
Domainless Adaptation by Constrained Decoding on a Schema Lattice

Young-Bum Kim
Microsoft

Redmond, WA
ybkim@microsoft.com

Karl Stratos∗
Bloomberg L. P.
New York, NY

me@karlstratos.com

Ruhi Sarikaya†
Amazon

Seattle, WA
rsarikay@amazon.com

Abstract

In many applications such as personal digital assistants, there is a constant need for new domains
to increase the system’s coverage of user queries. A conventional approach is to learn a separate
model every time a new domain is introduced. This approach is slow, inefficient, and a bottleneck
for scaling to a large number of domains. In this paper, we introduce a framework that allows us
to have a single model that can handle all domains: including unknown domains that may be cre-
ated in the future as long as they are covered in the master schema. The key idea is to remove the
need for distinguishing domains by explicitly predicting the schema of queries. Given permitted
schema of a query, we perform constrained decoding on a lattice of slot sequences allowed under
the schema. The proposed model achieves competitive and often superior performance over the
conventional model trained separately per domain.

1 Introduction

Recently, there has been much investment on the personal digital assistant (PDA) technology in industry
(Sarikaya, 2015). Apple’s Siri, Google Now, Microsoft’s Cortana, and Amazon’s Alexa are some exam-
ples of personal digital assistants. Spoken language understanding is an important component of these
examples that allows natural communication between the user and the agent (Tur, 2006; El-Kahky et al.,
2014; Kim et al., 2015a; Kim et al., 2016b). PDAs support a number of scenarios including creating
reminders, setting up alarms, note taking, scheduling meetings, finding and consuming entertainment
(i.e. movie, music, games), finding places of interest and getting driving directions to them. The number
of domains supported by these systems constantly increases, and whether there is a method that allows
us to easily scale to a larger number of domains is an unsolved problem (Kim et al., 2015d; Kim et al.,
2016a).

The main reason behind the need for additional domains is that we require a new set of schema (i.e.,
query topics), composed of intents, and slots for processing user queries in a new category. For example,
a query in the TAXI domain is processed according to domain-specific schema that is different from those
in the HOTEL domain. This in turn requires collecting and annotating new data, which is time consuming
and expensive. Once the data is prepared, we also need to build a new system (i.e., models) for this
specific domain. In particular, slot modeling is one of the most demanding components of the system in
terms of costs in annotation and computation.

In this paper, we introduce a new approach that entirely removes the costs traditionally associated
with enlarging the set of supported domains while significantly improving performance. This approach
uses a single model to handle all domains: including unknown domains that may be created in the future
using a combination of intents and slots in the master schema. The key idea is to remove the need for
distinguishing domains by explicitly predicting topics/schema of queries. Thus we obviate the need and
directly predict the schema from queries by multi-label classification (either with an RNN or with binary

∗Work done while at Columbia University.
†Work done while at Microsoft.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings

footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

logistic regressions). Given permitted schema of a query, we perform constrained decoding on a lattice
of slot sequences allowed under the schema.

In experiments on slot tagging 17 Cortana personal digital assistant domains, we observe that our
single model outperforms each of the 17 models trained separately on different domains. This is because
our model is able to leverage the data in all domains by reusing the same slots. It can be viewed as a
form of domain adaptation, although “domainless adaptation” may be a more accurate description since
we remove the need for distinguishing domains!

2 Background

2.1 Domain Adaptation
The goal of domain adaptation is to jointly leverage multiple sources of data (i.e., domains) in attempt
to improve performance on any particular domain. There is a rich body of work in domain adaptation
for natural language processing. A notable example is the feature augmentation method of Daumé III
(2009), who propose partitioning the model parameters to those that handle common patterns and those
that handle domain-specific patterns. This way, the model is forced to learn from all domains yet preserve
domain-specific knowledge.

Another domain adaptation technique used in natural language processing utilizes unlabeled data in
source and target distributions to find shared patterns (Blitzer et al., 2006; Blitzer et al., 2011). This is
achieved by finding a shared subspace between the two domains through singular value decomposition
(SVD). Unlike the feature augmentation method of Daumé III (2009), however, it does not leverage
labeled data in the target domain.

This work is rather different from the conventional works in domain adaptation in that we remove
the need to distinguish domains: we have a single model that can handle arbitrary (including unknown)
domains. Among other benefits, this approach removes the error propagation due to domain misclassi-
fication. Most domain adaptation methods require that we know the data’s domain at test time (e.g., the
feature augmentation method). But in practice, the domain needs to be predicted separately by a domain
classifier whose error propagates to later stages of processing such as intent detection and slot tagging.

