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Abstract

This paper addresses the modeling of hysteresis in ferroelectric materials through consideration
of domain wall bending and translation. The development is considered in two steps. In the �rst
step, dielectric constitutive relations are obtained through consideration of Langevin, Ising spin and
preferred orientation theory with domain interactions incorporated through mean �eld relations. This
yields a model for the anhysteretic polarization that occurs in the absence of domain wall pinning.
In the second step, hysteresis is incorporated through the consideration of domain wall dynamics and
the quanti�cation of energy losses due to inherent inclusions or pinning sites within the material. This
yields a model analogous to that developed by Jiles and Atherton for ferromagnetic materials. The
viability of the model is illustrated through comparison with experimental data from a PMN-PT-BT
actuator operating at a temperature within the ferroelectric regime.
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1 Introduction

An inherent property of ferroelectric materials is the presence of hysteresis in the relation between
an applied �eld and the resulting polarization. This phenomenon is associated with the domain
structure of the materials and must be accommodated in applications which employ ferroelectric
components. In certain materials, such as relaxor ferroelectrics, hysteresis can be minimized in a
di�use transition region through the choice of stoichiometry and operating conditions. For example,
a signi�cant advantage of PMN-PT actuators lies in the fact that they produce large strains with
minimal hysteresis when employed near their Curie point. Similarly the hysteresis exhibited by PZT
actuators at low to moderate drive levels is su�ciently small to permit the use of linear design and
control methodologies. However, at the high drive levels and general temperatures encountered in
many current applications, the level of hysteresis in both PMN-PT and PZT elements is signi�cant
and must be accommodated to attain the full potential of these materials in high performance
actuator design. At a fundamental level, the presence and nature of hysteresis loops represents a
basic property characterizing ferroelectric materials. At the system level, hysteresis generates internal
heat in the actuator which can cause thermal runaway in insulated systems. Highly hysteretic devices
also require closed loop control for precision displacement actuation. To better understand and utilize
these actuator materials, the fundamental mechanisms underlying the hysteresis must be ascertained
and eventually modeled.

In an e�ort to provide a model which incorporates aspects of the underlying physical mecha-
nisms and is appropriate for high performance actuator and control design, we consider a theory for
ferroelectric hysteresis which is based on domain wall dynamics and energy losses due to inherent in-
clusions in the material. Although various types of hysteresis curves can be generated in ferroelectric
materials, sigmoid curves such as that shown in Figure 1 are common in applications, and the form
of hysteresis that we shall address here. This theory is the ferroelectric analogue of that developed
by Jiles and Atherton for ferromagnetic materials [27].

Ferroelectric Domain Theory

It has long been recognized that domain and domain wall mechanisms within ferroelectric materi-
als result in phenomena such as hysteresis, aging and fatigue. Initial investigations focussed primarily
on mechanisms leading to domain formation, nucleation and growth in single crystal BaTiO3. Cas-
pari and Merz provided an early analysis of the mechanisms leading to linear and quadratic strains
in single crystal ferroelectric crystals [5]. They concluded that the spontaneous polarization and
domain e�ects on the electromechanical response of the material are signi�cant and demonstrated
that a linear piezoe�ect results when domain e�ects were minimized through the application of an
external �eld which aligned domains. Caspari and Merz postulated that hysteresis is due to the
presence of parallel and antiparallel domains which switch at various �eld strengths.

Fundamental investigations regarding the nucleation and growth of domains in BaTiO3 were
provided by Merz [34] and Little [32], and were extended by Drougard [11] and Miller and Weinreich
[35, 37]. In concert, these investigations established that both nucleation and domain wall motion
contributed to polarization reversal in BaTiO3. The dependence of polarization reversal on domain
wall motion illustrated that in certain aspects, this e�ect is analogous to magnetization reversal in
ferromagnetic materials. Subsequent experiments have elucidated further details regarding domain
nucleation and growth (e.g., see [40, 41]) and numerous models have been proposed to quantify
domain phenomena and their e�ect on hysteresis and fatigue [20, 23, 24, 43, 45].

An important component in domain and domain wall theories is the e�ect due to impurities or
inclusions in the materials. Miller and Savage observed that domain wall motion is dependent upon
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the impurity levels of the crystal and considered a model based on a surface layer adjacent to the
domain wall [36]. Laikhtman extended this idea to develop a model for the bending of domain walls
pinned by inclusions or defects in the material [30]. This model was developed under the premise
that the application of an external �eld produces a force which acts as a pressure on the wall and
causes it to bend in a manner analogous to a pinned membrane. The resulting model was derived
using elasticity theory and accounts for the inertia of the domain wall as well as certain anisotropy
and temperature e�ects. Finally, Laikhtman observed from experimental evidence in [14, 19] that
domain walls exhibit an \e�ective viscosity" which depends on the concentration of defects. This
provides an irreversible component to the polarization which Laikhtman incorporated through the
inclusion of factors modeling the dissipation of heat. Finally, it is noted that this theory breaks down
if the modeled wall comes in contact with remote defects. We note that an overview of the \friction"
e�ects and dielectric losses due to domain wall motion can be found in [6] and [50, pp. 402-427].

The ideas underlying the in
uence of pinning sites on domain wall dynamics were extended by
Fedosov and Sidorkin [12]. They concluded that for low displacement levels (on the order of the
lattice constant), domain walls can be considered as moving as a whole. For higher displacement
levels, however, pinning e�ects become signi�cant and local bending between pinning sites should be
considered. A comprehensive analysis of �eld, frequency and thermal e�ects on domain wall dynamics
in relaxor ferroelectrics has been provided by Chen and Wang [7]. These authors note that at low
�eld levels with high frequencies, the dielectric behavior of the material can be primarily attributed
to the bending of domain walls pinned at inclusions. For large applied or internal �elds, the local
energy barriers associated with pinning sites are overcome and the domain walls move for extended
distances. We note that these localized energy barriers provide a thermodynamic mechanism for
describing the \e�ective viscosity" and \frictional" domain wall e�ects reported in [30, 50].

The combination of the bending mechanisms described in [7, 12, 30], and the energy barriers
detailed in [7] indicates that both reversible and irreversible mechanisms contribute to ferroelectric
hysteresis. Furthermore, the analysis and experiments reported in these investigations indicate that
these mechanisms are due to the pinning of domain walls at defects in the material and the energy
input required to move domain walls across pinning sites. The discussion in the subsequent section
summarizes certain previous approaches used to quantify these e�ects and provides a background
for the model presented here.
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Figure 1. Hysteresis loop measured at a temperature of T = �20o C in a PMN-PT-BT sample
whose Curie temperature is Tc = 45o C.
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Hysteresis Models

The nature of current hysteresis models for ferroelectric materials can be roughly categorized as
follows: (1) microscopic theories based on quantummechanics, classical elasticity and electromagnetic
relations, or thermodynamic laws, (2) macroscopic theories based upon phenomenological principles,
or (3) semi-macroscopic theories which are derived using a combination of approaches.

Microscopic theories for ferroelectric materials generally address the previously described polar-
ization processes at the lattice or domain level. Model development at the lattice level is illustrated
by the theory of Omura et al [42]. In their approach, the free energy for a one-dimensional ferro-
electric lattice system is represented in terms of the summed moments and coupling coe�cients at
the atoms in the lattice. Hysteresis is incorporated through the inclusion of viscosity coe�cients at
each lattice site. Simulation results demonstrate that the model yields reasonable families of hys-
teresis curves but requires a large number of degrees of freedom to accommodate the atoms in the
one-dimensional lattice (the examples were generated with N = 250).

