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ABSTRACT

We present results for several light hadronic quantities (fr, fx, Bk, Myq, s, té/ 2, wo) obtained
from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-
physical pion masses at two lattice spacings. We perform a short, &(3)%, extrapolation in pion
mass to the physical values by combining our new data in a simultaneous chiral/continuum ‘global
fit’ with a number of other ensembles with heavier pion masses. We use the physical values of
mmp, mg and mq to determine the two quark masses and the scale - all other quantities are outputs
from our simulations. We obtain results with sub-percent statistical errors and negligible chiral
and finite-volume systematics for these light hadronic quantities, including: f; = 130.2(9) MeV;
fx = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the MS scheme
at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter,
Bk, in the RGI scheme, 0.750(15) and the MS scheme at 3 GeV, 0.530(11).



I. INTRODUCTION

The low energy details of the strong interactions, encapsulated theoretically in the Lagrangian of
QCD, are responsible for producing mesons and hadrons from quarks, creating most of the mass
of the visible universe, and determining a vacuum state which exhibits symmetry breaking. For
many decades, the methods of numerical lattice QCD have been used to study these phenomena,
both because of their intrinsic interest and because QCD effects are important for many precision
tests of quark interactions in the Standard Model. Many theoretical and computational advances
have been made during this time and, in this paper, we report on the first simulations of 2+1 flavor
QCD (i.e. QCD including the fermion determinant for u, d and s quarks with m, = my;) with
essentially physical quark masses using a lattice fermion formulation which accurately preserves
the continuum global symmetries of QCD at finite lattice spacing: domain wall fermions (DWF).
This isospin symmetric version of QCD requires three inputs to perform a simulation at a single
lattice spacing: a bare coupling constant, a degenerate light quark mass (m, = my ), and a strange
quark mass. We fix these using the physical values for my, mg, and mq. In particular, for a fixed
bare coupling, adjusting m, = my and mj until m;/mq and mg /mq take on their physical values
leads to a determination of the lattice spacing, a, for this coupling. All other low energy quantities,
such as frand fx, are now predictions. By repeating this for different lattice spacings, physical
predictions in the continuum limit (a — 0) for other low energy QCD observables are obtained. In
this work, we used results from our earlier simulations to estimate the input physical quark masses
and then we make a modest correction in our results, using chiral perturbation theory and simple
analytic ansatz, to adjust to the required quark mass values, a correction of less than 10% in the
quark mass. These physical quark mass simulations would not have been possible without IBM
Blue Gene/Q resources ].

For the past decade, the RBC and UKQCD collaborations have been steadily approaching the
physical quark mass point with a series of 2+1 flavor domain wall fermion simulations. Re-
cently [B] we reported on a combined analysis of three of our domain wall fermion ensembles
with the Shamir kernel, namely our 323 x 64 and 243 x 64 ensemble sets with the Iwasaki gauge
actionat B =2.25and B =2.13 (a~' =2.383(9) GeV and 1.785(5) GeV) and lightest unitary pion
masses of 302(1) MeV and 337(2) MeV respectively, and our coarser 32 x 64 Iwasaki+DSDR
ensemble set with B = 1.75 (a~! = 1.378(7) GeV) but substantially lighter pion masses of 143(1)
MeV partially-quenched and 171(1) MeV unitary. We refer to these as our 32I, 241 and 32ID



ensembles, respectively. (The lattice spacings and other results for these ensembles quoted here
come from global fits that include the new, physical quark mass ensembles, as well as new observ-
able measurements on these older ensembles. As such, central values have shifted from earlier
published values, generally within the published errors. Also, the new errors are smaller, because
of the increased data.) For the latter 32ID ensembles, the use of a coarser lattice represented a com-
promise between the need to simulate with a large physical volume in order to keep finite-volume
errors under control in the presence of such light pions and the prohibitive cost of increasing the
lattice size. The DSDR term was used to suppress the dislocations in the gauge field that dom-
inate the residual chiral symmetry breaking in the domain wall formulation at strong coupling.
The addition of this ensemble set resulted in a factor of two reduction in the chiral extrapolation
systematic error over our earlier analysis of the Iwasaki ensembles alone (241 and 32I) [B], but the
total errors on our physical predictions remained on the order of 2%. Now, combining algorithmic
advances with the power of the latest generation of supercomputers, we are finally able to perform
large volume simulations directly at the physical point without the need for such compromises.

In this paper we present an analysis of two 2+1 flavor domain wall ensembles simulated essentially
at the physical point. The lattice sizes are 483 x 96 and 643 x 128 with physical volumes of
(5.476(12) fm)? and (5.354(16) fm)? (mnL = 3.86 and 3.78). Throughout this document we refer
to these ensembles with the labels 481 and 641 respectively. We utilize the Mobius domain wall
action tuned such that the Mobius and Shamir kernels are identical up to a numerical factor, which
allows us to simulate with a smaller fifth dimension, and hence a lower cost, for the same physics.
This is discussed in more detail in Section [l The values of L, are 24 and 12 for the 48I and
641 ensembles respectively. For the 481 ensemble, L; would have to be more than twice as large
to achieve the same residual mass with the Shamir kernel. The corresponding residual masses,
Myes, comprise ~ 45% of the physical light quark mass for the 481 ensemble, and ~ 30% for the
641. We use the Iwasaki gauge action with 3 = 2.13 and 2.25, giving inverse lattice spacings of
a—! =1.730(4) GeV and 2.359(7) GeV, and the degenerate up/down quark masses were tuned to
give (very nearly) physical pion masses of 139.2(4) MeV and 139.2(5) MeV.

We also introduce a third ensemble generated with Shamir domain wall fermions and the Iwasaki
gauge action at 3 = 2.37, corresponding to an inverse lattice spacing of 3.148(17) GeV, with
a lattice volume of 323 x 64 and with L; = 12. The lightest unitary pion mass is 371(5) MeV.
Although these masses are unphysically heavy, this ensemble provides a third lattice spacing for

each of the measured quantities, allowing us to bound the &'(a*) errors on our final results. We



label this ensemble 32Ifine.

We have taken full advantage of each of our expensive 481 and 641 gauge configurations by devel-
oping a measurement package that uses EigCG to produce DWF eigenvectors in order to deflate
subsequent quark mass solves, and that uses the all-mode-averaging (AMA) technique of Ref. [H].
In AMA, quark propagators are generated on every timeslice of the lattice but with reduced pre-
cision, and then corrected with a small number of precise measurements. To reduce the fractional
overhead of calculating eigenvectors and the large I/O demands of storing them, we share propaga-
tors between my, mg, fr, fk, Bk, the K;3 form factor ff "(q2 =0) and the K — (71701, amplitude.
(The last two quantities are not reported here.) By putting so many measurements into a single
job, the EigCG setup costs are only ~ 20% of the total time, and we find this approach speeds
up the measurement of these quantities by between 5 and 25 times, depending on the observable.
Here again the Blue Gene/Q has been invaluable, since it has a large enough memory to store the
required eigenvectors and the reliability to run for sufficient time to use them in all of the above
measurements. In Section [Tl we present the results of these measurements.

As mentioned already, in order to correct for the minor differences between the simulated and
physical pion masses, we perform a short chiral extrapolation. As these new 481 and 641 ensem-
bles have essentially the same quark masses, we must include data with other quark masses in
order to determine the mass dependences. We achieve this by combining the 641 and 481 ensem-
bles with the aforementioned 323 x 64 and 243 x 64 Iwasaki gauge action ensemble sets (321 and
241, respectively), and the 323 x 64 Twasaki+DSDR ensemble set (32ID), in a simultaneous chi-
ral/continuum ‘global fit’. We also include the new 32Ifine ensemble, to give us a third lattice
spacing with the same action, to improve the continuum extrapolation. We note that these are the
same kinds of fits we have used in our previous work with the 241, 321 and 32ID ensembles - here
we have the addition of very accurate data at physical quark masses. In addition, we also have
added Wilson flow measurements of the scale on all of our ensembles to the global fits. While
the Wilson flow scale in physical units is an output of our simulations, the relative values on the
various ensembles provide additional accurate data that helps to constrain the lattice spacing de-
terminations. In Section [[V] we discuss our fitting strategy in more detail and the fit results are
presented in Section [V]

Given the length of this paper and the many details discussed, we present a summary of our
physical results in Table [l as the last part of this introduction. These are continuum results for

isospin symmetric 241 flavor QCD without electromagnetic effects. Our input values are my,



mg, mq, and the results in Table [l are outputs from our simulations. For results quoted in the
MS scheme, the first error is statistical and the second is the error from renormalization. For
other quantities, the error is the statistical error. The other usual sources of error (finite volume,
chiral extrapolation, continuum limit) have all been removed through our measurements and any
error estimates we can generate for these possible systematic errors are dramatically smaller than
the (already small) statistical error quoted. This is discussed at great length in Section [Vl The
Conclusions section (Section [VI) summarizes our results and gives comparisons of them with

experiment and/or the results of other lattice simulations.

Quantity Value
Jn 130.194+0.89 MeV
Jx 155.514+0.83 MeV
T/ fn 1.1945 -+ 0.0045

my, = mg(Ms,3 GeV)
my(MS,3 GeV)

my/my, = mg/my

2.997£0.036 +0.033 MeV

81.64+0.77+£0.88 MeV
27.34+0.21

e 0.729240.0041 GeV !
Wo 0.8742+£0.0046 GeV !
Bx(SMOM(¢,¢),3 GeV) 0.5341+0.0018
Bk (V5,3 GeV) 0.5293+0.0017 4+ 0.0106
Bg 0.7499 £ 0.0024 £ 0.0150
LP(Apr=1GeV)  —0.000171 +0.000064
LP (A ypr =1 GeV) 0.000513 +0.000078
LP(Apr=1GeV)  —0.000146 +0.000036
LY (A gpr =1 GeV) 0.000631 + 0.000041

TABLE I. Summary of results from the simulations reported here. The first error is the statistical error,
which for most quantities is much larger than any systematic error we can measure or estimate. The ex-
ception is for the quantities in MS and Bg. For these quantities, the second error is the systematic error
on the renormalization, which is dominated by the perturbative matching between the continuum RI-MOM

scheme and the continuum MS scheme.

The layout of this document is as follows: In Section [l we present the details of our new en-



sembles, including a more general discussion of the M&bius domain wall action. The associated
simulated values of the pseudoscalar masses and decay constants, the Q-baryon mass, the vector
and axial current renormalization factors, the neutral kaon mixing parameter, By, and the Wilson

/2

flow scales, té and wy, are given in Section [[Il In Section [V] we provide an overview of our
global fitting procedure for those quantities, the results of which are given in Section [Vl Finally,

we present our conclusions in Section [VIL

II. SIMULATION DETAILS AND ENSEMBLE PROPERTIES

Substantial difficulties must be overcome in order to work with physical values of the light quark
mass. Common to all fermion formulations are the challenges of increasing the physical spacetime
volume to avoid the large finite-volume errors that would result from decreasing the pion mass at
fixed volume. Similarly, the range of eigenvalues of the Dirac operator increases substantially,
requiring many more iterations for the computation of its inverse and motivating the use of de-
flation and all-mode-averaging to reduce this computational cost. For domain wall fermions it is
also necessary to decrease the size of the residual chiral symmetry breaking to reduce the size of
the residual mass to a level below that of the physical light quark masses. While this could have
been accomplished using the Shamir domain wall formulation [Q, ] used in previous RBC and
UKQCD work, this would have required a doubling or tripling of the length of the fifth dimension,
L, at substantial computational cost.

Instead, our new, physical ensembles have been generated with a modified domain wall fermion
action that suppresses residual chiral symmetry breaking, resulting in values for the residual mass
that lie below that of the physical light quark, but without the substantial increase in Lg that would
have been required in the original domain wall framework.

We use the Mobius framework of Brower, Neff and Orginos M]. Although the action has
been changed, we remain within the subspace of the Mobius parametrization that preserves the
Lg — oo limit of domain wall fermions. The changes to the Symanzik effective action resulting
from this change in fermion formulation can be made arbitrarily small and are of the same size
as the observed level of residual chiral symmetry breaking. As discussed in Section [TAlL we are
therefore able to combine our new ensembles in a continuum extrapolation with previous RBC

and UKQCD ensembles.



A. Mobius fermion formalism

In this section and in Appendix [Al we describe the implementation of Mdbius domain wall
fermions, and provide a self-contained derivation of many of the properties of this formulation on
which our calculation depends.

Of central importance is the degree to which the present results from the Mdbius version of the
domain wall formalism can be combined with those from our earlier Shamir calculations when
taking a continuum limit. As reviewed below and in Appendix[A] the Shamir and Mobius fermion
formalisms result in very similar approximate sign functions, €(Hys), having the form given in
Eq. (24) below. In fact, the only differences between the two functions €(Hyy) corresponding to
Shamir and M6bius fermions is the choice of L and an overall scale factor entering the definition
of the kernel operator, Hy;. Thus, in the limit Ly — o both theories agree with the same, chirally
symmetric, overlap theory. The differences of both Shamir and Mobius fermions from that theory,
and therefore from each other, vanish in this chiral limit. Note, this equivalence in the chiral limit
holds for both the fermion determinant that is used to generate the gauge ensembles (shown below)
and for the 4-D propagators (shown in Appendix[A)) which determine all of the Green’s functions
which appear in our measurements and define our lattice approximation to QCD.

Thus, we expect that all details of the four dimensional approximation to QCD defined by the
Shamir and M&bius actions must agree in the limit Ly — o and, in our case of finite L, will show
differences on the order of the residual chiral symmetry breaking, the most accessible effect of
finite L. Since this constraint holds at finite lattice spacing, we conclude that the coefficients of
the O(a?) corrections which appear in the four-dimensional, effective Symanzik Lagrangians for
the Shamir and Mo6bius actions should agree at this same, sub-percent level, allowing a consistent
continuum limit to be obtained from a combination of Shamir and Mobius results.

To understand this argument in greater detail, it is useful to connect the Shamir and Mobius the-
ories in two steps. We might first discuss the relation between two Shamir theories: one with a
smaller L, and larger residual chiral symmetry breaking, and a second with a larger value of Ly and
a value for m,,, below the physical light quark mass. In the second step we can compare this large L
Shamir theory with a corresponding Mébius theory that has the same approximate degree of resid-
ual chiral symmetry breaking. For example, when comparing our 3 = 2.13 Shamir and M6bius
ensembles, we might begin with our 24° x 64, L = 16, 241 ensemble with m,,a = 0.003154(15)

which is larger than the physical light quark mass. Next we consider a fictitious, L; = 48 ensemble



which should have a value of m,,, very close to the 0.0006102(40) value of our 481 M6bius ensem-
ble. In this comparison we would work with the same Shamir formalism and simply approach the
chiral limit more closely by increasing L, from 16 to 48. Clearly the 5 x reduction in the light quark
mass will produce a significant change in the theory, which to a large degree should be equivalent
to reducing the input quark mass in a theory with a large fixed value of L;. Of course, there will
be smaller changes as well. In addition to reducing the size of m,,, we will also reduce the size
of the dimension-five, O(a) Sheikholeslami-Wohlert term (whose effects are expected to be at the
m,..a®> < 0.1% level even for the smaller value of Ly). There will be further small changes coming
from approaching the Ly — oo limit, for example the 3% change in the lattice spacing discussed in
Appendix

The second comparison can be made between the fictitious Ly = 48 Shamir ensemble and our
actual 481 Mobius ensemble with Ly = 24 and b+ ¢ = 2. Since the product of Ls(b+c) is the same
for these two examples, the approximate sign function will agree for eigenvalues of the kernel Hy,
which are close to zero. In fact, a study of the eigenvalues A of Hj; for the Shamir normalization
shows that they lie in the range 0 < A < 1.367(14) for 3 = 2.13. One can then examine the ratio
of the two approximate sign functions, which determine the corresponding 4-D Dirac operators,
over this entire eigenvalue range and show that the approximate Shamir and Mobius sign functions
€(Hyy) agree at the 0.1% level. Thus, in this second step we are comparing two extremely similar
theories whose description of QCD is expected to differ in all aspects at the 0.1% level. We now
turn to a detailed discussion of the Shamir and Mobius operators and their relation to the overlap
theory.

Our conventions are as follows. The usual Wilson matrix is

1
DW(M> :M+4_§Dh0p7 (D

where

Dhop = (1= Y )Up (%) Oty + (1 + VH>U§(3’)5X—W' @

For our physical point ensembles we use a generalized form of the domain wall action M],

S% = DLy W, 3)
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where
D —-P 0 0 mPy
—P. 0 0
Dpw = O ol : ; 4)
: o .. .0
0 0 - —P_
mP_ 0 0 —PL D
and we define
D,=bDy+1) ; D =(-cDy) ;: D=(D_)"'D,. (5)

This generalized set of actions reduces to the standard Shamir action in the limitb =1, ¢ =0, and
it can also be taken to give the polar approximation to the Neuberger overlap action as another
limiting case , ]. In all of our simulations we take the coefficients b and ¢ as constant across
the fifth dimension. This setup is well known to yield a tanh approximation to the overlap sign
function. Coefficients that vary across the fifth dimension can also be used to introduce other
rational approximations to the sign function, such as the Zolotarev approximation ].

As in the Shamir domain wall fermion formulation we identify “physical”, four-dimensional quark
fields g and ¢ whose Green’s functions define our domain wall fermion approximation to contin-
uum QCD. We choose to construct these as simple chiral projections of the five-dimensional fields

@ and U which appear in the action given in Eq. (3):

qr =P Y1, qL=P_ Y,
qr=Qr,P- GL={Py.

While there is considerable freedom in this choice of the physical, four-dimensional quark fields,

(6)

as is shown in Appendix [Al this choice results in four-dimensional propagators which agree with
those of the corresponding overlap theory up to a contact term in the Lg — oo limit. This choice
is also dictated by the requirement that we be able to combine results from the present, physical
point calculation with earlier results using Shamir fermions in taking a continuum limit. With this
choice both the Mobius and Shamir theories will yield 4-dimensional fermion propagators which
differ only at the level of the residual chiral symmetry breaking. The choice of physical quark
fields given in Eq. (6) has the added benefits that the corresponding four-dimensional propagators
satisfy a simple }° hermiticity relation and a hermitian, partially-conserved axial current can be

easily defined.
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In practice, one solves for physical quark propagators using the linear system
D _DipyW=D_n. (7)

To find the 4d effective action which corresponds to our choice of physical fields we must first

perform some changes to the field basis as follows. We write
§° = @Dgow ¥ = XDYX ®)

where, for now leaving a matrix Q_ undefined, X = -y, X = P0_, D} = 0~' D3y 2,

and
PP O ... 0
0 - 0 :
=11 0 " .0 |- )
0 0 . P,
P. O ...0 P
Then with
H=ys(D_)"'Dy = ys(H-)"'H., (10)

and H_ = ysD_, Hy = ;D we may write

H P 0 0 mPy

P, 0 0

5 71 O ..' .'. .'. O E
Dy =0~ _ P, (11)

S0 o 0

0 .0 P_

-mP_ 0 ... 0 —P, H

We may choose Q_ to place the matrix D; in a particularly convenient form as follows,

Q- = AP —P.=y[H | '[H.P- —H_P.]

~ (12)
Q; = HP, +P_ = ys[H | '[H.P, —H_P],

and introduce the so-called transfer matrix as

! = —(0-)'oy

b+c)D _ b+c)D
= gty — U Wszimoay + 1

= —[Hy — 17 Hy +1].
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Here the Mobius kernel is

(b-i-C)Dw
HY = : 13
52+(b—C>DW ( )
We find Di takes the following form,
P_—mP, -~ o0 ... .. 0
0 1 -7 o
5 0 P 0
Dy = , (14)
0 1 -7 0
0 cee e 01 =T
~T'(P,—mP_) 0 ... ... 0 1
for which we can perform a UDL decomposition around the top left block:
DC 1 cA™! Sy 0 1 0
= . (15)
B A 0 1 0 A A7B 1
Here, the Schur complement is Sy = D — CA_lB, where
1 -77' 0 | A A A ()
o 1 -7T7' 0 o1 7' ... 73
A=lo0 0o 1 -T' o0 Al'=lo 0o 1 7' , (16)
0 0 1 7! 0 o 1 71!
0 0 1 0 0 1
D = P_—mPy, 17)
C=(-17'0..... 0), (18)
B" = (0 ...0-T'(P,—mP.)), (19)
CA™'B = T75(P, —mP_). (20)

Denoting the left and right factors as U and L(m) respectively, we write this factorization as Df( =
UDg(m)L(m). The determinants of the U and L(m) are unity, and the determinant of the product
is simply

det Dy = detAdetSy = detSy, (21)

where

1+m+1—m T-Ls —1
2 > BT Ll

Sx(m)=—(1+T7")ys (22)
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We can see that after the removal of the determinant of the Pauli Villars fields with m = 1 in our
ensembles we are left with the determinant of an effective overlap operator, which is the following

rational function of the kernel:

detDp)D(m) = detD,, = det < 1 J;m .1 ;m s 8 iZZ;i " 8 :ZZ;E) (23)
We identify D,, as an approximation to the overlap operator with approximate sign function
Ly _(1_ Ly
with
Jlim &(Hy) = sen(Hy). 25)

Note that since sgn(Hy) = sgn(aHyy) for all positive o, changing the Mobius parameters b + ¢
while keeping b — ¢ = 1 fixed leaves our kernel Hy; proportional to the kernel for the Shamir
formulation. This therefore changes only the approximation to the overlap sign function, but not
the form of the L; — oo limit of the action.

In this way, our new simulations with the Mdbius action will differ from those with Shamir do-
main wall fermions only through terms proportional to the residual chiral symmetry breaking. In
particular the change of action is not fundamentally different from simulating with a different L;.

Other, equivalent views of this approximation to the sign function are useful. Noting

1 1—z
—tanh =1 = — 26
anh > logz Tz (26)
we see that since
_ 1+ Hy 1-T
T = <~ Hy=—— 27
we have
I an (L I7|) = tanh (L tanh~" Hy) (28)
—— —tanh | ——1o = tan an
T_LS+1 2 g A) M 9

and for this reason our approximation to the sign function is often called the tanh approximation.

For eigenvalues of Hys near zero, this tanh expression becomes a poor approximation to the sign
function and it is for these small eigenvalues that the largest contributions to residual chiral sym-
metry breaking typically occur. For small eigenvalues A of Hy,, the tanh approximation is a steep,

but not discontinuous, function at A = 0. Examining Eq. (24)) one can easily see that

g(aA) ~ LyaA , (29)
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which approaches the discontinuity of the sign function only as Ly — co. The quality of the sign
function approximation for small eigenvalues can be improved by either increasing Ly (at a linear
cost) or by increasing the Mobius scale factor a = b+ ¢ while keeping b — ¢ = 1 (close to cost-
free), or both. One concludes that the scale factor » + ¢ should be increased to the maximum extent
consistent with keeping the upper edge of the spectrum of Hj; within the bounded region in which
€(Hy) is a good approximation to the sign function. In the limit of large Ly a simulation with
(b+¢) > 1 will have the same degree of chiral symmetry breaking as a simulation in which that
scale factor has been set to one but with Ly increased to Lg(b + ¢).

In Appendix [A] we continue the above review of the relation between the DWF and overlap opera-
tors, demonstrating the equality of the Shamir and Mobius four-dimensional fermion propagators
in the limit L; — co. We also introduce a practical construction of the conserved vector and axial

currents for Mobius fermions, appropriate for our choice of physical fermion fields.

B. Simulation parameters and ensemble generation

We generated three domain wall ensembles with the Iwasaki gauge action. The 481 and 64I en-
sembles were generated with Mobius domain wall fermions and with (near-)physical pion masses,
and the 32Ifine ensemble was generated with Shamir DWF and with a heavier mass but finer lat-
tice spacing. The results from previous fits to our older ensembles were used to choose the input
light and strange quark masses to the simulations. The input parameters are listed in Table [l As
discussed above, the Mobius parameters for the 481 and 641 ensembles are chosen with b —c = 1
such that the Shamir and Mobius kernels are identical. The values of a = b+ ¢, which to a first
approximation gives the ratio of fifth-dimensional extents between the Mobius and the equivalent
Shamir actions, are listed in the table.

We use an exact hybrid Monte Carlo algorithm for our ensemble generation, with five intermediate
Hasenbusch masses, (0.005, 0.017, 0.07, 0.18, 0.45), for the two flavor part of the algorithm of
both the 481 and 641 ensembles, and three intermediate masses, (0.005, 0.2, 0.6), for the 32Ifine.
A rational approximation was used for the strange quark determinant. The integrator layout and
parameters are given in Tables [[Ill and [V1

Each trajectory of the 481 ensemble required 3.5 hours on 2 racks of Blue Gene/Q (BG/Q) (2 X
1024 nodes), and those of the 641 required 0.67 hours on 8 racks of BG/Q. We generated 2200
and 2850 trajectories for the 481 and 641 ensembles respectively. The first 1100 trajectories of the
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481 641 32Ifine

Size 483 x 96 x24 643 x 128 x 12 323 x 64 x 12

B 2.13 2.25 2.37
am, 0.00078 0.000678 0.0047
amy, 0.0362 0.02661 0.0186

a 2.0 2.0 1.0

a1 (GeV)|  1.730(4) 2.359(7) 3.148(17)

L (fm) 5.476(12) 5.354(16) 2.006(11)

mylL 3.863(6) 3.778(8) 3.773(42)
(P) 0.5871119(25) 0.6153342(21) 0.6388238(37)
(y) 10.0006385(12) 0.0002928(9) 0.0006707(15)
(py> @) |-0.0000043(31) -0.0000000(34) -0.0000013(26)

TABLE II. Input parameters and relevant quantities for the three new Iwasaki ensembles. Here L is the
spatial lattice extent in lattice units, and o = b+ ¢ is Mobius scaling factor (recall the 32Ifine is a Shamir
DWEF ensemble, and therefore has a = 1.0). The last three entries are the average plaquette, chiral con-
densate, and pseudoscalar condensate respectively. The lattice spacings are determined in Section [V] of this

document.

481 641 321fine
Steps per traj. 15 9 6
At 0.067 0.111 0.167
Metropolis acc. 84% 87% 82%
CG iters per traj.|~ 5.9 x 10° |~ 6.1 x 10° |~ 8.4 x 10*

TABLE III. The number of steps per HMC trajectory, the MD time-step AT, the Metropolis acceptance and

the total number of CG iterations for the three new ensembles.

641 ensemble were generated with Ly = 10 and produced a pion mass of about 170 MeV, due to
the residual mass being larger than anticipated. Changing to Ly = 12 reduced the residual mass,
allowing us to simulate at essentially the physical pion mass. The 32Ifine ensemble required 5

minutes on 1 rack of BG/Q, and we generated 6940 trajectories for this ensemble.
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Level (i) S; Integrator n; Step size (481,641,32Ifine)
1 > So + Y Sk FGI QPQPQ 1 1/15, 1/9, 1/6
2 SG FGI QPQPQ 4 -

TABLE IV. The integrator layout for our three ensembles. Here y Sp and Sk are the sum of the quotient
and rational quotient actions used for the light and strange quarks respectively. The sums are over the
intermediate mass listed in the text. S is the gauge action, FGI QPQPQ is a particular form of the force
gradient integrator [E], and n; are the number of steps comprising a single update of the corresponding
action. The coarsest time-steps are at level 1, and the step sizes are chosen such that the total trajectory
length is 1 MD time unit. More detail regarding the notation and integrators can be found in Appendix A of

Ref. [5].

