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ABSTRACT The application of wireless sensors in the brain–computer interface (BCI) system provides

great convenience for the acquisition of electroencephalography (EEG) signals. However, a large amount of

training data is needed to build the classification architectures used in motor imagery (MI) brain–computer

interface (BCI), which is time-consuming to generate. To address this issue, transfer learning has gained

significant attention in a small sample setting BCI system. The transfer learning methods have shown

promising results by leveraging labeled patterns from the source domain to learn robust classifiers for the

target domain, which has only a limited number of labeled samples. However, the successful application of

such approaches in a motor imagery BCI remains limited. In this paper, we present a novel framework called

domain transfer multiple kernel boosting (DTMKB), which extends the DTMKL algorithms by applying

boosting techniques for learning kernel-based classifiers with the transfer of multiple kernels. Based on

the proposed framework, we examined their empirical performance in comparison to several state-of-the-

art algorithms on two MI task datasets. DTMKB yields the best performance for all datasets and achieves

the best average classification accuracy 87.60%, 76.00%, 74.66%, and 74.13%, respectively. In particular,

the proposed framework can be applied successfully in a small sample of EEG motor imagery signals.

INDEX TERMS Brain-computer interface EEG, transfer learning, boosting, domain transfer multiple kernel

boosting.

I. INTRODUCTION

The brain computer interface (BCI) is an alternative method

of communication between a user and system that depends

on neither the brain’s normal output nerve pathways nor

the muscles [1], [2]. Electroencephalography (EEG) is an

important tool for recording functional brain activity. It is

suited for investigating the mechanism of brain functions.

The EEG obtains time series data with multiple variants

recorded at several sensors pressed on the scalp. It thereby

presents electrical potentials under the induction of brain

activities. Studies have proved that EEG measurements taken

during the mental imagining of different movements can be

translated into different commands. In Motor Imagery(MI)-

based BCI systems, the imagination of body movements is
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accompanied by a circumscribed event-related synchroniza-

tion/desynchronization(ERS/ERD). Thus, motor imagery

has been widespread used as a major approach in BCI

systems [3], [4].

In recent years, the classification performance of BCI sys-

tems based on an EEG has faced significant challenges. For

one, wireless BCI devices make BCI systems be wearable

easily [5]–[7]. For another one, it is necessary for a fresh

subject to conduct a lengthy calibration session for a suffi-

cient collection of training samples to establish the classifiers.

In a recent study on BCI, it was shown to be very important

to reduce the number training sessions owing to the tedious,

time-consuming process of a calibration session. As a result,

conducting a performance promotion using a scarce labeled

set is more desirable when compared with a large one. Nev-

ertheless, suitable methods must be identified to strengthen

the performance because a short calibration session means

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

49951

https://orcid.org/0000-0001-7872-404X


M. Dai et al.: DTMKB for Classification of EEG MI Signals

the availability of only a few training samples for the target

users, whichmay result in an overfitting or suboptimal feature

classifiers or extractors.

To address the above problems, transfer learning is a

promising approach [8], [9]. It applies data represented in

various feature spaces or obtained from various distributions

for compensating insufficiently labeled data. In the BCI field,

transfer learning has attracted considerable attention because

it enables the establishment of subject-independent spatial

classifiers and/or filters, and lowers the calibration times.

MI has been the most widely used paradigm for the testing of

transfer learning methods, probably owing to the availability

of datasets from BCI competitions [10]–[16].

A particularly productive research study has focused on the

building of spatial filters based on EEG signals. Common

spatial patterns (CSP) and spatial filters have the potential

to achieve the rapid learning of proper training data, but

do not perform well with a large amount of heterogeneous

data recorded from other subjects or other sessions [17].

A regularization strategy in this case is effective [10]. A more

relevant approach is to directly regularize the CSP objective

function rather than the covariance matrices [11], [12], [21].

Furthermore, the use of a subspace strategy, which can con-

struct a common feature space from other subjects, is a good

idea. [13]–[16], [19]–[20] Deep transfer learning is a new

development trend [22].

