ′, δ′ ⊢ t⊗ u
P ′⊗Q′

−−−−→ t′′ ⊗ u′′

∣∣∣∣∣∣∣∣∣∣
P⊗Q

≡def

dt|P

γ ⊢ t
P
−→ t′

du|Q

δ ⊢ u
Q
−→ u′

γ, δ ⊢ t⊗ u
P⊗Q
−−−→ t′ ⊗ u′

dt

γ′, x : P ′, y : Q′ ⊢ t
r′
−→ t′′

du

δ′ ⊢ u
P ′⊗Q′

−−−−→ u′′

γ′, δ′ ⊢ [u > x⊗ y ⇒ t]
r′
−→ [u′′ > x⊗ y ⇒ t′′]

∣∣∣∣∣∣∣∣∣∣
r

≡def

dt|r
γ, x : P, y : Q ⊢ t

r
−→ t′

du|P⊗Q

δ ⊢ u
P⊗Q
−−−→ u′

γ, δ ⊢ [u > x⊗ y ⇒ t]
r
−→ [u′ > x⊗ y ⇒ t′]

Figure 7.4: Restriction of derivations

142 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

d

γ′ ⊢ t
p′
−→ t′′

γ′ ⊢ βt
βp′
−−→ t′′

∣∣∣∣∣∣∣∣∣∣
βp

≡def

d|p
γ ⊢ t

p
−→ t′

γ ⊢ βt
βp
−→ t′

d

γ′ ⊢ t
βp′
−−→ t′′

γ′ ⊢ t
p′
−→ t′′

∣∣∣∣∣∣∣∣∣∣
p

≡def

d|βp

γ ⊢ t
βp
−→ t′

γ ⊢ πβt
p
−→ t′

d

γ′ ⊢ t
P ′

−→ t′′

γ′ ⊢ !t
!P ′

−−→ t′′

∣∣∣∣∣∣∣∣∣∣
!P

≡def

d|P

γ ⊢ t
P
−→ t′

γ ⊢ !t
!P
−→ t′

dt

γ′, x : P ′ ⊢ t
q′
−→ t′′

du

δ′ ⊢ u
!P ′

−−→ u′′

γ′, δ′ ⊢ [u > !x⇒ t]
q′
−→ t′′[u′′/x]

∣∣∣∣∣∣∣∣∣∣
q

≡def

dt|q
γ, x : P ⊢ t

q
−→ t′

du|!P

δ ⊢ u
!P
−→ u′

γ, δ ⊢ [u > !x⇒ t]
q
−→ t′[u′/x]

d

γ′ ⊢ t
p′
−→ t′′

γ′ ⊢ abs t
abs p′
−−−→ t′′

∣∣∣∣∣∣∣∣∣∣
abs p

≡def

d|p
γ ⊢ t

p
−→ t′

γ ⊢ abs t
abs p
−−−→ t′

d

γ′ ⊢ t
abs p′
−−−→ t′′

γ′ ⊢ rep t
p′
−→ t′′

∣∣∣∣∣∣∣∣∣∣
p

≡def

d|abs p

γ ⊢ t
abs p
−−−→ t′

γ ⊢ rep t
p
−→ t′

Figure 7.5: Restriction of derivations (continued)

7.4. STABLE OPERATIONAL SEMANTICS 143

7.4.4 Relating the Operational Semantics

We relate the stable operational semantics to the original operational seman-
tics given in Chapter 4. Note first that the actions P : a : P′ of that chapter
correspond to “atomic” paths a : P. By strong correspondence, derivations
⊢ P : t

a
−→ t′ in the stable semantics correspond to configurations in the

event-structure representation and so to elements of the presheaf denotation
of t. Strong correspondence for the original operational semantics further re-
lates to derivations there. Thus we have a bijective correspondence between
derivations ⊢ P : t

a
−→ t′ in the stable semantics and derivations P : t

a
−→ t′′ in

the original semantics.

Note that because the actions are atomic paths, they correspond to sin-
gleton configurations of P. By the properties of output morphisms, each
configuration mapped to a singleton configuration is itself a singleton. Thus,
derivations t

a
−→ t′ in either semantics correspond to events of the vertex of

EJtK with image a under the output morphism.

To complete the picture, we should be able to relate sequences of tran-
sitions in the original operational semantics to configurations. This involves
the ability to ignore the ordering of occurrences of independent events (i.e.
events related by a and unrelated by causality), and so the ordering of the
corresponding transitions. Now, if two events of the vertex of EJtK are inde-
pendent, then they have independent images under the output morphism.
Independence of events of type P induces a syntactic independence relation
on actions P : a : P′ for some P′, whose reflexive closure is given as the
least congruence I on actions satisfying a ⊗ ⊥ I ⊥ ⊗ b for any actions a
and b. Thus, to ignore ordering of transitions corresponding to independent
events, we need the diamond property discussed in Section 4.4.2. That will
be a corollary of the result below which shows that a-labelled derivations
⊢ P : t

a
−→ t′ and P : t

a
−→ t′′ can be matched up so that the successor terms

t′ and t′′ are identical.

Proposition 7.13 Suppose ⊢ t : P. Then P : t
a
−→ t′ in the original op-

erational semantics of Chapter 4 iff ⊢ P : t
a
−→ t′ in the stable operational

semantics.