C. Ensemble properties

In Figure [Il we plot the Monte Carlo evolution of the topological charge, plaquette, and the light
quark scalar and pseudoscalar condensates, after thermalization. In addition we plot the time his-
tories of the Clover-form energy density evaluated at the Wilson flow times w(z) and f in Figure 2
We measured the topological charge by cooling the gauge fields with 60 rounds of APE [19]
smearing (smearing coefficient 0.45), and then measured the field-theoretic topological charge
density using the SLi discretization of Ref. [20], which eliminates the ¢’(a?) and €' (a*) terms at
tree level. In Figure Bl we plot histograms of the topological charge distributions.

In Figure 4] we plot the integrated autocorrelation time for the same observables on the 32Ifine,

481, and 641 ensembles as a function of the cutoff in Molecular Dynamics (MD) time separation,

Acutott: e
Tint(Dcutoft) = 1 +2 A; c(b), (30)
where
c(b) = < o -) (Zz(HA) _Y)> 31

is the autocorrelation function associated with the observable Y (). The mean and variance of Y (¢)
are denoted Y and 02, and A is the lag measured in MD time units. The error on the integrated
autocorrelation time is estimated using a method discussed in our earlier paper [B]: for each fixed
A in Eq. (31) we bin the set of measurements (Y (r) —Y) (Y (t+A) —Y) over neighboring config-

urations and estimate the error on the mean (- - -), by bootstrap resampling. We then increase the
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FIG. 1. Monte Carlo evolution of the average plaquette (first row), light quark chiral condensate (second

row), light quark pseudoscalar condensate (third row), and topological charge (fourth row) after thermaliza-

tion on the 32Ifine (left column), 481 (middle column) and 64I (right column) ensembles.

bin size until the error bars stop growing, which we found to correspond to bin sizes of 960, 100,

and 200 MD time units on the 32lIfine, 481, and 641 ensemble, respectively. The error on Tjy is

then computed from the bootstrap sum in Eq. (30).

In Table [V] we tabulate estimates of the autocorrelation lengths for each of the various quantities
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FIG. 2. Time history plots for the energy density evaluated at the Wilson flow times fy (top line) and w%

(bottom line) on the 32Ifine (left column), 481 (middle column), 641 (right column).

Ensemble| (P) E, Ea QO 0> (YY) (y)
32Ifine | 2.9(7) 29(77) 51(66) 340(120) 240(140) 2.6(8) 24(4)

481  |4.1(1.0) 10(26) 10(24) 1.1(1.6) 0.2(5) 1.93) 1.4(3)
641  |4.7(1.7) 38(24) 30(22) 19(7) 509) 6(8) 2.04)

TABLE V. Estimated integrated autocorrelation times for various quantities on the 32Ifine, 481 and 641

ensembles.

included in the above figures. We can estimate Ty, from the upper bound on the error for the
slowest mode, which corresponds to the energy densities on the 641 and 481 ensembles, and the
topological charge on the 321Ifine. This suggests Tj,; ~ 35 MDTU for the 481 ensemble, Tj, ~ 50
MDTU for the 641 ensemble and T, ~ 460 MDTU for the 32Ifine ensemble.

For all quantities considered, we observe that the chosen bin sizes are sufficient to account for
the autocorrelations suggested by Figure @l We also observe a significant decrease in the rate of
tunneling between configurations with different topological charge as the lattice spacing becomes
finer, as evidenced by the long autocorrelation time on the 32Ifine ensemble.

After generating our ensembles we discovered that there are spurious correlations between U(1)
random numbers generated by the Columbia Physics System (CPS) random number generator

(RNG) with a new seed. Fortunately, as discussed in Appendix [G, we determined that the corre-
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FIG. 3. Topological charge distributions for the 32Ifine (top left), 481 (top right), and 641 (bottom) ensem-
bles.

lation present in the freshly-seeded RNG state was lost during thermalization, and consequently

that this had no measurable effect on our thermalized gauge configurations or measurements.

III. SIMULATION MEASUREMENT RESULTS

In this section we present the results of fitting to a number of observables on the 481 and 64I en-
sembles. On the 481 ensemble we used data from 80 configurations in the range 420-2000 with
a separation of 20 MD time units. The 641 measurements were performed on 40 configurations

in the range 1200-2760 and separated by 40 MD time units. The data on both ensembles were
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FIG. 4. The integrated autocorrelation time as a function of the cutoff MD time separation, Acyoff, for the
average plaquette; light quark scalar and pseudoscalar densities; topological charge Q and its square; and
the Clover-form energy densities evaluated at Wilson flow times #, and w(2), E;, and EW% respectively. These
are plotted for the 32Ifine ensemble (top left), 481 (top right), and 641 (bottom) ensembles. The data has

been binned over 960, 100, and 200 MD time units on the 32Ifine, 481, and 641 ensemble, respectively.

binned over 5 successive configurations, corresponding to 100 MD time units and 200 MD time
units respectively. On the 641 ensemble, we measured the cheaper Wilson flow scales every 20
configurations (as opposed to every 40 for the other measurements) in the range 1200-2780 and
binned over 10 successive configurations. We also present similar results computed on 36 config-
urations of the 32Ifine ensemble in the range 1000-6600, measuring every 160 MD time units and
using a bin size of 6 configurations (960 MD time units).

With the bin sizes given above, the number of binned samples on the 48I, 641 and 32Ifine en-

sembles are 16, 8 and 6 respectively. We emphasize however that each measurement on the 641
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FIG. 5. The dependence of the error for the simulated data on the 641 ensemble. The vertical axis plots
the ratio 0,/ 0; for bin size b along the horizontal axis, where O is the statistical error and the subscript
indicates the bin size for which that error was computed. The upper and lower bounds were obtained by

varying g, by 1/+/N, where N is the number of samples.

ensemble is obtained from an average over 128 timeslices, and those on the 481 and 32Ifine over
96 and 64 timeslices, respectively. Nevertheless, the numbers of binned samples on the 641 and
32Ifine ensembles are considerably smaller than those typically encountered in lattice simulations
and we therefore provide evidence that our use of this small number of large bins does to not lead
to an inaccurate assignment of errors.

First, based on the integrated autocorrelation times determined in the previous section, the ex-
pected effective time separation between uncorrelated measurements is ~ 100 MDTU on the 641
ensemble, half of the actual bin size chosen. (Recall this is estimated as 2 X Tj,). Our choice is
therefore quite conservative. For the 481 and 32Ifine ensembles the time separation between un-
correlated measurements is ~ 70 and ~ 920 MDTU, respectively, which are comparable to our bin
sizes of 100 and 960. However, these estimates are obtained from the energy densities and topo-
logical charge respectively, and the latter may be misleadingly large for the following reason. In
a study by the ALPHA collaboration [|£|] the authors point out that for an HMC algorithm which
is invariant under parity, such as ours, the correlations seen in parity-even observables, which we
study, will correspond to modes in the HMC evolution which are determined by parity-even quan-
tities such as Q%>. We have included this quantity also in Figure @ and Table [Vl for which we
observe substantially smaller autocorrelation lengths, suggesting that our 481 and 32Ifine bin sizes

are also quite conservative.
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Of the 32Ifine and 64I data sets, the latter is the most important to our analysis. In Figure [5 we
plot the error on the 641 simulated data as a function of increasing bin size, where we estimate the
error on the error as ~ 1/v/N were N is the number of binned samples. In Figure [[9 of Section [V]
we show a similar plot but for the physical predictions of our global fits, again as a function of the
641 bin size. From these figures we observe no statistically significant dependence on the 641 bin
size, suggesting that we are not underestimating our errors by making our choice of 100 MDTU
bins for this ensemble.

The ability to generate physical mass ensembles forced us to seek dramatic improvements in our
measurement strategy, since the statistical error for kaon observables increases with decreasing
light quark mass (holding the strange quark mass fixed). For an example of this behavior, consider
the kaon two-point function,

C(r) = ) [sul(y,1)[ms](%, 0), (32)

y7x

which in the limit of large ¢ goes as
(C(t))y =Ae™ " ... (33)

where (..) is the average over the gauge field ensemble. The standard deviation on this quantity, i.e.
its statistical error, goes as 1/ (C?(t)), which contains two strange quark propagators and two light
quark propagators. This quantity can also be represented as a linear combination of exponentially
decaying terms:

(C2(1)) = Be~ tmsstmmt 1 (34)

where my; is the mass of the s§ state. The signal-to-noise ratio goes as exp (—[mg — (mgs +my) /2]t)
in the large time limit, and therefore decays faster with lighter pions.

The first component of our measurement strategy involves maximally reusing propagators for all
of our measurements, which include my, mg, ma, fn, [k, Bk, f"(O) and K — (111);—2. (Note
that the latter two quantities are not reported on in this document.) Reusing propagators requires
choosing a common source for our propagators that remains satisfactory across the entire range
of measurements. Also, since we measure both two- and three-point functions, we need to be
able to control the spatial momentum of the sources in order to project out unwanted momenta.
We performed numerous studies of Coulomb gauge fixed wall sources and Coulomb gauge fixed
box sources for many of these observables. (The box sources were generically chosen so that an

integer multiple of their linear dimension would fit in the lattice volume, allowing us to obtain
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zero momentum projections by using all possible box sources.) While the box sources showed
faster projection onto the desired ground state, the statistical errors on the wall sources were much
smaller, such that the errors on the measured quantities per unit of computer time were essentially
the same. From these studies, we chose to use the simple Coulomb gauge fixed wall sources.

In previous work on the 7 —n’ mass, which involves disconnected quark diagrams, we found
that translating n-point functions over all possible temporal source locations reduced the error
essentially as the square-root of the number of translations [@]. The calculation of such a large
number of quark propagators on a single configuration can be accomplished much more quickly
by a deflation algorithm. The EigCG algorithm ] was used for K — (7177);—0» measurements at
unphysical kinematics in Ref. ], and was adopted for this calculation. Measurements were again
performed for all temporal translations of the n-point functions, and a factor of 7 speed-up was
achieved. The major drawback of EigCG is the considerable memory footprint. However, BG/Q
partitions have large memory and therefore this issue can be managed. In practice we found that
only a fraction of the vectors generated by the EigCG method were good representations of the true
eigenmodes, and in future we may be able to reduce the CG time further by pre-calculating exact

=

An alternative approach to generating a large number of quark propagators is to use inexact defla-

low-modes using the implicitly restarted Lanczos algorithm with Chebyshev acceleration

tion. [26]. This approach had not been optimally formulated for the domain wall operator when
the measurements on our new ensembles were begun. However, a new formulation of inexact de-
flation appropriate to DWF, known as HDCG ], has since been developed, and has been shown
to be more efficient than EigCG; this technique is now being used for our valence measurements.
The final component of our measurement package is the use of the all-mode averaging (AMA) (7]
method to further reduce the cost of translating the propagator sources along the temporal direc-
tion. AMA is a generalization of low-mode averaging, in which one constructs an approximate
propagator using exact low eigenmodes and a polynomial approximation to the high modes ob-
tained by applying deflated conjugate gradient (CG) to a source vector on each temporal slice and
averaging over the solutions. The stopping condition on the deflated conjugate gradient can gen-
erally be relaxed, reducing the iteration count. The remaining bias in the observable is corrected
using a small number of exact solves obtained using the low modes and a precise deflated CG
solve from a single timeslice for the high-mode contribution. The benefit of this procedure is that
the CG solves used for the polynomial approximation can be performed very cheaply using inex-

act ‘sloppy’ stopping conditions of 10~ or 10~ as many of the low modes are already projected
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out exactly. The net result of combining the sloppy translated solution with the (typically small)
bias correction is an exact result calculated many times more cheaply than if we were to perform
precise deflated solves on every timeslice.

In order to avoid any bias due to the even-odd decomposed Dirac operator used in the CG, we
calculate the eigenvectors using EigCG on a volume source spanning the entire four-dimensional
volume, and the temporal slices where we perform the exact solves are chosen randomly for each
configuration. We calculate low modes in single precision using EigCG in order to reduce the
memory footprint, and also perform the sloppy solves in single precision. For the exact solves,
we achieve double precision accuracy through multiple restarts of single precision solves, restart-
ing the solve by correcting the defect as calculated in double precision. For the zero-momentum
strange quark propagators required, we do a standard, accurate CG solve for sources on every
timeslice. On the 481, we performed our measurements using single rack BG/Q partitions (1024
nodes), calculating 600 low modes with EigCG (filling the memory) and running continuously for
5.5 days. (Note that this timing includes non-zero momentum light quark solves for measurements
of K and additional light quark solves for K — (7T79);—,, which are not reported in this document.)
For the 641 ensemble, the measurements were performed on between 8 and 32 rack BG/Q parti-
tions at the ALCF and 1500 low modes were calculated by EigCG. On a 32 rack partition, the latter
took 5.3 hours and the solver sustained 1 PFlops. (The EigCG setup time is efficiently amortized
in these calculations by using the EigCG eigenvectors to deflate a large number of solves.)

The Coulomb gauge-fixing matrices for the 641 ensemble were not computed on the BG/Q
and were instead determined separately (and more quickly) on a cluster, using the timeslice-
by-timeslice Coulomb gauge FASD algorithm [28].

We simultaneously fit the residual mass, pseudoscalar masses and decay constants, axial and vec-
tor current renormalization coefficients (Z4 and Zy, respectively), and kaon bag parameter (Byy).
A separate fit was performed for the Q-baryon mass. The values for these observables obtained
on each lattice, as well as the statistical errors computed by jackknife resampling, are summa-
rized in Table [VIL The corresponding fit ranges are summarized in Tables [VIIl and [VIIIl In the
following sections we discuss the fit procedures and plot effective masses and amplitudes for each

observable.
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32Ifine 481 641
my || 0.11790(131) | 0.08049(13) | 0.05903(13)
mp || 0.17720(118) | 0.28853(14) | 0.21531(17)
fu || 0.04846(32) | 0.07580(8) | 0.05550(10)
fn | 0.05358(22) | 0.09040(9) | 0.06653(10)
Zy || 07777929) | 0.71191(5) | 0.74341(5)
Zy 0.77700(8) | 0.71076(25) | 0.74293(14)
By || 0.5437(85) | 0.5841(6) | 0.5620(6)
mn || 0.5522(29) | 0.9702(10) | 0.7181(7)
my,, || 0.81149) | 1.273(10) 0.937(7)
M ||0.0006296(58)|0.0006102(40) |0.0003116(23)
wo 2.664(16) | 1.50125(94) | 2.0495(15)
17 || 2.2860(63) | 1.29659(28) | 1.74496(62)

my/mua || 0.2135(26) | 0.08296(17) | 0.08220(20)

mu/mua || 0.320925) | 0.29740(32) | 0.29983(37)

TABLE VI. Summary of fit results in lattice units.

Correlator

32Ifine

481

641

PPVE(ID)
PPYW (1)
APYE(ID)
PPVL(1h)
PPYY (1h)
APYE(1h)

Za

Q

Myes

10:31
10:31
10:31
10:31
10:31
10:31
11:52
6:20

6:57

15:48
10:35
10:46
14:40
14:33
12:40
6:89
5:17
9:86

12:60
10:61
10:60
17:49
14:45
20:49
10:117
5:19
10:117

TABLE VII. Summary of fit ranges tin/a <1/a < tymax/a used for each two-point correlator and ensemble.
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Ensemble || Quantity | |fsource — fsink| /@ | fskip /@
Zy 16:4:32 8
32Ifine
By, 52:4:56 10
Zy 12:4:24 6
481
By, 20:4:40 10
Zy 15:5:40 6
641
By, 25:5:40 10

TABLE VIII. Summary of fit ranges used for each three-point correlator and ensemble. We simultaneously
fit to all source-sink separations in the given range, where the operator insertion is evaluated at times which

are at least fip /a time slices away from the sources and sinks.
A. Residual mass

For domain wall fermions, the leading effect of having a finite fifth dimension is an additive
renormalization to the bare quark masses known as the residual mass, m.s. We extract the residual

mass from the ratio (0| a (&0
f‘]a )_C’,t TT

(gmres (t) = z 5(51 by4 ’ (35)
(0] Y5 je(X,1)|m)

where j§ p is the pseudoscalar density evaluated at the midpoint of the fifth dimension, and j5 is the

physical pseudoscalar density constructed from the surface fields (cf. Ref. [@], Egs. (8) and (9) ).

In Figure [6] we plot the effective residual mass, as well as the fit, on each ensemble.

B. Pseudoscalar Masses

The masses of the pion and kaon at the simulated quark masses, denoted m;; and my;, respectively,

were extracted by fitting to two-point functions of the form
G, (1) = (016} (1) 65(0)[0),. (36)

Here the subscripts indicate the interpolating operators and the superscripts denote the operator
smearing used for the sink and source, respectively. In the following we have used Coulomb
gauge-fixed wall (W) sources, and both local (L) and Coulomb gauge-fixed wall sinks. We extract
the pseudoscalar meson masses by fitting three correlators simultaneously: PPV, PPYW  and

AP where P is the pseudoscalar operator and A is the temporal component of the axial current.
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FIG. 6. Effective m,.s on the 32Ifine (top left), 481 (top right), and 641 (bottom) ensembles.

These are fit to the following analytic form for the ground state of a Euclidean two-point correlation

function:

(0l07'1X)(X|07*|0)
2mxV

€ (1) = (e—mX’ 4o Wf‘”) , 37)

where the + (-) sign corresponds to the PP (AP) correlators, and X denotes the physical state to

which the operators couple. In the following sections we use

(0]0}'|X) (X]052[0)

N2 =
010; 2mxV

(38)

to denote the amplitude for a given correlator. The effective mass plots associated with these

correlators, as well as the fitted masses, are shown in Figures [7, [8] O] and [0l
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FIG. 7. Effective m;; on the 32Ifine ensemble. We fit a common value of the mass to all three correlators.
C. Pseudoscalar Decay Constants and Axial Current Renormalization

The pseudoscalar decay constants, frr and fx, are defined in terms of the coupling of the pseu-

doscalar meson fields to the local four-dimensional axial current A‘If,:

(0]A% ()] m(p)) = —i5“bfnpueip'x

(OIAL () |K® (p)) = —i8 fxpue™™

; (39)

where

AL () = q(x)YuysAq(x) (40)

is formed from the surface fields ¢(x). In order to match this operator to the physically normalized
Symanzik-improved axial operator AISJ“, we must derive the appropriate renormalization factor, Z4.

In the domain wall fermion formalism it is also possible to define a five-dimensional current <7
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which satisfies the discretized partially-conserved axial current (PCAC) relation,
Ay ()] (v)) = (1(x) |2mj5 (v) +2,5,()) (41)

where A is the backwards discretized derivative. The factor relating this to the Symanzik current

is denoted Z ;.

In the past, we took advantage of the fact that Z,, = 1 + &'(mys) to approximate Zy as Zy /Z,y,

which can be computed directly via the following ratio:

2z {OsegEnlm
Zy (O] 3zAG(X,0)[m)

The 5-D current &7 (x) is properly defined as the current carried by the link betrween x and x+ U,

Za (42)

whereas the 4-D current A{(x) is defined on the lattice site x. The correlation functions C(t +
)= Z;(%“(f,t)n“((),O)) and L(t) = z;(Ag(x’,r)W((),D)), that one would use to compute the

above ratio, are therefore not defined at the same temporal coordinate. By taking appropriate
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combinations of these correlators one can remove the associated ¢(a) error and reduce the & (a?)

error. Zy /Z.; is then computed via the following ratio: [29]

C(t—3)+C(t+73) 2C(t+ 1)
2L(1) L(t—1)+L(t+1)

(43)

R(t) = 3

While the 1-2% mys errors associated with the above determination of Z4 could be neglected in
our earlier work, where we were far from the chiral limit and the statistical errors were larger
than in the current work, in Refs. [B] and [@] it was shown that a better approximation could be
obtained via the vector current. The local vector current operator formed from the domain wall

surface fields is

Vi(x) = q(x)yuAq(x), (44)

which is related to the Symanzik vector current Vlf“ by a renormalization coefficient Zy which was
shown to be equal to Z, up to terms & (mZ,) [6]. There is also a five-dimensional conserved vector
current ”//u“ for which the renormalization factor, Zy, is unity, and we can obtain a significantly

better approximation to Z4 by computing Zy /Zy on the lattice:

Iy~ 2V = Y 7 i . (45)

Below we determine both Z4 /Z., and Zy /Zy, but use only the latter to renormalize our decay

constants.

1. Determination of Za/Z .y

We introduce a practical approach to the conserved axial current for Mobius fermions in Ap-
pendix [A] and Ref. ]. For the numerical determination of Zy, the explicit construction of the
current, used in Eq. (42)), can be avoided with an alternate determination that utilizes the ratio of
the divergences of the four-dimensional and five-dimensional axial currents:

Zy  0l3e0uei(xt)|m  2m{0] 3z j5(X, 1)) +2(0] 3 j5, (X, 1) D)

ZA%—_

- = - : 46
Zs  (O0]3:0,AE 0] O] 0l 1) 1) (40)
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where the last equality follows from the PCAC relation, Eq. (41)). We extract Z4 from our lattice

data using the improved ratio

(C./(t) = (0] S Ousd(®.0)|m0)

Cy (;-%) = (0| Z@,A;ﬁ,(f,mm , (47)
gy LCrli=DrCo) 2cy()
AT T - D) Calt+3)+Calt—1)

which is also constructed to minimize errors at &(a?) [29]. The translation by % in the argument
of the correlation function associated with A, arises from the divergence. The five-dimensional
current %ﬁ, by contrast, is defined on the links between lattice sites, so its divergence is centered

on the lattice. In Figure [[T] we plot the effective Z4 and fit on each ensemble.
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FIG. 11. Effective Z4 on the 32Ifine (top left), 481 (top right), and 641 (bottom) ensembles.
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2. Determination of Zy | Zy

Since the relatively noisy p meson is the lightest state to which the vector current couples, com-
puting Zy accurately requires a different approach from that used for Z4 (Eq. @6)). Instead, we

calculate the pion electromagnetic form factors f;7 (¢*) and f;; (¢*), defined by the matrix element

(M(p)IVul(p2)) = £;1 (6 (P2+ 1)y + 1 (@) (P2 —P1) (48)

where g = p> — pi is the momentum transfer. Current conservation implies f;; (¢%) = 0 for all ¢?,
leaving only the vector form factor, f;[ For two pions at rest, f;[ (0) =1, and we can fit Zy from

the temporal component of Eq. [8]). We fit to the ratio

%%W(tsnk) t7|tsrc_i§nk‘>>1 , -
= 1%
6pyp(tsiest,tsnk) ,

where

G0 =B () - L (%) (i /21 (50)

is the pion two-point function, Eq. (37), with the around-the-world state removed using the fitted
pion mass, and CKI%VX (fsret, sk ) 18 the three-point function defined by the matrix element, Eq. (48).
On the 32Ifine and 481 ensembles, this matrix element was computed for all 77— 7T separations,
Lsink — fsre» that are a multiple of 4. For the 641 ensemble we computed on separations that are
multiples of 5. We determine the ranges of 7T— 7T separations to use in the fit by plotting the
midpoint of Eq. @9) as a function of the 7T— 7T separation on each ensemble and looking for a
plateau: based on this analysis we chose to include 7T— 7T separations in the range 16-32 on the
32Ifine ensemble, 12-24 on the 481 ensemble, and 1540 on the 641 ensemble. In Figure [12] we
illustrate this method by plotting Eq. @9) for a single 17— 7T separation included in the fit, as well

as the fitted value for Zy, on each ensemble.

3. Determination of the Decay Constants

The light-light pseudoscalar decay constant can be computed from Zy and the amplitudes of the

2 ,/VLWZ
=Zv\| —= i (51)
fll \% mllv e/VPv},/W

PP and AP correlators as
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FIG. 12. Effective Zy on the 32Ifine (top left), 481 (top right), and 641 (bottom) ensembles, for m— 1T

separations of 32 time units, 20 time units, and 40 time units, respectively. Note that in each case the fit is

performed using several 7T— 7T separations, not just the separation plotted here.

and likewise for the heavy-light pseudoscalar. In Figures [I3] and [I4] we plot the effective ampli-

tudes,

associated with fj; and fj,.

r . B CKPP(t)
Npp (1) = exp (—mt) +exp (—m(N; — 1))
ot Cap(1)
M (1) = exp (—mt) —exp (—=m(N; —1))
m= meff(f)7

(52)
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D. Neutral Kaon Mixing Parameter

We compute the neutral kaon mixing parameter, By, from the ratio

(KO Oyy1aa|K°)
8(K9|40|0)(0]Ao| k")

= Bin, (53)
where Oyy a4 is the AS = 2 four-quark operator responsible for the mixing:

Ovyian =5Yu(1—y5)d -5y (1—ys5)d. (54)

The matrix element in the numerator of Eq. (33) was computed for K — K separations which are
a multiple of 4 (5) on the 32Ifine/481 (641) ensemble. On the 32Ifine ensemble we use linear
combinations of propagators with periodic and antiperiodic boundary conditions in the temporal
direction to effectively double the time extent of the lattice for the By, correlators, a technique
we have also employed in previous calculations [Q]. We determine appropriate ranges of K — K
separations to include in the fit using the same procedure as described in the previous section
for Zy. We chose separations of 52 and 56 time units on the 32Ifine ensemble, 20,24 ...40 on
the 481 ensemble, and 25,30...40 on the 641 ensemble. In Figure [L3 we plot the By, effective
amplitude for a single K — K separation included in the fit, as well as the fitted value for By, on

each ensemble.

E. Omega Baryon Mass

We measured the Q-baryon mass m;,y,;, from the two-point correlator
Coo' (1) =Y (004 (%,1)i0(0)i]0), (55)
i=1

using an interpolating operator

Oa(®); = Euse (54 (CVisp () ) sc() (56)

where C denotes the charge conjugation matrix. We performed measurements using both Coulomb
gauge-fixed wall sources and Z3 box (Z3B) sources, and, in both cases, a local (point) sink. The
correlator, Eq. (33)), is a 4 x 4 matrix in spin space which couples to both positive (+) and negative
(—) parity states, and has the asymptotic form

r>1

w3 () Z(%(Hw)dﬁ”() L) 2 (e ) 57)

=
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FIG. 15. Effective By, on the 32Ifine (top left), 481 (top right), and 641 (bottom) ensembles, for K — K
separations of 52 time units, 32 time units, and 40 time units, respectively. Note that in each case the fit is

performed using several K — K separations, not just the separation plotted here.

for large . The fit to extract myy, is performed by first projecting onto the positive parity compo-

nent,

PLEI = %u{% (1+ya) %;‘;“‘2} : (58)

for each source type, and then performing a simultaneous fit of both correlators to a sum of two

exponential functions with common mass terms :

B ~ .
‘fg%(t) _ %Lge Mphht %Lg e Mhin!

. (59)
~ !
cgééw (t) _ QL§3B oMt + %L§3Be*mhllht

m—_(N;—t)

One can also include terms proportional to e~ , where m_ is the mass of the ground state in

the negative parity channel, to account for around-the-world contamination effects, but we find that
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our lattices are sufficiently large and the masses of these states sufficiently heavy that including
these terms has no statistically significant influence on the fitted Q mass. Using multiple source
types and double-exponential fits to common masses allows us to reduce the statistical error on the
Q baryon mass my,,;,, as well as to also fit the mass of the first excited state in the positive parity

channel m),, . Figure[I@l plots the effective Q-baryon mass on each ensemble.
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FIG. 16. The effective mass of the Omega baryon obtained using both our wall (LW) and Z3 box source
(LZ3B) on the 32Ifine (top left), 481 (top right), and 641 (bottom) ensembles. The correlation functions are
simultaneously fit to a two-exponential fit form, and the effective mass determined from the fit function (ob-
tained by applying the same technique as used to extract the effective mass from the raw data) is overlayed

with the data.