2.2 Constrained Decoding
In a later section, we perform constrained decoding on a lattice of possible label sequences. This
technique was originally proposed for transfer learning by Täckström et al. (2013). Suppose we have
sequences that are only partially labeled. That is, for each token xj in sequence x1 . . . xn we have
a set of allowed label types Y(xj). Täckström et al. (2013) define a constrained lattice Y(x, ỹ) =
Y(x1, ỹ1)× . . .× Y(xn, ỹn) where at each position j a set of allowed label types is given as:

Y(xj , ỹj) =
{
{ỹj} if ỹj is given
Y(xj) otherwise

We compute the most likely sequence in the lattice for a given observation sequence x under model θ as:

y∗ = argmax
y∈Y(x,ỹ)

pθ(y|x)

3 Methods

In this section, we describe our domainless prediction framework. It consists of two stages:

1. Given a query, we perform multi-label classification to predict a set of allowed schema for the query.

2. Given the predicted schema, we perform constrained decoding on the lattice of valid slot sequences.

Since this framework does not involve domain prediction at all, given a query in an unknown domain we
can still use the same model to infer its slot sequence, as long as the new domain is composed of existing
slots and intents. In cases where the new domain needs an a new intent or slot, the underlying generic
models have to updated with the updated schema.

3.1 Schema Prediction

The first stage produces a set of label types that serve as constraints in the second stage. To this end,
we use Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) (Figure 1). The LSTM
processes the given query to produce a fixed-size vector where the input at each time step is the word
embedding corresponding to the word used at the time. We initialize these word embeddings with GloVe
vectors (Pennington et al., 2014). Then the network maps the query vector to a distribution over schema
types.

In more detail, we first map each word of the utterance into d-dimensional vector space using an
embedding matrix of size V by d (which is trained along with other parameters in the network), where
V is the size of the vocabulary. Then we map the sequence of the word vectors, {x1, . . . xT }, to LSTM
outputs {h1, . . . hT }where we take the last output to be a d-dimensional summary vector of the utterance
s = hT . We then use parametersW ∈ Rk×d and b ∈ Rk where k is the number of slot types and compute

ŷ = softmax (Ws+ b)

Thus ŷi ∈ [0, 1] is the probability of slot i for the given utterance. To train the model, we minimize the
sum of squared errors ||ŷ − y|| (we could certainly use other metrics such as the KL divergence, but we
did not pursue this direction).

At test time, we need to perform multi-label classification with the predicted probabilities of slot types
ŷ ∈ [0, 1]k. We achieve this by thresholding. But rather than using 0.5 as the threshold, we use the
minimum probability of a ground-truth schema type from the training data. This results in predictions
that are very high in recall at the expense of some precision. This trade-off is suitable in our setting, since
these labels are only constraints in the second stage: while missing true labels causes the second stage to
fail, over-predicting labels does not.

Since the minimum probabilities of ground-truth schema types are observed in the training data, we
can train an separate model (SVM) to predict the threshold value for unseen inputs. In summary, given
a test utterance, we first use the LSTM network to compute a distribution of slot types ŷ, next use the
trained regressor to predict a suitable value of threshold, and take labels that have probabilities higher
than the threshold. Figure 1 illustrates the process.

3.2 Constrained Decoding

In sequence learning, given a sample query x1 . . . xn, the decoding problem is to find the most likely tag
sequence among all the possible sequences, y1 . . . yn:

f(x1 . . . xn) = argmax
y1...yn

p(x1 . . . xn, y1 . . . yn)

Here, given constraints ỹ from the first stage, we can simply define a constrained lattice lattice
Y(x, ỹ) = Y(x1, ỹ) × . . . × Y(xn, ỹ) by pruning all tags not licensed by the constraints, as shown
in Figure 2. Then, to find the most likely tag sequence which does not violate the given constrained
lattice, we perform the decoding in the constrained lattice:

f(x1 . . . xn, ỹ) = argmax
Y(x,ỹ)

p(x1 . . . xn, y1 . . . yn)

In experiments, we train a single sequence labeling model (CRF) on all domains, but at test time apply
this constrained decoding with slot types predicted by the model in Section 3.1.

3.3 Relation to the Union Method

One of the most naive baselines in domain adaptation is to simply train a single model on the union of
all data in different domains; at test time, the model predicts labels for any input regardless of which
domain it comes from. Since our approach uses all data as well, it can be seen as a variation on this naive
method.