Proof. By rule-induction on the original operational rules, using the induc-
tion hypothesis

Suppose Γ ⊢ t : P and ⊢ e : Γ,Φ. Then

P : e Z⇒ t
a
−→ e′ Z⇒ t′ ⇐⇒ γ ⊢ P : t

a
−→ t′ and Aγ(e, e′) (7.30)

—where Aγ(e, e′) is defined for path maps γ : Γ and environ-
ments ⊢ e : Γ and ⊢ e′ : Γ/γ as follows: A⊥(ǫ, ǫ) is true and,

144 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

inductively,

Aγ,x:P,y:Q((e, u > x⊗ y), (e′, u′ > x⊗ y)) ⇐⇒def

∃δ. δ ⊢ P⊗Q : u
P⊗Q
−−−→ u′ and Aγ,δ(e, e

′) . (7.31)

We’ll omit the typing information on transitions below. Note that we have
Aγ;γ′(e, e′′) iff there exists e′ such that Aγ(e, e′) and Aγ′(e′, e′′).

Variable. Suppose that e1, u > x ⊗ y, e2 Z⇒ x
a
−→ e′1, u

′ > x ⊗ y, e2 Z⇒ x

is derived from e1 Z⇒ u
a⊗⊥
−−−→ e′1 Z⇒ u′. By the induction hypothesis, the

premise is equivalent to the existence of a derivation γ ⊢ u
a⊗⊥
−−−→ u′ for

some γ such that Aγ(e1, e
′
1). This is then equivalent to Ax:a,y:⊥((e1, u >

x ⊗ y, e2), (e
′
1, u

′ > x ⊗ y, e2)) by definition, and as the stable operational

rules yields a derivation x : a ⊢ x
a
−→ x, we are done. The other rule for

variables is handled symmetrically.

Tensor. Suppose that e Z⇒ t ⊗ u
a⊗⊥
−−−→ e′ Z⇒ t′ ⊗ u is derived from e Z⇒

t
a
−→ e′ Z⇒ t′. By the induction hypothesis, the premise is equivalent to the

existence of a derivation dt of γ ⊢ t
a
−→ t′ for some γ such that Aγ(e, e′).

By the stable operational semantics, dt exists iff there is a derivation of

γ ⊢ t⊗ u
a⊗⊥
−−−→ t′ ⊗ u, as wanted.

Tensor match. Suppose e Z⇒ [u > x ⊗ y ⇒ t]
a
−→ e′ Z⇒ [u′ > x ⊗ y ⇒ t′]

is derived from e, u > x ⊗ y Z⇒ t
a
−→ e′, u′ > x ⊗ y ⇒ t′. By the induction

hypothesis, the premise is equivalent to the existence of a derivation dt of
γ, x : P, y : Q ⊢ t

a
−→ t′ with Aγ,x:P,y:Q((e, u > x ⊗ y), (e′, u′ > x ⊗ y)). By

definition, the latter means that we have a derivation du of δ ⊢ u
P⊗Q
−−−→ u′

and Aγ,δ(e, e
′) for some δ. By the stable operational semantics, we have dt

and du iff we have a derivation of γ, δ ⊢ [u > x⊗ y ⇒ t]
a
−→ [u′ > x⊗ y ⇒ t′],

as wanted.

Prefix match. Suppose e Z⇒ [u > !x⇒ t]
a
−→ e′′ Z⇒ v is derived from e Z⇒ u

!
−→

e′ Z⇒ u′ and e′ Z⇒ t[u′/x]
a
−→ e′′ Z⇒ v. By the induction hypothesis, the first

premise is equivalent to the existence of a derivation du of δ ⊢ u
!⊥
−→ u′ for

some δ such that Aδ(e, e
′). By the induction hypothesis, the second premise

is equivalent to the existence of a derivation d of γ, δ′ ⊢ t[u′/x]
a
−→ v such that

Aγ,δ′(e
′, e′′). Lemma 7.11 implies that d exists iff we have both a derivation

dt of γ, x : P ⊢ t
a
−→ t′ and a derivation d′u of δ′ ⊢ u′ P

−→ u′′ with v ≡ t′′[u′′/x].

Now, du ; d′u is a derivation of δ ; δ′ ⊢ u
!P
−→ u′′, and using dt, we get a

derivation of γ, (δ ; δ′) ⊢ [u > !x ⇒ t]
a
−→ t′′[u′′/x] as wanted. Conversely,

such a derivation induces the derivations dt and du ; d′u above. Finally, we
have Aγ,(δ;δ′)(e, e

′′) iff Aδ(e, e
′) and Aγ,δ′(e

′, e′′), and so we are done.

The remaining rules are handled similarly. ✷

7.5. HIGHER-ORDER PROCESSES 145

Corollary 7.14 The diamond property holds for the original operational
semantics.