For simple stoichiometries, microscopic models of this type are theoretically plausible. For the
crystalline conditions encountered in present actuator designs, however, it is di�cult to construct
tractable microscopic models which accommodate attributes such as grain boundaries and intergran-
ular stresses as well as the polycrystalline nature of the materials. Moreover, microscopic models at
the atomic or lattice level are often di�cult to employ in control design due to the large number of
required states and parameters.

The domain wall models of Fedosov and Sidorkin [12] and Laikhtman [30] are also local in
nature and hence would require either macroscopic averaging or a large number of parameters when
employed in actuator characterization or design. However, the concepts underlying these models are
in accordance with the approach employed in this paper for modeling the reversible component of the
polarization with the primary di�erence in philosophy residing in our use of macroscopic parameters
which quantify \average" properties of the material.

Numerous macroscopic models for hysteresis processes in ferroelectric materials have been de-
rived using empirical or phenomenological principles. In some cases, these models are motivated by
physical domain processes while other models circumvent poorly understood physics through purely
mathematical characterizations. Models in the latter category are advantageous when the underlying
physics is di�cult to quantify. Due to their nature, however, it is di�cult to employ known physics
or physical measurements to directly construct such purely phenomenological models or update them
to accommodate changing operating conditions.

A large class of hysteresis models have been derived through �ts obtained with hyperbolic tangent
and cotangent functions. As detailed in Section 2 of this paper, Langevin functions involving the
hyperbolic cotangent and Ising spin models yielding the hyperbolic tangent arise when Boltzmann
statistics are used to derive the anhysteretic (hysteresis-free) response in ferroelectric and ferromag-
netic materials. These representations provide natural envelops for phenomenological quanti�cation
of hysteresis families.

Hom and Shankar have demonstrated that certain hysteresis curves can be generated through
the appropriate choice of parameters in the Ising spin model [22]. As illustrated by their results,
however, this method produces hysteresis curves in which the transition from one saturation region
to the other is much steeper than that observed in typical ferroelectric applications.

More gradual transitions can be obtained by employing Langevin or hyperbolic cotangent func-
tions which are shifted to coincide with the remanence polarizations. This technique was employed
by Zhang and Rogers when modeling hysteresis in piezoceramic materials [54] and Miller et al for
characterization hysteresis in ferroelectric capacitors [38]. While this technique often provides ac-
curate model �ts with a small number of required parameters (in some cases two), its capabilities
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for general applications involving symmetric and asymmetric minor loops appears limited. In the
context of the underlying physics, the shifting of the anhysteretic curves provides a phenomenological
mechanism for modeling the \viscosity" or energy losses which occur during domain growth through
domain wall movement.

Another class of phenomenological hysteresis models are based upon the determination of empir-
ical laws which quantify the rate of dipole or polarization switching. Based on observations by Merz
[34], Landauer et al [31] proposed a model which quanti�es the rate of polarization switching in terms
of the current and saturation polarization and applied �eld. Applying a similar philosophy, Chen
and Montgomery [6] developed a model in which the rate at which dipoles align with the applied
�eld is speci�ed as a nonlinear function of the �eld. Both approaches provide phenomenological
characterizations of the rate at which domain walls move.

Preisach and generalized Preisach models have also been widely used to characterize hysteresis in
ferroelectric materials. In their classical form, Preisach operators are constructed from linear com-
binations of multivalued kernels [33]. The coe�cients for each kernel represent the input level and
magnitude when switching occurs between two saturation states which de�ne the kernel. When used
to quantify magnetic hysteresis, the kernel has been interpreted as representing diametrically oppo-
site dipole con�gurations with the coe�cients interpreted as quantifying the �eld inputs required for
dipole switching and degree to which they switch at the points. While a similar interpretation can
be made for ferroelectric processes, the techniques are more commonly considered as phenomeno-
logical and hence provide a purely mathematical model for the process. Generalized Preisach or
Krasnoselskii-Pokrovskii models di�er through the choice of kernel. As detailed in [2], the classical
Preisach operators are discontinuous with respect to both the parameters and time. This is allevi-
ated in Krasnoselskii-Pokrovskii operators through the use of smooth ridge functions which provide
an envelop of admissible families. We note that the construction of Krasnoselskii-Pokrovskii kernels
through translations of ridge functions is quite similar in philosophy to the use of shifted anhysteretic
curves employed in the models of Miller et al [38] and Zhang and Rogers [54].

The modi�cations necessary for employing the classical Preisach techniques for ferroelectric hys-
teresis are illustrated by the models developed by Ge and Jouaneh [17, 18]. As illustrated by both nu-
merical and experimental examples, this technique has been used accurately characterize both major
and minor hysteresis loops in piezoceramic actuators. The development of Krasnoselskii-Pokrovskii
hysteresis models for piezoceramic actuators has been considered by Galinaitis and Rogers [15, 16].
References [16] also provides an overview concerning the construction of inverse operators for control
methods based on output linearization.

Finally, semi-macroscopic models are typically derived using a combination of thermodynamic
and phenomenological principles. The goal in these approaches is to employ energy-based relations to
the extent possible so that known physics can be used to facilitate model construction and updating.
Phenomenological principles contribute to aspects of the constitutive equations and the development
of macroscopic averages of microscopic properties such as the intergranular stresses and domain wall
pinning site energies.

An illustration of this type of approach can be found in the hysteresis model of Yoo and Desu
for ferroelectric thin �lms [53]. The hysteresis is characterized through consideration of three stages
in the polarization process: domain nucleation and growth, domain merging, and domain shrink-
age. The dynamics in these stages are developed through the combination of physical mechanisms
underlying polarization reversal and macroscopic averages of certain domain properties. The do-
main wall model of Chen and Wang [7] for relaxor ferroelectric materials can also be considered as
semi-macroscopic. In their development, Chen and Wang employ energy relations in combination
with phenomenological relations to obtain microscopic polarization rate equations and correspond-
ing macroscopic constitutive equations. Aspects of the model are formulated in the framework of
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dislocation theory for plasticity and anelasticity which leads to a fairly general model for domain
wall dynamics. While low temperature hysteresis loops are used to provide evidence of domain wall
motion, this investigation does not address per se the modeling of hysteresis in relaxor ferroelectric
materials.

This paper describes a hysteresis model which is semi-macroscopic in nature and is based upon
the quanti�cation of the domain wall energy in the material. For an ideal material which is free
from inclusions or second-phase materials, domain wall movement is unimpeded and the relation
between applied stresses, electric �elds and temperatures, and the resulting hysteresis-free or anhys-
teretic polarization is modeled by nonlinear constitutive equations. As detailed in [22], appropriate
constitutive relations are derived through thermodynamic theory combined with phenomenological
relations such as Hooke's law. In actual materials, however, domain wall movement is impeded by
inherent inclusions within the material. The model presented here quanti�es the resulting hysteresis
through consideration of the energy required to translate domain walls and break pinning sites. An
`average' measure of this energy is employed to obtain a model which requires the identi�cation of
only �ve parameters. Due to the small number and physical nature of certain parameters (e.g., the
saturation polarization Ps), the model is easily constructed and updated. We note that this model
is the ferroelectric analogue of that developed by Jiles and Atherton for ferromagnetic materials
[27]. While aspects of the Jiles/Atherton theory were employed in [51] to characterize hysteresis in
stress/strain relations for LiCsSO4 crystals, this is the �rst application of this approach to quantify
hysteresis in the E-P relation for ferroelectric materials. We also point out that while certain ferro-
electric actuator materials provide the motivation, the model is general in nature and can be applied
to a variety of ferroelectric materials including capacitor and electro-optic materials.