Many transfer learning methods are also based on find-

ing classification approaches for two or more domains.

Fazli et al. [18] built a subject-independent classifier for

movement imagination detection. They first extracted an

ensemble of features (spatial and frequency filters) and then

applied LDA classifiers across all subjects. They compared

various ways of combining these classifiers to classify the

data of a new subject. In addition, a classic strategy is to

match the distributions of the source and target domains.

These transformations can either be linear or non-linear, for

instance, based on the kernel methods applied [23], [24].

Some methods for combining the features and classifiers

within ensembles have been developed [25]. The first concern

when considering an ensemble is to guarantee the quality of

the features and classifiers from the source domain.

In this study, we used filter bank regularized common spa-

tial patterns (FBRCSP) as the feature extraction method [12].

Herein, we propose a transfer learning classification, referred

to as domain transfer multiple kernel boosting (DTMKB),

which adapts the boosting techniques for classifiers used in

domain transfer multiple kernels learning (DTMKL) [24].

DTMKL can evaluate a distribution mismatch between the

target and source domains. The intuitive idea of multiple

kernel boosting is to employ a boosting framework to learn

an ensemble of multiple base kernel classifiers, each of which

is equipped with one base kernel. The weights for both the

kernel and classifier combination can be easily determined

through the boosting process. As a result, we can efficiently

learn a classifier with the transfer of multiple kernels and a

boosting strategy.

The rest of this paper is organized as follows. Section II

describes the proposed method of domain transfer multiple

kernels learning. Section III details the BCI competi-

tion III IVa dataset and our own dataset, as well as the exper-

iments conducted. Section IV discusses the empirical study.

Section V provides some concluding remarks regarding the

proposed method.

II. METHOD

In this section, we present the novel framework of DTMKB,

which adapts the idea of boosting for DTMKL. Before

presenting the DTMB algorithms, we first introduce the

problems and review the DTMKL. Based on the proposed

framework, we further propose a method using a support

vector learning (SVM) classifier.

A. DTMKL

Let us denote the data set patterns from the target domain as

DT =
(

xTi , yTi
)

|Ti=1, where y
T
i is the label of xTi . We also

define DT as the dataset from the target domain under the

marginal data distribution P, and DS =
(

xSi , ySi
)

|Si=1 as

the dataset from the source domain under the marginal data

distribution Q. The training data can be from both domains

(D = DT
⋃

DS ).

In transfer learning, it is crucial to reduce the differ-

ence between the data distributions of the source and target

domains.Many parametric criteria (e.g., KL divergence) have

been used to measure the distance between data distributions.

However, an intermediate density estimate process is usually

required. To avoid such a nontrivial task, Borgwardt et al. [26]

proposed an effective nonparametric criterion, referred to as

the Maximum Mean Discrepancy (MMD), to compare data

distributions based on the distance between the means of the

samples from two domains in a kernel k induced reproducing

kernel Hilbert space (RKHS) H , namely,

DISTk

(

DS ,DT
)

=
∥

∥

∥

∥

1

ns

∑ns

i=1
φ

(

xSi

)

−
1

nT

∑nT

i=1
φ

(

xTi

)

∥

∥

∥

∥

H

(1)

In previous cross-domain learning methods [27], [28],

the weights or the kernel matrix of the samples are learned

separately using the MMD criterion in (2) without consider-

ing any label information. However, it is usually beneficial

to utilize label information during kernel learning. Instead of

using the two-step approaches as in [27], [28], we propose a

unified cross-domain learning framework, DTMKL, to learn

the decision function for the target domain

f (x) = ω
′
φ (x) + b =

n
∑

i=1

βik (xi, x) + b (2)

as well as the kernel function k simultaneously, where ω is

the weight vector in the feature space, and b is the bias term.

Note that βi is the coefficient of the kernel expansion for the

decision function f (x) using the representer theorem [25].