Proof. We omit typing information. If we have derivations of t
a⊗⊥
−−−→ t1 and

t1
⊥⊗b
−−−→ t′ in the original semantics, we have corresponding derivations da and

db in the stable operational semantics by Proposition 7.13. The composition

da ; db is a derivation of ⊢ t
a⊗b
−−→ t′, and by restriction, we obtain a derivation

(da ; db)|⊥⊗b of ⊢ t
⊥⊗b
−−−→ t2 for some t2 together with a residual derivation of

⊢ t2
a⊗⊥
−−−→ t′. Using Proposition 7.13 again, we get corresponding derivations

in original semantics as wanted. ✷

It follows easily that whenever a1 I a2 and we have transitions t
a1−→ t1 and

t1
a2−→ t′ in the original semantics, then we also have transitions t

a2−→ t2 and
t2

a1−→ t′ for some t2. By replacing actions by the events of EJtK sitting above
them, we exhibit the original operational semantics as an asynchronous tran-
sition system [5, 84].

7.5 Higher-Order Processes

The event structure semantics extends to higher-order processes, though at
the price that the correspondence to the presheaf semantics fails.

Given event structures Ei = (Ei,≤i,`i) for i = 1, 2, we define the event
structure E1 ⊸ E2 by first describing its configurations. Given any subset
f ⊆ C(E1)×E2, write π2(f,E) for {e ∈ E2 : ∃x ∈ E1. x ⊆ E and (x, e) ∈ f}.

Then π2f = π2(f, π†
1f). Now, f is a configuration if

(i) π†
1f ∈ C(E1);

(ii) ∀x ∈ C(E1). π2(f, x) ∈ C(E2);

(iii) ∀(x, e), (x′, e) ∈ C(E1)× E2. (x, e) ∈ f and (x′, e) ∈ f =⇒ x = x′.

This defines a stable family of configurations FE1⊸E2
over the event set

C(E1)×E2 [94]. Any event structure E over events E induces a stable family
of configurations over the same events by taking the configurations of E
as the elements of the family. This construction is part of an adjunction
between the categories of event structures and stable families; the right
adjoint constructs from a stable family an event structure by taking as events
the prime configurations of the family.

The prime configurations of FE1⊸E2
are the nonempty subsets f ⊆

C(E1) × E2 satisfying the above, but with (ii) strengthened by demanding
that π2(f, x) is either empty or of the form ⌈e⌉.

The adjunction yields a bijective correspondence between output mor-
phisms E → (P ⊸ Q) and morphisms of stable families E → FP⊸Q. More-
over, the latter morphisms are in bijective correspondence with spans from

146 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

E. In one direction of the correspondence, a span s = 〈ι, E, o〉 is sent to the
map s : E→ FP⊸Q given by e 7→ {(ιe′, oe′) : e′ ≤E e}. By the adjunction, s
then corresponds to an output morphism E→ (P ⊸ Q), and since these are
in bijective correspondence with spans Spn(O, P ⊸ Q) we obtain an isomor-
phism between the categories Spn(O, P ⊸ Q) and Spn(P, Q). This indicates
how the function space internalises spans; the category Spn(O, P ⊸ Q)

plays the role of ̂Pop ×Q in showing how the function space of Lin inter-
nalises maps of Lin.

The families of configurations defining P ⊗ Q ⊸ R and P ⊸ (Q ⊸ R)
are the same, but for a trivial renaming of events given by the isomorphism
C(P⊗Q)×R ∼= C(P)×C(Q)×R where R is the event set of R. This induces
an isomorphism between P ⊗ Q ⊸ R and P ⊸ (Q ⊸ R). We therefore
obtain a chain of isomorphisms

Spn(P ⊗Q, R) ∼= Spn(O, P⊗Q ⊸ R)
∼= Spn(O, P ⊸ (Q ⊸ R)) ∼= Spn(P, Q ⊸ R) . (7.32)

We take this as evidence that Spn has monoidal closed structure and omit
further details. The denotational rules for function space of Section 3.1 can
now be used to provide the full language Affine HOPLA with a stable de-
notational semantics.

The stable operational semantics can be extended to full Affine HOPLA
by allowing configurations of functions spaces as labels and using transitions

of the form γ ⊢f t
P
−→ t′ where the f -tag is a configuration of Γ ⊸ P such

that π†
1f = γ and π2f = P . This extra information is needed in a rule for

lambda-abstraction:
γ, x : P ⊢ Q : t

q
−→ t′

γ ⊢ P ⊸ Q : λx.t
?
−→ λx.t′

(7.33)

Here the label of the transition of the conclusion should be the currying of
the configuration f ∈ C(Γ ⊗ P ⊸ Q) represented by the premise, but the

projections γ ⊗ P = π†
1f and q = π2f are not enough to determine f .

With complicated labels and the extra, semantic information needed,
such an operational semantics will be rather denotational in nature. It seems
reasonable to look for simple labels to replace function-space configurations.
An obvious attempt would be to use the paths P 7→ q from Section 4.1. This
leads to the following rules:

γ, x : P ⊢ Q : t
q
−→ t′

γ ⊢ P ⊸ Q : λx.t
P 7→q
−−−→ λx.t′

γ ⊢ P ⊸ Q : t
P 7→q
−−−→ t′ δ ⊢ P : u

P
−→ u′

γ, δ ⊢ Q : t u
q
−→ t′ u′

(7.34)

While these rules seem to behave as wanted, we don’t yet have a proof
pinpointing the correspondence with the event-structure semantics. The

7.5. HIGHER-ORDER PROCESSES 147

problem is that the paths P 7→ q contain too little information to de-
scribe a configuration of P ⊸ Q. Indeed, there will generally be many
configurations f with π†

1f = P and π2f = q, and so, at best, derivations

γ ⊢ P ⊸ Q : t
P 7→q
−−−→ t′ will correspond to equivalence classes of configu-

rations of the vertex of EJtK, the equivalence relating two configurations iff
they have the same images under the projections. We hope to be able to
adapt the proofs of strong correspondence and soundness accordingly.