Certain aspects of the constitutive theory of Hom and Shankar are summarized in Section 2.
This discussion includes the development of the classical Langevin and Ising spin models as well
as a third model which combines attributes of the two. This section also provides a discussion
concerning the incorporation of interdomain coupling to provide the e�ective �eld observed at the
domain level and outlines the extension of the models from the microscopic to macroscopic levels.
The domain wall theory contributing to both reversible and irreversible changes in polarization is
presented in Section 3. To simplify the development, the �nal hysteresis model is formulated through
scalar-valued relations between the applied �eld E and resulting polarization P . This formulation
is suitable for a variety of current applications and materials. At various points in the development,
however, intermediate vector-valued relations are required and the notation E and P are used to
denote the respective �eld and polarization in lR3. This also provides a framework for developing the
corresponding vector-valued hysteresis model if required by the application. In the �nal section, the
viability of the model is illustrated through comparison with experimental data from a PMN-PT-BT
actuator.

2 Constitutive Theory for Ferroelectric Materials

In this section we consider the development of constitutive equations which describe the anhysteretic
(hysteresis-free) mechanical and dielectric behavior of certain ferroelectric materials. Hysteresis
e�ects are included in the next section through quanti�cation of energy loss due to pinning sites in
the material.

Following classical developments for electrostrictive materials, the constitutive relations are as-
sumed to be of the form

� = Y (e�Q33P
2)

E = �2Q33P� + F(T; P ) :
(1)
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Here � denotes the axial stress, e denotes the longitudinal strain, Y is the closed-circuit elastic modu-
lus, T is the temperature, P denotes the polarization andQ33 denotes the longitudinal electrostrictive
coupling coe�cient. We note that these constitutive relations can be modi�ed for piezoelectric ma-
terials by replacing the quadratic polarization term in the mechanical relation by a linear term.

In the remainder of the section, we summarize three techniques for modeling the function F

which quanti�es the dependence of the electric �eld E on the temperature and polarization. All three
models are based upon the application of Boltzmann's law to various dipole orientations within the
ferroelectric crystal. This follows the approach employed by Hom and Shankar [21, 22] and in one case
provides a Langevin model analogous to that typically employed in ferromagnetic applications. We
note that other techniques can be employed for modeling the anhysteretic constitutive relations for
certain ferroelectric materials and refer the reader to [8, 44] for discussion concerning two alternative
models.

2.1 Noninteracting Cells

We view a ferroelectric crystal as a lattice of cells, where each cell possesses a permanent dipole
moment with an associated direction. Normally, the cell has a �nite number of possible orientations
(eight for a tetragonal system). When free of electric �eld and above the Curie temperature, thermal
agitation creates a random distribution of orientations and the ceramic has an average polarization of
zero. The application of an electric �eld forces some dipole moments to switch to an orientation closer
to the direction of the �eld. The resulting distribution is then no longer random and a macroscopic
polarization develops. We point out that collections of neighboring cells having the same polarization
form the domain structure of the crystal. The degree of switching increases with increasing �eld until
the global polarization eventually saturates when all the cells have optimally oriented their dipole
moments relative to the �eld. For the development in this section, we will assume that the cells do
not interact and use statistical mechanics to derive three nonlinear models for the dielectric response
of this system. The models di�er only in the assumptions made about the cells' possible orientation.
The e�ects of cell interaction are then considered in Section 2.2.

For a dipole moment p0 in an electric �eld E, the potential energy is given by

E = �p0 � E = �p0E cos � (2)

where p0 = jp0j; E = jEj. For noninteracting cells and moments, classical Boltzmann statistics can
be used to express the probability of dipoles occupying certain energy states. Letting kB denote
Boltzmann's constant, the thermal energy is kBT and the probability that a dipole occupies the
energy state E is

�(E) = Ce�E=kBT : (3)

The parameter C is later speci�ed to ensure that integration over all possible con�gurations yields
the total number of moments per unit volume N . We now consider three models based on di�ering
assumptions concerning the moment orientations.

Langevin Model

The �rst model is obtained under the assumption that the material is isotropic and a cell's
orientation can be in any direction. This situation is equivalent to a dielectric 
uid [13] where the
dipole moments are free to move in any direction upon application of the electric �eld and yields the
Langevin model commonly employed in ferromagnetic applications.
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Under the assumption of an isotropic material, the a priori number of moments between � and
� + d� is proportional to the surface area 2� sin �d� on a unit sphere. With the probability of
occupying that state given by (3), the number of moments in this con�guration can be expressed as

dN = 2� sin �d�Cep0E cos �=kBT :

To evaluate C, we note that the integration of dN over all possible con�gurations must equal the
total number of moments per unit volume N ; hence

C =
N

2�
R �
0
ep0E cos �=kBT sin � d�

=
N

4�kBT
p0E

sinh
�
p0E
kT

� :
(4)

Because each cell contributes p0 cos � to the polarization, the total polarization is

P = 2�

Z �

0

p0Ce
p0E cos �=kBT cos � sin � d�

= r�p0C

"
kBT

p0E
cosh

�
p0E

kBT

�
�

�
kBT

p0E

�2
sinh

�
p0E

kBT

�#
:

Using (4) to eliminate C, we obtain the Langevin relation

P = p0N

�
coth

�
p0E

kBT

�
�
kBT

p0E

�
(5)

between the �eld and polarization.

Ising Spin Model

The second model examined in this section is the Ising spin model which is derived under the
assumption that only two orientations are possible in one cell: one in the direction of the electric
�eld and the other in the direction directly opposite the �eld. Letting N+ denote the number of cells
with the same orientation as the �eld and N� denote the number of cells with opposing orientation,
the total number of cells is

N = N+ +N� : (6)

The application of Boltzmann's equation then yields the expressions

N+ = Ce�p0E=kBT ; N� = Cep0E=kBT (7)

for the distribution of cells in each orientation. Combining (6) and (7), we obtain

N = 2Ccosh

�
p0E

kBT

�
; (8)

which relates N and C for the Ising spin model. The polarization is the sum of each cell's contribution

P = �p0N+ + p0N� = 2p0Csinh

�
p0E

kBT

�
:
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Using (8) to eliminate the parameter C yields the Ising spin model

P = p0Ntanh

�
p0E

kBT

�
(9)

relating P and E. This form of the anhysteretic polarization was used by Hom and Shankar in the
development of a constitutive model for electrostrictive relaxor ferroelectrics [21, 22]. The reader is
referred to [25, pages 214-215] for a discussion of the quantum mechanical rami�cations of the Ising
spin model for ferromagnetic materials.

