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Abstract

Domestication is an evolutionary process during which we expect populations to progres-

sively adapt to an environment controlled by humans. It is accompanied by genetic and pre-

sumably epigenetic changes potentially leading to modifications in the transcriptomic profile

in various tissues. Reproduction is a key function often affected by this process in numerous

species, regardless of the mechanism. The maternal mRNA in fish eggs is crucial for the

proper embryogenesis. Our working hypothesis is that modifications of maternal mRNAs

may reflect potential genetic and/or epigenetic modifications occurring during domestication

and could have consequences during embryogenesis. Consequently, we investigated the

trancriptomic profile of unfertilized eggs from two populations of Eurasian perch. These two

populations differed by their domestication histories (F1 vs. F7+–at least seven generations

of reproduction in captivity) and were genetically differentiated (FST = 0.1055, p<0.05). A
broad follow up of the oogenesis progression failed to show significant differences during

oogenesis between populations. However, the F1 population spawned earlier with embryos

presenting an overall higher survivorship than those from the F7+ population. The transcrip-

tomic profile of unfertilized eggs showed 358 differentially expressed genes between popu-

lations. In conclusion, our data suggests that the domestication process may influence the

regulation of the maternal transcripts in fish eggs, which could in turn explain differences of

developmental success.

Introduction

Domestication is an evolutionary and continuous process enabling wild animals to adapt to

humans and anthropogenic environments [1,2]. It involves the combination of several genetic
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and potentially epigenetic modifications driving gene expression and phenotypic changes. Dif-

ferences in gene expression due to rapid adaptation to new environments were already

reported from the first generation of reproduction in captivity in steelhead trout (Oncor-

hynchus mykiss) [3]. Thus, the regulation of genes expression may change early during domes-

tication. The main genetic mechanisms involved are inbreeding, genetic drift and natural,

relaxed and artificial selections [1,2]. The two first mechanisms have important consequences

when founder populations are small because they rapidly lead to important changes in allelic

frequencies [4]. The relaxed selection consists of a reduction of selection pressure on traits

which are not necessary anymore in captive conditions. The artificial selection results from the

selection of breeders according to phenotypes chosen by humans. Finally, the natural selection

occurs and usually eliminates animals which are not adapted to anthropogenic environments

[5]. Studies suggest a relationship between epigenetic modifications and phenotypic plasticity

in response to the environment in some animal and plant species [6]. In fish, the current

knowledge shows a modification of the epigenetic signature in individuals reared in hatcheries

in comparison to their wild counterparts in salmonids and the European sea bass (Dicen-

trarchus labrax) [7–10]. These modifications affect somatic and germinal cells [8] and may

play a role during the first steps of domestication [10]. However, the relationships and timeline

between genetic and epigenetic modifications remain unclear [6].

All these mechanisms depend greatly on the breeding practices. Indeed, independent trials

of domestication may lead potentially to various types of modifications that may have either

beneficial (adaptation) or deleterious (maladaptation) effects on various biological functions of

the new domesticated populations. The artificial selection, for one or several phenotypes is spe-

cific to the domestication process and has consequences that may not be predicted, since mor-

phological, behavioral and physiological traits of animals are intrinsically related [11]. The

consequences of modifications of the balance between these traits are not yet properly under-

stood. Indeed, it appears that the artificial selection of specific phenotypes may have deleteri-

ous effects on other biological traits because most of resource intakes are dedicated to the

selected traits. This imbalance often leads to a decrease of reproduction abilities [5,12], com-

monly seen in numerous terrestrial and aquatic species. A recent meta-analysis investigating

the effect of birth-origin (captive vs. wild) on the reproductive success of animals reared in dif-

ferent anthropogenic environments was performed. For all of the 44 analyzed species, the off-

spring survival success was decreased in “captive-born” animals compared to their “wild-

born” counterparts [13]. It usually involves developmental failures characterized by fertiliza-

tion issues, embryonic lethalities or the occurrence of deformities. They often ensue from

defects of incorporation or synthesis of the eggs’ molecular content. Indeed, the abundance of

these molecules, controlling embryogenesis process after fertilization, can directly be affected

by modifications of extrinsic or intrinsic factors faced by females during oogenesis [14].

Among them, the maternal mRNA expression profile may thus result from genetic and epige-

netic changes in the breeders’ ancestors during the domestication process. It could potentially

help to make the link between mechanisms described above and the reproductive success of

captive populations in comparison to their wild counterparts.