148 CHAPTER 7. EVENT-STRUCTURE REPRESENTATION

Chapter 8

Conclusion

Section 8.1 summarises the thesis and Section 8.2 discusses related work aim-
ing at extending our basic domain theory to a fuller coverage of concurrent
computation.

8.1 Summary

We have given a simple domain theory for concurrent processes within the
framework of Scott and Strachey. Processes are represented as sets of compu-
tation paths as in Hennessy’s work on full abstraction for CCS with process
passing. Ordered by inclusion, path sets form nondeterministic domains, and
two expressive metalanguages for concurrency, HOPLA and Affine HOPLA,
are based on canonical constructions on these domains. Their denotational
semantics are fully abstract with contextual equivalence characterised as
equality of path set denotations.

One may argue that nondeterministic processes like those we have con-
sidered are a better fit to Scott’s domain theory than sequential programs.
Domains are constructed from computation paths which form an intuitive
basis of prime elements, useful for giving simple adequacy proofs; the some-
what subtle information ordering is replaced by the very concrete inclusion
of path sets; metalanguages arise more directly from canonical constructions
on domains as there is no extra notion of evaluation strategy that needs to
be catered for by use of lifting; and full abstraction is an easy consequence
of expressiveness with respect to computation paths.

The domain theory based on path sets is a simple version of an ear-
lier and more informative domain theory based on presheaves. Compared
to the path set semantics of a process, a presheaf says not only whether
or not a given computation path may be performed by the process, but
yields the set of ways it may be realised. This extra structure of presheaves
takes the nondeterministic branching behaviour of processes into account.
The presheaf semantics of the two metalanguages inform operational se-

149

150 CHAPTER 8. CONCLUSION

mantics with derivations corresponding to the realisers of presheaves. This
strengthens the correspondence results obtained using the path semantics,
themselves subsuming more standard soundness and adequacy results.

The domain theory and the two metalanguages have highlighted the role
of linearity in concurrent computation, distinguishing between linear, affine,
and continuous process operations that use respectively exactly one, at most
one, and any finite number of computation paths of their input in providing a
path of output. Continuous operations, as embodied in HOPLA, receive the
code of other processes and are free to make copies of that code in order to
explore the behaviour of the input in different contexts. Affine operations, as
embodied in Affine HOPLA, do not allow copying and can only examine the
input in a single context. Such operations are more realistic in a distributed
setting where processes interact as peers rather than being sent to each
other as code. Linear operations are further restricted in that they are not
even allowed to ignore their input, if they are to have nontrivial behaviour
themselves. So linear operations alone are not enough. It can nevertheless be
useful for reasoning about processes to be attentive to linearity as it amounts
to preserving nondeterministic sums, leading e.g. to expansion laws.

Both metalanguages are shown expressive enough to handle nondeter-
minism, prefixing and higher-order processes to the extent of allowing direct
encodings of CCS, CCS with process passing, and mobile ambients with
public names (the affine language with suitable restrictions on variable oc-
currences). This is remarkable in that the only process constructs of the
metalanguages, as far as these encodings are concerned, are nondetermin-
istic sums and prefix operations. In particular, parallel composition and
ambient creation can be defined in the languages and need not be primitive
constructs. Affine HOPLA has an additional construct, a tensor operation,
which allows the affine metalanguage to encode dataflow processes with
multiple communication lines. By an event-structure representation of the
first-order fragment of the affine language, we have exposed the tensor as a
juxtaposition of independent processes.

8.2 Related Work

Three main extensions of the work above concern name-generation, inde-
pendence models, and bisimulation.

8.2.1 Name-Generation

The encodings of CCS with process passing and mobile ambients with public
names show that our metalanguages can express certain forms of mobility
of processes by virtue of allowing process passing. Another kind of mobility,
mobility of communication links, arises from name-generation as in the π-
calculus [58]. Inspired by HOPLA, Winskel and Zappa Nardelli have defined

8.2. RELATED WORK 151

a higher-order process language with name-generation, allowing encodings
of full Ambient Calculus and π-calculus [101]. The extensions are to add a
type of names N , function spaces, as well as a type δP supporting new-name
generation through the abstraction new x.t. The denotational semantics of
the extension is currently being developed; this addresses the question of
when function spaces exist in the obvious model (extending that of [17]).
There is already an operational semantics; it is like that of HOPLA but
given at stages indexed by the current set of names.

8.2.2 Independence

The event-structure representation of Affine-HOPLA exposes that the affine
language yields an independence model for concurrency. Still, the coverage
of independence models is rather limited.