Preferred Orientation Model

Neither the Langevin model nor the Ising spin model completely represents the actual situation
in a ferroelectric lattice due to the �xed number of orientations attained by the cell. Since a poly-
chrystalline ceramic has a random distribution of grains, these orientations should also be random.
For our third model, which we call the Preferred Orientation model, we assume that a cell has two
possible orientations that have opposite directions like the Ising spin model. However, the axis of
orientation � is uniformly distributed to re
ect the random distribution of the grains. For cells with
a given axis of orientation, the distribution is

N+(�) = C(�)ep0E cos �=kBT (10)

and
N�(�) = C(�)e�p0E cos �=kBT (11)

where N+(�) and N�(�) are the number of cells in the two possible orientations. The total number
of cells with that axis is

N(�) = 2C(�)cosh(p0E cos �=kBT ) =
N

4�
(12)

where N again denotes the total number of cells in the lattice. The polarization for the lattice is
then

P = 2�

Z �

0

[N+(�)�N�(�)]p0 cos � sin �d�

which simpli�es to

P =
p0N

2

Z �

0

tanh(p0E cos �=kBT ) cos � sin �d�

through the use of (10) through (12). Performing the integration yields the formula

P =
p0N

2

�
kBT

Ep0

h
log

�
1 + e�2Ep0=kBT

�
+ log

�
1 + e2Ep0=kBT

�i

+
1

2

�
kBT

Ep0

�2 h
Li
�
�e2Ep0=kBT

�
� Li

�
�e�2Ep0=kBT

�i) (13)

where Li represents the dilogarithm function given by

Li(z) =

Z
0

z

log(1� x)

x
dx :

The model (13) provides a characterization of the E-P relation which incorporates attributes of both
the Langevin and Ising spin models.

8



Macroscopic Relations

The three models (5), (9) and (13) are formulated in terms of microscopic parameters such as p0
and N . To obtain macroscopic versions for use as constitutive laws, the relations must be normalized
to re
ect the bulk properties of the material. We �rst assume that all three models saturate to a
common polarization Ps. Secondly, we assume that they exhibit the same initial permittivity

� =
PsE0T

ETc
;

where E0 and Tc are a scaling electric �eld and the Curie temperature, respectively. Under these
assumptions, the dielectric functions for the Langevin, Ising spin and Preferred Orientation models
are respectively given by

P = Ps

�
coth

�
3TcE

E0T

�
�

E0T

3TcE

�

P = Pstanh

�
TcE

E0T

� (14)

and

P = Ps

�
2E0T

3ETc

h
log

�
1 + e�3ETc=E0T

�
+ log

�
1 + e3ETc=E0T

�i

+
2

9

�
E0T

ETc

�2 h
Li
�
�e3ETc=E0T

�
� Li

�
�e�3ETc=E0T

�i)
:

(15)

The relative behavior of the three models is illustrated in Figure 2. The Langevin model saturates
the slowest since its cells have the most freedom in selecting orientations that are partially aligned
with the electric �eld. The Ising Spin model saturates more quickly since the cells have very little
freedom and must completely orient in the direction of the �eld while the Preferred Orientation
model provides a compromise between the other two models. We note that the Langevin and Ising
spin models have equivalent �rst-order terms but di�er in the third and higher order terms.
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Figure 2. Ising spin, Preferred Orientation and Langevin models for the anhysteretic polarization
with no cell interactions.
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2.2 Cell Interactions

The theoretical development of the previous subsection ignores mutual interaction between the polar
moments of the cells. These interactions are often signi�cant and can lead to both second-order
phase transitions of the type described by Devonshire [10] and domain nucleation and growth. To
incorporate the coupling due to neighboring domains, one typically considers the e�ective �eld acting
on the cell rather than focusing solely on the applied �eld E.

E�ective Fields

The issues concerning the computation of an e�ective �eld are illustrated by the Clausius-Mossotti
equation which models dipole interactions in dielectric 
uids and certain dielectric solids [29]. As
detailed in [1, 13], this model quanti�es the changes in the local electric �eld due to the polarization
in the surrounding dielectric through the approximation of the �eld inside a sphere with a surface
charge equivalent to the polarization. The resulting e�ective �eld is

Ee = E +
1

3�0
P

where �0 denotes the permittivity of free space. Through the incorporation of the polarization compo-
nent, the e�ective �eld accounts for mutual cell interactions and thus provides a better approximation
of the �eld which actually in
uences individual cells.

For materials such as BaTiO3, however, the validity of the Clausius-Mossotti is doubtful [9] which
has prompted the development of more general e�ective �eld models for dielectric solids [1, 39].
Hom and Shankar [22] have also extended this analysis to ferroelectric materials whose anhysteretic
behavior is modeled by the Ising spin model. Under the assumption that it is energetically favorable
for neighboring cells to have the same spin, the e�ective �eld in the absence of an applied stress is

Ee = E + �P (16)

where � � E0=Ps. This model can be extended to materials subjected to an external stress � through
consideration of the e�ective �eld

Ee = E + �P + 2Q33P� (17)

where Q33 again denotes the longitudinal electrostrictive coe�cient.
For the development of subsequent domain wall theory, it will be necessary to relate the e�ective

electric �eld Ee to a corresponding �eld De. For general �elds, D is related to E and P through the
equation

D = �0E + P; (18)

where �0 denotes the free space permittivity, or the relation

D = �E (19)

where � is the permittivity of the substance. It should be noted that for ferroelectric materials, the
permittivity � is in general both nonlinear and multivalued due to hysteresis. For such materials, the
relation (19) has limited value as a constitutive relation until � is characterized. When quantifying
hysteresis losses in the material, we employ the �eld

De = �0 (E + �P + 2Q33P�) : (20)
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This de�nition is analogous to the expression Be = �0(H+�M) = �0He employed for ferromagnetic
materials (e.g., see [26, page 1266] along with [4, 27, 28, 47]) where He and Be respectively denote
the e�ective magnetic �eld and induction.

Macroscopic Constitutive Relations and Phase Transitions

Because the e�ective �eld Ee incorporates the contributions due to interdomain coupling and
applied stresses, we will employ it when describing the general model for the anhysteretic polarization
and developing constitutive relations for the material. The consideration of the e�ective �eld Ee in
(14) yields the Langevin model

P = Ps

�
coth

�
3TcEe

E0T

�
�

E0T

3TcEe

�
(21)

and the Ising spin model

P = Pstanh

�
TcEe

E0T

�
(22)

for the anhysteretic polarization, with analogous treatment in the Preferred Orientation Model. In
the case of constant temperature, the anhysteretic polarization provided by the Langevin and Ising
spin models can be expressed as

P = Ps

�
coth

�
Ee

a

�
�

a

Ee

�
(23)

and

P = Pstanh

�
Ee

a

�
(24)

where a = E0T
3Tc

or a = E0T
Tc

are constants which must be estimated for a given material or device.
To obtain a constitutive dielectric equation commensurate with the mechanical constitutive re-

lation (1), the characterization must be polarization-based. This means that the dielectric relations
developed in this section must be inverted to obtain the electric �eld as a function of the polariza-
tion. Of the three models, this can be accomplished in closed form only for the Ising spin model.
For that model, inversion of the relation (22) and combination with the mechanical relation yields
the constitutive equations

� = Y (e�Q33P
2)

E = �2Q33P� �
E0

Ps
P +

E0T

Tc
arctanh

�
P

Ps

� (25)

so that F in (1) is given by

F(T; P ) = �
E0

Ps
P +

E0T

Tc
arctanh

�
P

Ps

�
:

Finally, the consideration of the dielectric constitutive equation in (25) illustrates the nature of
phase transitions in the material. Consider the relation

P

Ps
=

T

Tc
arctanh

�
P

Ps

�
(26)

which results in the absence of an applied �eld (E = 0) and stress (� = 0). The left hand side
represents the force driving cells to have the same orientation while the right hand side represents
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the tendency for random orientation due to thermal agitation. When the temperature is above the
transition temperature Tc, the only solution to (26) is P = 0 as shown in Figure 3a. In this case,
thermal agitation overpowers the ordering force and the random orientation of the dipoles leads
to zero average polarization in the ceramic. Below the transition temperature, three polarization
solutions exist for (26). The solution P = 0 is unstable while the other two solutions are stable
and represent a spontaneous nonzero polarization. These nonzero solutions determine the physical
behavior of the ferroelectric materials at temperatures below the Curie point. For a �xed temperature
T below the Curie point Tc, the relation between an input �eld and the resulting polarization is
plotted in Figure 3b. The instability at P = 0 is noted in both the initial polarization and the
behavior at the coercive �eld values.
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Figure 3. (a) The phase transition predicted by the Ising spin model with cooperative interaction
between cells; (b) Relation between an input �eld E and the polarization of PMN-PT for T < Tc.