In practice, DTMKLminimizes the distance between the data
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distributions of the source and target domains, as well as the

structural risk function of any kernel method. The learning

framework of DTMKL is then formulated as

[k, f ] = argmin
k,f

�

(

DIST2
k

(

DS ,DT
))

+ θR (k, f ,D) (3)

where �(·) is any monotonic increasing function, and θ > 0

is a tradeoff parameter used to balance a mismatch between

data distributions of two domains and the structural risk

function R (k, f ,D) defined on the labeled patterns.

The first objective in DTMKL is to minimize the

mismatch between data distributions of two domains

using the MMD criterion defined in (2). Let 8 =
[φ
(

xS1

)

, · · · , φ
(

xSns

)

, φ
(

xT1

)

, · · · , φ
(

xTnT

)

] be the kernel

matrix after feature mapping, and 1
nS

∑nS
i=1 φ

(

xSi
)

−
1
nT

∑nT
i=1 φ

(

xTi
)

in (2) is then simplified as 8S . We define a

column vector s = [1
/

n1, · · · , 1
/

nS , −1
/

n1, · · · , −1
/

nT ].

Thus, the criterion in (2) can be rewritten as

DIST2
k

(

DS ,DT
)

= ‖8S‖2 = tr
(

8
′
8S
)

= tr (KS) (4)

where

S = s
′
s ∈ R(nS+nT )×(nS+nT ),

K = 8
′
8 = [

KS,S KS,T

KS,T KT ,T ] ∈ R(nS+nT )×(nS+nT ),

KS,S ∈ RnS×nS ,KT ,T ∈ RnT×nT , and KS,T ∈ RnS×nT are

the kernel matrices defined for the source domain, target

domain, and cross domain from the source domain to the

target domain, respectively.

Instead of learning a nonparametric kernel matrix K

in (4) for cross-domain learning, as in [21], following [29],

we assume kernel k as a linear combination of a set of base

kernels kms, namely,

k =
M
∑

m=1

dmKm (5)

where dm ≥ 0,
∑M

m=1 dm = 1. We further assume the first

objective �(tr(KS)) in (4) is

� (tr (KS)) =
1

2
(tr (KS))2

=
1

2

(

tr

(

∑M

m=1
dmKmS

))2

=
1

2
d

′
pp

′
d (6)

where p = [p1, · · · , pM ]′, pm = tr(KmS),Km =
[

km
(

xi, xj
)]

∈ R(nS+nT )×(nS+nT ), d = [d1, · · · , dM ]′. More-

over, from (3) we have f (x) =
∑M

m=1 dmω
′
mφm (x) + b,

where ωm =
∑n

i=1 βiφm(xi).

Thus, the optimization problem in (4) can be rewritten as

argmin�
k,f

(

DIST2
k

(

DS ,DT
))

+ θR (k, f ,D) (7)

min
k,f

1

2
d

′
pp

′
d + minθJ (d) (8)

where J (d) = R(d, f ,D), D = {d|d ≥ 0,d′1M = 1} is the
feasible set of d, and f is the target decision function.

Following [29], we developed an efficient and effective

reduced gradient descent procedure to iteratively update dif-

ferent variables (e.g., d and f ) in (5) to obtain the optimal

solution. In detail, the algorithm updates the decision func-

tion f. With a fixed d, only the structural risk functional

R(d, f ,D) in (5) depends on f. We can solve the decision

function f by minimizing R(d, f ,D).

For updating the kernel coefficients d, when the decision

function f is fixed, (7) can be updated using the reduced

gradient descent method, as suggested in [29]. Specifically,

the gradient of h in (7) is

∇h = pp
′
D + θ∇J (9)

where∇J is the gradient of J in (6). Furthermore, the Hessian

matrix can be derived as

∇2h = pp
′
+ θ∇2J (10)

Compared with first-order gradient-based methods, second-

order derivative-based methods usually converge more

quickly. Thus, we define g = (∇2h)−1∇h as the updating

direction. To maintain d ∈D, the updating direction g is

reduced as in [29], and thus the updated weight of multiple

base kernels is

dt+1 = dt − ηtgt ∈ D (11)

where dt and gt are the linear combination coefficient vector d

and the reduced updating direction g at the t-th iteration,

respectively, and ηt is the learning rate. The overall procedure

of the proposed DTMKL is summarized in Algorithm 1.