Spans of event structures like those used in Chapter 7 allow defining
the trace operation of nondeterministic dataflow. Indeed, the representable
profunctors, which are stable and rooted, were called “stable port profunc-
tors” in [33] and used to give a fully abstract denotational semantics to
nondeterministic dataflow with trace.

As an operation on spans, trace maps 〈ι, E, o〉 : P ⊗ R → Q ⊗ R to a
span 〈ι′, E′, o′〉 : P → Q with the events of E′ being prime configurations of
E satisfying a certain “securedness” requirement [98] to the effect that all
input of type R has been previously output. However, conflict on the event
structure E′ cannot in general be given by a binary relation, and so the
spans have to be generalised to allow the vertices to be more general event
structures with a consistency predicate replacing the conflict relation [93].

It was noted in Section 4.5.2 that trace cannot be expressed in Affine
HOPLA, and how best to extend the syntax and operational semantics of
the affine language to accommodate trace is not known.

Perhaps more importantly, one can show the event-structure denotations
of Affine HOPLA are too impoverished to coincide with the standard inde-
pendence semantics of CCS as e.g. given in [96]. Indeed, given any term t
and the corresponding interpretation EJtK = 〈ι, E, o〉, we have that for all
events e of E, the poset ⌈e⌉ is a linear order. By contrast, in the standard se-
mantics, a parallel composition (a.c.∅)|(b.c̄.∅) will be modelled as an event
structure with three mutually consistent events a, b, c such that a ≤ c and
b ≤ c, but with a and b unrelated.

Again, we have to move beyond Affine HOPLA for defining such seman-
tics. Guidelines on what’s lacking in the affine language can be got from work
on presheaf models for concurrency [16], where the ingredients of product
of presheaves, pomset augmentation and cartesian liftings (extending the
match operators of Affine HOPLA) all play a critical role. This work sug-
gests exploring other event-structure representations, based on more general
spans of event structures, and perhaps a new comonad yielding a less rigid

152 CHAPTER 8. CONCLUSION

form of prefixing.
As a general point, the categories obtained from presheaves are very rich

in structure, pointing towards more expressive languages than HOPLA and
Affine HOPLA. In particular, the affine category accommodates the inde-
pendence model of event structures to the extent of supporting the standard
event-structure semantics of CCS and related languages, as well as the trace
of nondeterministic dataflow.

8.2.3 Bisimulation

Presheaf models come with a built-in, semantic notion of bisimulation, de-
rived from open maps, and for general reasons, this equivalence is a congru-
ence for both metalanguages.

One of these general reasons is a remarkable result by Cattani and
Winskel [16, 19, 20] which says that the morphisms of Lin preserve open
maps with respect to the situation yP : P →֒ P̂, i.e. using a diagram like the
one on the left below in the definition of what it means for f : X → Y to
be open.

yPp //

��

X

f

��

jPP //

��

X

f

��

iPP //

��

X

f

��
yPq //

>>

Y jPQ //

==

Y iPQ //

==

Y

(8.1)

Cattani and Winskel also show that the morphisms of Aff preserve open
maps with respect to the situation jP : P⊥ →֒ P̂ (center diagram above),
and one can further show that morphisms of Cts preserve open maps with
respect to the situation iP : !P →֒ P̂ (right diagram above). We’ll return
to this below. Thus, open-map bisimilarity is preserved in all cases, giving
congruence results for free when process languages are interpreted in Lin,
Aff , or Cts.

Part of the motivation for Winskel’s original work on Affine HOPLA [98]
was the hope that an operational semantics for full Affine HOPLA would
provide an operational, coinductive characterisation of open-map bisimila-
rity. Unfortunately, our operational semantics for the affine language has
not been extended to higher-order processes in general, and the stable op-
erational semantics, even if correct, is not helpful as the underlying event
structure semantics already diverges from the presheaf semantics.

We do have a full operational semantics for HOPLA, but here the notion
of open map degenerates into isomorphisms and the congruence result is
trivial [20]. The collapse of open maps in Cts suggests that one should look
at other choices of exponential [20, 65]. The abstract presentation of HOPLA
using universal constructions should be helpful in evaluating candidates.

As it stands, a general operational understanding of open-map bisimu-
lation has not been obtained. In fact, the metalanguages may not even be

8.2. RELATED WORK 153

able to provide such an understanding.
Recall from (5.7) that the maps of Lin correspond to profunctors P ×

Qop → Set. The bicategory Prof of profunctors is biequivalent to Lin, and
like Lin the bicategory Prof has an involution so that maps f : P → Q
correspond to their dual f⊥ : Q⊥ → P⊥. Indeed, again just as in Lin, a
map f : P → Q corresponds to a map f ′ : P × Q⊥ → 1, in which we
have “dualised” the output to input. It is because of this duality that open
maps and open-map bisimulation for higher-order processes take as much
account of input as they do output. Most often two higher-order processes
are defined to be bisimilar iff they yield bisimilar outputs on any common
input (cf. Section 3.5.3). But this simply won’t do within a type discipline in
which all nontrivial output can be “dualised” to input. On the other hand,
traditional process languages and their types don’t support this duality.