In Figure [[7] we plot the dependence of our fitted ground and excited state energies on the lower
temporal bound of the fit. The upper bound of the fit window is fixed at 20, 16, and 19 on the

32Ifine, 481, and 641 ensembles, respectively. We observe excellent stability for bounds above
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FIG. 17. The stability, as a function of the lower bound on the fit range i /a, of our fitted Omega baryon
ground state (upper row) and first-excited state (lower row) for the 32Ifine (left), 481 (middle) and 641 (right)

ensembles. The point in red indicates our final value.

I'min = 4, suggesting that we have good resolution on both the ground and excited states, and that
contamination of our results by higher-energy excited states can be discounted. In practice we use

tmin = S for both the 481 and 641 ensembles, and 7,,;, = 6 for the 32Ifine ensemble.

F. Wilson flow scales

/2

The Wilson flow scales, té and wy, are quantities with the dimension of length defined via the

following equations: [32]

and [@]

t(E(1))] 1=, = 0.3, (60)

td
dt

where E is the discretized Yang-Mills action density,

(PE)))] =2 =03, (61)

1

We determine the action density using the clover discretization, for which F,y is estimated at each

lattice site from the clover of four 1 x 1 plaquettes in the 4 — v plane. We find that this leads to
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smaller discretization errors (especially for ) than estimating F),y directly from the plaquette via
4

(P) =1—22(E) +0(a°) (63)

which is in agreement with some previous experience [@]. In Figure [I8 we show an example of

the interpolation of the two scales on the 641 ensemble. The final results for all ensembles are

listed in Table V1l
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FIG. 18. The interpolation in Wilson flow time ¢ on the 641 ensemble of the functions of the action density

used to define 7y and wy respectively. The red point is the interpolated value.

IV. SIMULTANEOUS CHIRAL/CONTINUUM FITTING PROCEDURE

The bare quark masses for the 481 and 641 ensembles were chosen based on the results for the
physical quark masses at equivalent bare couplings obtained in Ref. [Q]. The simulated values for
the dimensionless ratios my/mq and mg /mgq are shown in Table [VIl Since we are not simulating
electromagnetism, we compare to the following physical values: my; = 135.0 MeV, mg = 495.7
MeV and mq = 1.67225 GeV. Clearly our simulations are very close to the physical point, yet we

must perform the very modest extrapolation in order to obtain precise physical results.

A. Summary of global fit procedure

In Refs. [Q, H] we have detailed a strategy for performing simultaneous chiral and continuum

‘global’ fits to our lattice data. In this document we perform such fits to the following quantities:
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/2

mm, mg, fr, fx, mo and the Wilson flow scales té and wg. We parametrize the mass depen-
dence of each quantity using three ansitze (where applicable): NLO partially-quenched chiral
perturbation theory with and without finite-volume corrections (i.e. infinite volume XPT), which
we henceforth refer to as the ‘ChPTFV’ and ‘ChPT’ ansitze respectively; and a linear ‘analytic’

dj, ] to describe quanti-

ties with valence strange quarks. For the convenience of the reader, we have collected the various

ansatz. For the ChPT and ChPTFV ansitze we use heavy-meson XPT

ChPT and analytic fit forms in Appendix [Hl In this appendix we also specify the new fit functions
that we use to describe the Wilson flow scales, té /2 and wy.

We use the difference between the results obtained for each ansatz to estimate our systematic
errors. In order to account for discretization effects, we include in each fit form an ¢ term. As
discussed in Ref. [5], we neglect higher order effects including terms in a* and a?In(a?). The fits
are performed to dimensionless data, with the parameters determined in the bare normalization
of a reference ensemble . The bare lattice quark masses and data on other ensemble sets are
‘renormalized’ into this scheme via additional fit parameters: For an ensemble e, these are Zj, Z;
for normalizing the light and heavy quark masses respectively, and R¢, for the scale. These are
defined as follows:

1 (ariy )"

— and R =a'"/a°, (64)
R, (amy p)° a=a/

f/h -
where a is the lattice spacing and /2 = m + myes. Note that the scheme used for the quark masses is
implicitly mass dependent, hence we allow for different parameters to renormalize the heavy (Z,)
and light (Z;) quarks. In practice this dependence is very weak and Z; and Z;, differ only at the per-
cent level even on our coarsest lattices (cf. Table XVII) despite the order of magnitude difference
in the mass scales. Within a large range of light quark masses we previously observed no measur-
able dependence [B], which motivated our choice to obtain these quantities as free parameters in
the global fit (‘generic scaling’) rather than by matching at a single mass (‘fixed trajectory’).

The procedure for obtaining the general dimensionless fit form for a quantity Q is described in
Appendix Bl

We choose a continuum scaling trajectory along which my/mgq and mg/mq match their physi-
cal values. Here we include the Q baryon mass due to the ease of obtaining an precise lattice
measurement and its simple quark mass dependence. This procedure defines my, mg and mq as
having no lattice spacing dependence. After performing the fit, we obtain the lattice spacing for

the reference ensemble by comparing the value of any of the aforementioned quantities to the cor-
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responding physical value after extrapolating to the physical quark masses. The lattice spacings
for the other ensembles are then obtained by dividing this value by R¢. An alternate choice of
scaling trajectory, for example using fr; in place of mq, would reintroduce the scale dependence
on mq and remove it from fi; the values of each a” coefficient are therefore dependent on the
choice of scaling trajectory, but the continuum limit is guaranteed to be the same (up to our ability
to measure and extrapolate the quantities in question). Note that the inclusion of the Wilson flow
data results in significant improvements in the statistical error on the lattice spacings compared to
our previous determinations due to its influence on the shared ratios R,.

While the data on a given ensemble can be expected to be highly correlated, the estimated corre-
lation matrices tend to suffer from having a poor condition number preventing their use in corre-
lated fits. As a result, our global fits are performed assuming a diagonal correlation matrix. This
approach can result in larger jackknife statistical errors than for correlated fits, however in the
past [35] we have experimented with performing partially-correlated fits where increasingly large
numbers of leading eigenvectors were included in the estimate, and found little difference between
the uncorrelated and correlated results. With uncorrelated fits the x2/d.o.f may not be a reliable
indicator of the goodness of fit, and to assess their quality we instead generate histograms of the

deviation between the data and the fit.

B. Details specific to this calculation

Using our simultaneous fit strategy, we combine our 641 and 481 physical point ensembles with
a number of existing domain wall ensembles: the ‘241’ and ‘32I" ensembles with lattice volumes
243 x 64 x 16 and 323 x 64 x 16 and Shamir domain wall fermions with the Iwasaki gauge ac-
tion at bare couplings 3 = 2.13 and 2.25 respectively (equal to the 481 and 641 bare couplings
respectively) described in Refs. [@] and [B]; the ‘32ID’ ensembles with volume 323 x 64 x 32
and Shamir domain wall fermions with the Iwasaki+DSDR gauge action at 8 = 1.75 described in
Ref. [B]; and finally the ‘32Ifine’ ensemble with volume 323 x 64 x 12 and Shamir domain wall
fermions with the Iwasaki gauge action at 8 = 2.37 described in this document. For the conve-
nience of the reader, we summarize the input parameters of the 241, 321 and 32ID ensembles along
with a number of relevant quantities including the range of pion masses, the lattice spacing and
physical lattice size, in Table [XI

Following our earlier analyses, we use the 321 ensemble set as the reference ensemble against
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321 241 32ID
Size 323 x 64 x 16 243 x 64 x 16 323 x 64 x 32
Action Shamir DWF + 1 Shamir DWF + 1 Shamir DWF + ID
B 2.13 2.25 1.75
a ' (GeV) 2.383(9) 1.785(5) 1.378(7)
L (fm) 2.649(10) 2.653(7) 4.581(23)
ML 3.122(12) 3.339(15) 3.335(7)
my unitary (MeV)  |302.4(1.2)-360.1(1.4)|339.7(1.3)-339.7(1.3) | 172.4(0.9)-315.5(1.6)
m lightest PQ (MeV) 232.4(1.1) 248.3(1.2) 143.8(0.8)

TABLE IX. Input parameters and relevant quantities for the 321, 241 and 32ID ensembles. For the action, I
stands for the Iwasaki gauge action, and ID the Iwasaki action with the DSDR term. Here L is the spatial
lattice extent and m L is given for the lightest partially-quenched pion at the simulated strange quark mass.
The last two rows list the range of unitary pion masses and the lightest partially-quenched pion mass (PQ)
mass, respectively. The full set of corresponding bare quark masses are given in Table [XII The lattice

spacings used here are determined in Section

which the ‘scaling parameters’, Z; /h and R, are defined.

1. Ensemble-specific parameters

As discussed in Section [l the Mobius parameters of the 481 and 641 ensembles are chosen to
ensure the equivalence of the Mobius and Shamir kernels; as a result, the ensembles with the
Iwasaki gauge action can all be described by the same continuum scaling trajectory, i.e. with the
same a® scaling coefficients. As described in Ref. [B], additional parameters must be introduced
to describe the lattice spacing dependence of the 32ID ensembles, which use the Iwasaki+DSDR
gauge action to suppress the dislocations that enhance the domain wall residual chiral symmetry
breaking on this coarse lattice.

Note that while the 32ID ensemble is the only data set with the Iwasaki+DSDR gauge action, the
five additional a2 terms for fm fx> wo, té /2 and Bk, are completely determined from the overall
relative normalization of these data under the X2 minimization. This leaves more than sufficient

data to determine Z;, Z;, and R, on this ensemble set and to help constrain the coefficients of the
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mass terms that are common to all ensembles in these fits. Although the 32ID ensemble set is
coarse (a~! = 1.38(1) GeV), we observe discretization effects only at the 5% level suggesting a
discretization systematic error arising from higher order (¢'(a*)) terms at the 0.25% scale, small
enough to be neglected. The inclusion of these ensembles in the global fits is discussed at length
in Ref. [5].

The 481 and 641 ensembles have identical bare couplings to the 241 and 321 ensembles respectively,
yet differ in their values of the total quark mass, Lg; and Mobius scale parameter a. The change in
residual chiral symmetry breaking resulting from the changes in Ly and a gives rise to a shift in
the bare mass parameter of the low-energy effective Lagrangian, which we account for at leading
order in our fits by renormalizing the quark masses as m = m + my¢s. Higher order effects such as

those of order m,, a*

are small enough to be ignored. After performing this correction we might
assume that the scaling parameters Z;, Z; and R, (or equivalently the lattice spacing) for the 481
and 241 ensembles should be identical, and likewise for the 641 and 321 ensembles. However when
we performed our global fits we found that the 481 lattice spacing is 3.2(2)% larger than that of
the 241 ensemble, and the 641 lattice spacing is 1.1(2)% larger than the 32I value. We saw no
statistically discernible differences in Z; and Z,.

As we mentioned in Section [TAl and discuss in detail in Appendix [C] the observed change in the
lattice spacings can be expected to originate from the changes in the effective extent of the fifth
dimension, L, = a L, which differs by a factor of 3 between the 481/241 ensembles, and a factor
of 1.5 between the 641/321. At finite L, the Symanzik effective Lagrangian contains the leading-
order operator Begrtr(FyvFyy). A change in L’ which causes a 0.0025 change in m,, should also
be expected to cause a ~ 0.0025 change L, a change which results in an exponentially-enhanced
change in the resulting lattice spacing. Recall that the 5.6% change in the coupling between a
B =213, a1 =1.75 GeV ensemble and a B =225, a1 =2.38 GeV ensemble, gives rise to a
36% change in the inverse lattice spacing. Thus, we might expect a 3% change in a~! to result
from a 0.5% change in the effective coupling, not far from the change we observe. We discuss
in Appendix [C] how changes of this size are not unreasonable, and provide additional numerical
evidence for the observed change in lattice scale.

Finite L] effects will also give rise to other higher order effects of a similar size. For example,
we might expect €(0.5%) shifts in the a” scaling coefficients of the various quantities included
in our global fits. However, in Section [V] we find that even on the coarser 481 ensemble, the

discretization effects are only at the 2-3% level (cf. Table XTI, suggesting negligible, 0.02% finite
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Scheme 481 241 % diff. 641 321 % diff.

g [1.43613(80) 1.4386(12) 0.17%|1.43998(80) 1.4396(37) 0.03%
Yu o [1.52070(89) 1.5235(13) 0.18% |1.51764(98) 1.5192(39) 0.1%

TABLE X. A comparison of the quark mass renormalization factors Z,, between the 481/241 and 641/321
pairs of ensembles, giving the values and their percentage difference. The renormalization scale is 3 GeV
and the definitions of the schemes are given in Appendix [H alongside details of the computation of the
241 and 32I values. Those for the 481 and 641 are not used later in the analysis and are presented here
only for comparison. Note that unlike the 241 and 32I values, those for the 481 and 641 ensembles are not
extrapolated to the chiral limit as they are computed at only a single mass but for other ensembles we have

observed no significant mass dependence for these non-exceptional schemes.

L effects. We again emphasize that for our large values of L, it is only the exponentially enhanced
dependence of the lattice spacing upon the Symanzik coefficients that gives rise to observable
finite-L!, dependence in this quantity. We do not expect any other observable effects.

Additional evidence for the closeness of our Mobius and Shamir ensembles can be obtained by
comparing the renormalization factors for the quark masses, Z,,, and the kaon bag parameter, Zg, .
The former are computed for the 321 and 241 ensembles in Appendix F, for use in obtaining renor-
malized physical quark masses later in this document. There we do not present the computation
of the corresponding factors for the 481 and 641 ensembles as they are not needed in our later
analysis. Nevertheless, we have computed these values, and we list them alongside the 241 and
321 numbers in Table Xl We observe only tiny, 0.2% scale differences between the 481/241 values
and even smaller < 0.1% differences for the 641/32I ensembles. Comparing the values for Zg, in
Table [XLIT we again see differences only at the 0.25% scale. This strongly suggests that finite-L
effects have no significant impact upon the UV physics other than through the exponentially en-
hanced dependence of the lattice spacing upon a shift in the bare coupling at the 0.5% scale. In
addition, these observations justify our fixing both Z; and Z;, to be the same for the 241 and 481

ensembles, and also for the 321 and 641 ensembles.
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2. Weighted global fits

The fits are performed independently for each superjackknife sample J by minimizing )(J2 under

changes in the set of fit parameters c¢; of the function f. )(J2 is defined as

T 2
X2 = Z yis fg;mCJ)] 65)

1

were y;; is the J® superjackknife sample of a measurement i and x;; are the associated input
parameters (quark masses, etc). Oj is the error on the measurement, and provides the weight of
each data point in the fit.

The naive X2-minimization procedure weights each data point according to just its statistical error,
and is therefore unable to account for systematic uncertainties on the fit function itself. Given that
NLO XPT can only be expected to be accurate to O(5%) in the 200 - 370 MeV pion-mass range
in which the majority of our data lies, the fits over-weight the data in this heavy-mass region re-
sulting in deviations of the fit curve from the light-mass data. In practice the enhanced precision
of the near-physical 641 and 481 data partially compensates for the larger number of heavy-mass
data points, resulting in only &'(10 — 20) deviations between these data and the fit curve. How-
ever, as the intention of these global fits is only to perform a few-percent mass extrapolation of
our near-pristine data, such deviations are unacceptable.While this can be remedied to a certain
degree by removing data from the heavy-mass region, there remains pollution from the systematic
uncertainty of the fit form. Without going to full NNLO xPT, one might attempt to reduce this un-
certainty by introducing physically motivated ‘nuisance parameters’, perhaps along with Bayesian
constraints to confine them within sensible bounds. While this is certainly a valid approach we
feel it to be beyond the scope of this work, given that we desire only to perform a small correction
to our near-physical data. With this in mind, we instead adopt an alternative approach in which we
force the fit curve to pass through our near-physical data by increasing the weight of these data in
the x? minimization as follows.

We introduce a measurement-dependent weighting factor @ to the x> determination:

Ty . 2
szzzw‘[y” £ _(ZX”’CJ)] . (66)

l l
Note that only the relative values of ¢y matter as the same parameters that minimize x> will also
minimize rx2, where r is some common factor. (Of course the algorithm itself has some numerical

stopping condition which will need to be adjusted to take into account the change in normalization
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of x2.) In principle one could tune the relative weights based on a combination of the measured
statistical error and an estimate of the systematic error of the fit function at each point, but this runs
the risk of becoming too complex and arbitrary. Instead, as previously mentioned, we weight the
data such that the fit is forced to pass directly through the data points on the 481 and 641 ensembles.
To achieve this, we set w; = Q for those data, where Q is assumed to be large, and w; = 1 for the
remainder. This is performed independently for each superjackknife sample, and does not change
the fluctuations on the data between superjackknife samples. As a result, the statistical error from
the overweighted points is unchanged by this procedure. In Appendix [Dl we demonstrate that the
fit results become independent of Q in the limit Q — o and that the procedure has the desired
effect of forcing the fit through the physical point data.

For large values of Q we must choose small values of the numerical stopping condition on the
minimization algorithm, increasing the time to perform the fit and making it more susceptible to
finite-precision errors. In the aforementioned appendix we determine that Q = 5000 and a stopping
condition of 5Xr%11n =1 x 10~* is sufficient.

We emphasize that this procedure is performed separately for each superjackknife sample of our
combined data set, such that the error on the fit function evaluated at the parameters associated
with the 641 and 481 data is exactly equal to the error on the corresponding data. This can be seen,
for example, in Figure 23] of Section[V Bl where we see the 10 width of the fit curve exactly aligns
with the error bars for the 481 and 641 data.

V. FIT RESULTS AND PHYSICAL PREDICTIONS

We performed global fits using the ChPTFV, ChPT and analytic ansitze. As discussed in Ref. [B],
we attempt to separate the finite-volume and chiral extrapolation effects by performing the analytic
fits to data that is first corrected to the infinite-volume using the ChPTFV fit results. Following
Ref. [H], the ChPTFV and ChPT fits were performed with a 370 MeV pion mass cut on the data
(this is set slightly larger than the value used in that paper, as we wish to include in our fit the
32Ifine data with a 371(5)MeV pion). The criteria for excluding the other fitted data are as follows:
For fr we exclude the data if the pion mass with the same set of partially-quenched quark masses
lies above the cut; for fx and mg data points with light valence quark mass m, and heavy mass m,,
we exclude the data if the pion with m, = m, on that ensemble is above the pion mass cut; and for

mq, té /2 and wo we exclude the data only if the unitary pion on that ensemble is also excluded.
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Ensemble set| my my {m,}

0.006 {0.006, 0.004, 0.002
0.006 |0.004 |0.004, 0.002
0.002 |0.002

321
0.006 [0.006, 0.004, 0.002

0.004 |0.004 |0.004, 0.002
0.002 (0.002

0.005 {0.005, 0.001
241 0.005
0.001 {0.001

0.008 [0.008, 0.0042, 0.001, 0.0001
0.0042(0.0042, 0.001, 0.0001

0.0042
0.001 (0.001, 0.0001

0.0001 {0.0001

321D
0.008 [0.008, 0.0042, 0.001, 0.0001

0.0042(0.0042, 0.001, 0.0001
0.001
0.001 (0.001, 0.0001

0.0001 {0.0001

TABLE XI. The bare light quark masses for the m;; and fr; data on our older 32I, 241 and 32ID ensembles
that we included in our global fits with the 370 MeV pion mass cut. Data in bold are those included in the
fits with the lower, 260 MeV cut. Here m; is the sea light mass, and m, and m, are the (partially-quenched)
valence masses. The final column gives the full set of available m, values. Note, each of these points are

computed with four different sea strange quark masses that are given in Table XTIl

We consider two different pion mass cuts for the analytic fits: the 370 MeV cut used for the
ChPTFV and ChPT fits, and a lower, 260 MeV cut. In our previous work we determined that
the analytic fits were not able to accurately describe the data over the range from the physical
point to the heaviest data, forcing us to use the lower cut. However, in the present analysis the fit
predictions are dominated by the near-physical data due to the overweighting procedure, and these
data require only a small, percent-scale, chiral extrapolation to correct to the physical light quark
mass. This can be seen in Table [XIII| in which we list the sizes of the various corrections required

to obtain the physical prediction. We therefore also perform analytic fits with the 370 MeV cut,
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Ensemble set|m;™ {m"} {my}

321 0.03 0.029, 0.028, 0.027 0.03, 0.025
241 0.04 |0.03775, 0.0355, 0.03325 0.04, 0.03

32ID 0.045| 0.0455, 0.046, 0.0465 |0.035, 0.045, 0.055

TABLE XII. Strange quark masses in the valence and sea sectors on our older 321, 24I and 32ID ensembles.
The second column gives the simulated strange mass, and the third column the subset of reweighted strange
masses that are used in our global fits. The final column gives the set of valence strange masses with which
we computed the Omega baryon mass, and the kaon mass, decay constant and bag parameters. As discussed
in the text, for the 260 MeV pion mass cut, we exclude kaonic data with valence light quark mass m, if the
pion with m, = m, is excluded on that ensemble. Similarly, the Omega baryon and the Wilson flow data are

excluded if the unitary pion on that ensemble is excluded.

which includes substantially more data, including a third lattice spacing, that may enable a more
precise determination of the dominant a” scaling behaviour. In practice we find the results to be
highly consistent.

Each of the fits with a 370 MeV pion mass cut have 49 free parameters and use 709 data points,
giving 660 degrees of freedom; similarly, the analytic fits with the 260 MeV cut have 46 free
parameters and use 414 data points, giving 368 degrees of freedom. Note that a substantial amount
of the data on the 321D, 32I and 241 ensembles differ only in their reweighted sea strange quark
mass (for which we use four separate values including the simulated value) and are therefore
highly correlated. The full set of input quark masses for the 321, 241 and 32ID data that we include
in the global fits for each of our two pion mass cuts are summarized in Tables [XI| and XTI for
convenience.

The guesses for the parameters in our global fits were input by hand based on a rough order-
of-magnitude estimate obtained from previous fits, and within a reasonable basin of attraction we
observed no deviations in the fit result (of course wildly different guesses can lead to false minima,

but with much much larger x2).

h hys
a=0 phs e

Quantity ||Measured value || Ansatz m,,

Sfn(481) ](0.075799(84) | ChPTFV ||-0.0037(73)|-0.00111(30) |0.00129(30)
Ana.(370)||-0.0110(67)|-0.00175(20) |-0.00093(44)

Ana.(260)||-0.0075(80) |-0.00201(24) |-0.00046(33)



Jn(641)

0.055505(95)

ChPTFV
Ana.(370)
Ana.(260)

-0.0009(39)
-0.0059(37)
-0.0040(43)

-0.00083(41)
-0.00179(26)
-0.00211(37)

0.0001(10)
-0.0039(11)
-0.0020(12)

fk(48D)

0.090396(86)

ChPTFV
Ana.(370)
Ana.(260)

-0.0024(58)
-0.0059(54)
-0.0055(62)

-0.00059(14)
-0.00084(10)
-0.00090(12)

-0.00095(68)
-0.00174(73)
-0.00173(75)

Jr(64D)

0.066534(99)

ChPTFV
Ana.(370)
Ana.(260)

-0.0009(31)
-0.0032(29)
-0.0029(33)

-0.00047(18)
-0.00085(13)
-0.00093(18)

-0.0061(13)
-0.0074(13)
-0.0073(17)

S/ fn(48D)

1.1926(14)

ChPTFV
Ana.(370)
Ana.(260)

0.0013(42)
0.0051(42)
0.0020(47)

0.00052(16)
0.00091(10)
0.00111(15)

-0.00223(49)
-0.00082(35)
-0.00127(57)

Tk / fn(64D)

1.1987(18)

ChPTFV
Ana.(370)
Ana.(260)

0.0000(23)
0.0027(23)
0.0011(25)

0.00035(23)
0.00093(13)
0.00117(22)

-0.00625(89)
-0.00346(68)
-0.0053(13)

1/2

o> (481)

1.29659(39)

ChPTFV
Ana.(370)
Ana.(260)

-0.0276(62)
-0.0260(56)
-0.0259(68)

0.000122(20)
0.000120(20)
0.000140(22)

0.000204(95)
0.000176(84)
0.00023(10)

1/2

o> (641)

1.74448(98)

ChPTFV
Ana.(370)
Ana.(260)

-0.0150(33)
-0.0142(30)
-0.0141(37)

0.000122(24)
0.000124(23)
0.000148(32)

0.00088(24)
0.00076(21)
0.00097(24)

wo(481)

1.5013(10)

ChPTFV
Ana.(370)
Ana.(260)

0.0063(59)
0.0080(54)
0.0076(66)

0.000327(40)
0.000328(41)
0.000373(48)

0.00047(20)
0.00043(19)
0.00042(18)

wo (641)

2.0502(26)

ChPTFV
Ana.(370)
Ana.(260)

0.0034(32)
0.0043(29)
0.0041(36)

0.000322(50)
0.000335(51)
0.000388(73)

0.00199(41)
0.00183(36)
0.00179(41)

52
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TABLE XIII: Data in lattice units on the 481 and 641 ensembles, along with the relative (fractional) cor-
rection to the infinite volume limit, in combination with each of the following: the continuum limit, the
physical light quark mass and the physical strange mass. The corrections are shown for the ChPTFV fits,
the analytic fit with a 260 MeV pion mass cut (labelled ‘Ana.(260)’), and the analytic fit with a 370 MeV
cut (labelled ‘Ana. (370)’). We include the infinite-volume correction (where applicable) in all of these
such that the ChPTFV corrections can be compared directly to those of the analytic fits, where the latter are

performed to data that has first been corrected to the infinite volume.

The predicted values of the lattice spacings and (unrenormalized) physical quark masses obtained
using the ChPTFV ansatz are listed in Table [XV] alongside the correlated (superjackknife) dif-
ferences between those and the results for the other ansitze. A similar listing of the physical
predictions can be found in Table [XVIl The corresponding fit parameters for all four ansiitze are
given in Table [XVIIl For the analytic fit with the 260 MeV cut, the cut excludes the 32Ifine data
for which the pion mass is 371(5) MeV, and we are therefore unable to directly obtain the scal-
ing parameters associated with the heavy 32lIfine data; instead we first fit without these data and
then determine the remaining unknowns, Z;’/Z;}ﬁ“e and R3?'"¢ by including the 32Ifine data while
freezing the other fit parameters to those obtained without these data.

In Figure 22l we plot the unitary mass dependence of my, mg and mq, which are used to determine
the quark masses and overall lattice scale. In this figure we clearly see that the overweighting
procedure forces the curve to pass through the near-physical data as desired, and that this procedure
does not introduce any significant tension with the heavier data. In Figure 20l we plot a histogram
of the deviation of the data from the ChPTFV fit, showing excellent general agreement between
the fit and the data, and in Figure 21 we plot the corresponding histograms for the analytic fits.
For the analytic fit with the 370 MeV mass cut we observe (3 — 4)0 deviations of the 321D pion
mass data from the fit curve, which arise because of chiral curvature in the data: the fit is pinned
near the physical point by the overweighting procedure and is strongly influenced by the larger
volume of data in the heavy mass regime, leading to deviations from the lighter 32ID data that lies
between these extremes. Nevertheless, in Tables XV] [XVI| and [XVII we generally observe better
agreement between the analytic fit with the 370 MeV mass cut and the ChPTFV results than for
the lower cut. The total (uncorrelated) x> /d.o.f. are given in Table [XIV]and are sub-unity for all

four ansitze.
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20F

0.0
0

FIG. 19. The dependence of the error for the predicted physical values, obtained from our global fits with
the ChPTFV ansatz, of various quantities as a function of the bin size used for the 641 ensemble. The
vertical axis plots the ratio 0,/0; for bin size b along the horizontal axis, where 0 is the statistical error
and the subscript indicates the 641 bin size for which that error was computed. The upper and lower bounds

were obtained by varying dj, by 1/+/N, where N is the number of samples.