Algorithm 1 DTMKL Algorithm

(1) INPUT: training data: D = DT
⋃

DS ;

kernel functions: KS,S ∈ RnS×nS ,
KT ,T ∈ RnT×nT ,KS,T ∈ RnS×nT ;
initial distribution: d = 1

M
1
M

(2) for t = 1, · · · ,Tmax
(3) solve the target classifier f in the objective

function in θ∇J :
mind∈D = mind∈D

1
2
d′pp′d+minf θ∇J (d)

(4) update the linear combination coefficient vector d

of multiple base kernels:

dt+1 = dt − ηtgt ∈ D

end

(5) OUTPUT: f (x) = sgn(
∑M

i=1 βiK (xi, x) + b

K =
∑M

m=1 dmKm

As mentioned before, any structural risk function of a

kernel method can be employed in the learning framework

of DTMKL. For the preliminary conference version of this

approach [30], we proposed the use of the hinge loss in an

SVM. Here, the risk function becomes an SVM, which is the

first formulation in the present paper. Moreover, inspired by

the utilization of source classifiers for cross-domain learning,

we also propose another formulation that considers the deci-

sion values from the base classifiers on the unlabeled patterns

in the target domain.
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B. DTMKB

The general idea of DTMKB is to apply boosting tech-

niques to learn a classifier using the transfer of multiple

kernels. For this purpose, we follow the typical procedure

of a boosting algorithm, i.e., Adaptive Boosting, known as

‘‘Adaboost’’ [31], which is a popular and successful boosting

technique. Figure 1 shows the schematic illustration of the

Adaboost framework.

FIGURE 1. Schematic illustration of the boosting framework. Each base
classifier is trained on a weighted form of the training set (blue arrows)
in which the weights depend on the performance of the previous base
classifier (green arrows). Once all base classifiers have been trained,
they are combined to give the final classifier (red arrows).

The goal of our multiple kernel boosting task is to learn

a kernel-based classifier f , which is an ensemble of kernel

classifiers using a collection ofM kernel classifiers from the

given training data examples. Typically, we can express such

a kernel classifier as follows:

f (xi) =
T
∑

i=t
αt ft (xi) (12)

where ft is a hypothesis learned from a boosting trial,

αt is its associated weight in the final classifier, and T is the

total number of boosting trials. The main challenge of mul-

tiple kernel boosting is how to develop an effective boosting

scheme to learn the optimal hypothesis ft and its combination

weight αt at each boosting trial.

In particular, we repeatedly learn some kernel classifiers

with multiple kernels ft through a series of boosting trials

(t = 1, · · · ,T ), where T denotes the total number of boosting

trials. For each boosting trial, a distribution of weights Dt is

engaged to indicate the importance of the training examples

for the classification. At each boosting trial, we increase the

weights of the wrongly classified examples and/or decrease

the weights of those correctly classified examples in order

to focus on those examples that are difficult to be correctly

classified.

During each boosting trial, we first sample a subset of n

training examples according to distribution Dt . The major

concern involves the method for learning the kernel-based

classifier ft from these training data. The first method is to

Algorithm 2 DTMKB Algorithm

(1) INPUT: training data: D = DT
⋃

DS ;

transfer kernel functions: Kj,J = 1, · · · , J

initial:D1 (i) = 1
/

N , i = 1, · · · ,N

(2) for t = 1, · · · ,T

sample n examples using distribution Dt
(3) for t = 1, · · · ,T

train weak classifier with kernel Kj:

h
j
t : X → {−1, +1}

(4) compute the training error over Dt :

ǫ
j
t = ǫ

(

h
j
t

)

=
∑N

i=1 Dt (i)(h
j
t (xi) 6= yi)

end

(5) select the best classifier with the error rate:

ht = arg min
jǫ1,...,j

ǫ

(

h
j
t

)

(6) update Dt+1(i):

Dt+1(i) = Dt (i)
Zt

×
{

e−αt , ht (x i) = yi
eαt , ht (x i) 6= yi

end

(7) OUTPUT: f (x) = sgn(
∑T

i=1 αtht (x)

learn one classifier h
j
t t with every kernel kj from the set ofM

kernels using the transfer kernel method used in our study.