Figure 1: Illustration of schema prediction. In given a query, “order small pepperoni from domino”,
the word “small”, “pepperoni” and “domino” is tagged as size, product and place name, respectively.
Therefore, LSTM multi-label classification model should predict a set of slots a query would be tagged
with. When we fix a threshold for final result to 0.5, we can get two permitted labels, product and size.
Whereas, we select different threshold corresponding to each query such as 0.38 in this example, we can
obtain four permitted labels, product, size, place name and place type.

Figure 2: Constrained Lattice: Disabling nodes and transition while decoding the lattice to honor given
constraints of domain schema.

The naive method also implicitly makes a decision on the domain of a query when the model predicts
domain-specific labels. But it is well-known that this approach typically, unlike ours, yields poor perfor-
mance. We conjecture that the reason for poor performance is the following. In the union method, the
model must perform the segmentation as well as labeling of slots, which involves predicting labels in the
BIO format (B: begin, I: inside, O: outside) (Ramshaw and Marcus, 1999). In comparison, our method
only predicts possible labels and delegates inference to constrained decoding. Thus it can potentially

make more efficient use of labeled data.

4 Experiments

In this section, we turn to experimental findings to provide empirical support for our proposed methods.

4.1 Setting

of labels # of shared label #train #test #dev #vocab Description
Alarm 8 6 178K 14K 13K 3628 Set alarms

Calendar 20 16 220K 17K 15.6K 11574 Set events in calendar
Comm. 21 13 780K 72K 29K 69817 Make a call and sent text

Entertain. 15 5 173K 11K 9.3K 17521 Search movies and music
Events 6 4 12K 6K 5K 835 Purchase tickets to events
Hotel 17 9 7.3K 5.7K 4.9K 8172 Book hotel

Mediactrl 10 8 132K 19K 16K 12802 Set up a music player
Mvtickets 7 7 13K 8.2K 7.8K 2298 Buy movie tickets and find showtime
Mystuff 18 12 6.4K 3.6K 3.2K 8824 Find files and attachments

Note 3 1 7.8K 2.9K 2.5K 4756 Find, edit and create a note
Ondevice 6 5 259K 9.4K 6.4K 5386 Control the device
Orderfood 11 10 20K 2.7k 2.6K 3745 Order food using app

Places 32 19 488K 9.4K 8.7K 51611 Find location and direction
Reminder 16 12 338K 21.8K 18K 27823 Find, edit and create reminders

Reservations 12 11 17K 4K 3K 2920 Make a restaurant reservations
Taxi 10 10 10.7K 4.9K 3.1K 451 Find and book a cab

Weather 9 2 302K 5.5K 5.2K 12344 Ask weather
Overall 131 62 2964K 217K 153K 245K

Table 1: Data sets used in the experiments. For each domain, the number of unique slots, the number of
examples in the training, development, and test sets, input vocabulary size of the training set, and short
description about domain.

To test the effectiveness of the proposed approach, we apply it to a suite of 17 Cortana personal
assistant domains for slot (label) tagging tasks, where the goal is to find the correct semantic tags of the
words in a given user utterance. For example, a user could say “reserve a table at joeys grill for thursday
at seven pm for five people”. Then the goal is to tag “joeys grill” with restaurant, “thursday”
with date, “seven pm” with time, and “five” with number people. The data statistics and short
descriptions about the 17 domains are shown in Table 1. As the table indicates, the domains have very
different granularity and diverse semantics. The total numbers of training, test and development queries
across domains are 2964K, 217K and 153K, respectively. Note that we keep domain-specific slots such
as alarm state, but there are enough shared labels across domains. To be specific, we have shared
62 labels among 131 labels. In ALARM domain, there are 6 shared slots among 8 slots.

4.2 Results
In all our experiments, we follow same setting as in (Kim et al., 2015b; Kim et al., 2015c). We trained
Conditional Random Fields (CRFs)(Lafferty et al., 2001) and used n-gram features up to n = 3, regular
expression, lexicon features, and Brown Clusters (Brown et al., 1992). With these features, we compare
the following methods for slot tagging1:

• In-domain: Train a domain-specific model using the domain-specific data covering the slots sup-
ported in that domain.

• Binary: Train a binary classifier for each slot type, assuming prediction for each slot type is inde-
pendent of one another. Then combine the classification result with the slots needed for a given
schema. For each binary slot tagger targeting a specific slot type, the labeled data is programatically

1For parameter estimation, we used L-BFGS (Liu and Nocedal, 1989) with 100 as the maximum number of iterations and
1.0 for the L2 regularization parameter.