As previously mentioned, the inclusion of the Wilson flow data in these fits has a significant effect
on the precision of the lattice spacings via their influence on the shared R, parameters. This
can be seen in Table XVIIIl in which we show the various scaling parameters, as well as the
unrenormalized quark masses and lattice spacings, obtained using the ChPTFV ansatz with and
without the Wilson flow data. For the 481 and 641 ensembles, for which the hadronic measurements
are very precise, we see only a small improvement in the statistical error. However, for the 321,
241 and 32lIfine ensembles we observe factors of three or more improvements in precision. The
results themselves are very consistent.

In Figure [19] we plot the dependence of our physical predictions on the bin size used for the 641
data. Here we observe no statistically significant dependence on the bin size, further attesting that
our chosen bin size of 5 (5 x 40 MD time units) is a conservative choice and does not lead to an
underestimate in the errors on our physical predictions.

We would like to emphasize that the goal of this analysis is not to extract reliable model parameters
but simply to perform a few-percent extrapolation of our pristine near-physical data to the physical
point. As we discuss in Section [V B| we are well aware that NLO ChPT can be expected to fail at
the 5% level in the 200-370 MeV mass range in which the majority of our data lies (and where the

fit would be most heavily weighted if we weighted the data by statistical error alone), and we do
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not want this model failure to unduly influence the quality of our prediction. The overweighting
procedure was chosen to ensure that the fits pass through our 481 and 641 data with the heavier data
used only to guide the extrapolation. Despite this, we find that the fits are largely insensitive to
the pion mass cut and to the fit ansatz such that all of our results agree to a high degree (including
their uncorrelated x?/d.o.f.). In order to gauge the quality of our uncorrelated fits, we present
histograms of the deviation of the fit from our data in Figures 211 (and 28] for Bg), and we see
no spuriously large deviations that cannot be accounted for by higher-order mass dependent terms.
Given the high degree of consistency between our results, there is no reason to suggest that any of
the fits has converged upon a false minimum. Furthermore, the predictive power of these global
fits is highlighted by our numerical discovery of the 3% shift in lattice spacings between the 481

and 241 ensembles and the smaller 1% shift between the 641 and 321 ensembles.

A. Systematic error estimation

In our previous analyses we used the difference between the ChPTFV and ChPT results as a
conservative estimate of the higher-order finite-volume errors on our results (recall the ChPTFV
formulae incorporate the NLO finite-volume corrections). From a purely XPT perspective this is
a considerable over-estimate of the size of the NNLO and above corrections, which are known to
be only a small fraction of the NLO values even at smaller volumes. Our prudence was motivated
by Ref. [@], in which the authors observed significant deviations between the finite-volume cor-
rections predicted by standard finite-volume chiral perturbation theory and those obtained via a
resummed version of the Liischer formula [|;7|] that relates the finite-volume mass shift of a parti-
cle to the infinite-volume Euclidean scattering length of that particle with the pion. Nevertheless,
one can conclude from those results that the full finite-volume corrections can be expected to differ
from the NLO xPT predictions by only 30—50% for the light pions that we are currently using.
Our present fits are dominated by near-physical data computed on 5.5fm volumes, such that (e.g.
in Tables [XV] and [XVI) we observe only very tiny differences between the ChPT and ChPTFV
fit results; these differences are typically 10-20% of the size of the statistical error, and hence
have negligible impact upon the total error. Given the small size of these differences and that the
true sizes of the higher-order finite-volume effects are expected to be several times smaller, we
therefore choose to omit the finite-volume systematic from our error estimate.

The estimate of the chiral extrapolation error is made difficult due to the fact that the global fits
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combine the chiral and continuum extrapolations together, and in this analysis the latter are larger
than the former while being less well determined by the fits (the ¢ parameters have typically 50-
100% statistical error). As a result, the established procedure of estimating the chiral error from
the difference of the ChPTFV and analytic result with a 260 MeV cut is no longer satisfactory.

In this analysis we considered analytic fits with both a 260 MeV and a 370 MeV pion mass cut. The
latter is clearly applying the linear ansatz outside of its region of applicability, leading to deviations
from the 32ID data at the 3-40 level. Despite this there is generally excellent agreement between
the continuum predictions of this fit and the ChPTFV. The analytic fit with the 260 MeV mass
cut does not suffer from this issue, but at the expense of fitting to a considerably smaller amount
of data, including one less lattice spacing. The ChPTFV fit on the other hand is theoretically
‘clean’ in that it is the correct ansatz for the data in the chiral limit, and agrees very well with
our data when applied in the 140 to 370 MeV pion mass range. In Table [XIII] we see that all
four ansiitze agree at a broad level (given the size of the errors on the a® terms) as to the size
of the continuum extrapolation, and this is by far the dominant correction. The only significant
inconsistencies are in the light quark extrapolation, for which the 260 MeV analytic fit gives a
larger correction indicating a stronger slope near the physical point. Nevertheless, the differences
between the predicted corrections of the ChPTFV and 260 MeV analytic fits are at most on the
0.1% level.

Given the small size of the observed differences in the corrections to the 481 and 641 data, and
our understanding that these are likely a result of deficiencies in the fitting strategies for those
ansitze, we choose to take the cleaner ChPTFV ansatz, which describes our data very well, as our
final result and treat the systematic error associated with the extrapolation to the physical point as
negligible.

Finally, we consider the discretization systematic. For Wilson-style fermions the explicit symme-
try breaking allows for a dimension-5 clover term of & (a/\gcp); for domain wall fermions this
term is heavily suppressed by the separation of the chiral modes in the fifth dimension, and can be
discounted in practice [Q]. Our domain wall simulations can be treated as non-perturbatively ¢'(a)
improved, and further chiral symmetry implies that all terms containing an odd power of the lattice
spacing (0 (al\qcp), O (a3/\%CD), etc) can be neglected; the leading discretization effects there-
fore enter at the & (a4/\‘(5CD) level, and these are of a comparable size [B] to logarithmic corrections
to lattice artefacts that are regularly considered negligible. In our previous papers and above (cf.

Table [XIII) we observe that the discretization effects for the coarser 481 ensemble are at the 2%
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FIG. 20. A stacked (non-overlapping) histogram of the deviation of the ChPTFV fit curve from our data in
units of the statistical error. Different coloured blocks are associated with the different quantities given in
the legend. The 30 outlier is the Q mass on the heavier (am; = 0.005) 241 ensemble at the un-reweighted

strange mass of 0.04 in lattice units. The jackknife error on this point (not shown) is such that it is consistent

with (y —ya) /0 = —2.

ChPTFV| ChPT |Analytic (260 MeV)|Analytic (370 MeV)

0.44(13) |0.44(16) 0.49(14) 0.79(18)

TABLE XIV. The x?/d.o.f. for each of the four chiral ansitze. Here the x> does not include the over-
weighted data, and the number of degrees of freedom has been correspondingly reduced. For the analytic

fits, the pion mass cut is given in parentheses.

level, implying a €'(0.04%) discretization systematic that can be neglected. (For our very coarse
32ID ensemble the discretization effects enter at the 5% level, implying ¢'(0.25%) discretization
errors that can also be discounted.) We could therefore, in principle, obtain precise continuum
results from just two lattice spacings, as we have done in previous publications. However, the fits
in this document utilize three widely spaced lattice spacings with the Shamir fermion action. In
this document we present several plots overlaying our data with the fitted scaling behavior, from

which we observe no evidence of deviations from a? scaling.



58

100 120
0! 100t
2 60 . 80t
g o .|
2, g,
= 40} BiS 40!
20t

4 =2 0 2 4 |
(Y =Y™) /oy (Y =Y™) /oy

FIG. 21. A stacked (non-overlapping) histogram of the deviation of the analytic fit curves from our data
in units of the statistical error. The left figure is for the 260 MeV pion mass cut, and the right plot for the
370 MeV cut. Different coloured blocks are associated with the different quantities given in the legend.

The outliers in the right-hand plot are exclusively from m; on the 32ID ensembles, indicating that the linear

curve is deviating from the data due to chiral curvature.
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FIG. 22. m%/m; (upper-left), m% (upper-right) and mgq (lower) unitary data corrected to the physical strange
quark mass and the infinite volume limit as a function of the unrenormalized physical quark mass, plotted
against the ChPTFV fit curves. Data with hollow symbols are those included in the fit and data with filled
symbols are those excluded. The square point is our predicted continuum value. Note the 641 and 481 data

lie essentially on top of each other in this figure.
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ChPTFV A(ChPT)|A (Analytic [260 MeV])|A (Analytic [370 MeV])
amy(321) 0.000260(13) 0.00000152(63) —0.0000054(63) —0.0000025(58)
am(321) 0.02477(18) 0.000044(15) 0.000032(95) 0.000072(45)
a=1(320) 2.3833(86) GeV||—0.00234(74) GeV —0.0001(51) GeV —0.0043(25) GeV
am;(641) 0.0006203(77) 0.00000137(62) —0.0000047(60) —0.0000031(56)
amy(641) 0.02539(17) 0.000039(14) 0.000054(88) 0.000056(40)
a1 (641) 2.3586(70) GeV || —0.00181(67) GeV —0.0021(40) GeV —0.0027(19) GeV
am;(241) —0.001770(79) || —0.00000048(35) —0.0000037(21) —0.0000012(20)
amg(241) 0.03224(18) 0.0000209(69) —0.000054(50) 0.000046(18)
a=1(241) 1.7848(50) GeV ||—0.00074(21) GeV 0.0032(22) GeV —0.00194(65) GeV
am;(481) 0.0006979(81) —0.00000049(35) —0.0000020(18) —0.0000016(19)
am(481) 0.03580(16) 0.0000129(64) 0.000015(25) 0.000017(13)
a'(481) 1.7295(38) GeV || —0.00029(16) GeV —0.00027(59) GeV —0.00042(33) GeV
am;(32ID) ||—0.000106(17) —0.0000069(12) —0.000002(13) 0.0000004(61)
amy(32ID) {/0.04625(48) —0.000091(27) —0.00018(28) —0.00016(11)
a~'(32ID) ||1.3784(68) GeV|| 0.00141(37) GeV 0.0025(38) GeV 0.0020(17) GeV
am;(32Ifine) ||0.000058(16) 0.0000021(20) 0.000024(12) 0.0000040(57)
amg(321fine)||0.01852(30) 0.000044(34) —0.00019(26) 0.00005(10)

a~'(32Ifine)

3.148(17) GeV

0.0003(14) GeV

0.0100(99) GeV

—0.0020(44) GeV

TABLE XV. The unrenormalized physical quark masses in bare lattice units (without m,, included) and

the values of the inverse lattice spacing a~! obtained using the ChPTFV ansatz, and the full correlated

differences (labelled A) between the results obtained using the other ansdtze and the ChPTFV result. We

present analytic fit results obtained using both the 370 MeV and 260 MeV pion mass cut. The latter fit was

performed without the 32Ifine data, and a separate fit with fixed parameters was used to obtain the 32Ifine

scaling parameters.



61

ChPTFV A(ChPT)|A (Analytic [260 MeV])|A (Analytic [370 MeV])
fr o |[0.1302(9) GeV  ||—0.000375(53) GeV|  —0.00019(45) GeV|  —0.00068(20) GeV
fx  |[0.1555(8) GeV  ||—0.000251(52) GeV|  —0.00035(43) GeV|  —0.00043(17) GeV
fx/fr|[1.1945(45) 0.00152(12) —0.0010(21) 0.00297(60)
té/ > 10.7292(41) Gev~!|| 0.00098(37) GeV ! 0.0014(23) GeV~! 0.0014(11) GeV~!
wo  [|0.8742(46) GeV~!|| 0.00114(42) GeV~! 0.0013(27) GeV~! 0.0016(12) GeV~!

TABLE XVI. The physical predictions obtained using the ChPTFV ansatz, and the full correlated differ-
ences (labelled A) between the results obtained using the other ansitze and the ChPTFV result. We present
analytic fit results obtained using both the 370 MeV and 260 MeV pion mass cut. The latter fit was per-
formed without the 32Ifine data, and a separate fit with fixed parameters was used to obtain the 32Ifine

scaling parameters.
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Parameter ChPT ChPTFV || Parameter Analytic (260 MeV) Analytic (370 MeV)
z 0.9727(51)  0.9715(54) 0.9675(70) 0.9686(56)
z 0.9727(51)  0.9715(54) 0.9675(70) 0.9686(56)
zr 0.9192(67)  0.9156(72) 0.910(13) 0.9105(84)
zne 1.012(19) 1.015(17) 0.971(19) 1.005(15)
z 0.9634(38)  0.9628(40) 0.9637(43) 0.9636(36)
z 0.9634(38)  0.9628(40) 0.9637(43) 0.9636(36)
Ve 0.9159(60)  0.9144(63) 0.9174(82) 0.9172(56)
zne 1.004(12) 1.005(12) 1.013(16) 1.005(12)
R 0.7493(22)  0.7489(24) 0.7503(26) 0.7494(21)
R 0.7263(27)  0.7257(28) 0.7256(29) 0.7268(25)
R 0.9898(19)  0.9896(19) 0.9888(16) 0.9903(18)
R¥P 0.5795(34)  0.5783(36) 0.5794(45) 0.5802(33)
R¥me 1.3222(44) 1.3208(44) 1.3251(46) 1.3224(43)
B (GeV) 4.233(21) 4.236(21) ||C)™ ([GeV]?) 0.00037(15) 0.000421(91)
LY 0.000611(41)  0.000631(41) ||C"™ (GeV) 7.982(80) 7.917(51)
L —0.000145(36) —0.000146(36) ||C5'™ (GeV) 0.190(32) 0.219(25)
Conymy 6.8(4.1) 3.7(4.1)||CY™ (GeV) —0.036(31) —0.026(32)
f (GeV) 0.12195(94)  0.12229(96) ||C/™ (GeV) 0.1259(11) 0.12593(88)
¢ ([GeV]?) 0.021(23) 0.017(23) ||Ci™" ([GeV]?) 0.023(25) 0.034(21)
P ([Gev]?) —0.027(30)  —0.033(30) ||CI™" ([GeV]?) —0.007(31) 0.013(29)
LY 0.000524(78)  0.000513(78) ||C/™ 1.082(78) 0.988(45)
L —0.000198(64) —0.000171(64) ||CI" 0.792(75) 0.643(71)
Chomy 0.084(46) 0.070(46) || 0.094(54) 0.188(46)

&) ([GeV]?) 0.2363(16)  0.2363(17)||Cy* ([GeV]?) 0.2363(19) 0.2363(15)
A 0.02825(50)  0.02845(50)||C}"*(GeV) 3.782(77) 3.828(43)
Al 0.00367(71)  0.00371(72) ||Cy* (GeV) 0.54(16) 0.478(95)
Cngemy (GEV) 3.933(16) 3.935(17) || Cy% (GeV) 3.923(22) 3.929(15)
Cmg.my (GEV) 0.097(86) 0.094(86) ||C}'* (GeV) 0.11(15) 0.075(83)
%) (GeV) 0.15123(94)  0.15146(97) ||C¥ (GeV) 0.1530(11) 0.15304(89)
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TABLE XVII: The fit parameters of each of our chiral ansitze. The parameters are given in physical units

and with the heavy quark mass expansion point adjusted to the physical strange quark mass a posteriori.

Analytic fit results are presented with a 370 MeV and 260 MeV pion mass cut. The latter was performed

without the 32Ifine data, and a separate fit with fixed parameters was used to obtain the 32Ifine scaling

parameters. For the ChPTFV and ChPT fits we use a chiral scale of 1.0 GeV. The fit formulae to which

these parameters correspond can be found in Refs.

.



With W.flow Without W.flow
am;(321) |0.000260(13)  0.000262(15)
amy(321) 0.02477(18)  0.02483(27)
a~'(321) |2.3833(86) GeV 2.3726(181) GeV
Z)(641)  |1.0(0) 1.0(0)

Z,(641)  {1.0(0) 1.0(0)

R.(641) 0.9896(19) 0.9953(60)
am;(641) {0.0006203(77) 0.0006175(84)
amgy(641) 0.02539(17)  0.02531(19)
a'(641) |2.3586(70) GeV 2.3615(80) GeV
Z/(241)  |0.9715(54) 0.9702(56)
Zy(241)  0.9628(40) 0.9612(43)
R,(241) |0.7489(24) 0.7494(42)
am;(241)  |—0.001770(79) —0.001767(78)
amy(241) 0.03224(18)  0.03236(32)
a~'(241) |1.7848(50) GeV 1.7779(132) GeV
Z)(481)  0.9715(54) 0.9702(56)
Z,(481)  0.9628(40) 0.9612(43)
R,(481) 0.7257(28) 0.7291(55)
am;(481) {0.0006979(81) 0.0006971(85)
amy(481) 0.03580(16)  0.03577(18)
a'(481) |1.7295(38) GeV 1.7299(40) GeV
7)(32ID) 0.9156(72) 0.9122(79)
Z,(32ID) |0.9144(63) 0.9107(70)
R,(32ID) |0.5783(36) 0.5791(52)
am;(32ID) |—0.000106(17) —0.000099(18)
amy(32ID) [0.04625(48)  0.04649(53)
a~'(32ID) |1.3784(68) GeV 1.3741(75) GeV
7)(32Ifine) |1.015(17) 0.998(30)
Z,(321Ifine) |1.005(12) 0.989(21)

64
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R.(32Ifine) |1.3208(44) 1.308(16)
am;(321fine) |0.000058(16)  0.000078(30)
amy(32Ifine) [0.01852(30)  0.01907(68)

a~'(32Ifine) |3.148(17) GeV 3.104(45) GeV
TABLE XVIII: A comparison of the scaling parameters and the predictions for the lattice spacings and
unrenormalized quark masses obtained by fitting using the ChPTFV ansatz with and without the Wilson

flow data.

B. Physical predictions

In this section we present our predictions.

1. XPT parameters
The LO and NLO SU(2) partially-quenched xPT low-energy constants are given in Table XVIIL
These can be combined into the standard SU(2) xPT LECs, I3 and 4, giving

I3 =2.73(13) and Iy = 4.113(59). (67)

We can also compute the ratio of the decay constant to the LO SU(2) xPT parameter f, for which

we obtain:

Fn/F = 1.0645(15). (68)

The errors on the above are statistical only; we make no attempt to estimate the systematic errors
on these numbers due to higher-order effects or indeed the reliability of XPT in general. These

issues will be investigated in a forthcoming publication.
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2. Lattice spacings

For the lattice spacings we obtain the following values:

ayy = 2.3833(86) GeV,
agy  =2.3586(70) GeV,
ayy = 1.7848(50) GeV,
ag = 1.7295(38) GeV,
apine = 3-148(17) GeV,

ayp = 1.3784(68) GeV,

(69)

where we quote the statistical error in parentheses. Our previous values [Q] for the lattice spacings

of the 32I, 241 and 32ID ensembles are as follows:

ayy  =2.310(37)(17)(9) GeV,
ayy = 1.747(31)(24)(4) GeV, (70)
apn = 1.3709(84)(56)(3) GeV,

where the errors are statistical, chiral and finite-volume. We observe a 1.80 tension between the
new and old values of the 32I lattice spacing, which appears to arise from the introduction of the
physical point data; if we look at Figure [22] we see that the physical point data appears to favor a
stronger light quark mass slope than one would obtain from the heavier data. Nevertheless there
do not seem to be any clear discrepancies, except for those that might be attributed to statistical
effects. Other than this, our new results are consistent with these values, and are significantly more

precise due to the inclusion of the Wilson flow data.

3. Decay constants

In Table X VI we list the predicted values of fr, fx and fx/ fr obtained using the ChPTFV ansatz,
as well as the differences between those results and those of the other ansitze. As we now have
data at several lattice spacings, we can examine the scaling of both f7; and fx in order to ensure
that their dependence on the lattice spacing can be described by a quadratic form. In Figure 23| we
plot the data, corrected to the physical quark masses and the infinite volume using the ChPTFV
fit, as a function of the lattice spacing. In addition we show the scaling curve for the Iwasaki

ensembles. We observe excellent consistency between the data and the fit curve for both quantities.
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In Figure 24 we show the chiral extrapolation in the continuum/infinite-volume limits with the
ChPTFV ansatz, again showing excellent agreement between the data and the fit.

We obtain the following physical predictions:

fr =0.13019(89) GeV,
fx  =0.15551(83) GeV, (71)
fx/fr =1.1945(45),

where, as above, the statistical errors are given in parentheses. Previously [B] we obtained

fr =0.1271(27)(9)(25) GeV,
fx  =0.1524(30)(7)(15) GeV, (72)
fi/ fre = 1.1991(116)(69)(116).

Here we see that the inclusion of the 481 and 641 data, giving statistically precise data at simulated
masses very near the physical quark masses, has led to a highly significant improvement in our
results.

In our first global fit analysis [B], performed only to the 321 and 241 ensembles over a (unitary)
pion mass range of 290-420 MeV, we obtained a value for f; from our NLO xPT fit that was
6.6% (9 MeV) lower than the experimental value. We concluded that this discrepancy was due
to systematic errors in the chiral extrapolation, and introduced the analytic fits as a means of esti-
mating this systematic. When we included the 32ID ensembles into the global fit [B] we observed
a marked improvement in the results for the decay constants and a corresponding reduction in
the size of the chiral systematic (as estimated by taking the difference between the ChPTFV and
analytic fit results).

Now, with the inclusion of the 481 and 641 data we have essentially eliminated the chiral extrap-
olation error, and have obtained values for both decay constants that are in excellent agreement
with the Particle Data Group (PDG) values [@], S =0.1304(2) GeV and fx- =0.1562(7) GeV.
Here, f; is determined experimentally using the measured branching fraction and pion lifetime,
with |V,4| computed very precisely via nuclear 8 decay, such that the error is dominated by higher
order terms in the decay width formula. On the other hand, the value for fx- requires |V,;| as in-
put, which, for the quoted result, is computed using |V,;|f+(0) determined via semileptonic kaon
decays and lattice input for f;(0). The consistency of our fx with the PDG value could there-
fore be taken as both representing the consistency of experiment with the Standard Model, and

the quality of the lattice QCD determinations of both the kaon semileptonic form factor and our
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FIG. 23. fr (left) and fx (right) data corrected to the physical up/down and strange quark masses and
the infinite-volume as a function of the square of the lattice spacing. The curve shows the continuum

extrapolation for the Iwasaki action with the ChPTFV ansatz. Here we have not shown the 32ID data point

as it has a different gauge action.
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FIG. 24. fr (left) and fk (right) unitary data corrected to the physical strange quark mass and the continuum
and infinite-volume limits as a function of the unrenormalized physical quark mass, plotted against the
ChPTFYV fit curves. Data with hollow symbols are those included in the fit and data with filled symbols are
those excluded. The square point is our predicted continuum value. Note the 641 and 481 data lie essentially

on top of each other in this figure.

determination of the kaon decay constant.
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FIG. 25. té/ 2 (left) and wy (right) unitary data corrected to the physical strange sea quark mass and the

continuum limit as a function of the unrenormalized physical quark mass, plotted against the ChPTFV
fit curves. Data with hollow symbols are those included in the fit and data with filled symbols are those
excluded. The square point is our predicted continuum value. Note the 641 and 481 data lie essentially on

top of each other in this figure.
4.  Wilson flow scales

In Table [XVI] we list the predicted values of the Wilson flow scales, té/ 2 and wy, in the contin-
uum limit. The unitary mass dependencies are plotted in Figure 23] and the ¢ dependencies in

Figure For our final results, we obtain the following continuum predictions:

to/? =0.7292(41) GeV !,

(73)
wo =0.8742(46) GeV~!,

where the statistical error is quoted in parentheses.
The above values can be compared to the following results obtained using 2+1f 2HEX-smeared

Wilson fermions [33]:

tg/> =0.1465(25) fm = 0.7425(127) GeV~! |

(74)
wo =0.1755(18) fm =0.8894(91) GeV !,

where we have combined the statistical and systematic errors in quadrature. We find excellent

agreement between these and our results.
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FIG. 26. té/ : (left) and wy (right) data corrected to the physical up/down and strange sea quark masses as a

function of the square of the lattice spacing. The curve shows the continuum extrapolation for the Iwasaki
action with the ChPTFV ansatz. Here we have not shown the 32ID data point as it has a different gauge

action.

5. Unrenormalized physical quark masses

The quark masses in bare lattice units on the 32I reference ensemble are given in Table [XV] In
physical units, and including the residual mass, the unrenormalized physical quark masses are

given in Table[XIXl Combining these results we obtain the following:

mUnrenom. - — 2 198(11) MeV,
minrenom. - — 60 62(24) MeV,

N

(75)

where the errors are statistical.
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Ansatz lRTenom. (Mg V) pplirenom (\ey)
ChPTFV 2.198(11) 60.62(24)
ChPT 2.199(10) 60.67(22)
analytic (260 MeV)[2.185(16) 60.70(27)
analytic (370 MeV)[2.188(13) 60.69(21)

TABLE XIX. Unrenormalized physical quark masses. For the analytic fits, the corresponding pion mass cut

is given in parentheses.

C. Renormalized physical quark masses and the chiral condensate

The quark masses presented above are defined in the bare lattice normalization of the 32I reference
ensemble. On each of the 321 and 241 ensembles independently, we calculate the non-perturbative
renormalization factors that are necessary to convert quark masses in the corresponding bare nor-
malization into a variant of the Rome-Southampton RI-MOM scheme [@] that can be related to
MS via perturbation theory. The procedure applied below is identical to that used in Refs. [B]
and [B], and the determination of the renormalization coefficients is documented in Appendix [
below we provide only a brief outline.