One line towards understanding open-map bisimulation at higher order
is to design a process language in which this duality is present. The language
could support the types of Prof extended by a suitable pseudo comonad.
Ideally one would obtain a coinductive characterisation of open map bisi-
mulation at higher order based on an operational semantics.

154 CHAPTER 8. CONCLUSION

Bibliography

[1] S. Abramsky. The lazy lambda calculus. In D. Turner, editor. Research
Topics in Functional Programming. Addison-Wesley, 1990.

[2] S. Abramsky. Computational interpretations of linear logic. Theoret-
ical Computer Science, 111(1–2):3–57, 1993.

[3] S. Abramsky and A. Jung. Domain theory. In S. Abramsky et al,
editors. Handbook of Logic in Computer Science. Volume 3. Semantic
Structures. Oxford University Press, 1994.

[4] S. Abramsky. Game semantics for programming languages. In Proc.
MFCS’97, LNCS 1295.

[5] M. A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis,
University of Sussex, 1988.

[6] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics.
Revised edition, North-Holland, 1984.

[7] P. N. Benton. A mixed linear and non-linear logic: proofs, terms and
models (extended abstract). In Proc. CSL’94, LNCS 933.

[8] G. Berry. Modèles complètement adéquats et stables des lambda-calculs
typés. Thèse de Doctorat d’Etat, Université Paris VII, 1979.

[9] F. Borceux. Handbook of Categorical Algebra I. Basic Category The-
ory. Cambridge University Press, 1994.

[10] W. Brauer, W. Reisig and G. Rozenberg, editors. Petri Nets: Central
Models and Their Properties. LNCS 254.

[11] W. Brauer, W. Reisig and G. Rozenberg, editors. Petri Nets: Applica-
tions and Relationships to Other Models of Concurrency. LNCS 255.

[12] T. Bräuner. An Axiomatic Approach to Adequacy. Ph.D. Dissertation,
University of Aarhus, 1996. BRICS Dissertation Series DS-96-4.

155

156 BIBLIOGRAPHY

[13] J. D. Brock and W. B. Ackerman. Scenarios: a model of non-
determinate computation. In Proc. Formalization of Programming
Concepts 1981, LNCS 107.

[14] L. Cardelli and A. D. Gordon. Anytime, anywhere: modal logics for
mobile ambients. In Proc. POPL’00.

[15] L. Cardelli and A. D. Gordon. A commitment relation for the ambient
calculus. Note. October 6th, 2000. Available from http://research.

microsoft.com/~adg/.

[16] G. L. Cattani and G. Winskel. Presheaf models for concurrency. In
Proc. CSL’96, LNCS 1258.

[17] G. L. Cattani, I. Stark and G. Winskel. Presheaf models for the π-
calculus. In Proc. CTCS’97, LNCS 1290.

[18] G. L. Cattani, M. Fiore, and G. Winskel. A theory of recursive domains
with applications to concurrency. In Proc. LICS’98.

[19] G. L. Cattani. Presheaf Models for Concurrency. Ph.D. Dissertation,
University of Aarhus, 1999. BRICS Dissertation Series DS-99-1.

[20] G. L. Cattani and G. Winskel. Profunctors, open maps and bisimula-
tion. Manuscript, 2003. Available from http://www.cl.cam.ac.uk/

~gw104/.

[21] A. Church. An unsolvable problem in elementary number theory.
American Journal of Mathematics, 58:354–363, 1936.

[22] F. Crazzolara and G. Winskel. Events in security protocols. In Proc.
8th ACM Conference on Computer and Communications Security,
2001.

[23] S. Dal Zilio. Mobile processes: a commented bibliography. In
F. Cassez et al, editors. Modelling and Verification of Parallel Pro-
cesses, LNCS 2067, 2001.

[24] J. B. Dennis. Data flow computation. In M. Broy, editor. Control
Flow and Data Flow: Concepts of Distributed Programming. Springer-
Verlag, 1985.

[25] M. Fiore, G. L. Cattani, and G. Winskel. Weak bisimulation and open
maps. In Proc. LICS’99.

[26] S. Furber, editor. Proc. Eighth International Symposium on Asyn-
chronus Circuits and Systems. IEEE, 2002.

BIBLIOGRAPHY 157

[27] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,
1987.

[28] A. D. Gordon. Bisimilarity as a theory of functional programming. In
Proc. MFPS’95, ENTCS 1.

[29] J. Gray. Fibred and cofibred categories. In Proc. La Jolla Conference
on Categorical Algebra, Springer-Verlag, 1966.

[30] M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple
parallel programming language. In Proc. MFCS’79, LNCS 74.

[31] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM, 32(1):137–161, 1985.

[32] M. Hennessy. A fully abstract denotational model for higher-order
processes. Information and Computation, 112(1):55–95, 1994.

[33] T. Hildebrandt, P. Panangaden and G. Winskel. A relational model
of non-deterministic dataflow. In Proc. CONCUR’98, LNCS 1466.

[34] T. T. Hildebrandt. A fully abstract presheaf semantics for SCCS with
finite delay. In Proc. CTCS’99, ENTCS 29.

[35] T. T. Hildebrandt. Categorical Models for Concurrency: Independence,
Fairness and Dataflow. Ph.D. Dissertation, University of Aarhus,
2000. BRICS Dissertation Series DS-00-1.