Domain In-domain Binary Post Const(CRFs) Const(LSTM)
Alarm 92.89 74.49 89.81 93.56 94.23

Calendar 90.03 75.62 82.14 88.57 88.16
Communication 92.94 84.17 86.93 92.14 90.39
Entertainment 93.83 83.28 91.26 93.17 94.37

Events 85.84 69.84 78.30 85.00 85.80
Hotel 91.25 73.86 77.45 91.12 90.81

Mediacontrol 86.39 83.70 86.22 87.07 86.43
Movietickets 91.75 85.39 87.03 91.06 91.35

Mystuff 87.92 51.30 80.48 84.88 82.46
Note 87.60 51.25 71.67 84.32 83.87

Ondevice 93.59 70.13 88.26 94.27 94.08
Orderfood 93.52 83.34 90.74 92.84 91.84

Places 91.75 75.27 87.69 89.55 90.96
Reminder 89.31 72.67 81.38 88.57 88.27

Reservations 92.68 86.10 91.07 93.56 94.32
Taxi 88.27 76.91 85.50 90.32 89.65

Weather 96.27 89.12 94.38 96.44 96.50
Average 90.93 75.67 85.31 90.38 90.21

Table 2: F1 scores for models which can handle all domains.

mapped to create a new labeled data set, where only the target label is kept while all the other labels
are mapped other label.

• Post: Train a single model with all domain data, take the one-best parse of the tagger and filter-out
slots outside the a given schema.

• Const: Train a single model with all domain data and then perform constrained decoding using a
given schema.

To evaluate performance of the constrained decoding approach without schema prediction, we com-
pare the performance among possible models, which can handle all domains in Table 2. Here, a schema
is given from a pre-trained domain classifier with an average accuracy of 97%.

We consider In-domain as a plausible upper bound of the performance, yielding 90.93% of F1 on
average. Second, Binary has the lowest performance of 75.67%. When we train a binary classifier for
each slot type, the other slots that provide valuable contextual information are ignored. This leads to the
degradation in tagging accuracy. Third, Post improves F1 scores across domains, resulting in 85.31%
F1 on average. Note that this technique does not handle ambiguities and data distribution mismatches
due to combining multiple domain specific data with different data sizes. Finally, Const(CRF) leads
to consistent gains across all domains, achieving 90.38%, which almost matches the In-domain perfor-
mance. Const(CRF) performs better than Binary because Const(CRF) constrains the best path search to
the target domain schema. It does not consider the schema elements that are outside of the target do-
main schema. By doing so, it addresses the training data distribution issue as well as overlap on various
schema elements.

Also, we performed experiments with LSTM for slot tagging by masking scores of predicted class
labels from predicted schema. LSTM is one of the most popular deep learning techniques for sequence
tagging (Bahdanau et al., 2014; Dyer et al., 2015), but we observe that the LSTM results (Const(LSTM))
on our dataset are very similar to that of CRFs (Const(CRF), as shown in Table 2. In the following
experiments, we mostly focus on the Const version of CRFs for simplicity.

The main results of constrained decoding with different schema prediction methods are shown in Table
3. Bin approach trains k binary logistic regression classifier for each slot type. Each binary classifier

Constrained by Query Domain
In-domain BinFix BinMin MultFix MultMin GoldQ PredD

Alarm 92.89 90.56 84.89 91.37 96.29 97.74 93.56
Calendar 90.03 87.6 80.03 89.17 91.86 92.08 88.57
Comm. 92.94 91.28 77.94 91.89 93.29 95.97 92.14

Entertain. 93.83 92.41 81.83 91.9 95.54 96.5 93.17
Events 85.84 82.71 74.84 84.23 88.26 89.57 85
Hotel 91.25 89.25 82.25 90.75 92.23 93.21 91.12

Media. 86.39 82.94 85.39 84.58 92.99 93.99 87.07
Mvtickets 91.75 87.86 72.75 86.16 91.67 92.8 91.06
Mystuff 87.92 83.09 83.92 85.12 90.36 91.86 84.88

Note 87.6 81.84 78.6 83.38 87.58 88.42 84.32
Ondevice 93.59 91.87 69.59 92.22 97.79 98.6 94.27
Orderfood 93.52 91.25 76.52 93.62 95.92 96.24 92.84