We compute amputated, projected bilinear vertex functions,
Nold®) =t [Ma(aAry)] (76)

where &' is an operator, [ are the matrix-valued amputated vertex functions and &) are projec-
tion operators, for which the superscript s indexes the particular renormalization scheme (where
applicable). We use the ‘symmetric’ RI-MOM schemes, defined by the following condition on the
incoming and outgoing quark momenta, pi, and poy respectively: pizn = P2 = ¢ = (Pin — Pow)*-
We define renormalization factors by matching to the tree-level amplitude at the scale pu? = ¢*:

ZO are ree
— 7 (1.a) x N2 (U, a) = Ngee (77)
Z4
In order to cancel the factors of the quark field renormalization in the denominator, we use
/_\S(l’l7 Cl)
Zy X /_\g/s)(l,l,cﬁ ,

2 (.0) - )

where Ay = /\%r ¢ X (/\’&.f“)_l, S and V are the scalar and vector operators repectively, and Zy is

the vector-current renormalization computed using hadronic variables via the procedure given in
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Section We use two different choices of projection operator for the vector vertex, formed
from the quantities ggH / % and y#; these define the SMOM and SMOM,x schemes respectively.
More details on the projection operators and the numerical determination of these quantities can
be found in Appendix [E

We now describe the procedure by which we obtain the renormalized quark masses given the
renormalization factors. In Section we present quark masses normalized according to the
bare lattice units of the 32I reference ensemble. For any other ensemble e, the quark masses in
the associated bare normalization can be obtained simply by dividing the values of m,; and m;
given in Eq. (Z3) by Z; and Z; respectively. For each ensemble, the masses renormalized in the

RI-SMOM schemes can therefore be computed as

(mJSCMOM*>e _ (ZszMOM*>em;JCnrenorm. /Ze ’ (79)
where f € {l,h}. These measurements contain finite lattice spacing errors associated with the

vertex functions used in the conversion to MS. In order to convert our continuum quark masses to

the RI-SMOM scheme, and thence to MS, we linearly extrapolate the ratio
Zoy =Zn/Z; (80)

in a” to the continuum. This extrapolation is performed using only two lattice spacings, potentially
introducing additional systematic effects. In practice we find that the linear continuum fit results
in a 4% shift in the central values from those computed on our finest ensemble (321). The good
chiral symmetry of the action heavily suppresses ¢(a’) terms in the Symanzik effective theory
and higher order corrections enter only at the &' (a4) level. This suggests systematic effects on the

order of (4%)? ~ 0.16%, which we treat as negligible. Applied to the quark masses, the products

mJS(MOM* _ ( Z’il]\(/IOM* ) contm. m}nrenorm. , (8 1 )

are then free from ¢(a?) scaling errors and have negligible higher order discretization systematics.
Fixing the renormalization coefficients to a particular scale requires the input of the lattice spac-
ings from the main analysis in order to convert the lattice momenta to physical units; for this we
used only the central values of the ChPTFV fits. In order to account for the effect of the statistical
and systematic uncertainties on the lattice spacings, we repeated the determination of the renor-
malization coefficients using two different values of the lattice spacings that differed slightly in

value, and from these we estimated the slope of the renormalization coefficients with respect to
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the input lattice spacing. For each chiral ansatz, we then used the slope to shift the central values
of the renormalization coefficients to the lattice spacings determined via that ansatz, and also to
inflate the statistical errors of the superjackknife distribution to reflect the uncertainty on those val-
ues. The continuum extrapolations of Z,,; and Z,,;, were performed independently for each ansatz,
enabling us to determine the full effect of the systematic errors in the final step. The values of Z,,
and Z,, s thus determined are given in Table [XX]

Applying the renormalization factors to the masses from the previous section, we obtain the values
given in Table [XXIl Converting to the MS scheme and including the additional systematic errors

associated with the perturbative matching, we find

myq(V5,3.0GeV) = 2.997(36)(33) MeV,
my(¥s,3.0GeV) = 81.64(77)(88) MeV.

(82)

where the errors are statistical and from the perturbative truncation respectively. In the RGI
scheme, these correspond to
g = 8.62(10)(9) MeV,
i, =235.0(22)(25) MeV.

(83)

The quark mass ratio is

mg/myg = 27.34(21), (84)

for which there is no systematic error associated with the perturbative matching as it cancels in the
ratio.

For comparison, in our previous work [Q] we obtained

myuq(Ms,3.0GeV) =3.05(8)(6)(1)(2) MeV, (85)
mg(Ms,3.0GeV) = 83.5(1.7)(0.8)(0.4)(0.7) MeV .
and
mg/m,g =27.36(39)(31)(22), (86)

for which the errors are statistical, chiral and finite-volume. Our new results are highly consistent
with these values and again show a substantial improvement in the systematic error as a result of
including the near-physical data.

We can also compute the chiral condensate,

5 = — (i) m, m,—0 = BF* = Bf*/2, (87)
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by combining the leading-order SU(2) xPT parameters from Table [XVIIl Like the quark masses,
this quantity must be renormalized. Again we first convert to our intermediate SMOM schemes
and subsequently perturbatively convert each to MS, using the difference as an estimate of the
perturbative truncation systematic. The appropriate renormalization factor can be determined by
noting that the leading-order XPT formula for the pion mass must be renormalization-scheme

independent:

gunrenorm,, unrenorm __ o BSMOM*
u

SMOMx __ SMOM 1 -SMOM\ contm. ,_unrenorm.
moy > =2B (Z,), ) m . (88)

(m?r)LO =2 myq ud

This suggests that
BSMOM>»< — Bunrenorrn./(Zslll\/IOM*)contm. ) (89)

The subsequent conversion to the MS scheme at 3 GeV can be performed by further dividing by
the appropriate scheme change factor.

It is customary to quote the dimension-one quantity (X) 1/3. We obtain

>1/3(SMOM, 3.0 GeV) = 0.2837(19) GeV

(90)
>1/3(SMOMu,3.0 GeV) =0.2791(19) GeV,
which, after converting to MS and combining, gives
51/3(3s,3.0 GeV) = 0.2853(20)(10) GeV, 1)

where the errors are statistical and from the perturbative matching respectively.



Scheme Lattice Ansatz Zm Zi Znh

SMOM 241  ChPTFV 1.4386(12) 1.4808(82) 1.4942(63)
SMOM 241  ChPT 1.4385(12) 1.4788(79) 1.4932(60)
SMOM 241  analytic (260 MeV)|1.4390(12) 1.4874(108) 1.4931(68)
SMOM 241  analytic (370 MeV)|1.4383(12) 1.4849(86) 1.4927(57)
SMOM 321  ChPTFV 1.4396(37) 1.4396(37) 1.4396(37)
SMOM 321  ChPT 1.4393(37) 1.4393(37) 1.4393(37)
SMOM 321  analytic (260 MeV)|1.4396(37) 1.4396(37) 1.4396(37)
SMOM 321  analytic (370 MeV)|1.4391(37) 1.4391(37) 1.4391(37)
SMOM cont. ChPTFV - 1.3870(122) 1.3699(100)
SMOM cont. ChPT - 1.3888(120) 1.3704(100)
SMOM cont. analytic (260 MeV)|- 1.3780(145) 1.3706(103)
SMOM cont. analytic (370 MeV)|- 1.3805(128) 1.3705(99)
SMOMyu 241 ChPTFV 1.5235(13) 1.5682(87) 1.5824(67)
SMOMy. 241 ChPT 1.5234(13) 1.5661(83) 1.5813(64)
SMOMyu 241 analytic (260 MeV)|1.5240(13) 1.5752(115) 1.5813(72)
SMOMyu 241 analytic (370 MeV)|1.5232(13) 1.5725(91) 1.5808(60)
SMOM« 321  ChPTFV 1.5192(39) 1.5192(39) 1.5192(39)
SMOMy« 321  ChPT 1.5189(39) 1.5189(39) 1.5189(39)
SMOMyu 321 analytic (260 MeV)|1.5192(39) 1.5192(39) 1.5192(39)
SMOMy« 321 analytic (370 MeV)|1.5186(39) 1.5186(39) 1.5186(39)
SMOMyu cont. ChPTFV - 1.4567(126) 1.4386(103)
SMOMu cont.  ChPT - 1.4585(125) 1.4389(103)
SMOMyu cont.  analytic (260 MeV)|- 1.4470(150) 1.4392(106)
SMOMyu cont.  analytic (370 MeV)|- 1.4496(134) 1.4390(102)
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TABLE XX. The non-perturbative renormalization factors calculated at 4t = 3.0 GeV that are used to convert

bare quark masses (Z,,) and quark masses in the normalization of the 32I reference ensemble (Z,,;,Z,.1).

Values are given on the 32I and 241 ensembles and in the continuum limit for the latter quantity.
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Scheme Ansatz my q (GeV)  my (GeV)
SMOM ChPTFV 0.003049(37) 0.08305(80)
SMOM ChPT 0.003055(36) 0.08314(79)

SMOM analytic (260 MeV)|0.003011(50) 0.08319(87)
SMOM analytic (370 MeV)|0.003021(42) 0.08317(76)

SMOMy: ChPTFV 0.003202(38) 0.08721(83)
SMOMu ChPT 0.003208(37) 0.08730(81)
SMOMyu analytic (260 MeV)|0.003162(51) 0.08735(89)

SMOMyu analytic (370 MeV)|0.003172(43) 0.08733(79)

TABLE XXI. The physical quark masses renormalized at t = 3.0 GeV in the two intermediate RI-SMOM

schemes for each of the chiral ansitze. The quoted errors are statistical only.

D. Neutral kaon mixing parameter, Bx

The neutral kaon mixing parameter is renormalization scheme dependent, and as such the fits must
be performed using renormalized data. As this introduces additional systematic errors, we follow
our established procedure of performing these fits separately from the main global fit analysis.
Below we first summarize our non-perturbative renormalization procedure for Bg and then present

the results of the chiral/continuum fit and finally our physical predictions.

1. Renormalization of Bx

In this section we provide a brief outline of the procedure for determinidrji the renormalization

coefficients; for more details we refer the reader to Appendix [H and Refs. [4(] and [B].

As with the quark mass renormalization, we make use of ‘symmetric’ regularization-invariant mo-
mentum schemes (RI-SMOM for short), defined by the condition p? = p? = p3 = ¢* = (p| —
p2)%, where p; and p; are the momenta of the incoming and outgoing quarks: d(p;)s(—p2) —
d(—p1)s(p2). We compute the amputated and projected Green’s function of the relevant four-

quark operator, 0y, describing the K — K mixing, normalized by the square of the average be-

tween the vector and axial bilinear:

A (s1)

N

zg;”)(u,a) X —_V(”)AA(“ ’Z) =1, (92)
Ny (U, a)

2
AV
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where

1
Ny = E(AV +M4), (93)

and Ay = N2 x (N7¢¢) ! for the operator &, as before.

Note that the quark wave function renormalization factor cancels in the ratio. In Appendix [H
we show that the difference between Ay and A4 at 3 GeV is numerically negligible, and there-
fore the above choice of normalization is irrelevant. The superscript (s;) refers to choice of pro-
jector (cf. [Q]): either y, or g- The choices s; = s = y¥ and 51 = 5, = q define the so-called
SMOM(y*, y*) and SMOM(¢, ¢) schemes respectively.

We perform the full analysis separately for each scheme and use the difference to estimate the
systematic error associated with the MS matching. While treating the two schemes in an equal
fashion is the most rigorous estimate we can make with the current data, we have indications that
this might overestimate the error on the SMOM(¢, ¢) result: A preliminary study ] of step
scaling to higher momentum scales suggests that the scale evolution in this scheme agrees with
perturbation theory over the full range of scales, whereas the SMOM(y*, y#) scheme evolves into
better agreement as the scale is raised. The perturbative truncation error is therefore greater for the
SMOM(yH, y#) scheme than for the SMOM(¢, ¢) scheme. The complete study of the evolution
to higher energy scales requires careful treatment of the charm threshold, and is the subject of
further work by RBC and UKQCD. These observations are consistent with our earlier results at
lower scales, and the better agreement with the perturbative scale evolution for the SMOM (4, ¢)
scheme was the reason we have, in this work and previously, taken our central values for Bg from
this scheme [40].

We compute Zg, on each ensemble at a number of ¢*, and interpolate to a chosen high momentum
scale at which the matching to MS can be performed. We choose to perform the matching at 3.0
GeV as before. The values of the renormalization coefficients at the various lattice momenta and
further details of the analysis are given in Appendix [H

All matrix elements included in the global fit must be renormalized to a common scale of 3.0
GeV in order that the global fit can extrapolate these to a shared, universal continuum limit. As
described in Ref. [B], due to the coarseness of the 32ID ensemble we are unable to renormalize
directly at 3 GeV without introducing potentially sizeable lattice artifacts. Instead we renormalize
with a lower momentum scale of Ly = 1.4363 GeV, and apply the continuum non-perturbative
running O 1(32 2) (U, Up), extracted from the 321 and 241 lattices (and extrapolated to the continuum),

to convert this value to 4 = 3GeV. More details of this conversion are given in Appendix [l



78

Scheme Lattice| ChPTFV ChPT  Analytic (260 MeV) Analytic (370 MeV)
321 0.9787(3) 0.9787(3) 0.9787(3) 0.9786(3)
241 0.9568(3) 0.9568(3) 0.9570(3) 0.9568(3)
481 0.9545(1) 0.9544(1) 0.9544(1) 0.9544(1)

9 641 0.9782(2) 0.9781(2) 0.9781(2) 0.9781(2)
32lIfine| 0.9995(4) 0.9995(4) 0.9998(5) 0.9995(4)
32ID |0.9284(45) 0.9286(45) 0.9276(45) 0.9289(45)
321 0.9409(2) 0.9408(2) 0.9409(2) 0.9408(2)
241 0.9161(5) 0.9161(5) 0.9162(5) 0.9160(5)
481 0.9140(1) 0.9140(1) 0.9140(1) 0.9140(1)

) 641 0.9411(1) 0.9410(1) 0.9410(1) 0.9410(1)
32Ifine| 0.9617(3) 0.9617(2) 0.9619(3) 0.9617(2)
32ID |0.8824(25) 0.8824(25) 0.8824(26) 0.8824(25)

TABLE XXII. Zp, at 3 GeV in the two intermediate schemes, with the central values shifted and errors

inflated to account for the different values of the lattice spacings obtained via each chiral ansatz.

Determining the lattice momentum corresponding to the 3 GeV match point requires the input of
the lattice spacings determined in the previous sections. The effects of the uncertainties on the
lattice spacings are incorporated by shifting the central values and inflating the errors according to
the lattice spacings determined via each of the chiral ansétze, using the procedure outlined in the

Section[V.Cl The resulting values of Zp, are given in Table [XXTII

2. Chiral/continuum fit to Bg

As above, we describe the chiral dependence using chiral perturbation theory, with and without
finite-volume corrections, as well as a linear ansatz with a 260 MeV and 370 MeV pion mass cut.
The chiral/continuum fit forms can be found in Ref. [@]. As before, we use separate parameters
to describe the lattice spacing dependence of the Iwasaki and Iwasaki+DSDR actions. The fit
parameters can be found in Table [XXIV] and in Figure 27 we show examples of the unitary and
continuum extrapolations. In Figure in which we plot a histogram of the statistical deviations

of the data from the ChPTFV fit curve, we see excellent consistency between the data and the fit.
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Scheme |ChPTFV| ChPT |Analytic (260 MeV)|Analytic (370 MeV)

(d,4) |0.55(38)|0.70(42) 0.46(35) 0.51(34)
(y",y*)]0.62(43) |0.78(46) 0.52(40) 0.58(39)

TABLE XXIII. The x?/d.o.f. for each of the four chiral ansitze and the two intermediate renormalization
schemes. Here the 2 does not include the overweighted data, and the number of degrees of freedom has

been correspondingly reduced. For the analytic fits, the pion mass cut is given in parentheses.

0.565

0.56
0.560 -
]
sk { % E 0.555 1
5 % 0550
- S b
= sl % = 0.545}
=
= - % 0.540 1
Q
= 2 23 = 0535}
@0 053
) 64l o 0.530+
<] 32Ifine Q 05251
052 [> 32D I
Unitary extrapolation 0. 52% . . .
. . T T .0 0.1 0.2 0.3 0.4
0.000 0.005 0010 0.015 0.020 2 .
my (GeV) a (Ge\/ ')

FIG. 27. The left figure shows the unitary light quark mass dependence of By in the SMOM(¢, ¢) at 3 GeV.
The quark masses are in physical units and in the native normalization of the 32I reference ensemble. Data
with hollow symbols are those included in the fit and data with filled symbols are those excluded. The right
figure shows the lattice spacing dependence of those data. Here we have not included the 32ID ensemble as

it lies on a different scaling trajectory.

The total x?/d.o.f. for each of the four ansiitze are given in Table [XXIIIl
The fits to Bx with a 370 MeV pion mass cut have 7 free parameters (the remainder having been
determined in our earlier fits, above) and use 163 data points, giving 156 degrees of freedom; for

the 260 MeV cut have 7 parameters and 90 data points, giving 83 degrees of freedom.

3. Predicted values

In Table XXVl we list the continuum predictions for Bg, renormalized in each of the two interme-
diate schemes, that we obtained using the ChPTFV ansatz, as well as the sizes of the differences

between those and the other chiral ansétze. In contrast to the other quantities, for Bx we observe
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FIG. 28. A histogram of the deviation of the ChPTFV fit curve from our data in units of the statistical error

for the (¢, ¢) intermediate scheme.

Parameter ChPT ChPTFV || Parameter | Analytic (260 MeV)| Analytic (370 MeV)
BY 0.5280(16)| 0.5278(16) CgK 0.5316(28) 0.5322(17)
CBy.a 0.125(12) 0.128(12) ch! 0.145(19) 0.129(12)
Chra 0.148(15) 0.153(15) B0 0.201(33) 0.164(15)
CBy m, 0.00492(64)| 0.00420(64) Cf" —1.0(1.1) 0.37(19)
CBymy —0.00809(94)|—0.00728(95) CzBK 0.58(68) 0.38(28)
CBy.m, 1.316(32) 1.324(32) CfK 1.547(96) 1.331(32)
CBy.my, —0.13(18) —0.06(18) Cf" 0.50(55) 0.07(18)

TABLE XXIV. The B fit parameters for each of our chiral anstze in the SMOM(¢, ¢) scheme at 3.0 GeV.
The parameters are given in physical units and with the heavy quark mass expansion point adjusted to the
physical strange quark mass. For the ChPT and ChPTFV ansatzé the chiral scale Ay has been adjusted to 1
GeV.

that the differences between the ChPTFV and analytic ansitze are of the same order as the statis-
tical error, although those differences are poorly resolved. Nevertheless, we choose to continue
to neglect the chiral systematic error for the following reasons: We previously chose to treat the
chiral extrapolation error as small not just because the differences between the analytic and Ch-
PTFV forms are small, but because we have good evidence to believe that the ChPTFV fits are
correctly capturing this behavior in addition to their strong theoretical motivation. This was not

the case in our former works where we were extrapolating from heavier masses. There the analytic
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ChPTFV A ChPT|A Analytic (260 MeV)|A Analytic (370 MeV)
Bk (4,4) 0.5341(18)1/0.00020(11) —0.0035(25) —0.00029(21)
Bk (yH,y") 0.5166(18){/0.00027(12) —0.0037(24) —0.00029(21)
Bi(Ms via ¢,4) (|0.5293(17) |10.00020(11) —0.0035(24) —0.00029(21)
Bk (Ms via yH, y#)]10.5187(18)/0.00027(12) —0.0037(24) —0.00029(21)

TABLE XXV. The physical predictions for B in the two intermediate schemes and in the MS scheme (via
the intermediate schemes) obtained using the ChPTFV ansatz, and the full correlated differences (labelled
A) between the results obtained using the other ansitze and the ChPTFV result. Analytic fit differences are

presented with a 370 MeV and 260 MeV pion mass cut.

fits were motivated by the apparent linearity in the available data with full knowledge that they do
not correctly describe any underlying chiral curvature and are therefore not applicable over large
mass ranges. Given that both fit forms were deficient in different ways, we conservatively took
their full difference as an estimate of the error. On the other hand, in our new analysis we have
a large amount of data in the light mass regime and the fits are forced to pass through data es-
sentially at the physical point. As a result there is no longer any reason to distrust the ChPTFV
results, especially given that they are only being used to perform a 4 MeV extrapolation in the
pion mass. On the other hand there is now good evidence of chiral curvature in our results and
therefore good reason to discount the analytic results. In fact, it is a testament of the robustness of
our procedure that, despite this deficiency, the results obtained using these two ansétze differ only
at the fraction-of-a-percent level.

We use the SMOM(¢, ¢) result for our central value, giving us a final continuum result in a non-

perturbative MOM scheme with 0.3% total error after all sources of error are accounted for:

Bk (,4,3GeV) = 0.5341(18). (94)

This final prediction, and the result in the SMOM(yH, y#) scheme, can be converted into the MS

scheme using the following one-loop matching coefficients [40]:

Clg ¢ — V) = 0.99113, C(yH,yH — Ws) = 1.00408, (95)

using d5(3 GeV) = 0.24544. The resulting MS values are also listed in Table [XXV]
For the reasons discussed above, we use the value obtained via the SMOM(d, ¢) scheme for our

final MS result. The matching introduces a perturbative truncation error, which we estimate by tak-
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ing the full difference between the results obtained using the two RI-SMOM intermediate schemes.
We obtain:
Bk (™ms,3 GeV) = 0.5293(17)(106), (96)

where the errors are statistical and from the perturbative matching to MS respectively.

In the renormalization group invariant (RGI) scheme, the above corresponds to
By = 0.7499(24)(150). 97)
Previously [Q] we obtained:
Bk (Ms,3 GeV) = 0.535(8)(7)(3)(11), (98)

for which the errors are statistical, chiral, finite-volume and from the perturbative matching re-
spectively. Comparing with the above, we see excellent agreement. Our new result offers a con-
siderable improvement in the statistical error, but the truncation effects are the same as we have

not changed the scale, and dominate the final error.

VI. CONCLUSIONS

Combining decades of theoretical, algorithmic and computational advances, we are finally able to
perform 2 + 1 flavor simulations with an essentially chiral action directly at the physical masses
of the up, down and strange quarks in isospin symmetric QCD with both fine lattice spacings
and large physical volumes. In this paper we report on two such ensembles; a 483 x 96 x 24
(481) ensemble and a 64° x 128 x 12 (641) ensemble, both using Mobius domain wall fermions.
The inverse lattice spacings are a~! = 1.730(4) GeV and 2.359(7) GeV, respectively, and these
ensembles have m L =3.863(6) and 3.778(8). We make use of the Mébius kernel with parameters
chosen such that the Mobius and Shamir (traditional domain wall) kernels are identical, but the
approximation to the sign-function of the four-dimensional effective action is improved in the
former, resulting in a smaller residual chiral symmetry breaking for the same computational cost.
The simulated pion masses are 139.2(4) and 139.2(5) MeV for the 481 and 641 ensembles re-
spectively. These are slightly above the physical value, requiring a small extrapolation that we
performed by combining these ensembles with several of our older Shamir domain wall ensem-
bles in a simultaneous chiral/continuum ‘global fit’, specifically the 243 x 64 x 16 (24I) and
323 x 64 x 16 (32I) ensembles with the Iwasaki gauge action at 8 = 2.13 and 2.2 respectively,
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and the 323 x 64 x 32 (32ID) ensemble with the Iwasaki+DSDR gauge action at 8 = 1.75. We
also include a new 323 x 64 x 12 (32Ifine) Shamir domain wall ensemble with the Iwasaki gauge
action at B = 2.37, corresponding to a~! = 3.148(17) GeV, and a heavier 371(5) MeV pion mass;
this enables us to examine the scaling behaviour of our data in the 1.75-3.15 GeV range of inverse
lattice spacings to look for deviations from the leading a® scaling behavior. These ensembles give
us access to a wide range of unitary and partially-quenched data ranging from the physical point
up to the imposed 370 MeV pion-mass cut. As we use the same kernel for our Mobius and Shamir
simulations, we are able to describe all of these ensembles using the same continuum scaling
curve, apart from the 32ID ensemble which has a different gauge action.

The global fits are performed using the techniques developed in Refs. [B] and [B]. We fit to the

following quantities: mp, mg, fm, fx, mq and the Wilson flow scales wy and té/ 2

. A separate
fit is performed to the neutral kaon mixing parameter, Bx. To describe the mass dependence of
these quantities we use NLO partially-quenched chiral perturbation theory with and without finite-
volume corrections (referred to as the ‘ChPTFV’ and ‘ChPT’ ansitze) and also a linear ‘analytic’
ansatz.

Despite the significantly improved precision of the 481 and 641 data, we found that the fits missed
these data by 1-20; this is an artifact of the large number of data points in the heavy-mass regime
where XPT is only reliable to &'(5%). We resolve this issue by over-weighting the 481 and 641
data in order that the fit is forced to pass through these points. We emphasize that, while these
global fits combine a large amount of data from various sources, the overweighting procedure
guarantees that the predictions (and their statistical errors) are dominated by the near-physical
data. A simpler procedure in which we simply treated the quark mass mistuning as an additional
systematic error, would also obtain a similar statistical precision; the global fits essentially just
remove these systematic effects.

The 481 and 641 ensembles each have the same gauge coupling as the corresponding 241 and 321
ensembles, but with smaller residual chiral symmetry breaking (significantly so for the former).
We found that the differences in the fermion action between these two pairs of ensembles, each
evaluated at the same gauge coupling, resulted in a 3.2(2)% difference between the 481 and 241
lattice scales, and a 1.1(2)% difference between that of the 641 and 321 ensembles. In Appendix [Cl
we show that this can be understood as an unexpectedly large effect of the changes in L; and
the Mobius scale parameter o which distinguish these ensembles, and provide added numerical

evidence that these effects are accurately described by such shifts in the lattice scales.
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We showed that due to the dominance of the 481 and 641 data, which were measured with near-
physical pion masses on large, 5.5fm boxes, the systematic errors associated with the chiral ex-
trapolation and finite-volume can be neglected. The errors on our final results, which we take from
the ChPTFV fits, are dominated by statistics, and are themselves very small. For the pion and kaon
decay constants we obtain f;; = 130.2(9) MeV and fx = 155.5(8) MeV; for the average up/down
quark mass and strange quark mass in the MS-scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV;
the neutral kaon mixing parameter By in the RGI scheme, 0.750(15) and the MS-scheme at 3
GeV, 0.530(11); and the Wilson flow scales té/z =0.729(4) GeV~! and wy = 0.874(5) GeV L.
In Table XXVIwe compare our numbers to the Ny = 2+ 1 results compiled by the Flavor Lattice
Averaging Group (FLAG) in their Review of Lattice Results ].