3 Domain Wall Theory

The relations (23) or (24), in combination with the e�ective �eld relations (16) or (17), quantity the
anhysteretic relation between the electric �eld E input to the material and the resulting polarization
P . For most values of the parameters � and a, the relation is single-valued. As illustrated in
Figure 3b, however, one can obtain a multivalued relation for certain parameter choices. While this
latter con�guration produces a curve which quanti�es certain aspects of hysteresis, the transition
from one saturation region to the other is much steeper than that observed in typical ferroelectric
applications.

The anhysteretic domain process is dependent upon unimpeded domain wall movement and is
reversible and conservative. As illustrated by the experimental data in [22], this is often not the case
and the material exhibits hysteresis and nonreversible behavior. In this model, we incorporate this
hysteresis through consideration of energy losses at domain wall pinning sites.

3.1 Pinning Energy

As indicated in the �rst section, all ferroelectric materials exhibit material nonhomogeneities, voids,
and stress variations which are energetically favorable for domain wall formation and pinning. Be-
cause these inclusions inhibit domain wall movement, they lead to energy loss as the material is
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cycled through a full E-P loop. To incorporate the hysteresis observed under constant temperature,
quasistatic operating conditions, we quantify the reversible and irreversible domain wall dynam-
ics exhibited at pinning sites. This theory follows closely that derived by Jiles and Atherton for
ferromagnetic materials [27].

We consider �rst the energy required to break the pinning site and hence move the domain wall.
As detailed in [7], a pinning site is broken when su�cient energy is provided to overcome a local
energy barrier. Consider the domain con�guration depicted in Figure 4 in which two domains are
separated by a domain wall situated at a pinning site. The dipole moments per unit volume in the
two domains are denoted by p and p0 with p assumed to be aligned with the e�ective electric �eld
Ee (this assumption simpli�es the discussion and produces the same �nal model as that determined
with a general con�guration). The angle between the moments is denoted by �.

For ferromagnetic materials, Jiles and Atherton hypothesized that the energy required to over-
come the pinning sites, and hence move the domain wall, is proportional to the change in energy
required to align the magnetic moments with the �eld [27]. We make the same assumption for
ferroelectric materials.

For a dipole moment p, the energy due to the e�ective �eld is

E = �p �Ee (27)

so that the change in energy required to rotate the moments p0 in the direction of the �eld is

�E = �p � Ee + p0
� Ee :

Under the assumption that the energy Epin required to break pinning sites is proportional to this
change, it follows that

Epin = �pEec1(1� cos �)

where p = jpj; Ee = jEej and c1 is the constant of proportionality. To eliminate c1, we let E� denote
the energy for 180o domain walls and note that E� = 2pEec1. This implies that

Epin = �
1

2
E�(1� cos �) : (28)

The relation (28) quanti�es the energy required to break a single pinning site. To obtain a
corresponding macroscopic relation which quanti�es the behavior of the bulk material, we employ
the techniques of Jiles and Atherton [27] and let n denote the average density of pinning sites and
hE�i denote the average energy for 180

o walls. The energy required to break pinning sites if a domain
wall of area A moves a distance x is then

Epin(x) = �

Z x

0

n hE�i

2
(1� cos �)A dx :

pp

E e

Domain Wall

θ

Figure 4. Domain wall and orientation of dipole moments p;p0 and electric �eld Ee.
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Because the polarization is the total contribution due to dipole moments in a given volume, the
change in polarization due to the reorientation of moments is

dP = �p(1� cos �)Adx : (29)

With the de�nition k = nhE�i
2p , (28) and (29) can be combined to yield the expression

Epin(P ) = �k

Z P

0

dP (30)

for the energy required to break pinning sites. Note that this relation provides a macroscopic de-
scription due to the averaging of domain density and energy in the de�nition of k.

Completely analogous arguments follow for 90o domain walls as well as materials which exhibit
rhombohedral symmetries (71o=109o domain walls) with the �nal expressions for the pinning energy
di�ering only in the values of k. Because the number of pinning sites and average energy are unknown,
the parameter k must be estimated for any of these domain con�gurations through a least squares
�t to data.

3.2 Work in the Polarization Process

To quantify the irreversible and reversible polarization processes, we must determine the work re-
quired to attain a speci�ed polarization level. This can be formally obtained from classical expressions
for the work required to con�gure a speci�ed charge distribution or derived from �rst principles of
electrostatic �eld theory.

As detailed in [46], if � denotes a charge density, then the work necessary to produce a change
�� is given by

�W =

Z
V
��� dV

where � is the associated scalar potential. The application of Maxwell's equations then yields

�W =

Z
V
E � �D dV

so that the change in energy density is E � �D. This yields the classical expression

w =

Z
D

0

E � dD (31)

for the energy required to create the �eld at a point.
For this analysis, we are interested in the work required to attain a speci�ed polarization level

through the application of the interaction �eld De. Such a relation can be formally obtained by
employing the relation (18) in (31) to obtain

w =
1

�0

Z
D

0

D � dD�
1

�0

Z
D

0

P � dD :

Over a full cycle, the �rst term on the right hand side is zero so that the losses are given by

w = �
1

�0

I
P � dD :

Employing the interaction �eld De, one is then left with the energy functional

w =
1

�0

Z
De

0

P � dDe (32)

for specifying hysteresis losses over a portion of the polarization cycle. Further details regarding the
derivation of the functional (32) are provided in Appendix A. We point out that the energy functional
(32) is analogous to that employed by Jiles and Atherton [27] in their magnetization model.
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3.3 Irreversible Polarization

As detailed by Chen and Wang [7], the dielectric properties of ferroelectric materials are in
uenced
by both the bending behavior of domain walls pinned by inclusions and the long-range movement of
domain walls when local energy barriers are overcome. We will denote the respective polarization
components as the reversible polarization and irreversible polarization and employ the strategy of
Jiles and Atherton to model the two phenomena.

To characterize the irreversible polarization, we note that the polarization energy for a given
e�ective �eld level can be expressed as that observed in the ideal (anhysteretic) case minus losses
necessary to overcome local energy barriers and hence break pinning sites. Employing the relation
(32) for the energy and (30) for the losses at pinning sites, this yields

1

�0

Z De

0

Pirr(Ee) dDe =
1

�0

Z De

0

Pan(Ee) dDe �

Z De

0

k
dPirr

dDe
dDe

where Pirr denotes the irreversible polarization and Pan is the anhysteretic polarization given by (23)
or (24) for the e�ective �eld Ee = E + �Pirr. Di�erentiation then yields

Pirr = Pan � ��0k
dPirr
dDe

(33)

where the parameter � = sign(dE) ensures that the energy required to break pinning sites always
opposes changes in the polarization. To obtain an expression which facilitates numerical implemen-
tation, we reformulate (33) to obtain

Pan � Pirr = ��0k
dPirr

dDe

= �k
dPirr

dE

 
1

1 + �dPirr
dE

!

from which it follows that
dPirr

dE
=

Pan � Pirr

�k � �(Pan � Pirr)
: (34)