Based on M base kernels, we are able to further measure

the misclassification of each classifier h
j
t with kernel Kj (Km

in (5))over distribution Dt for all training data accumulated:

ǫ
j
t = ǫ

(

h
j
t

)

=
N
∑

i=1

Dt (i)
(

h
j
t (xi) 6= yi

)

(13)

As a result, we can construct the classifier ft for the t-th

boosting trial via choosing the best classifier with the smallest

misclassification rate:

ht = arg min
jǫ1,...,j

ǫ

(

h
j
t

)

(14)

The last step of each boosting trial is to update the

weight Dt+1(i):

Dt+1(i) =
Dt (i)

Zt
×

{

e−αt , ht (x i) = yi

eαt , ht (x i) 6= yi
(15)

where αt = 1
2
ln 1−ǫt

ǫt
and Zt is a normalization factor to

make Dt+1 a distribution. Finally, after T boosting trials,

the final classifier is as (16). Algorithm 2 shows a summary

of a complete DTMKB procedure. And Figure 1 shows the

schematic illustration of the DTMKB framework.

h (x) = sign

(

T
∑

t=1

αtht (x)

)

(16)

III. DATASETS

In this study, we employed the IVa dataset from BCI Compe-

tition III (BCIC III) [32], because this dataset is widely used

in transfer learning of EEG signals [10]–[13]. This dataset

includes EEG data containing a classification task of motor
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imagery with two levels: 1) imagery movement of the right

hand (denoted by ‘‘R’’) and 2) imagery movement of the

right foot (denoted by ‘‘F’’). 118 electrodes were employed to

measure the EEG signals during every trial fromfive different

subjects, each of whom participated in a total of 280 trials.

In addition, the 118 EEG electrodes is shown in Figure 1(a).

The second dataset is for fivemale subjects (aged 23 to 30).

During the experiment, these subjects were seated in front of a

computer screen and followed the instructions to conduct two

MI tasks (right hand and feet), and each of them participated

in a total of 200 trials. The EEG data used in this paper were

sampled at a rate of 250Hz. The EEG used for processing was

recorded from Ag-AgCl electrodes placed according to the

extended international 10-20 system. The 64 channels shown

in Fig. 1(b) were employed.

During this experiment, the dataset included three ses-

sions for the training set. Each trial was structured as shown

in Figure 2. First, a ‘‘rest’’ icon was shown on the screen to

remind the subjects to rest for 3s with their body relaxed,

followed by a ‘‘prepare’’ indicator allowing the subjects to

prepare for the task for 3s. Then, a ‘‘begin’’ icon was shown

on screen for 0.5s. Finally, one of these two patterns (i.e., right

hand or feet) was displayed for 6s while the subjects imaged

to move their hands or feet. (i.e., the MI tasks.)

FIGURE 2. Schematic illustration of the DTMKB framework. Each transfer
kernel base classifier ht(x) is trained on a weighted form of the training
set (blue arrows) in which the weights Dt depend on the performance of
the previous transfer kernel base classifier ht−1(x) (green arrows). Once
all base classifiers have been trained, they are combined to give the final
classifier h(t) (red arrows).

According to [33], [34], to measure the performance of

the transfer learning framework, the training set size ought

to be different. Table 1 shows a summary of the IVa dataset

from BCI Competition III, in which the number of training

samples of subjects ay, aw, and av are fewer than those of

the test samples. The ratio of the number of training trials to

the number of test trials of five subjects (aa, al, av, aw, ay)

are respectively 1.50, 4.00, 0.43, 0.25 and 0.11. For our own

dataset, among the 200 trials for every subject on our own

dataset, different number of trials selected for the training set,

with the remaining trials assigned to the test set. As shown

FIGURE 3. Positions of EEG channels for both datasets. (a) is the position
for BCI Competition III IVa dataset; (b) is the position for our own dataset.