[36] C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666–677, 1978.

[37] C. A. R. Hoare. A Model for Communicating Sequential Processes.
Technical monograph, PRG-22, University of Oxford Computing Lab-
oratory, 1981.

[38] D. J. Howe. Proving congruence of bisimulation in functional pro-
gramming languages. Information and Computation, 124(2):103–112,
1996.

[39] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF, parts
I, II, and III. Information and Computation, 163(2):285–408, 2000.

[40] B. Jacobs. Semantics of weakening and contraction. Annals of Pure
and Applied Logic, 69(1):73–106, 1994.

[41] A. Joyal and I. Moerdijk. A completeness theorem for open maps.
Annals of Pure and Applied Logic, 70:51–86, 1994.

[42] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps.
Information and Computation, 127:164–185, 1996.

158 BIBLIOGRAPHY

[43] G. Kahn. The semantics of a simple language for parallel program-
ming. Information Processing, 74:471–475, 1974.

[44] G. M. Kelly. Basic concepts of enriched category theory. London Math.
Soc. Lecture Note Series 64, Cambridge University Press, 1982.

[45] S. C. Kleene. λ-definability and recursiveness. Duke Mathematical
Journal, 2:340–353, 1936.

[46] J. Lambek and P. L. Scott. Introduction to higher order categorical
logic. Cambridge University Press, 1986.

[47] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[48] K. G. Larsen and G. Winskel. Using information systems to solve
recursive domain equations effectively. In Proc. Semantics of Data
Types, 1984, LNCS 173.

[49] A. Levy. Basic Set Theory. Springer-Verlag, 1979.

[50] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic.
Springer-Verlag, 1992.

[51] S. Mac Lane. Categories for the Working Mathematician. Second
edition, Springer, 1998.

[52] A. Mazurkiewicz. Basic notions of trace theory. In Proc. REX summer
school 1988, LNCS 354.

[53] G. McCusker. A fully abstract relational model of syntactic control of
interference. In Proc. CSL’02, LNCS 2471.

[54] P.-A. Melliès. Categorical models of linear logic revisited. Submitted
to Theoretical Computer Science, 2002.

[55] M. Merro and F. Zappa Nardelli. Bisimulation proof methods for
mobile ambients. In Proc. ICALP’03, LNCS 2719.

[56] R. Milner. A Calculus of Communicating Systems. LNCS 92, Springer-
Verlag, 1980.

[57] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[58] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes,
parts I and II. Information and Computation, 100(1):1–77, 1992.

[59] R. Milner, M. Tofte, R. Harper and D. MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

BIBLIOGRAPHY 159

[60] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, 1999.

[61] J. H. Morris. Lambda-Calculus Models of Programming Languages.
PhD thesis, MIT, 1968.

[62] M. Nielsen, G. Plotkin and G. Winskel. Petri nets, event structures
and domains, part I. Theoretical Computer Science, 13(1):85–108,
1981.

[63] M. Nygaard. Towards an operational understanding of presheaf mod-
els. Progress report, University of Aarhus, 2001. Available from
http://www.daimi.au.dk/~nygaard/.

[64] M. Nygaard and G. Winskel. Linearity in process languages. In Proc.
LICS’02.

[65] M. Nygaard and G. Winskel. HOPLA—a higher-order process lan-
guage. In Proc. CONCUR’02, LNCS 2421.

[66] M. Nygaard and G. Winskel. Full abstraction for HOPLA. In Proc.
CONCUR’03, LNCS 2761.

[67] M. Nygaard and G. Winskel. Domain theory for concurrency. To ap-
pear in Theoretical Computer Science special issue on domain theory.

[68] D. Park. Concurrency and automata on infinite sequences. In Proc.
Theoretical Computer Science: 5th GI-Conference, LNCS 104, 1981.

[69] D. A. Peled, V. R. Pratt and G. J. Holzmann, editors. Proc. Partial
Order Methods in Verification 1996. DIMACS 29, American Mathe-
matical Society, 1997.

[70] B. C. Pierce. Basic Category Theory for Computer Scientists. The
MIT Press.

[71] B. C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[72] A. M. Pitts. Relational properties of domains. Information and Com-
putation, 127(2):66–90, 1996.

[73] G. Plotkin. A powerdomain construction. SIAM Journal on Comput-
ing, 5(3):452–487, 1976.

[74] G. Plotkin. LCF considered as a programming language. Theoretical
Computer Science 5(3): 225-255, 1977.

160 BIBLIOGRAPHY

[75] G. Plotkin. A structural approach to operational semantics. Lecture
notes, DAIMI FN-19, Department of Computer Science, University of
Aarhus, 1981.

[76] R. Rosebrugh and R. J. Wood. Proarrows and cofibrations. Journal
of Pure and Applied Algebra, 53:271-296, 1988.

[77] D. Sangiorgi. Expressing Mobility in Process Algebra. First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[78] D. Sangiorgi. Bisimulation for higher-order process calculi. Informa-
tion and Computation, 131(2):141–178, 1996.

[79] D. Sangiorgi and D. Walker. The π-calculus. A Theory of Mobile
Processes. Cambridge University Press, 2001.