We note that for certain materials and operating regimes, the indiscriminate use of the di�er-
ential equation (34) can lead to nonphysical solutions when the �eld is reversed in the saturation
region of the hysteresis loop (near the tip in the �rst and third quadrants). Speci�cally, for very
wide hysteresis loops of the type illustrated in Figure 1, direct solution of (34) yields a negative
di�erential electric susceptibility dP

dE when E is reversed and the magnitude of P is less than that
of the global anhysteretic (see Figure 6). This phenomenon is not observed experimentally and the
model is modi�ed slightly for these situations. As noted in [28] where the analogous ferromagnetic
phenomenon is analyzed, domain walls remain pinned when the �eld is initially reversed and the
primary change in polarization is due to the reversible relaxation of bulged domain walls. Hence we
enforce the condition dPirr

dE = 0 until the polarization crosses the anhysteretic curve. This produces
the more physically realistic expression

dPirr

dE
= e� Pan � Pirr

k� � � (Pan � Pirr)
(35)

where

e� =
(

1 ; fdE > 0 and P > Pang or fdE < 0 and P < Pang

0 ; otherwise :
(36)

We point out that this additional constrain is unnecessary for most sigmoid hysteresis curves and is
required only for materials which exhibit large hysteresis losses and are driven to full saturation.
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3.4 Reversible Polarization

A basic tenant of domain and domain wall theory for ferroelectric materials is the observation
that walls exhibit bulging and motion before manifesting irreversible e�ects [7, 12, 30]. While this
reversible component of the polarization is typically smaller than the irreversible component, the
e�ects are still signi�cant and must be incorporated to obtain an accurate model. The development
of the reversible polarization follows closely the theory provided by Jiles and Atherton [27] for
ferromagnetic materials.

To quantify the reversible polarization Prev, we �rst consider the energy required to change the
polarization from Pan(Ee) to P (Ee), where again Ee = E + �P , at a �xed �eld level E. From (27),
it follows that the change in energy per unit volume required to attain this change is

�EV = �[P � Ee �Pan �Ee] :

Under the assumption that jPj = jPanj = P and employing the law of cosines, this yields

�EV = PEe(1� cos �)

=
Ee

2P
(P � Pan)

2

where (P � Pan) = jP�Panj. For �xed �eld values, the force on the domain walls is then

F =
�[�0 � �(E)] � 1

�(E)� �0
(P � Pan)

since P = [�(E) � �0]E. Neglecting higher order terms and denoting the multiplicative constant by
k1 then yields the expression

P = k1(P � Pan);

for the pressure on the domain wall.
To obtain the reversible polarization due to wall movement in response to this pressure, we need

to approximate the displaced volume. To specify the geometry, we consider a domain wall between
two pinning sites separated by a distance of 2y. The wall is assumed to bow an amount x in response
to the applied pressure P with a resulting radius of curvature r (see Figure 5).

If we let ES denote the surface energy of the domain wall, then the pressure can be expressed as

P =
2ES
r

:

Using techniques analogous to those employed in Jiles and Atherton [27], it then follows that

x = r �
q
r2 � y2

=
2ES
P

�

s�
2ES
P

�2
� y2

�
y2P

4ES
(Binomial Theorem)

=
y2k1
4ES

(Pan � P ) :
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Under the assumption that the wall displaces a spherical solid angle, the change in volume is given
by �V = �

6
x(3y2+ x2). For the case in which separated domains are parallel and antiparallel to the

applied �eld, the reversible polarization is

Prev = 2�V p

=
p�y4k1

4ES
(Pan � P ) +

p�

3

 
y2k1

4ES

!3

(Pan � P )3 :

Consideration of �rst-order terms then yields the expression

Prev = c1(Pan � P ) (37)

for the reversible polarization. The constant c1 =
p�y4k1
4ES

must be estimated through a least squares
�t to data since the components p; y; k1 and ES are unknown.

Bowed
Domain
Wall

r y

x

Equilibrium

Pinning Site

Pinning Site

Domain Wall
Position

Figure 5. Geometry of the domain wall with reversible bowing (from Jiles and Atherton [27]).

3.5 Total Polarization

The total polarization can now be speci�ed through the following algorithm. For a given �eld E,
polarization P and constant stress �, the e�ective �eld and anhysteretic polarization are given by
(17) and (23) or (24), respectively. The di�erential equation (35) is then integrated to compute the
irreversible polarization Pirr. Finally, the total polarization P is given by the sum

P = Pirr + Prev : (38)

The reversible polarization Prev can be speci�ed either by (37) or by the expression

Prev = c(Pan � Pirr) (39)

where c = c1
1+c1

. For the remainder of this development, we will employ the expression (39) since it
permits the separation of the reversible and irreversible polarizations.

The full time-dependent model leading from an input �eld E(t) to the output polarization P (t)
is summarized in Algorithm 1 with properties of the model parameters summarized in Table 1. The
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use of the Langevin model yields the anhysteretic polarization (iia) whereas the Ising spin model
yields (iib).

The model in the form summarized in Algorithm 1 is typically employed when characterizing a
material or device. For control applications, however, it can be advantageous to express the output
polarization directly in terms of the input �eld. When the Ising spin model is used to characterize
the anhysteretic magnetization, the expressions (24), (35), (38) and (39) can be consolidated to yield

dP

dE
= (1� c)

dPirr
dE

+ c
dPan
dE

= e�(1� c)
Pan � Pirr

k� � �(Pan � Pirr)
+ c

dPan

dE

=
e�(Pan � P )

k� � �
1�c(Pan � P )

+ c
dPan

dE

=

e� hPstanh �E+�P
a

�
� P

i
k� � ~�

h
Pstanh

�
E+�P

a

�
� P

i + cPs

a
sech2

�
E + �P

a

��
1 + �

dP

dE

�

where ~� = �
1�c . The magnetization at a given �eld level is then speci�ed by the solution to the

di�erential equation
dP

dE
= G(E;P )

P (E0) = P0

(40)

where

G(E;P ) =
1

1� cPs�
a sech2

�
E+�P

a

� �
( e� hPstanh�E+�P

a

�
� P

i
k� � ~�

h
Pstanh

�
E+�P

a

�
� P

i

+
cPs

a
sech2

�
E + �P

a

�)
:

(41)

If one employs the Langevin expression (23) rather than the Ising spin relation (24) for the anhys-
teretic, the function G is given by

G(E;P ) =
1

1 + cPs�
a

�
csch2

�
E+�P

a

�
�

�
a

E+�P

�2� �
( e� hPsL�E+�P

a

�
� P

i
k� � ~�

h
PsL

�
E+�P

a

�
� P

i

�
cPs
a

"
csch2

�
E + �P

a

�
�

�
a

E + �P

�2#)
(42)

where the Langevin function is de�ned by

L(z) � coth(z)�
1

z
:

As detailed in [49], where the analogous magnetization model is considered, the formulation (40) is
directly amenable to inversion. This provides a mechanism for obtaining an inverse compensator for
linear control design.
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Remark 1:

The previous derivation has involved two aspects of the anhysteretic polarization, namely, the
global anhysteretic polarization and local anhysteretic polarization curves. To facilitate implemen-
tation, we summarize pertinent attributes of the two components.