FIGURE 4. Diagram of a trial and timings during a session for our own
dataset.

TABLE 1. Data description for BCI Competition III IVa dataset.

in Table 2, our own dataset is divided into three groups

(our own dataset I, II and III) due to the different size of

training samples. The ratio of the number of training trials

to the number of test trials for our own dataset I, II, III are

respectively 1.22, 0.67 and 0.33. Each trial was considered

an M × T matrix Ei, in which M represents the number

of electrodes, and T is the number of time points sampled.

The EEG signals measured were band-pass decomposed (at

8 to 30 Hz). FBRCSP was utilized as the feature extraction

method.

TABLE 2. Data description for our own dataset.

Our establishment of a dataset (containing the target and

source domains) for cross-domain classification is described

as follows. Each dataset of each subject could become the

target domain, whereas the datasets of other subjects could

become the source domain. This dataset construction strategy

ensured the relevance between the domains of the unlabeled

and labeled data, as they were located in the same top-level

categories. Accordingly, C1
4 +C2

4 +C3
4 +C4

4 = 15 datasets of

VOLUME 7, 2019 49955



M. Dai et al.: DTMKB for Classification of EEG MI Signals

the source domains were generated for the target domains of

every dataset. It was possible to generate five dataset groups,

with a total of 5 × 15 = 75 datasets.

IV. RESULTS AND DISCUSSIONS

A. RESULTS

In this section, DTMKB and three competitive methods are

evaluated based on the classification accuracy. There are five

subjects in each dataset, and each subject can correspond to a

dataset group. Each dataset can establish five dataset groups,

each dataset group has one target subject and four source

subjects (C1
4 +C2

4 +C3
4 +C4

4 = 15 source domains). Table 3,

Table 4, Table 5 and Table 6 show the five dataset groups of

BCI Competition III Iva, our own dataset I, our own dataset

II, our own dataset III respectively. The first columns of the

Tables show the different source domains, and The first rows

of the Tables show the different target domains.

TABLE 3. Classification accuracy of DTMKB on BCI Competition III IVa
dataset.

For the setup of our experiments, we follow the typical

approach used in the previous DTMKL studies in litera-

ture. Specifically, we used four types of kernel: linear (i.e.,

k
(

xi, xj
)

= x ′
ixj), Gaussian (i.e., k

(

xi, xj
)

= e−γ‖xi−xj‖2

),

Laplacian (i.e.,
(

xi, xj
)

= e−
√

γ‖xi−xj‖), and inverse square

distance (i.e., k
(

xi, xj
)

= 1

γ‖xi−xj‖2+1
) kernels. In total,

we have 4 kinds base kernels for all methods.

For the BCI Competition III IVa dataset, we established

five dataset groups, each of which includes four source

subjects as a source domain and one target subject as a target

domain.When one subject is a target domain, it will no longer

appear in the source domains. Thus, each target domain corre-

sponds to 15 different source domains. Table 3 shows the clas-

sification accuracy for the BCI Competition III dataset, IVa.

The first column of Table 3 shows the different source

domains, and the first row shows the different target domains.

The highest classification accuracy of the target domain aa

was 85.76%, where the corresponding source domain was al;

the highest classification accuracy of the target domain al was

96.43%, where the corresponding source domain was aw; the

highest classification accuracy of the target domain av was

75.52%, where the corresponding source domain was al +
ay; the highest classification accuracy of the target domain

aw is 81.25%, where the corresponding source domain is al;

and the highest classification accuracy of the target domain

ay is 92.06%, where the corresponding source domain

is aa + al.

TABLE 4. Classification accuracy of DTMKB on our own dataset I.