[80] D. S. Scott. Outline of a mathematical theory of computation. In
Proc. 4th Annual Princeton Conference on Information Sciences and
Systems, 1970.

[81] D. S. Scott. Domains for denotational semantics. In Proc. ICALP’82,
LNCS 140.

[82] D. S. Scott and C. Strachey. Towards a mathematical semantics for
computer languages. In Proc. Symposium on Computers and Au-
tomata, Microwave Research Institute Symposia Series, vol. 21, 1971.

[83] R. A. G. Seely. Linear logic, ∗-autonomous categories and cofree coal-
gebras. In Proc. Categories in Computer Science and Logic, 1987,
Contemporary Mathematics 92.

[84] M. W. Shields. Concurrent machines. Computer Journal, 28:449–465,
1985.

[85] C. Strachey. Fundamental concepts in programming languages.
Higher-Order Logic and Symbolic Computation, 13:11–49, 2000.

[86] P. Taylor. Practical Foundations of Mathematics. Cambridge Univer-
sity Press, 1999.

[87] F. Javier Thayer, J. C. Herzog and J. D. Guttman. Strand spaces: why
is a security protocol correct? In Proc. IEEE Symposium on Security
and Privacy 1998.

[88] B. Thomsen. A calculus of higher-order communicating systems. In
Proc. POPL’89.

[89] A. Turing. Computability and λ-definability. Journal of Symbolic
Logic, 2:153–163, 1937.

BIBLIOGRAPHY 161

[90] R. J. van Glabbeek. The linear time — branching time spectrum. In
Proc. CONCUR’90, LNCS 458.

[91] G. Winskel. Events in Computation. PhD thesis, University of Edin-
burgh, 1980. Available from http://www.cl.cam.ac.uk/~gw104/.

[92] G. Winskel. On powerdomains and modality. Theoretical Computer
Science, 36:127–137, 1985.

[93] G. Winskel. Event Structures. In [11].

[94] G. Winskel. An introduction to event structures. In Proc. REX sum-
mer school 1988, LNCS 354.

[95] G. Winskel. The Formal Semantics of Programming Languages. An
Introduction. The MIT Press, 1993.

[96] G. Winskel and M. Nielsen. Models for concurrency. In S. Abram-
sky et al, editors. Handbook of Logic in Computer Science. Volume 4.
Semantic Modelling. Oxford University Press, 1995.

[97] G. Winskel. A presheaf semantics of value-passing processes. In Proc.
CONCUR’96, LNCS 1119.

[98] G. Winskel. A linear metalanguage for concurrency. In Proc.
AMAST’98, LNCS 1548.

[99] G. Winskel. A presheaf semantics for mobile ambients. Manuscript,
1998.

[100] G. Winskel. Event structures as presheaves—two representation the-
orems. In Proc. CONCUR’99, LNCS 1664.

[101] G. Winskel and F. Zappa Nardelli. Manuscript, 2003.

Recent BRICS Dissertation Series Publications

DS-03-13 Mikkel Nygaard. Domain Theory for Concurrency. November

2003. PhD thesis. xiii+161 pp.

DS-03-12 Paulo B. Oliva. Proof Mining in Subsystems of Analysis.

September 2003. PhD thesis. xii+198 pp.

DS-03-11 Maciej Koprowski. Cryptographic Protocols Based on Root Ex-

tracting. August 2003. PhD thesis. xii+138 pp.

DS-03-10 Serge Fehr. Secure Multi-Player Protocols: Fundamentals,

Generality, and Efficiency. August 2003. PhD thesis. xii+125 pp.

DS-03-9 Mads J. Jurik. Extensions to the Paillier Cryptosystem with Ap-

plications to Cryptological Protocols. August 2003. PhD thesis.

xii+117 pp.

DS-03-8 Jesper Buus Nielsen. On Protocol Security in the Cryptographic

Model. August 2003. PhD thesis. xiv+341 pp.

DS-03-7 Mario José Cáccamo. A Formal Calculus for Categories. June

2003. PhD thesis. xiv+151.

DS-03-6 Rasmus K. Ursem. Models for Evolutionary Algorithms and

Their Applications in System Identification and Control Opti-

mization. June 2003. PhD thesis. xiv+183 pp.

DS-03-5 Giuseppe Milicia. Applying Formal Methods to Programming

Language Design and Implementation. June 2003. PhD thesis.

xvi+211.

DS-03-4 Federico Crazzolara. Language, Semantics, and Methods for

Security Protocols. May 2003. PhD thesis. xii+160.

DS-03-3 Jiřı́ Srba. Decidability and Complexity Issues for Infinite-State

Processes. 2003. PhD thesis. xii+171 pp.

DS-03-2 Frank D. Valencia. Temporal Concurrent Constraint Program-

ming. February 2003. PhD thesis. xvii+174.

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive

Web Services. January 2003. PhD thesis. xiv+214 pp.

DS-02-5 Rasmus Pagh. Hashing, Randomness and Dictionaries. Octo-

ber 2002. PhD thesis. x+167 pp.

DS-02-4 Anders Møller. Program Verification with Monadic Second-

Order Logic & Languages for Web Service Development.

September 2002. PhD thesis. xvi+337 pp.