Global Anhysteretic:

The global anhysteretic represents the polarization attained in the absence of pinning sites with
zero remanent polarization. As detailed in Section 2, the global anhysteretic polarization depends
upon the applied �eld E as indicated in the Ising spin model Pan = Pstanh((E + �Pan)=a) or
Langevin model Pan = PsL((E+�Pan)=a). The slope of the curve Pan is determined by the ratio of
the parameters � = E0=Ps and a = E0T=Tc with su�ciently small values of a (e.g., due to T < Tc
for PMN) producing the multi-valued curve plotted in Figure 3b. To illustrate the dependence of the
global anhysteretic polarization on these parameters, the curves obtained with � = 1:53�106 V m=C,
a = 1:8 � 105 (T > Tc for PMN) and � = 1:53 � 106 V m=C, a = 0:7 � 105 (T < Tc for PMN)
are plotted in Figure 6a. It should be noted that the multi-valued curve obtained with the latter
parameter values is the global anhysteretic obtained in Section 4 when constructing the polarization
model for a PMN actuator employed below the Curie temperature.

Local Anhysteretic:

For the formulation of the irreversible polarization developed in Section 3.3, the local anhys-
teretic polarization is computed using the e�ective �eld Ee = E +�Pirr rather than the equilibrium
value Ee = E + �Pan employed for the global anhysteretic. We interpret this as the hysteresis-free
polarization which would result if one started at a point (E;Pirr) on the irreversible polarization
curves and modi�ed the �eld. Because the local anhysteretic incorporates the prevailing irreversible
polarization, we employ it in Algorithm 1 when computing the anhysteretic response to an applied
electric �eld.

The local anhysteretic polarization with the parameter values � = 1:53�106 V m=C, a = 1:8�105

is plotted along with the global anhysteretic and total polarization in Figure 6b. It is noted that
the local anhysteretic more closely resembles the total polarization than does the low temperature,
multi-valued global anhysteretic curve depicted in Figure 6a. Finally, it should be noted that in the
absence of coupling e�ects (� = 0), the local and global anhysteretic curves coincide.
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Figure 6. (a) The global anhysteretic Pan = PsL((E+�Pan)=a), a = E0T=Tc, of PMN for tempera-
tures T < Tc and T > Tc. (b) The local anhysteretic Pan = PsL((E + �Pirr)=a), global anhysteretic,
and total polarization of PMN for T > Tc.

19



We note that in certain applications of the Jiles-Atherton model, the e�ective �eld used to de�ne
the irreversible magnetization is formulated in terms of the total magnetization rather than the
irreversible magnetization. This provides an adequate approximation when reversible e�ects are
small. A similar approximation can be considered for ferroelectric materials, in which case, the
expressions (i) and (iii) in Algorithm 1 are replaced by

(i') Ee(t) = E(t) + �P (t)

(iii')
dPirr
dt

(t) =
dE

dt
�

e� [Pan(t)� Pirr(t)]

k� � �[Pan(t)� Pirr(t)]
dPirr
dP

.

The derivative dPirr
dP

results from expanding (33) with the total polarization employed in the e�ective

�eld. For materials in which the reversible polarization is small, dPirr
dP � 1, and the expression (iii')

is adequately approximated by (iii). This is the case for the magnetism in certain applications where
the Jiles-Atherton model is employed. For ferroelectric materials in which the reversible polarization
is signi�cant, this derivative must be retained if the expressions (i') and (iii') are substituted for (i)
and (iii).

(i) Ee(t) = E(t) + �Pirr(t)

(iia) Pan(t) = Ps

�
coth

�
Ee(t)

a

�
�

�
a

Ee(t)

��
(Langevin Model)

(iib) Pan(t) = Pstanh

�
Ee(t)

a

�
(Ising Spin Model)

(iii)
dPirr

dt
(t) =

dE

dt
�

e� [Pan(t)� Pirr(t)]

k� � �[Pan(t)� Pirr(t)]

(iv) Prev(t) = c[Pan(t)� Pirr(t)]

(v) P (t) = Prev(t) + Pirr(t)

Algorithm 1. Time-dependent model quantifying the output polarization P (t) for � = 0.
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Parameter Physical Property E�ects on Model

� Quanti�es domain
interactions

Increased values lead to steeper slopes for
anhysteretic and polarization curves.

a Shape parameter
for Pan

Increased value decreases slope of Pan.

k Average energy
required to break
pinning sites

Increased value produces wider hysteresis
curve and narrower minor loop.

c Reversibility coe�-
cient

Decrease in value leads to wider hysteresis
curve.

Ps Saturation
polarization

Increase leads to large saturation value for
polarization.

Table 1. Physical properties and e�ects of the model parameters �; a; k; c; Ps. The parameters
� = sign(dE) and e� given by (36) are computed directly from the measured �eld and polarization.

4 Model Validation

The model derived in Section 3 and summarized in Algorithm 1 provides a relation between elec-
tric �elds input to a ferroelectric actuator and the resulting polarization. This model incorporates
the nonlinear constitutive behavior, through either the Langevin or Ising spin relations, as well as
hysteresis due to impeded domain wall movement. When coupled with a mechanical constitutive
relation, such as (1), this provides a characterization of the strains produced by the material.

To illustrate the capabilities of the model, we consider the characterization of a PMN-PT-BT
actuator operating in its ferroelectric range. The material was composed of 12% PT and 2% BT in
solid solution and had a Curie temperature of Tc = 45o C. The data was collected from a stress-free
sample (� = 0 in (25)) at T = �20o C. To maintain quasistatic conditions, the frequency for the
input electric �eld was taken to be ! = 1 Hz for a complete steady-state cycle.

To employ the model, the anhysteretic relations must be speci�ed and appropriate parameters
Ps; a; �; k and c must be ascertained. As noted in Section 2, a variety of models for the anhysteretic
polarization have been developed and employed in ferroelectric applications. For applications in
which anhysteretic polarization data can be obtained (e.g., through the choice of operating tem-
perature or the application of a large oscillating �eld to \break through" pinning sites), the choice
of anhysteretic model can be validated through a �t to the data. For other cases, the choice of
anhysteretic model can be motivated by modeling and theoretical (e.g., thermodynamic) considera-
tions. To model the PMN-PT-BT actuator, we consider both the Langevin and Ising spin models.
These models di�er in their third and higher order terms which produces the di�erence in saturation
behavior illustrated in Figure 2.

The parameters Ps; a; �; k and c must then be determined for the given material. For many
materials, the saturation polarization Ps is well known and values can be speci�ed directly. The
parameters a; �; k; c are less easily speci�ed, however, since they are de�ned in terms of material
properties which are either unknown or not easily measured. Furthermore, the values of a; �; k; c
depend to some extent on the choice of anhysteretic model since they depend upon the shape of
the modeled anhysteretic and energy di�erences between the anhysteretic and measured data. In
applications, a; �; k; c and in many cases Ps, are estimated through a least squares �t to data.
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The modeled polarization obtained with the Langevin relation and the parameter values a =
0:70 � 105 C=m2; � = 1:53 � 106 V m=C; k = 4:5 � 105 C=m2; c = :80; Ps = :296C=m2 is compared
with the experimental data in Figure 7. We reiterate that the data was collected under quasistatic
conditions with one complete steady-state cycle plotted in the �gure. The measured electric �eld data
was used as input to the model for three complete cycles. While the initial polarization curve for the
model is depicted here, one would typically bring the model to a polarized state before employing it
for physical transducer characterization or control design. In this regime, the model very accurately
quanti�es the nonlinear and hysteretic behavior of the material.