Places 91.75 89.82 79.75 87.59 94.27 96.8 89.55
Reminder 89.31 86.1 71.31 87.18 93.89 94.07 88.57

Reservations 92.68 89.57 85.68 91.29 94.28 96.28 93.56
Taxi 88.27 86.63 72.27 89.07 95.42 97.11 90.32

Weather 96.27 94.65 89.27 95.8 98.5 99.11 96.44
Average 90.93 88.20 79.23 89.14 93.55 94.73 90.38

Table 3: F1 scores for Const with various schema prediction methods across 17 personal assistant do-
mains.

determines if a query has a specific slot or not, while Mult approaches use a single LSTM to predict a
set of allowed schema for a query. Subscript Fix denotes that a fixed threshold (0.5) is used to make a
decision of positive versus negative label, and Min denotes that the threshold is set to be the minimum
of positive label thresholds, which hence gives the maximum recall rate. GoldQ denotes the decoding
was constrained by true schema for a query and and PredD denotes the decoding was constrained by a
predicted domain. Here In-domain also uses domain classifier.

In the preliminary experiments, we observed that there are significant performance improvements
when performing constrained decoding given a gold standard schema of a query (GoldQ). However, it
is very difficult to get similar performance by the predicted schema. The main reason is because it does
not guarantee recall. As you can see, all methods based on schema prediction except for MultMin, fail
to achieve any improvement compared to In-domain and PredD. So, we use the minimum probability of
a ground-truth schema type per query to increase recall. Using predicted minimum boundary MultMin

finally boost up performance up to 93.55%, huge relative error reduction of 33% over In-domain ap-
proach.

Unlike previous experiments, the experiments shown in Table 4 assume that the true domain and its
schema are given. So, there are no domain classification error. MULTMin removes the predicted schema
elements that are outside of the true domain schema. In-domain yields 92.53% F1 score. MULTMin

boosts the performance to 93.99%.
To further compare multi-classification approach to binary approach, we show performance for multi-

class labeling task in Table 5. Unlike slot tagging performance, MultFix has the highest F1 score because
of its precision. MultMin has high recall at the slight expense of precision. However, binary logistic
regression (BinMin) fails to keep reasonable precision. This is because logistic regression models are
over-fitted to each label, minimum boundary is very low and thus it causes a lot false positives.

For the last scenario shown in Table 6, we assume that we do not have training data for the test
domains. The amount of test data is about 2k. The MultMin performs reasonably well, yielding 96.48%
on average. Interestingly, for the Bus domain, we can get almost perfect tagging performance of 99.5%.
Note that all tags in Bus and Ferry domains are fully covered by our single model, but the ShopElectric

In-domain MULTMin

Alarm 95.53 96.23
Calendar 90.37 92.46
Comm. 93.08 94.29

Entertain. 94.48 95.84
Events 89.47 90.02
Hotel 93.16 93.68

Mediactrl 90.87 92.7
Mvtickets 92.5 92.98
Mystuff 88.76 89.82

Note 89.48 90.58
Ondevice 95.27 97.26
Orderfood 94.35 96

Places 93.18 95.19
Reminder 90.22 92.77

Reservations 93.34 95.01
Taxi 91.37 94.2

Weather 97.64 98.83
Average 92.53 93.99

Table 4: F1 score for In-domain and MULTMin across domains for constrained with predicted multi
labels given true domain schema.

BinFix BinMin MultFix MultMin

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
Alarm 87.7 67.6 76.4 65.2 99.2 78.7 88.2 86.5 87.3 69.3 99.1 81.6

Calendar 83.7 83.4 83.5 72.8 99.2 86.1 90.1 80.7 85.1 70.5 99.7 82.4
Comm. 78.7 86.1 82.2 66.1 98.8 79.2 86.5 85 85.7 74.8 98.9 85.2

Entertain. 87.4 72.6 79.3 58.4 99.7 73.5 88.3 84.6 86.4 63.3 99.1 77.4
Events 74.8 75.6 75.2 62.2 99.1 83.5 84.3 85.9 85.1 70.8 98.8 82.6
Hotel 87.3 85.9 86.6 58.2 98.4 73.1 84.9 89.2 87 82.2 98.2 89.6

Mediactrl 91.9 68.6 78.5 69.9 99.8 82.1 86 92.4 89.1 79.8 99.5 88.6
Mvtickets 81.3 77 79.1 72.4 99.3 83.8 86.4 87.7 87.1 73.2 99.3 84.3
Mystuff 87.6 82.4 84.9 61.7 98.9 79.5 78.8 82.4 80.5 78.3 98.5 87.4