Our results for the light and strange quark masses, obtained in Section[V.C] are renormalized in the
MS scheme at 3 GeV. The only remaining uncertainties on these quantities are statistical and per-
turbative matching errors, roughly 1% each. The renormalization and running of the quark masses
were computed nonperturbatively, details of which can be found in Appendix [l The masses are
quite consistent with our previous determinations, but show significant improvement due to the
inclusion of the physical point ensembles. Our masses agree with the FLAG averages, but have
errors that are both smaller than those of the average as well as those of any of the individual
results used therein [3, ]. The ratio of strange to light quark masses, shown in Eq. (86)), is
also consistent with the FLAG average [42], but here the error is slightly larger since systematic
errors mostly cancel, though it is as small as any individual result used in the average [B, —@].
The FLAG average for the standard model kaon bag parameter is largely dominated by the
Budapest-Marseille-Wuppertal collaboration (BMWc) result ], Bk = 0.7727(81 )stac(34)sys(77)pTs
where the errors are statistical, systematic and from perturbation theory, respectively. We would
like to stress the difficulties one encounters in reliably assessing truncation errors, a point also
emphasized by BMWc [@]. Among other checks, the BWMc showed that the NLO-perturbative
and their non-perturbative running in the RI-MOM scheme agree between 1.8 and 3.5 GeV within
statistical errors (of 2%), and quote 1% for the error due to perturbation theory, 2% being the
size of the NLO term in the perturbative expansion. We proceed differently, by evaluating the
difference between two different intermediate SMOM schemes, and estimate an error of 2%. We
believe our procedure is more robust than those that have fed into the FLAG average, since mul-
tiple intermediate schemes were used to assess the truncation error. This error can certainly be

reduced further in the future by performing the matching to MS at higher scale or by computing
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Quantity This Work FLAG Average
fr 130.19£0.89 MeV 130.2+ 1.4 MeV [5, 43, 44]
Ix 155.514+0.83 MeV 156.3£0.9 MeV [5, 43, 44]
fx/fn 1.1945 £0.0045 1.194£0.005 [5, 43-45]

my = my(V5,3 GeV)  |2.997 40.036 +0.033 MeV
my (V5,3 GeV) 81.64+0.77+0.88 MeV

mg/my, = my/mg 27.34+0.21 27.46+0.15 [5, 46-49]

my = mg(V5,2 GeV)  |3.31540.040 +0.036 MeV |3.42 4 0.06 MeV [5, 47-49]

my(M5,2 GeV) 90.29+0.854+0.97 MeV | 93.84 1.5 MeV [5, 46, 48, 49]
e 0.7292+0.0041 GeV~!
wo 0.8742 +0.0046 GeV !
Bx(SMOM(d,¢),3 GeV) 0.5341+0.0018
Bk (35,3 GeV) 0.5293 +0.0017 £ 0.0106
Bk 0.7499 +0.0024 +0.0150 |0.7661 +0.0099 [5, 45, 50, 51]
Fn/F 1.0645 +0.0015 1.0624 +0.0021 [46, 52, 53]
[5(V5,3 GeV)]'/? 285.34+2.0+ 1.0 MeV
[5(Vs,2 GeV)] '/ 27594+1.94+1.0MeV | 271+15MeV  [6, 47, 52]
I3 2.7340.13 3.0540.99  [5,47,52, 53]
Iy 4.11340.059 4024028  [5,47,52, 53]

TABLE XXVI. Summary of results from the simulations reported here. The first error is the statistical
error, which for most quantities is much larger than any systematic error we can measure or estimate.
The exception is for the quantities in MS and Bg. For these quantities, the second error is the systematic
error on the renormalization, which is dominated by the perturbative matching between the continuum RI-
MOM scheme and the continuum MS scheme. Comparison of our results to the averages compiled by the
Flavor Lattice Averaging Group ] for Ny = 2+ 1 flavor isospin symmetric QCD. Note that for B, a
direct comparison of the perturbative error is not possible since we use a different, and we believe more
robust, method to estimate it. This perturbative error is common to our calculation and to the calculations
dominating the FLAG average. In the rightmost column we provide the references to the original work
that entered the quoted FLAG-averages. Light quark masses and the chiral condensate are given in the MS
scheme, evaluated at 2 GeV. Results from this work have been run down from 3 GeV to 2 GeV using the
running factor 1.106 from the FLAG review ] and do not include the FLAG-estimated systematic error

due to the omission of the charm sea quark.



86

the matching coefficient at NNLO. We want to emphasize that the errors quoted are different
because the subjective procedures to estimate these errors are different. For completeness, we also
compare the non-perturbative scale evolution to the NLO running between 2 and 3 GeV. We find
a deviation of around 1.5% for the RI-SMOM(y,;, ;) and for the RI-MOM schemes, and of 0.5%
for the RI-SMOM(¢, ¢) scheme.

It is useful to compare our results with Ref. [Q] in the intermediate MOM schemes (before con-

verting to MS) as these numbers are purely non-perturbative:

BY(3.5 GeV) = 0.5308(56)sat(23)sys ~ BMWc (99)
BYY (3 Gev) = 0.5341(18)ye this work, (100)

where we neglect the various sources of systematic errors in our result since they are considerably
smaller than the statistical error. These results are in different non-perturbative schemes and at
different scales, and are therefore not directly comparable. However, we can compare their relative
total errors: our result and that of BMWc have a 0.3% and a 1.1% relative error, respectively. We
emphasize that in terms of objective statistical errors, and every systematic effect for which there is
a theoretical framework for estimation (e.g. discretization, mass extrapolation, and finite volume),
our new result is more precise than those entering the FLAG average. This is reflected in the 0.3%
total relative error on results in a non-perturbatively defined ¢ RI scheme. Our assessment of the
(subjective) perturbative systematic uncertainty on the conversion to MS is more pessimistic than
that of FLAG and BMWc, but we believe that it is better founded on the evidence of multiple
intermediate schemes.

Predictions of By in lattice QCD have now reached a level of precision where other ingredients in
its utilization for SM-tests are limiting progress (e.g. our knowledge on |V,|).

The results for the kaon and pion decay constant and their ratio are compatible with the FLAG
average and amongst the most precise Ny = 2+ 1 predictions that have been made. Our results
will certainly allow for further constraining CKM-unitarity tests [42].

The most significant remaining differences between our simulations and the physical world are
isospin breaking and EM effects and the effect of quenching the charm quark.

Including isospin breaking effects requires using non-degenerate masses for the up and down
quarks. This is possible within the domain wall fermion framework with current technology, for
example using the rational quotient action or the one-flavor action developed by TWQCD [54].

However, these techniques are computationally demanding, and the effects in question are ex-



87

pected to be similar in size to the electromagnetic effects, hence there is limited value in consider-
ing these in isolation.

The RBC and UKQCD collaborations have performed exploratory calculations using QCD do-
main wall configurations with quenched electromagnetic interactions [@, ] and have performed
unquenched simulations using reweighting techniques [@]. There is increasing effort in the lattice
community to control these effects, from more precise electro-quenched calculations [@, ] (i.e.
with EM included only in the valence sector) up to full QCD+QED simulations [@]. Adding QED
to lattice simulations is challenging for many reasons. Firstly, adding a coupling constant to the
theory, especially in the context of non-degenerate light quarks, considerably increases the cost of
the simulations, particularly when using a chiral action close to the physical point. Secondly, the
absence of mass gap in QED implies finite-size effects with power-law dependence on the lattice
spatial extent, which are potentially large compared to the QED contributions [@, H]. Finally, it
is still not clear how to define quantities such as decay constants in QCD+QED, because the matrix
elements are infrared divergent and gauge dependent [@]. Because of these issues, the addition
of isospin-breaking effects and electromagnetism remains an important and challenging topic for
our future calculations.

Dynamical charm effects are expected to be small for the majority of the quantities studied in this
paper, but for quantities such as the K; — Kg mass difference and K — 7T ramplitudes they can have
significant contributions. This is therefore the most promising avenue for RBC and UKQCD to
take, allowing us to address these systematic errors on our flagship calculations. The biggest hurdle
for including the charm is the requirement of simulating with finer lattice spacings, which tends to
incur freezing of topology as well as requiring large computing power to obtain sufficiently large
physical volumes. RBC and UKQCD have developed the ‘dislocation enhancing determinant’
(DED) method [@] to overcome the effects of the topology freezing, and have already commenced

large-scale physical simulations with dynamical charm.
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Appendix A: Conserved currents of the Mobius domain wall action

The connection of the Mobius formulation to overlap fermions can be made at the propagator
level and with the familiar DWF physical fields g7 and gg. In the following subsection we repeat
known but important results connecting the surface-to-surface and surface-to-bulk propagators of

the M6bius domain wall action (in our conventions) with the four dimensional overlap propagator.
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These results are then used to establish a practical implementation of the conserved axial and

vector currents for the Mobius case.

1. Domain wall and overlap propagators, and contact terms

The approximate overlap operator can be written in terms of our four dimensional Schur comple-

ment matrices as
Doy = Sy(m=1)""Sy(m). (A1)

Observe that if we solve the following 5-D system of equations,

S 1\-1p3 |0
Dy(m=1)"'"Dy(me=| |, (A2)
0
and substitute the UDL decomposition, this yields
q
1 0
Dg (m=1)Ds(m)L(m)@=L(m=1)| |. (A3)
0

Since (L(m)(q,0,...,0)"), = g and (L(m)@®); = @, the topmost row of our 5-D system of equa-

tions gives the overlap propagator:

Sy (m = 1)1, (m) = (Df((m: 1)*1D§((m)> (A4)

1n’

This approximate overlap operator can however be expressed in terms of the U basis fields, and

Doy = Sy(m=1)"'8,(m) (A5)
_ [gz—lﬁDi(m - 1)_1Q:1V5V5Q,D§((m)g@_l,@} | (A6)
= |27 D (m=1)"' Dy (m) 2| . (A7)

The cancellation the Pauli-Villars term can be expressed in terms of unmodified generalized do-

main wall matrix D5G pw- Lhe overlap contact term can be subtracted from the overlap propagator.
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Here we define

[y 1] (A8)
m [ Depyw (m) ™' Dgpy (m = 1) 2 — 1} . (A9)
. { D¢y (m [DSGDW(m =1) _DSGDW(m)] 92}11 : (A10)

Now, the difference [DGDW (m=1)—D%py (m)] = (1—m) [P-8;1,8/1 + P+ 8,10;.,]. This re-
lation is simpler to interpret in our convention than with the convention from Ref. ]: the mass

term is applied to our five dimensional surface fields without field rotation. With this,

D, = {32‘1DSGDW(m)‘1R59’}“ . (A1)

This is just the normal valence propagator of the physical DWF fields ¢ = (2~ '), and § =
(RsZ)1. We see that the usual domain wall valence propagator has always contained both the
contact term subtraction and the appropriate multiplicative renormalization of the overlap fermion
propagator. As a result, the issues of lattice artifacts in NPR raised in Ref. [@ have never been
present in domain valence analyses. This was guaranteed to be the case because Shamir’s 5-D
construction is designed to exactly suppress chiral symmetry breaking in the limit of infinite Ly,
including any contact term.

For later use, we may also consider the propagator into the bulk from a surface field g for Mobius

fermions,
(0.4) = |2~ Dy (m)”'Rs 2| (A12)
= P Dy ) D (1) -1} (A13)
1_1 {DS( )~ 1D§((1)—]l}s1 (A14)
= L D )DL 1}, (AL3)
R T sxl<mgsx<1>z L-1h AL6)
Now, i
1 0 1 0
Ly — | TPz e I I
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and so we have,

D;vl(m)_]l 0
| T~ Ls=D)[(Py — mP_)D;} (m) —
0a = [(Py " )Dg, (m) — 5] (A18)
_ 0
T [(P+ mP )D()v (m)—Vj] s1
[Py +P-T 5] 0
_ T—(L's—l) 0 (47711 Dy (m). (A19)
T*l
sl

Finally, applying the permutation matrix, we have the five dimensional propagator from a physical

field,

T7—(Ls—1)

7—(Ls=2)

Gy = 2(0sq) = [Py +P-T"'] : [1+77%]"'D,,. (A20)

71
1

The connection between domain wall systems and the overlap, well established in the literature
and reproduced in this section, is useful in understanding the relation of domain wall fermions to

their 4-D effective action.

2. Conserved vector and axial currents

The standard derivation of lattice Ward identities proceeds as follows. A change of variables of

the fermion fields  and { at a single site y is performed:

gy =gy —iagy, @, =@ +iQya. (A21)
Under the path integral, the Jacobian is unity, and the partition function is left invariant:
oS oS
Z’:/d dpe ST g | 22y g, 22 | L=z, A22
Hence,
5S

(= (A23)

s wy5w>
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The Wilson action gives eight terms from varying (J, and eight terms from varying (J, due to the

4-D hopping stencil:

3 — 0, B U () Wy + By g S UL (v — R,
Po,(Dw)Y =0T (y) =
o % — @, U (v — @)W+ By g UL (0) T,

B 1-— 1+
pr L UH()’)LijJr[J - pr+ﬂU;-§< ) y“

(A24)

Yy| =0, (A25)

where A, is the backwards discretized derivative.
An equivalent alternate approach may be taken, however, and this is a better way to approach
non-local actions such as the chiral fermions. Gauge symmetry leaves the action invariant at O(a)

under the simultaneous active substitution, for a fixed site y of

Uu() = (1 HOU0)  : Unly— ) = Uply— 1)(1 — ia) (A26)

and
W (Tio)gy 5 By Gy(1—ia) (A27)

A change of variables on the fermion fields at site y may be performed simultaneously to absorb

the phase on the fermions:

W= (1+io)y, @ =@ (1—ia). (A28)

Under the path integral, the Jacobian is again unity, and the phase associated with the fermion is
absorbed. We can now view the change in action as being associated with the unabsorbed phases
on the eight gauge links connected to site y:

oS . oS

55,67 Ok
(A29)

7= /dLZ/de =S(p' g {H—zaz

For a gauge invariant Lagrangian we can always use a picture where the same change in action,
and same current conservation law may be arrived at by differentiating with respect to the eight

links connected to a site:

N i 58 Al
<% {WU“@)]_WUH()’—H)’ ) =0. (A30)

This arises because the phase freedom of fermions and of gauge fields are necessarily coupled and
inseparable in a gauge theory. For the nearest-neighbor Wilson action, this generates the same

eight terms entering A, Jy, = 0.
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In the case of non-local actions, the Dirac matrix, whatever its form, can be viewed as a sum of
gauge covariant paths. When generating a current conservation law from U (1) rotation of the
fermion field at site y, we sum over all fields U(x) and /(x) connecting through the Dirac matrix
D(x,y) to the fixed site /(y) and (y). The following sum is always constrained to be zero for all
v, and is identical to that found by Kikukawa and Yamada [66]:

S BD(x,y) @y — PD () g = 0. (A31)

The partitioning of this sum of terms, into a paired discrete divergence operator and current is not
obvious, and it is cumbersome to generate Kikukawa and Yamada’s non-local kernel.
It is instructive to consider what happens if we derive the same sum of terms by differentiating

with respect to the 8 links connected to site y.
oS i [N ij —
(Z[WUH(Y)”—WUH(Y—H)” )=0 (A32)
[

The structure of Eq. (A32)) always lends itself interpretation as a backwards finite difference. For
a non-local action, the differentiation Eq. (A32)) appears to generate a lot more terms than the
fermion field differentiation Eq. (A37)). The reason is clear: these extra terms are constrained
by gauge symmetry to sum to zero, but only after cancellation between the different terms in
Eq. (A32). Specifically, we consider an action constructed as the product of Wilson matrices:

S= % UDw(x,y)Dw (y,2)Dw (z,w)P(w). (A33)

xyzw

The link variation approach gives three terms, each of which are conserved under a nearest-
neighbor difference divergence: varying with respect to the 8 links we obtain, via the product

rule,

O, (Dw Dw Dw ) = Y [(6,Dw ) Dw Dw + Dw (8,Dw ) Dw + Dw Dw (8,Dw )| ) . (A34)

Each of these contributions contain a backwards difference operator, and it is trivial to split this
into a divergence and corresponding conserved current using Eq. (A24).

The above comment is generally applicable to any function of the Wilson matrix. We take this
approach to establish the exactly-conserved vector current of an approximate overlap operator,
where the approximation is represented by a rational function. We will also establish that matrix
elements of this current are identical to those of the Furman and Shamir approach [9] in the case

of domain wall fermions. The Furman and Shamir approach will then be used to also establish an
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axial Ward identity for our generalized M&bius domain wall fermions under which an explicitly
known defect arises. This is important in both renormalizing lattice operators and also in deter-
mining the most appropriate measure of residual chiral symmetry breaking in our simulations. We

construct the conserved vector current by determining the variation in the overlap Dirac operator,

OyDyy:
Doy = lgmvs{@(ﬁ)[l—T‘Ls]+ﬁ6y(1—r—“)}
1—m 1 1 T—Ls
N ys{éy(lJrT—Ls)_1+T—Ls5y(T_L‘Y><1‘W>}
= (=m0, (H%) (A35)

We can similarly find the variation in 7T~ induced by a variation in Dy, where the variation in Dy,

is just the backwards divergence of the standard Wilson conserved current operator. Denoting,

T'=—(0-)"'0+
QO_-=D'P_—D_P.=D_yQ_
Q4 =D Py —D_P_=D_y504, (A36)
we see that
(T H=-0"{-6,(0-)0""'0.+6,(01)}
=—0-"{3,(0 )T " +5,(04)}
= —07'6,(Dw) {(bP_+cP )T +bP +cP_}. (A37)
Since

O_P_ = (1+bDy)P_ ; O4P_ = (cDy—1)P-
Q P, = (cDy—1)Py ; O.P, = (1+bDy)P;,

we may re-express the identity

(b+c)(Py+P)=cQ P.—bQ,P +cQ.P, —bQ P, (A38)

. o~ . -
0= (Pi+P-) = ;= [04(cPr —bP-) + O~ (cP- —bPy)] (A39)
and this lets us find a symmetrical form:

(b+0)8(T™ ") = [b[P — T 'P_ ) +c[T 7' P — P_]] 8,(Dw) [b[Py + P_T '+ [P, T +P]].
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We may now look at the variation of the term 7%

L, blP, —T'P_ blP.+P_T!
grty =g o0 | TPy | PP N e a0
-1 —1
= te[T'P, —P_] +c[P T~ 4P ]

Compiling these results, we find

1—m 1 Ls 1
- _ —(s=1) —INp—(Ls—s) } ___*
3Dy b ST b (S;T S(THT ) = (A41)

The terms may be expanded until insertions of the the backwards divergence of the Wilson current
are reached (Eq. (A24))). Gauge symmetry then implies the conservation of the obvious current and
the vector Ward identities can be constructed. For example, we may take as source njj/‘m/(z) =

3;10qq0*(z—x) and a two-point function of the conserved current may be constructed as

Li—1
D@y @) Vu() = Tryysn Dy vl + T 5] ! { 5 T“5y<T1)T(L““‘>} [1+ 757Dy !n .
(A42)

Note that when ¢ = 0, the insertion of Eq. (A40) contains only terms such as
P-T7 ' +Py], (A43)

which are also present in the surface to bulk propagator Eq. (A20). As one would expect, when
we take b and c to represent domain wall fermions, the two-point function of our exactly con-
served vector current - derived from the four dimensional effective action - exactly matches the
matrix element of the vector current constructed by Furman and Shamir [B], Eq. (2.21), from a five
dimensional interpretation of the action.

Since the Furman and Shamir current was easily constructed from the five dimensional propagator
Eq. (A20), one might hope to do the same in the generalized approach to domain wall fermions.

To play a similar trick for the ¢ term, we would need to generate the terms
P1+15)"Ip 1 (Ad4)

and

PT O 14T D, (A45)

These are not manifestly present in Eq. (AI9). However, the presence of the contact term on the

s = 0 slice can be removed after a propagator calculation. We define this slice as

1

S(x) = (Qod) = 1 (D! (m) —1). (A46)
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In a practical calculation, the source vector 1] may be used to eliminate the contact term by forming
(1=m)S(x)n+n =Dy (m)n = [1+ T~ 2|1+ T~ 'Dy/n. (A47)

By applying P; and P_ we find we have the following set of vectors

Py
PTLp [1+T L] | [1+T ] D, (A48)
P_[1+T L]

and we may eliminate to form a L; 4 1 vectors from a 4-D source

1
r! -1 —17-1 -1
T(s)=| 1+17" 1 D (m)n. (A49)
T Ls
This may be used to construct
[b[Py+P_T "+ c[PeT ' +P]] T, (A50)

for s € {0...L;— 1}, and by contracting these vectors through the Wilson conserved current the
matrix element, Eq. (A42)), can be formed in a very similar manner to the standard DWF conserved
vector current. When ¢ = 0 the matrix element reduces to being identical to that for the Furman
and Shamir vector current.

A flavor non-singlet axial current, almost conserved under a backwards difference operator, can

now also be constructed following Furman and Shamir. We associate a fermion field rotation

ial (s) R
i) ¢ Pl sr=0 (A1)

L,U(X,S) 5 x#xo
where
—1; 0<s<Ly/2

M(s)—
1 ; Lg/2<s

(A52)

We acquire a related (almost-) conserved axial current, whose pseudoscalar matrix element is

APy (x) | Fu(y)) =

i L1 . (AS3)
Tr['”ITDJJ%][lﬂLT_L‘Y]_l{ > T_SF(S)Q(T”)T_(LH_S)} [1+775]7'D,'n
s=0
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The exact vector current conservation induces the same J5, midpoint density defect that arose for

DWEF, and the Ward identity is

D@y (x)|Fu(y)) = (@ysP(x)[2mP(y) +2]54())- (A54)

This allows us to retain the usual definition of the residual mass in the case of Mobius domain wall

fermions. We emphasize that the definition,

(1(p = 0)|J54)

T G =0)P) |y,
via the zero-momentum pion matrix element of Js, is particularly important, because then our
PCAC relation,
(r(p =0)]2mP+2Js4) =0,

guarantees that the low momentum lattice pions are massless. This is the appropriate measure of
chiral symmetry breaking for the analysis of the chiral expansion.
Section [ILC discusses methods of using the vector and axial ward identities to measure the renor-

malization of the local vector and axial currents, and their use in our analysis.

Appendix B: Deriving dimensionless global fit forms

In this section we briefly describe how to obtain the appropriate dimensionless global fit function
describing the lattice data for a quantity Q of mass dimension D on a general ensemble e. The

procedure is as follows:

1. Write down the fit formula for Q in physical units on the reference ensemble, including an

a” term. For example, a linear ansatz might have the following form:
Q = g1 +¢0.at}) +CQum M} +CQm; Ty

where we have assumed that there are no partially-quenched data points for simplicity. Here
the superscript r on the quark masses indicates that they are in the normalization of the

reference ensemble.

2. To derive the fit form for Q on ensemble e, first replace a, with the lattice spacing, a,,

appropriate for that ensemble, then rewrite a, as a, = a,/RS:

0 = coo(1+c0,uar(RE) %) + Com ] + €0 my it
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3. Multiply by a? and redefine the fit parameters in terms of dimensionless quantities (denoted

with a prime superscript):
a7 Q = c (14 o(RG) ™) + o m, (arifi]) + o, (arity).
4. Using a, = R{a,, rewrite the function in terms of the lattice spacing on the ensemble e:

(R)P(agQ) = o1+ o(RG) ™) + o, Ré(aetit]) + iy, R (acrity)

5. Finally, use /" = Zjm® to move the quark masses into the native normalization of ensemble

e, and divide by (R¢)P:

(agQ) = (RQ) P o(1+cp.a(RE)2) + o m (RE)' ™PZ (aciii]) + cp m, (RG)' P Zf (acrif).

This fit function now describes the data in lattice units for the ensemble e.

Appendix C: Dependence of the lattice spacing on the fermion action

In Sec. [Vl we described that, contrary to our expectations, combining the 241 and 481 ensembles
into a single global fit required that two lattice spacings, differing by 3.2(2)%, be used for these
two, nominally similar ensembles. (Similar but smaller discrepancies between the lattice spacings
for the 321 and 641 ensembles were also found.) In this appendix we will discuss this phenomenon
in greater detail and describe additional measurements that we performed in order to verify that
this assignment of different lattice spacings is correct. For clarity we will focus on the 241 and 481
ensembles, since the explanation for both cases is the same. For the 241 ensemble set we consider
only the ensemble with the lighter input quark mass of my = 0.005

The 241 and 481 ensembles are very similar. Each uses the same Iwasaki gauge action with the
same value of 3 = 2.13. They differ in the fermion formulation used (Shamir and Mobius re-
spectively), the total light quark mass (m s +m,, = (5.0 +3.154(15)) x 1073 = 8.154(15) x 1073
and ms +m,, = (7.846.102(40)) x 10~* = 13.999(40) x 10~*, respectively) and the degree of
residual chiral symmetry breaking, which is suggested by the differences in the values of the
residual quark masses just quoted. For a comparison of the my = 0.004 32I and 641 ensembles,
the corresponding numbers are ms +m,, = (4.0 +0.6664(76)) x 1073 = 4.6664(76) x 10~3 and
my+m, = (6.78+3.116(23)) x 107 = 9.896(23) x 10~* respectively.
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If we were to describe the low energy Green’s functions computed on the 241 and 481 ensembles
as corresponding to separate Symanzik effective theories, these two effective theories would be
essentially identical, except for differences in their low energy constants of order (ma)". For
example, in a theory with chiral fermions the dimension-4 (FHV)? term, closely related to the
lattice scale, would have coefficients which differed by terms of order (ma)?, terms much too small
to be relevant here. Of course, had such a term been important, our global fitting procedure would
have included its effects by describing both the 241 and 481 ensembles with a single Symanzik
effective theory, with a single lattice spacing, whose mass-dependent coefficients were represented
by explicit mass-dependent terms in the fit. In this framework both the 241 and 481 ensembles
would be described by the same lattice spacing a and the same value of R,,.

It may be useful to briefly review the meaning of the lattice spacing a as it is generally defined in
field theory and specifically defined in the calculation presented here. Perhaps the simplest way
to define the cut-off scale is by specifying the value of a “physical” quantity, such as the Wilson
flow or three-gluon coupling, at a sufficiently short flow time or large gluon momentum that the
process can be understood in perturbation theory. Theories with identical lattice actions but with
different quark masses will give the same value for the lattice scale up to terms of order (ma)? if we
introduce the lattice scale a as the natural lower/upper limit on the flow times or momentum scales
that are available for such a short-distance definition. From this perspective, such mass dependent
effects are much too small to result in the 3% discrepancy we find. In our actual approach, we
define the lattice spacing through the mass of the Q™. This requires our global fitting procedure
and an explicit extrapolation to a specific value of input quark masses, specifically those which
give physical values for my/mq and mg/mq, in order that such a low-energy definition of the
lattice scale be well defined. Necessarily, in this approach the 241 and 481 ensembles are assigned
a common lattice spacing and their different input quark masses are completely accounted for in
the global fitting procedure (up to negligible systematic effects). For our low-energy definition of
the lattice spacing, it is not possible to interpret the 3% difference in a between the 241 and 481
ensembles as resulting from their different input masses.

Instead, the change in the lattice spacing between the 241 and 481 ensembles must be attributed to
some other change in the lattice action. We are left to conclude that this effect must be a result
of the change in fermion formulation. As discussed in Section Il we can consider this change as
being accomplished in two steps: we first change Ly from 16 to 48 using the Shamir formulation,

and then change from the Shamir (L; =48, b+ ¢ = 1 to the Mobius (Ly = 24, b+ c = 2) formulation
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at fixed Lg(b+c¢). Since all 4-dimensional Green’s functions related by this final change are
expected to agree at the 0.1% level, the Shamir to Mobius change is inconsistent with a 3% change
in the lattice spacing, which would naturally result in a 3% change in such Green’s functions. (For
example, a change in the Omega mass of 3% would result in at least a 3% change in the Omega
propagator.)

Thus, we expect that this 3% change in lattice spacing would have been observed even if we
had continued to use the Shamir action and simply increased L; from 16 to 48. While this is a
surprisingly large effect for such a change in L;, we believe that it is a plausible explanation. The
effect of the smaller Ly = 16 value is usually characterized by the value of m,.a = 3.154(15) x
103, which is substantially less than 3%. However, considerable effort has been devoted to
reducing the size of m,,, including a careful choice for the domain wall parameter M5 and the
choice of the Iwasaki gauge action. It is possible that, while these choices have significantly
reduced m,, they have not correspondingly reduced the size of other Li-dependent effects.

For example, the value of the lattice spacing, which is determined by the strength of QCD inter-
actions at the scale of Agcp, is a strong function of the anti-screening produced by QCD vacuum
polarization. The quarks act to reduce this anti-screening, and the Pauli-Villars determinant was
originally included in the domain wall fermion action [Q] to regulate what would have been a di-
vergent contribution to QCD vacuum polarization coming from the increasing number of fermion
species as Ly — 0. While, as can be seen by the relation with overlap fermions discussed in Sec. (Il
these effects have a well defined Ly — oo limit, we cannot rule out the possibility that they appear at
the 3% level for = 2.13 and Ly = 16. Instead, we interpret this large shift in a as providing new
information about the potential effects of finite L,, and a warning that simple estimates can occa-
sionally be misleadingly low. In this spirit, we should recognize that the earlier arguments about
the insensitivity of the coefficients of the O(a?) Symanzik correction terms to our change in action
may underestimate these effects. Of course, in this case, if our few tenths of a percent estimate
were to become even a 5% effect, it would not interfere with our current continuum extrapolations.
Since the conclusion, implied by our global fits, that the lattice spacing did indeed change by 3.2%
and 1% when going from the 241 to 481 and 321 to 641 ensembles respectively, was a surprise,
it was important to test this hypothesis. For that purpose, we generated two additional MDWF+I
ensembles with input parameters set equal to those of the lightest 241 and 321 ensembles (i.e. those
with am; = 0.005 and am; = 0.004, respectively), but using the Mobius parameters and L; values

that were used for the 481 and 641 ensembles respectively. We compensated for the reduction in the
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residual mass by increasing the input bare quark mass in order that the total quark masses remain
equal to the 241 and 321 values. If the observed differences in the lattice spacings can indeed be
attributed to the change in L, (that which would have been required if the new ensembles were
generated with the Shamir action), then the lattice scales for these new ensembles should match
those determined for the 481 and 641 ensembles.