Table 4 shows the classification accuracy on our own

dataset. The highest classification accuracy of the target

domain D was 70.00%, where the corresponding source

domain was Z+X; the highest classification accuracy of the

target domain Zwas 81.11%, where the corresponding source

domain was X; the highest classification accuracy of the

target domain Lwas 72.22%, where the corresponding source

domain was Z+S; the highest classification accuracy of the

target domain X is 82.22%, where the corresponding source
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domain is Z; and the highest classification accuracy of the

target domain S is 75.56%, where the corresponding source

domain is Z+X.

Table 5 shows the classification accuracy on our own

dataset I. The highest classification accuracy of the target

domain D was 68.33%, where the corresponding source

domain was Z+X; the highest classification accuracy of the

target domain Zwas 79.98%, where the corresponding source

domain was X; the highest classification accuracy of the

target domain Lwas 69.17%, where the corresponding source

domain was Z+S; the highest classification accuracy of the

target domain X is 81.67%, where the corresponding source

domain is Z; and the highest classification accuracy of the

target domain S is 74.17%, where the corresponding source

domain is Z+X.

TABLE 5. Classification accuracy of DTMKB on our own dataset II.

Table 6 shows the classification accuracy on our own

dataset III. The highest classification accuracy of the tar-

get domain D was 68.00%, where the corresponding source

domain was Z+X; the highest classification accuracy of the

target domain Zwas 79.98%, where the corresponding source

domain was X; the highest classification accuracy of the

target domain Lwas 69.17%, where the corresponding source

domain was Z+S; the highest classification accuracy of the

target domain X is 81.67%, where the corresponding source

domain is Z; and the highest classification accuracy of the

target domain S is 74.17%, where the corresponding source

domain is Z+X.

TABLE 6. Classification accuracy of DTMKB on our own dataset III.

TABLE 7. Classification accuracy of DTMKB on all datasets.

Table 7 lists the classification precisions of three compari-

son approaches (multiple kernel learning (MKL), DTMKL,

and SVM) and DTMKB for the above datasets. The per-

formance achieved by DTMKB is significantly better than
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that achieved by the three comparison approaches. Several

observations can be made from these results.

For the IVa dataset, the number of training trials for aa and

al is greater than the number of test trials, and the number

of training trials for aw and ay is smaller than the number

of test trials. The classification performance of DTMKB for

aa and al was 91.96% and 96.43%, respectively. The former

performance was higher than that of the three comparison

approaches, and the latter achieved the same performance

as MKL, with the best performance among all methods. For

av, and ay, DTMKB achieved results of 75.52% and 92.86%

respectively, which are better than the performance of the

other three comparison approaches. DTMKL achieved the

best performance for subject av at 82.59%, althoughDTMKB

achieved a performance very close to this at 81.25%. More-

over, DTMKB achieved an average classification accuracy

for these datasets of 87.60%, providing a significant perfor-

mance improvement over the other competitive approaches.

For our own dataset I, the number of training trials was

more than the number of test trials for all subjects. For sub-

ject X, DTMKB achieved the best classification results for the

four subjects, D, Z, L, and S, with performances of 70.00%,

81.11%, 72.22%, and 75.56%, respectively. For subject X,

DTMKB produced a result of 81.11%, which was less than

the 83.33% result of the MKB method. In addition, DTMKB

achieved an average classification accuracy of 76.00% for our

own dataset I, with significant performance improvements

over the competing methods.

For our own dataset II, the number of training trials

was less than the number of test trials for all subjects. For

subject X, DTMKB achieved the best classification results

for the four subjects, D, Z, L, and S, with performances

of 68.33%, 79.98%, 69.17%, and 74.17%, respectively. For

subject X, DTMKB produced a result of 81.67%, which was

less than the 83.33% result of the DTMKL method. In addi-

tion, DTMKB achieved an average classification accuracy

of 74.66% for our own dataset, which was the best perfor-

mance among the competing methods.

For our own dataset III, the number of training trials was

less than the number of test trials for all subjects. For subject

X, DTMKB achieved the best classification results for all five

subjects, D, Z, L, X and S, with performances of 68.00%,

80.00%, 68.67%, 80.67% and 73.33%, respectively. Obvi-

ously, DTMKB achieved a superior average classification

accuracy of 74.66% compared to the three other approaches.