The corresponding model employing the Ising spin relation is compared with the data in Figure 8.
In this case, the model was computed with the parameters a = 4:2� 105 C=m2; � = 2� 106 V m=C;
k = 3:7 � 105 C=m2; c = :65; Ps = :28C=m2. As expected, less than 5:5% change is observed in the
saturation polarization Ps. The other four parameters di�er from those obtained with the Langevin
relation to accommodate the di�erent qualitative behavior of the curves. A comparison of Figures 7
and 8 indicates that the use of the Langevin relation for the anhysteretic polarization provides a
somewhat better �t than the Ising spin-based model. This indicates that for this material, the Ising
spin model may saturate too quickly due to the imposed requirement that cells are restricted to only
two possible orientations.

The nature of the Ising spin model is further illustrated by the global anhysteretic polarization
plotted in Figure 6a. As discussed in Remark 1 and noted in the �gure, this curve is multivalued
at temperatures T < Tc. While this curve incorporates a form of hysteresis, it neglects the energy
required to break pinning sites and hence provides an overly steep transition between saturation
states. The inclusion of domain wall e�ects through the irreversible and reversible polarizations
provides a model which characterizes the more gradual transitions observed in the data. The global
anhysteretic for the Langevin model is similar to the Ising spin curve depicted in Figure 6a.
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Figure 7. Experimental PMN-PT-BT data and model �t with the Langevin anhysteresis model.
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Figure 8. Experimental PMN-PT-BT data and model �t with the Ising spin anhysteresis model.

5 Concluding Remarks

This paper addresses the modeling of hysteresis in ferroelectric materials as well as certain relaxor
ferroelectrics employed at temperatures well below the Curie point. The model is derived through
the characterization of the energy required to bend and translate domain walls that are pinned at
inclusions in the material. The �rst step in the development of the model is the determination
of appropriate constitutive relations which characterize the anhysteretic E-P curve. The relations
quantify the global equilibrium state of the material in the idealized case that domain walls are
not signi�cantly inhibited by pinning sites in the material. Several techniques have been previously
used to model anhysteretic polarization or magnetization curves including the Langevin and Ising
spin relations described here. An important component of the anhysteretic model is the inclusion of
interactions due to the neighboring domains through a mean �eld approximation. Hysteresis e�ects
are then quanti�ed through the computation of the average energy required to move domain walls
across inclusions or pinning sites inherent to the material. The resulting quasistatic ferroelectric
model is analogous to that developed by Jiles and Atherton for ferromagnetic materials.

The resulting hysteresis model is comprised of a simple di�erential equation whose solution pro-
vides the theoretical polarization at a given �eld level. The use of the model for a given application
requires the determination of �ve parameters �; k; c; a and Ps which are macroscopic averages of
microscopic domain properties. Hence the model incorporates the underlying domain physics but is
amenable to applications requiring real-time implementation. The determination of parameters is
facilitated by the physical nature of the parameters (e.g., increased values of the average pinning en-
ergy k lead to increased hysteresis) in combination with the fact that the saturation polarization can
often be directly measured. Hence the model can be easily updated to accommodate the changing
operating conditions often encountered in control applications.

In the form presented here, the model strictly applies to isotropic materials. Anisotropy ef-
fects are manifested primarily in the construction of the anhysteretic curve since domains will align
with crystallographic easy axes rather than align in bipolar or uniform orientations. The choice of
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model for the anhysteretic polarization can be modi�ed to accommodate speci�c crystallographic
anisotropies if desired. In its current form, the model does incorporate symmetric minor loops. We
note, however, that the present model does not accommodate certain forms of asymmetric minor
loops, full electromechanical coupling, or frequency-dependent hysteresis losses. While these exten-
sions are important for general design and control applications, they lie beyond the scope of this
paper and are under investigation.

To illustrate the capabilities of the model, the characterization of data collected from a PMN-
PT-BT actuator at a temperature 65o below the Curie temperature was considered. Both the
Langevin and Ising spin relations were considered for the construction of the anhysteretic curve. The
comparison of the model and experimental results illustrates that for the speci�ed operating regime,
the model provided a highly accurate characterization of the hysteresis exhibited by the material, with
the Langevin-based model providing a slightly better characterization in the saturation region of the
curve. While illustrated in the context of relaxor ferroelectrics at low temperatures, the electrostatic
basis for the model is su�ciently general to permit its application to a variety of ferroelectric and
relaxor ferroelectric materials.
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Appendix A: Work in the Polarization Process

The discussion in Section 3.2 provides a somewhat formal motivation for the energy functional
(32). We provide here a more rigorous analysis to motivate this choice. A similar analysis for
ferromagnetic materials can be found in Brown [3] with additional details regarding the magnetic
model presented by Venkataraman and Krishnaprasad [52]. Note that throughout this discussion, it
is assumed that �eld and polarization changes are su�ciently slow to permit the use of electrostatic
�eld relations. In many applications, involving the characterization of materials, this is a reasonable
assumption since experiments are conducted under quasistatic conditions.

To quantify the e�ective �eld contributions, it is advantageous to consider the work required to
polarize the body rather than the work necessary to achieve a speci�ed �eld level. Let � = dQ

dV denote
a charge density in the region V as depicted in Figure 9. As detailed in [48, page 72], this charge
con�guration then produces the electric �eld

E =

Z
V

�r̂

4��0r2
dV

at the point s in the dielectric material � . Note that r̂ � r

jrj and r � jrj. Furthermore, the electric
potential due to the dielectric is

� =
1

4��0

Z
�

P � r̂

r2
d�

(see [48, page 260]). Finally, the time rate of work due to the changing polarization is

dw

dt
=

Z
V
�
d�

dt
dV :
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It then follows that
dw

dt
=

Z
V
�(V )

�
1

4��0

d

dt

Z
�

P � r̂

r2
d�

�
dV

=

Z
V
�(V )

�Z
�

1

�(V )

dP

@t
�
�(V )r̂

4��0r2
d�

�
dV

=

Z
�

dP

dt
�

�Z
V

�(V )r̂

4��0r2
dV

�
d�

=

Z
�
E �

dP

dt
d�

so that

�w =

Z
�
E � �P d� :

The change in polarization per unit volume is then E � �P so the energy required to attain a given
polarization level is

w =

Z
P

0

E � dP : (43)

So far in this discussion, the �eld E has been considered to be generated by the charge con�g-
uration �. We now consider the e�ective �eld Ee = E + E1 where E1 = �P quanti�es the �eld
contributions due to the polarized dielectric body. Expansion of (43) yields

we = w + w1

where

w1 =

Z
P

0

E1 � dP

denotes the electrostatic self-energy. This quantity characterizes the shape-dependent component to
the energy which does not contribute to the irreversible hysteresis losses sinceI

w1 =

I
�P � dP = 0 : (44)

Hence we have some 
exibility when specifying an appropriate energy functional which quanti�es
energy losses due to hysteresis.

dτ

dQ
dV

ρ =
E

s

τ

P

r

φ

V

Figure 9. Orientation of the body V with charge �. This generates a �eld E in the dielectric �
which in turn produces a potential � in the charged body.
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Noting (44), the energy due to the e�ective �eld over a full polarization cycle can be expressed
as

we =

I
E � dP

= �

I
P � dE

= �

I
P � dE� �

I
P � dP

= �
1

�0

I
P � dDe

for arbitrary �. These arguments can be extended to partial cycles by employing the fact thatR
c1
P � dP = 0 for any closed curve c1. This motivates the use of the functional

w = �
1

�0

Z
De

0

P � dDe (45)

when quantifying irreversible components to the polarization. We point out that (45) is identical to
the functional (32), obtained through formal arguments, and is analogous to that employed by Jiles
and Atherton [27] in their magnetization model.
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