We refer to these new ensembles as the ‘24Itest’ and ‘32Itest’ ensembles. They were generated
with Mo6bius domain wall fermions and the Iwasaki gauge action at 3 = 2.13 and 2.25 respectively,
and with lattice sizes of 243 x 64 x 24 and 323 x 64 x 12. Both ensembles use Mdbius parameters
of d =b+c=2and b—c =1, making them equivalent to Shamir domain wall ensembles with
Lg = 48 and 24 respectively. On the 241test ensemble, we measured the residual mass and Wilson
flow scales on configurations in the range 120 to 550; the residual mass was measured every 40
configurations, and the Wilson flow scales every 10, and we binned the latter over four successive
measurements. Similarly, for the 32Itest ensemble, we performed measurements in the configura-
tion range 200 to 610, measuring the residual mass every 20 and the Wilson flow scales every 10,
binning the latter over two successive measurements.

The values of the average plaquette, residual mass, total quark mass and Wilson flow scales are
listed in Table [XXVIIl From the table we can immediately observe that, while the total quark
masses of the 24Itest and 241 ensembles are closely matched, there are clear differences in the
average plaquette and Wilson flow scales; smaller differences are also observable between the
32Itest and 32I measurements. The differences in the Wilson flow scales are ~ 3% between the
241 and 24ltest ensembles and ~ 1% between the 321 and 32Itest, which are very similar to the
differences in lattice scales observed between the 241/481 and 321/641 ensembles respectively.

We cannot directly compare the computed values on the test ensembles in Table XXVII| with the
corresponding 481 and 641 values, due to the measurements being performed with different quark
masses. For a definitive test, we instead include the test ensembles in the global fits. For each
ensemble there are associated three free parameters: the scaling parameters Z;, Z, and R,. The
observed differences in the fermion action appear to result in negligible changes to Z; and Z,
hence we are able to fix those values to those of the 241/481 (for the 24Itest) and 321/641 (for the
32Itest ensemble); this leaves only R, as a free parameter for each ensemble. In Table XX VI we
list the values of R, that we obtain, alongside the corresponding values for the 241, 321, 481 and
641 ensembles. We observe excellent agreement between R, on the 24Itest ensemble and that on

the 481, and similarly between the 32Itest and 641. This offers clear evidence that the change in L
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Quantity (241 (0.005) 24Itest 321 (0.004) 32Itest

(P) 0.588053(4) 0.587035(6) |0.615587(3) 0.615318(8)
my 0.005 0.00746 0.004 0.00437

my, 0.04 0.04246 0.03 0.03037
Mies 0.003154(15) 0.000666(25)|0.0006697(34) 0.000306(9)
my + Myes |0.008154(15) 0.008126(25)|0.0046697(34) 0.004676(9)
my + myes | 0.043154(15) 0.043126(25)|0.0306697(34) 0.030676(9)
té/z 1.3163(6) 1.2766(19) |1.7422(11) 1.7226(24)
wo 1.4911(15) 1.4485(46) |2.0124(26) 1.9937(57)

TABLE XXVII. Comparison of various quantities in lattice units between the test ensembles and the original
ensembles. For the 241 and 321 ensembles we quote values for the residual mass computed at unitary light
quark masses (not extrapolated to the chiral limit). These and the average plaquette values were determined
in Ref.

]. The Wilson flow scales on these ensembles are discussed in Appendix [El For comparison, the

residual masses for the 481 and 641 ensembles are 0.000610(4) and 0.000312(2) respectively.

B =213 B =225

241 481 24Itest 321 641 32Itest

0.7491(23)|0.7259(27)|0.7243(28) | 1.0(0) |0.9897(19) | 0.9877(19)

TABLE XXVIII The values of the lattice spacing ratio R!, = a**! /a’ for ensembles i with B = 2.13 and

B = 2.25, including the two test ensembles.

is responsible for the observed differences in lattice spacing. It provides further confidence in our
global fitting procedure, which was sufficiently reliable to produce strong evidence for this effect
even though it was not expected in advance.

Note, in this explanation we continue to assume the near equality of the Mdbius and Shamir 4-D
theories for fixed Ly(b + ¢), and to view the difference in a as what would have been observed
had we used only the Shamir action, increasing L; from 16 to 48 (for 241/48I) and 16 to 24 (for
321/641). While we believe that this assumption has a strong theoretical justification, the numerical

experiment just described does not provide direct evidence for its validity.
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Appendix D: Weighted fits

We define a weighted x2 as

Ty — F(xi,¢))2
XZZZwI[yl 52( C)]

[ i

3 (D1)

where i indexes the measurements, y; and O; are the measured value and statistical error, X; the
associated coordinates, and ¢ the set of parameters of the fit function f. The quantities () are set
to a value Q for some subset of the data, where Q is assumed to be large, and to unity for all other
data. We demonstrate below that the dependence on Q vanishes in the limit Q — oo and that this
limit is sensible.

The minimum of x? satisfies

Jdck :Z? Jdck (D2)

Writing out the derivative explicitly and dividing both sides by Q gives the following expression:

CULA -xHE df()_éhg)
Z Q 02 dCK

=0. (D3)

If we naively take the Q — oo limit of this equation, it appears that all of the data with w; = 1
drop out entirely and hence do not contribute to the fit. This is certainly true in those cases in
which the number of data points with weight w; = Q is sufficient to determine the full set of
parameters ¢. However when there are fewer points, there is no solution that satisfies Eq. (D3)) in
the Q — oo limit. We argue that if one first determines the solution for finite Q, either analytically or
numerically, then afterwards take the limit Q — oo, the solution remains valid and in fact depends
on the data with @; = 1. The resolution of this apparent paradox is that when the overweighted
points are insufficient to determine the parameters, the fit has (almost-)unconstrained directions
with infinitesimally small curvature arising from the vanishing unweighted data, and hence there

is a well defined minimum.

a. Simple example

It is straightforward to demonstrate the behavior discussed above via a simple example in which

we are attempting to determine the parameters of the function

f(x)=a+bx (D4)
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by minimizing
N—-1

X*= Z) (ri— f(x:))*wi =0, (D5)

1=
where r; are a series of N data points with coordinates x; and unit variances for simplicity.
Let us first consider a scenario in which we have three data points (N = 3), two of which are
overweighted: wy = w; = Q, and the third is assigned w, = 1. Here the overweighted data points
are sufficient to determine both parameters and the result of solving for the minimum of Eq. (D3)
in the limit of large Q, and the result of solving at finite Q and taking the limit afterwards, are
identical:

a= (rixo—rox1)/(xo—x1) and b= (ro—ry)/(xo—x1). (D6)

Notice that this result does not contain the unit-weight data point, r,.
Let us now consider just two data points (N = 2), and take wo = Q and w; = 1 such that the number
of overweighted data points is no longer sufficient to determine both parameters. The equations

for the minimum of x? are:

x>
—— =-2Q (I’()—f(xO)) —2(7’1 —f(xl)) =0 and
00)?2 (D7)
o = 20 (ro— f(x0))x0—2(r1 — f(x1))x1 = 0.
Taking the large Q limit gives
-2Q (I’() — f(X())) =0 and —2Q (r() — f(X()))X() =0. (D8)

These are identical up to a trivial normalization, hence we have two unknowns and only one
equation; no unique solution can be found. (Note that the fact that the equations are the same
will not be true in a general case with multiple over-constrained data points; there one would
instead find expressions that cannot be simultaneously satisfied.) On the other hand we can solve
for the minimum at finite Q; the solutions are identical to those given in Equation (D6)), and are
independent of Q, allowing us to take the large Q limit a posteriori without issue.

Finally we consider one further example, again with three data points but this time with only one
over-weighted: N = 3, wp = Q and w; = wp = 1. Here, as above, the number of overweighted
points is insufficient to determine both parameters, but all three points together are more than
enough to constrain the parameters (with one degree of freedom). We might therefore expect
that the solutions at finite Q would be Q-dependent unlike in the previous example. Indeed this

is the case, but it is straightforward to show that the solutions are finite in the limit Q — oo and
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FIG. 29. (Left) The fit parameters of the function f(x) = a+ bx determined from arbitrarily chosen data
points, ro(xo = 1) =2, ri(x; = 3) =7 and ry(x, = 4) = 6, plotted against the weighting Q of the first point.

(Right) The fit curves with Q = 1 (red full line) and Q = 100000 (dashed blue) overlaying the data.

furthermore that they are functions of all three data points in this limit. The expressions are
somewhat lengthy and we have not reproduced them here, but we have plotted the Q dependence
of the solutions for a particular set of data points and parameters in Figure29l In the figure we also
plot the function before and after the weighting, demonstrating that it does indeed pass through

the over-weighted data point.

b. Determination of the optimal Q value in the global fits

It remains to demonstrate the limiting behaviour in the more complex environment of the global
fits. As the minimization is performed numerically via the Marquardt-Levenberg algorithm we
must be careful in our choice of algorithmic parameters; the algorithm terminates when the change
in X2 under a shift of the fit parameters is less than some chosen value, 6Xr%1in‘ As we increase Q
at fixed 5)(1%1111, the relative effects of fluctuations in the unweighted data are reduced and the fit
becomes more tolerant to increasingly large deviations of the fit from the unit-weight data. This
manifests as an increase in the jackknife statistical error of our predictions. We must therefore
choose a value of 5Xr%1in that is small enough to properly take into account the constraints from
the unit-weight data. The choice is limited by the increased time for the fit to reach its minimum
coupled with the inevitable limits of finite precision. For fixed 5X§1in, the time to perform the fit
also naturally increases with Q due to the increase in the overall scale of the fluctuations. We must

therefore determine an optimal value for Q that is large enough that our predictions are no longer
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FIG. 30. Plots of the predicted continuum value for f; (upper-left), fx (upper-right), té/ 2 (lower-left) and
wo (lower-right) as a function of the weight Q applied to the physical point ensembles in the fit. Fits were
performed with Q = 1,10, 100, 1000,5000, 10000 and 50000. We also considered three different values
of the stopping condition 5)(§1in: 1x1073, 1 x 107* and 1 x 107>, For the point at Q = 5000 we also
considered a fourth value, 5X§Iin =1x107°, and we only consider two values for Q = 50000 where the
errors are clearly less well controlled. For each choice of Q, the results for each value of 5X§11n have been

offset for clarity, with the largest value the left-most point of each cluster, with the largest error.

noticeably dependent on its value while small enough for the fits to complete in a reasonable time
and to be unaffected by finite precision errors.

In Figure 30| we show examples of the Q dependence on the predicted values of fr, fx, wo and
té/ 2. The plots also show the result of reducing the stopping condition 5Xr%1in by several orders
of magnitude. We observe percent-scale shifts in the central values of these quantities from the
unweighted fit results, and we clearly see the behavior flattens out at around Q = 1000. We
choose Q = 5000 as a value large enough to be well within the flat region while small enough

to avoid the difficulties discussed above. For the chosen value of Q we observed no significant
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dependence of the results on 5)(%111, but to be conservative we chose 1 x 10~% as our final value.
Note that we observed stronger dependence of our results on 6Xr%1in for some alternate choices of
guess parameters, but with tighter stopping conditions the results stabilized and agreed with those
presented in this document. To be certain, all fits presented within the body of this work were
repeated with tighter stopping conditions, and no significant changes from the given values were

observed.

Appendix E: Additional measurements on the 321, 241 and 32ID ensembles

In this work we include additional data for the 241 and 321 ensembles, specifically measurements

of the Wilson flow scales, té/ 2

and wy, and also an improved measurement of the vector current
renormalization coefficient that we use to normalize our decay constants. To remind the reader,
these ensembles have lattice volumes of 243 x 64 x 16 and 323 x 64 x 16, and use the Shamir
domain wall fermion action with the Iwasaki gauge action at bare couplings 8 = 2.13 and 2.25
respectively, and were originally described in Refs. [@] and [B]. We also perform measurements of
the Wilson flow scales on the 32ID ensemble, which has a lattice volume of 323 x 64 x 32, Shamir

domain wall fermions with the Iwasaki+DSDR gauge action at 3 = 1.75, and was described in

Ref. [H].

1. Wilson flow scales

The procedure for determining the Wilson flow scales is described in Section [ITE. We have three
321 ensembles with bare light quark masses of am; = 0.004, 0.006 and 0.008, upon which we per-
form measurements using 300, 312 and 252 configurations respectively (separated by 10 MD time
units) following our earlier analyses. The measurements are binned over four successive configu-
rations to take account of autocorrelations. For the 241 ensemble set, we have two ensembles with
am; = 0.005 and 0.01, and we measure on 202 and 178 configurations respectively (separated by
40 MD time units) and use a bin size of 2. Finally, for the 32ID ensemble set we have two ensem-
bles with am; = 0.001 and 0.0042, and we measure on 180 and 148 configurations respectively
(with 8 MD time units separation) and bin over 4 configurations. Note that the results for the 321
m; = 0.008 ensemble and the 241 m; = 0.01 ensemble are not included in the global fits due to the

pion mass cut, but we include the results here for completeness.



Ens. set (amy;,amy)

té/z/a wo/a

321

321

321

(0.004, 0.03)
(0.004, 0.025)
(0.006, 0.03)
(0.006, 0.025)
(0.008, 0.03)
(0.008, 0.025)

1.7422(11) 2.0124(26)
1.7510(14) 2.0310(34)
1.7362(9) 1.9963(19)
1.7439(15) 2.0136(34)
1.7286(11) 1.9793(24)
1.7359(12) 1.9913(24)

241

241

(0.005, 0.04)
(0.005, 0.03225)
(0.01, 0.04)
(0.01, 0.03225)

1.3163(6) 1.4911(15)
1.3237(12) 1.5071(22)
1.3050(7) 1.4653(14)
1.3126(12) 1.4808(30)

32ID

32ID

(0.001, 0.045)
(0.001, 0.04625)
(0.0042, 0.045)
(0.0042, 0.04625)

1.0268(3) 1.2178(7)
1.0262(3) 1.2088(10)
1.0225(3) 1.2042(7)
1.0220(3) 1.2031(8)

108

TABLE XXIX. The Wilson flow scales in lattice units on the 321, 241 and 32ID ensembles at the simulated

strange quark mass and the reweighted mass closest to the physical value. The quark masses are given in

bare lattice units.

On all three ensembles we use reweighting in the sea strange quark mass to constrain the mass

dependence. The number of reweighting steps and the mass ranges used are given in the afore-

mentioned papers. For the results presented in this section, we list only the simulated value and the

closest reweighted value to the physical strange quark mass. The simulated strange quark masses

are 0.03, 0.04 and 0.045 for the 321, 241 and 32ID ensembles respectively, and the physical strange
masses are as follows: (am)3?! = 0.0248(2), (amy)**' = 0.0322(2) and (am,)**'P = 0.0462(5).
The values we obtain are given in Table [XXIX]

2. Vector current renormalization

In Section [ITC we describe how the renormalization coefficient relating the domain wall local

axial current to the physically-normalized Symanzik current can be determined via the quantity
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Ens. set. (am;) |Zy

241 0.03 |0.71611(8)
0.02 ]0.71498(13)
0.01 ]0.71409(20)
0.005 [0.71408(58)
—amye |0.71273(26)

321  0.008 |0.74435(42)
0.006 |0.74387(55)
0.004 10.74470(99)
—amyes | 0.74404(181)

TABLE XXX. Zy measured on the 241 and 321 ensembles, and the extrapolated value in the chiral limit.

Zy /Zy, which relates the local vector current V), to the conserved 5D current ¥},. This quantity
is used to renormalize the decay constants. In our earlier works [B, B] we obtained Zy by fitting

directly to the ratio of two-point functions,

Zv 3 3K END.0)
Zy 3L 3VAEOV(D.0)

(EL)

Since the lightest state that couples to the vector operator is the noisy p meson, for this work we
instead determine the ratio for the 481, 641 and 32Ifine ensembles via the three-point function,
(mVy|m), as described in Section [ITCZ} this procedure gives a substantially more precise result
than the above. In the global fits we attempt to describe the aforementioned ensembles, along with
321 and 241 ensemble sets, using the same continuum scaling trajectory. In order to guarantee
consistent scaling behavior we must therefore recompute Zy on the 32I and 241 ensemble sets
using the new method. This is not necessary for the 32ID ensembles, which are described by a
different scaling trajectory.

On the 241 ensemble set we measured on 147 and 153 configurations of the am; = 0.005 and 0.01
ensembles respectively. We also included 85 measurements on the heavier am; = 0.02 ensemble
and 105 measurements on the am; = 0.03 ensemble described in Ref. [@]. For the 321 ensembles
we measure on 135, 152 and 120 configurations of the am; = 0.004, 0.006 and 0.008 ensembles
respectively. In Table [XXX] we list the measured values on each ensemble and extrapolated to the

chiral limit.
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Appendix F: Non-perturbative renormalization

In order to determine the renormalization coefficients for the quark masses and Bk, we use what
is now the standard framework for our collaboration: the Rome-Southampton non-perturbative
renormalization schemes ] with momentum sources, twisted boundary conditions and non-
exceptional kinematics ]. This setup has already been described in several previous publi-
cations [B, , |£|, ], and results in tiny statistical errors, infra-red contamination suppression,
and consistent removal of a? discretization effects in the vertex functions.

A key aspect of the RI-MOM approach is that any other, potentially regularization dependent,
scheme may be easily converted into the RI-MOM scheme using momentum-space scattering am-
plitudes determined (either perturbatively or non-perturbatively) solely within that other scheme.
This makes RI schemes a very useful intermediate scheme for converting between lattice calcula-
tions and MS.

The amputated vertex functions 1 of the operators of interest O (in this paper O represent flavour
non-singlet bilinear and four-quark fermion operators) are computed on Landau gauge-fixed con-
figurations, for which we use the timeslice by timeslice FASD algorithm [@]). We use non-

exceptional ‘symmetric’ momentum configurations, defined by the condition
2 2_ 2
Mn=nrn=gq, (F1)

where, for bilinear vertices, p; and p, are the incoming and outgoing quark momenta respectively,
and for the four-quark vertices used to compute Zg, the quark momenta are assigned as follows:
d(p1)5(—p2) — d(—p1)s(p2). In the above, ¢ = p; — p; is the momentum transfer.

In contrast to the symmetric scheme, the original RI-MOM scheme defined in Ref. [@], which
we do not include here, corresponds to the zero-momentum transfer kinematics, i.e. p; = pa,
and suffers from enhanced non-perturbative effects at high energies arising from low-momentum
loop effects; in particular the effects of the dynamical chiral symmetry breaking are greatly en-
hanced [6].

We compute projected, amputated vertex functions of the form
Aléd?é(u,a) = ‘@{HO(qzch}uz:qz : (F2)

Precise definitions of the projectors & depend on the choice of operator, the kinematics, and the

choice of scheme. In practice the Green’s functions are first computed at finite values of the quark
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mass and then extrapolated to the chiral limit; this quark mass dependence is however very mild
for the non-exceptional schemes considered here and we omit it below for the purpose of clarity.

The renormalization factors are defined by imposing
—=(M,a) xAg“re(/J,a) = N (F3)

where Z, is the quark wave function renormalization factor, and n the number of fermion fields in
O. A second, separate condition is required in order to extract Z,. Note that the right-hand side of
the above depends on the choice of projector.

In order to simplify the equations, we introduce the following notation:
Ao = N7 x (Ngee) ™! (F4)

projection scheme and for each ensemble, as a function of the external momenta.

In this work we are only interested in quantities that renormalize multiplicatively, such that the
Z-factors and the /s are simply scalars. For a general lattice action with non-zero chiral symmetry
breaking, the four-quark operator responsible for K — K mixing in fact mixes with other operators,
and Zp and /\g“” become matrix-valued ]. However for our choice of action, the residual chiral
symmetry breaking is negligible and only multiplicative renormalization is required.

Once a bare matrix element (0)?#¢(a) of the operator O has been computed on a lattice with

lattice spacing a, the Z-factor can be used to convert it into the corresponding MOM-scheme:

p Mom

(©O)MM(pa)=| S5 (a) | x(0)"(a). (F5)
Zy

In order to connect the lattice results to phenomenology, they have to be matched to a scheme

suitable for a continuum computation, such as MS; this is performed using perturbation theory.

The final equation reads:
(0)"5(1,a) = MMM () x (0 (. a) (F6)

This quantity has a well-defined continuum limit as any potential divergences are absorbed by the
Z-factors.

We remind the reader that the Z-factors defined above are scheme dependent. The renormalization
scheme is fixed by the choice of projectors and of kinematics; specifically, with the choice of

symmetric kinematics given above, it depends on the projector used for the operator O and that
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used to extract Z,. For both the quark mass renormalization factor, Z,,, and the Bg renormalization
factor, Zp, we use two SMOM schemes; for the former these are the RI-SMOM and the RI-
SMOMy, [@] schemes, and for the latter the SMOM(y*, y#) and SMOM(4, ¢) [@] schemes.
In the main analysis we use the difference between the MS results computed using these two
intermediate schemes as an estimate of the systematic error associated with the truncation of the

perturbative series used to compute the SMOM— MS matching factors.

a. Renormalization of the quark masses

Our determination of the quark masses from the global fits uses an intermediate scheme that is
hadronically defined and explicitly dependent on our choice of lattice regulator. The renormaliza-
tion factors from bare masses to this temporary hadronic scheme are denoted Z; and Z, for light
and strange quarks respectively. For quark masses we can convert this temporary scheme to an

SMOM
Zm

SMOM scheme by determining the SMOM renormalization in the usual way and then

determining the continuum limit of the ratio 2’15‘; , and from there to MS in the usual way. This is
described in more detail in Section[V.Cl

We first introduce the renormalization factor of the flavour non-singlet bilinears. We define Ag
and /A\p, the amputated and projected Green’s functions of the scalar and pseudoscalar bilinear

operators respectively, as
/\S:tr[ﬂs~1], /\p:tr[l'lp-y5]. (F7)
Similarly, for the local vector and axial currents we define:
_ (s)
Ava =t My, T8 ] (F8)

where (s) denotes the choice of projector. Following Ref. [@], we define the Y}, and the ¢-schemes

(or projectors) in the following way:

s =y and T =y, (F9)
and
r(v’f = dqu/q*, and rﬁfﬁ = dquys/q*. (F10)

For completeness, we also renormalize the tensor current. The vertex function is I'Io—w, where

O = 5 [Vus W] (F11)
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and the amputated and projected vertex are

Ar=tr|Ma, - T5), | (F12)
For the projectors, we use
roh = o, and I'd), = 0vpgpau/a*. (F13)

The corresponding renormalization factors Zs v 74 p/Z, can then obtained by imposing Eq. (F3)
with n = 2.
To obtain the renormalization factor of the quark mass, Z,,, we take the ratio of the vector and

scalar bilinears in order to cancel the quark wave-function renormalization:

28 (.0 = DS (F14)

Zv(a) x A (1, 0)
where Zy is computed hadronically via the procedure given in Section In the previous

equation, we have used the fact that Z,, = 1/Zg = 1/Zp in the chiral limit. Similarly, we should
expect Z4 = Zy up to some small corrections arising, for example, from the fact that we work at
finite Ly, or due to infrared contaminations. In our estimate of the systematic errors, we have also

replaced Ag by Ap and Ay by A4 in Equation (E14).

b. Renormalization of the kaon bag parameter

The renormalization factor Zp, is defined in a similar manner. The amputated Green’s function of
the relevant four-quark operator Oyy 44 describing K — K oscillations in the Standard Model is
computed numerically with a certain choice of kinematics and projected onto its tree-level value.

We normalize by the square of the average between the vector and axial bilinear:

~(s1)

A

257 (1,4 x %(“;’) —1, (F15)
/\AAE (uva>

where

1
Ny = E(AV +M4), (F16)

such that the quark field renormalization cancels in the ratio. In practice we find that the difference
between the vector and axial vertices are very small, hence choosing the average rather than simply
Ay or A4 in the denominator, has no discernable effect.

In Eq. (EI3), the superscripts s; and s, label the choice of projectors. We refer the reader to

Refs. [Q, @] for the details on the implementation, including the explicit definitions of projectors.
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1. Numerical details and discussion
a. Quark mass renormalization

For the quark mass renormalization we require only the values on the 321 and 24l ensembles,
which together are sufficient to perform the continuum extrapolation of Z,, /Z; /n- Here we discuss
an update of the analysis performed in Ref. [B] using the newly-determined lattice spacings and a
number of additional data points.

In the Rome-Southampton method, the projected vertex functions are first computed at finite quark
mass before being extrapolated to the chiral limit. For each ensemble, we use unitary valence
quark masses and extrapolate linearly in the quark mass. In the sea sector, the strange quark mass
remains fixed to - or close to - its physical value. Since we do not observe any relevant quark
mass dependence in our data, we neglect the systematic error associated with the fact that the sea
strange quark mass is not extrapolated to zero.

We use partially-twisted boundary conditions to obtain momenta of the following form:

2T

DPin = T<—ﬁ’l,0,ﬁ’l,0), (F17)
21
Pout = 7(07’%7’%70)7 (F18)

where 7 combines the Fourier mode with the twist angle 0
m=m+6/2, meN. (F19)

The fact that these momenta all point in the same direction up to hypercubic rotations means that
they lie upon a common continuum scaling curve (i.e. their a*> dependence is the same), allowing
us to unambiguously take the continuum limit.

For the 241 lattice, in addition to the momenta listed in [B], we have generated additional points
closer to the 3 GeV point at which we ultimately evaluate the Z-factors. More precisely, the twist
angle 0 is chosen to be n x 3/16, with n = 15,16, ...19. The results can be found in the following

section.

b. Renormalization of Bx

As Bk is a scheme dependent quantity, we must perform our global fits to renormalized data,

and as a result we require values of the renormalization coefficients to be computed on all of the
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ensembles used in the analysis: the 321, 241, 481, 641, 32Ifine and 32ID. This differs from the
quark mass determination, for which we used a hadronically defined intermediate scheme during
the continuum extrapolation and converted to MS a posteriori. In this appendix we present updated
values of the 32I, 241 and 32ID Zg, results in Ref. [B], as well as new values for the 481, 641 and
32Ifine.

For our new ensembles, we have considered only one value of the valence quark mass m;** = m}’“l .
Again, due to the modest chiral dependence previously observed for the non-exceptional schemes,
we expect the associated systematic error to be negligible compare to the other sources of errors
(in particular the perturbative matching).