Note 84.7 77.7 81.1 64.5 98.7 77.8 92.3 87.5 89.8 67.3 98 80
Ondevice 87.2 84.7 85.9 72.3 99.3 83.4 89.2 85.5 87.3 75.7 98.6 85.9
Orderfood 85 70.2 76.9 69.1 99.4 81.4 92.4 82.5 87.2 82.5 99.1 90.2

Places 89.9 83.5 85.9 73.1 99.6 85.9 87.2 70.7 75.8 68.9 99 75.7
Reminder 86.5 75.9 80.9 71.9 98.5 84.7 91.4 84.8 88 83.5 99.2 90.4

Reservations 90.7 85.2 87.9 51.1 99.3 67.5 90.7 80.5 85.3 79.9 99.5 88.6
Taxi 87.7 82 84.8 71.9 99.3 84.6 94.4 88.5 91.3 78.5 98.9 87.7

Weather 85 72.2 78.1 52.6 99.4 68.8 91.6 88.2 89.9 65.9 99.5 79.3
85.7 78.3 81.6 65.5 99.2 79.6 88.4 84.9 86.4 74.4 99 84.5

Table 5: Multi-labeling task performance for schema prediction methods.

Ferry Bus ShopElectric. AVG.
MultMin 96.86 99.5 93.08 96.48

Table 6: F1 scores for MultMin across new domains which do not have domain specific training data.

domain is partially covered.

5 Conclusion

In this paper, we proposed a solution for scaling domains and experiences potentially to a large number
of use cases by reusing existing data labeled for different domains and applications. The single slot tag-
ging coupled with schema prediction and constrained decoding achieves competitive and often superior
performance over the conventional model trained in per domain fashion. This approach enables creation
of new virtual domains through any combination of slot types covered in the single slot tagger schema,
reducing the need to collect and annotate the same slot types multiple times for different domains.

Acknowledgements

We thank Minjoon Seo and anonymous reviewers for their constructive feedback.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence
learning. In Proceedings of the 2006 conference on empirical methods in natural language processing, pages
120–128. Association for Computational Linguistics.

John Blitzer, Sham Kakade, and Dean P Foster. 2011. Domain adaptation with coupled subspaces. In AISTATS,
pages 173–181.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai. 1992. Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479.

Hal Daumé III. 2009. Frustratingly easy domain adaptation. arXiv preprint arXiv:0907.1815.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. 2015. Transition-based depen-
dency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075.

Ali El-Kahky, Derek Liu, Ruhi Sarikaya, Gokhan Tur, Dilek Hakkani-Tur, and Larry Heck. 2014. Extending
domain coverage of language understanding systems via intent transfer between domains using knowledge
graphs and search query click logs. IEEE, Proceedings of the ICASSP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and Ruhi Sarikaya. 2015a. Weakly supervised slot tagging with
partially labeled sequences from web search click logs. In Proceedings of the NAACL. Association for Compu-
tational Linguistics.

Young-Bum Kim, Karl Stratos, Xiaohu Liu, and Ruhi Sarikaya. 2015b. Compact lexicon selection with spectral
methods. In Proc. of Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. 2015c. Pre-training of hidden-unit crfs. In Proc. of Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 192–198.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Minwoo Jeong. 2015d. New transfer learning techniques for
disparate label sets. ACL. Association for Computational Linguistics.

Young-Bum Kim, Alexandre Rochette, and Ruhi Sarikaya. 2016a. Natural language model re-usability for scaling
to different domains. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. 2016b. Scalable semi-supervised query classification us-
ing matrix sketching. In Proc. of Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In ICML, pages 282–289.

Dong C Liu and Jorge Nocedal. 1989. On the limited memory bfgs method for large scale optimization. Mathe-
matical programming, 45(1-3):503–528.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), 12:1532–1543.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text chunking using transformation-based learning. In Natural
language processing using very large corpora, pages 157–176. Springer.

Ruhi Sarikaya. 2015. The technology powering personal digital assistants. Keynote at Interspeech, Dresden,
Germany.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan McDonald, and Joakim Nivre. 2013. Token and type con-
straints for cross-lingual part-of-speech tagging. Transactions of the Association for Computational Linguistics,
1:1–12.

Gokhan Tur. 2006. Multitask learning for spoken language understanding. In In Proceedings of the ICASSP,
Toulouse, France.