As shown in Table 7 and the above description, the smaller

the training dataset, the higher the average classification

accuracy of the DTMKBmethod compared to other methods.

This proves that the DTMKB method achieves good results

on small samples.

B. DISCUSSIONS

The most significant parameter in the boosting strategy is the

number of boost rounds, (i.e., the number of iterations). The

optimal performance of the boosting model can be achieved

by carefully choosing the best parameters. To test the impact

of the parameters, we conducted a series of experiments to

evaluate their impact on accuracy and efficiency performance

in the classification task.

In our experiments, to evaluate the influence of the total

number of boosting trials for the proposed DTMKB algo-

rithm, we examine the experimental results by varying

the boosting parameter T from 1 to 50. Figure 5(a) and

Figure 5(b) show the influence of the number of boost param-

eter T on the classification accuracy and learning time cost

respectively for BCIC III IVa dataset. In addition, Figure 6(a),

Figure 6(b) and Figure 6(c) show the evaluation result for the

impact of the boosting parameter T on the classification accu-

racy for our own dataset I, II and III. Figure 7(a), Figure 7(b)

and Figure 7(c) show the evaluation result for the impact of

the boosting parameter T on the learning time cost for our

own dataset I, II and III.

FIGURE 5. Evaluation of DTMKB classification accuracy and learning time
cost with respect to boosting parameter T respectively. (a) is for
classification accuracy on BCIC III IVa dataset; (b) is for learning
time cost on BCIC III IVa dataset.

It was observed that, in terms of the classification accu-

racy, increasing the total value of T generally improves the

accuracy for all datasets. On the other hand, we found that

increasing the value of T results in a linear increase in the

time cost required for all dataset. And when it comes to

different datasets, the time cost is almost the same. This is

not surprising because the DTMKB algorithm have linear
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FIGURE 6. Evaluation of DTMKB classification accuracy with respect to boosting parameter T . (a) is for classification accuracy on our own dataset I; (b) is
for classification accuracy on our own dataset II; (c) is for classification accuracy on our own dataset III.

FIGURE 7. Evaluation of DTMKB learning time cost with respect to boosting parameter T . (a) is for learning time cost on on our own dataset I; (b) is for
learning time cost on our own dataset II; (c) is for learning time cost on on our own dataset III.

time complexity with respect to the total number of boosting

trials T .

In addition to the impact on the accuracy performance,

the parameter T also affects the time efficiency of the

DTMKB algorithm. To avoid a waste in the learning time

cost, T should be as small as possible. Because the datasets

have different sizes and features, the number of iterations

during the learning process may be different. The DTMKB

model was set using T = 40 for the BCIC III Iva dataset, and

T = 35 for our own dataset I, II and III.

As shown in Figure 5(b) and Figure 7, DTMKB algorithm

have a linear time complexity with respect to the total number

of the parameter T . In particular, the base learning time cost

of the DTMKB algorithm the underlying algorithms used in

training kernel based classifiers. We adopt SVM for train-

ing the base kernel classifiers, the SVM training complexity

is O(n2.3). So the training cost for our proposed DTMKB

is T × O(n2.3).

V. CONCLUSION

In this paper, we employed a novel framework of DTMKB

for classification with the domain transfer of multiple kernels.

DTMKL learns the kernel function and target classifier simul-

taneously by minimizing the structural risk function and the

distribution mismatch between the samples from the source

and target domains. The DTMKB technique is simple and can

easily be used to learn effective classification models with the

domain transfer of multiple kernels by taking advantage of

efficient boosting techniques.

The results of this study show that the average classifi-

cation accuracies for the BCI Competition III dataset, IVa,

and our own dataset are 87.60% and 74.66% respectively.

The above approach yields a superior average classification

accuracy compared to the three other approaches applied.

When the number of training trials was less than the number

of test trials, DTMKL clearly showed a better classifica-

tion performance. In conclusion, DTMKB is a novel and

promising framework for classification on small samples of

MI tasks.
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