As the 321D ensemble is comparatively coarse, we renormalize at a lower scale Ly ~ 1.4 GeV
and use the non-perturbative continuum step-scaling factor Gl(;Kl’SZ)( U, o) to run to 3 GeV. This
procedure is discussed in Ref. [[5]. The step-scaling factor is obtained by performing a continuum

extrapolation of the ratio

ol (1, bosa) = 25 (ws) |21 (s a) (F20)
computed on the 321 and 24I lattices.
Since the values of the lattice spacings have been updated, the numbers quoted here differ slightly
from our previous work. The strategy is the following: we use the same 32ID lattice renormaliza-
tion coefficient, Zg;’”) (Mo, a321p ), as used previously, but notice that the corresponding value of Ly
obtained with the new lattice spacings is 1.4363 GeV rather than 1.426 GeV. As a result we must
recompute the step-scaling factor. The results for Zgz $2) a Ho can be found in Table [XLITland our

(51,52)

updated results for g, ' are reported in Table XLIIIl For each scheme, the 32ID renormalization

factor evaluated at U = 3 GeV is then simply given by

ZI(SS; = (IJ, aSZID) = G(SI ) (“7 IJO) X ZI(SS; 2) (I,l(), 613211)) . (F21)
2. Numerical results

a. Bilinears and quark mass renormalization

The values for the amputated vertex functions /A (normalized by the tree level value) at finite quark
mass and in the chiral limit computed on the 241 ensemble are given in Tables [XXXI] and [XXXTII
for the SMOMyu and SMOM schemes respectively. The corresponding numbers for the 32I en-
sembles are given in Tables XXXIIland [XXXIV] Recall that we use only one choice of projector
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am = 0.01

q/GeV|2.911997 2.973955 3.035912 3.097870 3.159827

S |1.1492(3) 1.1455(3) 1.1422(3) 1.1390(2) 1.1360(2

1.0530(2) 1.0537(2) 1.0543(2) 1.0550(2) 1.0557(2

1.0527(2) 1.0534(2) 1.0541(2) 1.0548(2) 1.0556(2

o> 4 <

(3) (3) (3) (2) (2)
(2) (2) (2) (2) (2)
1.0225(2) 1.0244(2) 1.0263(2) 1.0281(2) 1.0299(2)
(2) (2) (2) (2) (2)
(3) (3) (3) (2) (2)

1.1520(3) 1.1480(3) 1.1444(3) 1.1409(2) 1.1377(2

am = 0.005

q/GeV|2.911997 2.973955 3.035912 3.097870 3.159827

S |1.1491(2) 1.1455(2) 1.1421(1) 1.1390(1) 1.1360(1)
V. |1.0529(1) 1.0536(1) 1.0542(1) 1.0549(1) 1.0556(1)
T [1.0225(2) 1.0244(2) 1.0262(1) 1.0281(1) 1.0299(1)
A [1.0528(1) 1.0534(1) 1.0541(1) 1.0548(1) 1.0556(1)
P |1.1517(2) 1.1478(2) 1.1441(2) 1.1407(2) 1.1375(2)

am = —anyeg

q/GeV|2.911997 2.973955 3.035912 3.097870 3.159827

S |1.1491(7) 1.1455(6) 1.1421(6) 1.1389(5) 1.1359(5

1.0527(5) 1.0534(4) 1.0540(4) 1.0547(4) 1.0555(4

1.0528(4) 1.0535(4) 1.0542(4) 1.0549(4) 1.0556(4

o> 4 <

(7) ) (6) (5) (5)
(5) (4) (4) (4) (4)
1.0223(5) 1.0243(5) 1.0261(5) 1.0280(5) 1.0299(5)
(4) (4) (4) (4) (4)
1.1512(7) 1.1473(7) 1.1436(7) (6) (6)

1.1402(6) 1.1370(6

TABLE XXXI. Projected, amputated vertex functions A for the vector, axial-vector and tensor operators
in the SMOM scheme computed on the two 241 ensembles, and in the chiral limit, at scales close to the
chosen renormalization scale of 3 GeV. In this table we also include the projected, amputated scalar and

pseudoscalar vertices.

for the scalar and pseudoscalar vertices, specifically those given in Eq. (E7). The results for these
vertices computed on the 241 and 321 ensembles are included in Tables [XXXTland XXX respec-
tively.

In Table [XXXV] we present A interpolated to 3 GeV using a polynomial ansatz in the momenta.

For the 241 lattice, since we have a very fine resolution, we take the five momenta quoted in the
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am = 0.01

q/GeV|2.911997 2.973955 3.035912 3.097870 3.159827

Vo |1.1159(4) 1.1160(3) 1.1163(3) 1.1166(3) 1.1171(3)
T |1.0225(2) 1.0244(2) 1.0263(2) 1.0281(2) 1.0299(2)
A |1.1156(3) 1.1158(3) 1.1160(3) 1.1164(3) 1.1169(3)

am = 0.005

q/GeV|2.911997 2.973955 3.035912 3.097870 3.159827

Vo |1.1158(3) 1.1159(3) 1.1162(2) 1.1165(2) 1.1169(2)
T [1.0225(2) 1.0244(2) 1.0262(2) 1.0281(1) 1.0299(1)
A |1.1156(3) 1.1158(2) 1.1160(2) 1.1163(2) 1.1167(2)

am = —AMyeg

q/GeV|2.911997 2.973955 3.035912 3.097870 3.159827

V. |1.1156(9) 1.1158(9) 1.1159(8) 1.1161(8) 1.1164(8)
T |1.0224(5) 1.0243(5) 1.0262(5) 1.0280(5) 1.0299(5)
A |1.1156(9) 1.1158(8) 1.1160(8) 1.1162(7) 1.1165(7)

TABLE XXXII. Projected, amputated vertex functions A in the SMOM scheme computed on the two 241

ensembles, and in the chiral limit, at scales close to the chosen renormalization scale of 3 GeV.

tables. For the 321 results we use g ~ 2.77,3.10 and 3.43 GeV in the interpolation.

We show the values of the quark mass renormalization in Table XXXVl Using Table XXXV we
can gauge the size of the systematic error on Z,, by comparing the S and P vertices and the A
and V vertices. We observe that the differences between the vector and axial vector vertices are
very small, and can therefore be neglected. The differences between the scalar and pseudoscalar
vertices are slightly larger, but these correspond to only 0.01% changes if used in the computation
of Z,,, and can therefore be ignored. As discussed above, the systematic error associated with not
taking the chiral extrapolation of the sea strange quark mass can also be ignored. Note that the

uncertainties on the lattice spacings are incorporated in these quantities in the main analysis.
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am = 0.008

q/GeV| 1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5760(95) 1.4124(23) 1.2881(7) 1.2346(4) 1.1920(2) 1.1648(2) 1.1446(1

1.0568(13) 1.0425(4) 1.0376(1) 1.0368(1) 1.0374(1) 1.0387(0) 1.0405(0

1 1 1

1.0357(9) 1.0369(4) 1.0364(1) 1.0362(1) 1.0371(1) 1.0385(0) 1.0404(0

o> 14 <

(7) (4) (2) (2) (1)
() (1) (1) (0) (0)
0.9072(10) 0.9403(3) 0.9668(1) 0.9796(1) 0.9915(1) 1.0005(0) 1.0083(0)
(1) (1) (1) (0) (0)
©) (5) (3) (2) (2)

1.8453(92) 1.4853(22) 1.3065(9) 1.2425(5) 1.1956(3) 1.1665(2) 1.1457(2

am = 0.006

q/GeV| 1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5818(54) 1.4178(29) 1.2906(10) 1.2358(6) 1.1930(3) 1.1656(2) 1.1451(1

1.0544(7) 1.0413(4) 1.0376(2) 1.0370(2) 1.0376(1) 1.0388(1) 1.0406(1

(
0.9081(5) 0.9402(3) 0.9669(3
(2) 1.0366(2) 1.0374(1) 1.0387(1
(

1.0357(8)  1.0374(3) 1.0367(2 1.0405(1

o> 14 <

(6) (3) (2) (1)
) (2) (1) (1) (1)
) 0.9798(2) 0.9917(1) 1.0006(1) 1.0084(1)
) (2) (1) (1) (1)
) (6) (3) (2) (2)

1.8124(66) 1.4745(23) 1.3048(6) 1.2419(6) 1.1956(3) 1.1669(2) 1.1458(2

am = 0.004

q/GeV| 1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S 1.5697(61) 1.4163(24) 1.2915(6) 1.2363(3) 1.1927(2) 1.1653(1) 1.1448(1

)

1.0542(10) 1.0418(2) 1.0373(2) 1.0368(1) 1.0374(1) 1.0387(1) 1.0405(1)
1 1)
)
)

1 1

1.0396(8) 1.0383(2) 1.0366(2) 1.0365(1) 1.0373(1) 1.0386(1) 1.0404(1

o> H <

) (3) (2) (1) (

(2) (1) (1) (1) (

0.9078(8)  0.9404(2) 0.9668(2) 0.9798(1) 0.9917(1) 1.0005(1) 1.0083(
(2) (1) (1) (1) (

©) (4) (3) (1) (

1.8346(113) 1.4761(21) 1.3050(9) 1.2414(4) 1.1948(3) 1.1663(1) 1.1455(1

am = —anlyeg

q/GeV| 1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

S |1.5605(173) 1.4219(57) 1.2955(14) 1.2384(7) 1.1934(4) 1.1659(3) 1.1453(3

1.0510(25) 1.0413(6) 1.0369(3) 1.0369(3) 1.0375(2) 1.0388(2) 1.0405(1

1.0438(18) 1.0400(5) 1.0368(4) 1.0368(3) 1.0376(2) 1.0388(1) 1.0405(1

o> 4 <

( (4) (3) (3)

( (2) (2) (1)

0.9085(18) 0.9406(6) 0.9668(4) 0.9799(3) 0.9918(2) 1.0006(2) 1.0084(1)
( (2) (1) (1)

(7) (4) (3)

1.7969(254) 1.4637(53) 1.3030(22) 1.2400(11) 1.1940(7) 1.1659(4) 1.1452(3
TABLE XXXIII. Projected, amputated vertex functions A for the vector, axial-vector and tensor operators
in the SMOMu scheme computed on the three 32I ensembles, and in the chiral limit, at scales close to the

chosen renormalization scale of 3 GeV. In this table we also include the projected, amputated scalar and

pseudoscalar vertices.
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q/GeV

1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

1.1756(30) 1.1387(12) 1.1145(4) 1.1047(2) 1.0979(2) 1.0945(1) 1.0928(1)
0.9077(10) 0.9406(3) 0.9668(1) 0.9796(1) 0.9916(1) 1.0005(0) 1.0083(0)
1.1659(27) 1.1359(12) 1.1137(4) 1.1043(2) 1.0977(2) 1.0943(1) 1.0927(1)

am = 0.006

1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

1.1735(15) 1.1367(10) 1.1147(6) 1.1049(4) 1.0981(3) 1.0946(3) 1.0929(3)
0.9089(6) 0.9405(3) 0.9669(3) 0.9798(2) 0.9917(1) 1.0006(1) 1.0084(1)
1.1661(15) 1.1347(10) 1.1142(6) 1.1046(4) 1.0979(3) 1.0945(3) 1.0928(3)

am = 0.004

1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

1.1760(19) 1.1377(8) 1.1138(4) 1.1045(2) 1.0979(2) 1.0944(1) 1.0927(1)
0.9086(7) 0.9408(2) 0.9667(2) 0.9798(1) 0.9917(1) 1.0005(1) 1.0083(1)
1.1713(20) 1.1365(8) 1.1134(4) 1.1043(2) 1.0978(2) 1.0943(1) 1.0926(1)

am = —anlyeg

1.186382 1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

1.1769(54) 1.1368(23) 1.1131(9) 1.1042(5) 1.0979(4) 1.0944(3) 1.0926(3)
0.9097(17) 0.9411(6) 0.9667(3) 0.9799(3) 0.9918(2) 1.0006(2) 1.0084(1)

1.1777(53) 1.1372(23) 1.1132(9) 1.1043(5) 1.0980(4) 1.0944(3) 1.0926(3)

ensembles, and in the chiral limit, at scales close to the chosen renormalization scale of 3 GeV.

Lattice Scheme S v T A P
yH  |1.1441(6) 1.0536(4) 1.0251(5) 1.0538(4) 1.1457(7)

i q - 1.1158(8) 1.0251(5) 1.1159(8) -
o1 yH  |1.1736(4) 1.0383(2) 0.9981(2) 1.0383(2) 1.1737(5)

q - 1.0957(3) 0.9978(2) 1.0958(3) -

errors do not include the lattice spacing uncertainty.
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TABLE XXXIV. Projected, amputated vertex functions A in the SMOM scheme computed on the three 321

TABLE XXXYV. The bilinear amputated, projected vertex functions A interpolated to 3 GeV. Note that these
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241 321

Vu|1.523(1) 1.519(4)
g [1.439(1) 1.440(4)

TABLE XXXVI. Quark mass renormalization factors Z,(,f >(3 GeV,a) computed on the 241 and 321 lattices

at 3 GeV in the two SMOM-schemes. Note that these errors do not include the lattice spacing uncertainty.
b.  Renormalization of Bk

We quote the results for the projected vertex function Ayy a4 at finite masses and in the chiral
limit for various momenta on the 321 and 241 ensembles in Tables XXXVII| and XXXVIIIl The
corresponding values each computed at a single quark mass on the 481, 641 and 32Ifine ensembles
are given in Tables [XXXIX] [XT]and XLI respectively.

To obtain the final results we construct the ratio given in Equation (©2) at finite quark masses for
a few momenta surround the desired scale, either Uy = 1.4363 GeV or U = 3 GeV, take the chiral
limit and then perform the interpolation with a polynomial ansatz. Similarly to the quark mass
case, the procedure is very robust and does not depend on the order we perform these operations,
nor on the details of the interpolation. The final results for Zg, on the various ensembles are given
in Table [XLII, and the continuum step-scaling factors used to run the 32ID renormalization factor
to 3 GeV are quoted in Table XLITIL

As with the quark mass renormalization the only significant source of systematic error on these
results arises from the perturbative matching to MS, which we estimate using the full difference
between our final predictions for Bx determined via the two intermediate SMOM schemes. As
above, we incorporate the uncertainties on the lattice spacings into our renormalization factors in

the main analysis.

Appendix G: Random number generator

After all the data presented in this paper was generated, it was found that the U(1) noise gen-

erated from the freshly initialized random number generator (RNG) in CPS ] is vulnerable
_ 2

e 21};1 e~ 100)j|l" /V deviates from N. This

correlation is not observed when U(1) noise is replaced with gaussian noise, for which the ac-

to correlations, such that the expectation value of }

cept/reject procedure used in generating the gaussian random numbers appears to eliminate the
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(y*,y") scheme, lowest momenta

q/GeV 1.172282 1.563201 1.858201 1.920141

am=0.01 |1.1453(14) 1.1617(9) 1.1702(5) 1.1722(5)
am =0.005 |1.1458(16) 1.1600(8) 1.1688(4) 1.1708(4)
am = —amyes | 1.1466(48) 1.1574(26) 1.1665(14) 1.1685(13)

(y*,y") scheme, highest momenta

q/GeV 2973122 3.035062 3.097002 3.158942

am=0.01 | 1.2116(5) 1.2145(5) 1.2174(5) 1.2205(5)
am=0.005 | 1.2113(3) 1.2142(3) 1.2171(3) 1.2202(3)
am = —amyes|1.2108(13) 1.2137(13) 1.2167(14) 1.2197(14)

(¢,4) scheme, lowest momenta

q/GeV 1.172282 1.563201 1.858201 1.920141

am=0.01 |1.3017(25) 1.2921(14) 1.2851(10) 1.2846(10)
am = 0.005 |1.2996(23) 1.2876(15) 1.2825(8) 1.2821(8)
am = —amye | 1.2962(64) 1.2803(49) 1.2782(30) 1.2779(27)

(4,4) scheme, highest momenta

q/GeV 2973122 3.035062 3.097002 3.158942

am=0.01 | 1.3012(7) 1.3037(7) 1.3064(8) 1.3092(8)
am =0.005 | 1.3008(5) 1.3033(5) 1.3059(4) 1.3087(4)
am = —amyes | 1.3003(18) 1.3027(18) 1.3052(18) 1.3078(18)

TABLE XXXVII. Chiral extrapolation of Ayy 44 in both schemes on the 241 ensemble for the momentum

points in the vicinity of the 1.4 GeV scale, and those in the vicinity of the 3 GeV matching scale.

observed correlation. We also confirmed that the U(1) noise generated from the CPS RNG for the
thermalized gauge configurations on our previous ensembles do not show the correlation, due to
the de-correlating effect of the gaussian RNG used for the pseudofermion fields.

To further test the robustness of gaussian random numbers generated from CPS RNG, we re-
produced the 2+1 flavor DWF ensemble used in Ref. ], with the RNG’s replaced with the
Mersenne Twister [E], implemented in C++11. Each 2* hypercube of lattice sites was initial-

ized with randomized seeds. We confirmed that the plaquette agrees to within 1 standard devia-
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(y*,y") scheme
q/GeV 1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

am=0.008 |1.0985(21) 1.1117(11) 1.1240(2) 1.1311(3) 1.1399(2) 1.1483(2) 1.1573(1)
am=0.006 |1.0991(20) 1.1111(6) 1.1246(5) 1.1318(4) 1.1404(3) 1.1487(3) 1.1577(3)
am=0.004 |1.1008(16) 1.1120(2) 1.1236(5) 1.1312(4) 1.1401(3) 1.1483(2) 1.1573(2)
am = —ames| 1.1034(43) 1.1129(11) 1.1237(13) 1.1316(9) 1.1404(7) 1.1485(6) 1.1574(5)

(4,4) scheme
q/GeV 1.186382  1.581953 2.067155 2.397900 2.769988 3.100733 3.431478

am = 0.008 |1.2473(40) 1.2352(21) 1.2262(5) 1.2233(3) 1.2238(3) 1.2266(2) 1.2316(2

(
am = 0.006 |1.2471(25
am = 0.004 |1.2515(28) 1.2345(13
(

1.2253(9) 1.2231(4) 1.2239(4) 1.2266(3) 1.2316(2

) (21) (2) (2)
) 1.2334(13) 1.2271(10) 1.2242(7) 1.2243(6) 1.2271(5) 1.2321(5)
) (13) (3) (2)
am = —amyes | 1.2566(77) 1.2341(38) 1.2251(22) 1.2231(12) 1.2241(10) 1.2267(8) 1.2316(7)
TABLE XXXVIII. Chiral extrapolation of /_\VV+AA in both schemes on the 321 ensemble for all simulated

momenta.

tion: 0.588064(12) from 8460 MD units compared to 0.588052(9) from the configurations used in
Ref. [74]. All the random numbers generated from CPS RNG for the work presented here were
gaussian random numbers. The only exception are the Z(3) random numbers for Z3 box source

used for the Q baryon in Section [IT'El which was generated independently from the CPS RNG.
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(y*,y") scheme
q/GeV | 2.72125 2.88132 2.96136 3.04139 3.20147

VV+AA|1.20472(14) 1.21216(8) 1.21604(8) 1.21996(8) 1.22827(6)
\Y% 1.05201(5) 1.05371(3) 1.05463(4) 1.05557(3) 1.05753(1)
A 1.05196(3) 1.05368(2) 1.05458(4) 1.05553(3) 1.05745(4)

(¢,4) scheme
q/GeV | 2.72125 2.88132 2.96136 3.04139 3.20147

VV+AA|1.2965831) 1.30250(14) 1.30598(10) 1.30955(10) 1.31773(25)
Vo |1.11640(15) 1.11660(7) 1.11697(4) 1.11749(5) 1.11902(15)
A |1.11633(13) 1.11659(5) 1.11695(4) 1.11747(5) 1.11902(14)

TABLE XXXIX. Vertex functions of the four-quark operators Ayy 44 and the bilinears Ay and A4 needed

for Zp,., computed in both schemes on the 481 ensemble with am = 0.00078.

(y*,y") scheme
q/GeV 2.7823 2.94596 3.0278 3.10963 3.27329

VV+AA| 1.13936(9) 1.14363(10) 1.14575(6) 1.14798(6) 1.15261(4)
\Y% 1.03721(4) 1.03783(3) 1.03818(2) 1.03859(2) 1.03949(2)
A 1.03715(2) 1.03780(3) 1.03815(2) 1.03856(2) 1.03949(1)

(4,4) scheme
q/GeV 2.7823 2.94596 3.0278 3.10963 3.27329

VV+AA|1.22136(20) 1.22299(22) 1.22387(12) 1.22501(11) 1.22760(12)
V| 1.09622(9) 1.09451(11) 1.09379(6) 1.09323(5) 1.09239(6)

A 1.09619(9) 1.09449(11) 1.09377(6) 1.09321(5) 1.09238(7)

TABLE XL. Vertex functions of the four-quark operators Ayy_ 44 and the bilinears Ay and A4 needed for

Zp,, computed in both schemes on the 641 ensemble with am = 0.000678.
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(y*,y") scheme
q/GeV | 2.18326 2.61991 3.05656 3.49322 3.92987 4.36652

VV+AA|1.08793(30) 1.09602(53) 1.10356(30) 1.11137(28) 1.11909(12) 1.12751(11)
v 1.03160(12) 1.03005(15) 1.02984(8) 1.03049(8) 1.03162(5) 1.03327(4)
A 1.03076(11) 1.02976(17) 1.02972(8) 1.03042(8) 1.03159(5) 1.03324(5)

(¢,4) scheme
q/GeV | 2.18326 2.61991 3.05656 3.49322 3.92987 4.36652

VV+AA|1.18143(36) 1.17928(112) 1.17863(65) 1.18050(63) 1.18350(28) 1.18855(25)
v 1.10353(55) 1.09220(57) 1.08465(34) 1.08013(31) 1.07727(14) 1.07605(12)

A 1.10308(55) 1.09196(57) 1.08453(34) 1.08005(31) 1.07723(14) 1.07601(12)

TABLE XLI. Vertex functions of the four-quark operators Ayya4 and the bilinears Ay and A4 needed for

Zp,» computed in both schemes on the 32Ifine ensemble with am = 0.0047.

ZgK"SZ) (3 GeV,a)

241 321 481 641 32Ifine 32ID

(Vii, V)| 0.9161(5) 0.9409(2) 0.91397(3) 0.94106(2) 0.9617(1) -
(d.¢) |0.9568(2) 0.9787(1) 0.954452(4) 0.978152(2) 0.9995(1) -

73 (1.4363 GeV,a)

0.9546(10) 0.9809(93) - - - 0.9210(8)

~—

(Vi Vuu
(g,g) 1.0488(16) 1.0638(20) - - - 0.9992(11)

TABLE XLII. Bk renormalization factors ZgK"SZ) computed on the various ensembles. For the 321, 241 we
quote values at both 1.4363 GeV and 3 GeV, which are used to compute the step-scaling factor. For the
coarse 321D ensemble we only quote the value at the lower scale, and for the 481, 641 and 32Ifine we do not
quote the values at the lower scale as they are not needed for our analysis. These values do not include the

effect of the uncertainty on the lattice spacing in their errors.
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(Vs Yu) |0.9573(21)
(4.¢) |0.9103(31)

TABLE XLIII. Continuum non-perturbative scale evolution Gé‘j{l ’SZ)(u, Ho) extracted from the 241 and 321
lattices in two SMOM-schemes. As explained in the text, we choose Ly = 1.4363 GeV and U = 3 GeV.

These values do not include the effect of the uncertainty on the lattice spacing in their errors.
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Appendix H: Global fit forms

The ChPT forms and their associated finite-volume corrections were originally determined in
Ref. [@] and the analytic forms in Refs. [B, ]. We have subsequently @, B, Q] added addi-
tional terms describing the scaling behavior and the dependence of the quantities on the heavy sea
and valence quark masses where appropriate. In this analysis we also introduce linear fit forms
to describe the Wilson flow scales. For the convenience of the reader we collect these disparate
formulae below.

The ChPT forms for the pseudoscalar mass and decay constant are [B, B, ]:

x + m my—+m S
myzcy = %[14_14 n(X)ﬁXy?Xl)]+cmmthy(mh_mzhy )7 (Hl)
fxy =f [1 + C?az +Lfn(Xx:Xy7Xl)] + C fremy, (mh - mzhys) . (H2)

Here m, and m, are the (partially-quenched) valence light quark masses, m; is the sea light quark
mass and my, the sea heavy quark mass. The quantity X, = 2Bm,., and the superscript A above the
a’ coefficient denotes the gauge action. We use the following notation for the gauge actions: I for
the Iwasaki action and ID for the Iwasaki+DSDR. The logarithmic terms L™ are defined in Eq.
B32 and B33 of Ref. [Q] for non-degenerate and degenerate valence quark masses, respectively.
Similarly, L/7 are given in Eqs. B36 and B37 of the same document. For the kaon mass, decay

constant and bag parameter we use the following forms [B, B, , ]:

A A
m)%y —m®) [1 + % + ]20_)2&} + Cimgmy (my — mzhys) + Cing,my, (mp, — mzhys) , (H3)
A3 A4
fry = f(K) [1 +C?K7aa2 + 7)(1 + f)z(x 4+ L/ (mel)} +ch7my(my — mghyS) + ¢y, (M, — mghys) ,
(H4)
CBx.m Xl | CBg,mXx Xi Xx
By =By |14, ja° + 215 4 2B 2 210g(—2> +
L f f 321 f Ny
CBKJ"y (my - mzhys) + CBg.my, (mh - mghys> y (HS)

where m, and m, are the heavy and light valence quark masses, respectively, and m; and m, are as
above. Here the logarithmic term L/X is defined in Eq. B47 of Ref. [Q]. For the Omega baryon

massS we use

h h
Myyy = m(Q) + Cmq, 1M + ch7v<mV - mz ys) + ch,v(mh - mz yS) ) (H6)
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where m,, is the valence heavy quark mass.

The analytic forms for the pseudoscalar mass and decay constant are [Q, B]
m)%y =C,"+C (mx+my)/2+szz+C3(mh—m2hys> (H7)
o = C(];"(l +CImAG?) 4 Cy (my +my) /24 Camy + C3(my, — mzhys) (HY)

where again, m, and m, are the valence light quark masses, and n; and m, are the sea light and

heavy quark masses. For the kaon mass, decay constant and bag parameter [B, B, ],
m)%y =Cy* +C" my+ C)my + C3* (my, — mzhys) +Cy* (my, — mghys) , (H9)
foy = CIK (1 CLAGE) + Cl¥my + CJFmy + CF (my — mP™) +CJ¥ (my —mP™), (H10)
Byy = CE¥ (1 + CBxAG?) + CB¥ my + CB¥ my + B (my — mP™™) + CBX (my, — ™), (HI11)

where, as before, m, represents the heavy valence quark. Finally the analytic function for the

Omega baryon mass is
My = Co® 4 C1 %y + Cy2 (my — ml™™) + CF2 (g, — ™), (H12)

where again m, is the valence heavy quark mass. In general, the coefficients for these analytic
functions are ordered as follows (skipping entries as appropriate): The valence light quark mass
dependence; the sea light quark mass dependence; the valence heavy quark mass dependence; and

the sea heavy quark mass dependence.

For this analysis we also define the following functions for the Wilson flow scales té/ % and wo:
h
Wo = Cup0(1+ ¢, 4a®) + Cyoamy + oy p(my —mj ), (H13)
A 2 h
Vio=c ol +cis a )+ g ¢ g p(my —my™). (H14)

These fit functions are used for both the ChPTFV/ChPT and analytic ansitze.
Note that in the expressions above we do not show the a? coefficient for the pion, kaon and Omega

baryon masses as they are fixed to zero by our choice of scaling trajectory (cf. Section V.A of

Ref. [B]).
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