There are two main ways to study the domestication process [5]. First, longitudinal studies

allowing a continuous follow up of a population throughout the domestication process across

generations. This method is the most efficient to understand phenotypic and molecular modi-

fications occurring at each step of the domestication process. However, it is long and difficult

to perform logistically. The second way, which is commonly used, corresponds to a compari-

son between wild and domesticated populations. Such method has been previously used and

successfully highlighted differences in several fish species, such as steelhead trout (O.mykiss)

[3], Atlantic salmon (Salmo salar) [15–17], Atlantic cod (Gadus morhua) [18,19], greater
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amberjack (Seriola dumerili) [20] and Eurasian perch (Perca fluviatilis) [21,22]. However,

numerous pieces of information are often lacking (genetic relatedness between populations,

rearing conditions and history of the domestication process) and thus prevent drawing accu-

rate conclusions. Indeed, as previously explained, phenotypic modifications potentially leaded

by genetic/epigenetic modifications, depend on rearing practices. Such information is not

always tracked properly by farmers. For example, for several domesticated fish stocks, wild

breeders are introduced to keep a sufficiently high genetic diversity [23] without keeping track

of these introductions leading to incomplete traceability [24]. Today, with the increasing

knowledge accuracy and the development of molecular tools, such information becomes

important to draw proper conclusions. One way to overcome this issue consists in investigat-

ing the genetic differentiation between wild and farmed studied populations. This preliminary

step would help understanding differences between populations.

In the context of fish production diversification, numerous efforts are done to domesticate

a large number of new species [23]. However, the lack of knowledge on biological and physio-

logical needs of some species may lead to inadequate domestication attempts with deleterious

consequences on the biological traits described above. The Eurasian perch (P. fluviatilis) is a

promising species in aquaculture for the production diversification. It is a freshwater fish spe-

cies widely distributed in Europe and in the Northern part of Asia [25]. It has a niche market

with a traditional demand in several European countries [26,27]. The Eurasian perch is a syn-

chronous early spring spawner and its oogenesis induction and progression are mostly con-

trolled by temperature and photoperiod variations [28–33]. Consequently, manipulation of

these two factors allowed defining a photothermal program largely used in Eurasian perch

farms for out-of season reproduction in recirculating aquaculture systems (RAS) [32]. Despite

this successful control of its reproductive cycle allowing out-of-season spawning, the reproduc-

tion success remains variable even if the same rearing conditions are applied to the broodstock

[34]. It is probably due to the lack of knowledge on potential intrinsic and/or extrinsic modu-

lating factors, including the history and details of the domestication progression experienced

by populations.

In the present study, we chose to compare two Eurasian perch populations, reared in the

same conditions but with different histories of domestication. We hypothesized that the level

of domestication may modulate the accumulation of maternal mRNA in eggs during oogene-

sis, potentially impacting the embryos early development after fertilization.

Material andmethods

Origin of fish and broodstock management

Fish were handled in accordance with national and international guidelines for animal welfare

protection (Directive 2010/63/EU. Agreement number: APAFIS#1390–2018031516387833 v2

accepted by the Lorraine Ethic Committee for Animal Experimentation (CELMEA) and the

French Ministry of Research). Two populations of three years old Eurasian perch originating

from artificial reproductions in November 2011 were used. They correspond to (i) fish at an

advanced stage of the domestication process coming from breeders reared in RAS for at least

seven generations (F7+ population) and (ii) Eurasian perch originating from breeders col-

lected in the Geneva Lake at the embryonic stage and reared in RAS conditions (F1 popula-

tion). All animals came from the fish farm “Lucas Perches” (Hampont, France), which

provided us the information of the presumable number of generations of the F7+ population

and that their ancestors had supposedly been caught in Geneva Lake. Fish were transferred to

our indoor facilities after weaning period in February 2012 (mean weight of 3.78 ± 1.07 g).

Both populations were reared separately in different tanks but under the same RAS conditions

Domestication may influence mRNA content in fish eggs

PLOSONE | https://doi.org/10.1371/journal.pone.0226878 December 31, 2019 3 / 25

https://doi.org/10.1371/journal.pone.0226878


(constant photoperiod (L:D—16:8), 300 lux at the water surface during the lighting period and at

20–21˚C) to avoid oogenesis stimulation [32,35] until they reached mean weight of 287 ± 89 g.

About two months before the experiment began (May 2014), 654 Eurasian perch (313 from

the F7+ and 341 from the F1 populations) were transferred to the Aquaculture Experimental

Platform (AEP, registration number for animal experimentation C54-547-18) belonging to the

URAPA lab and located at the Faculty of Sciences and Technologies of the University of Lor-

raine (France). They were divided into six independent groups (three per population with an

equivalent number of fish in each group). Fish were put into six identical rooms consisting of

independent RAS with 3000 liters tanks. Temperature, photoperiod and light intensity were

accurately controlled in each room using dedicated software. Environmental conditions were

the same during acclimation phase and growing period. In order to induce gonadogenesis,

breeders were submitted to a photothermal program allowing effective induction and control

of the reproduction cycle [28] from August 18th 2014 to June 22nd 2015 (day 1 to day 309, Fig

1). Water levels of dissolved oxygen (9.53 ± 0.07 mg/L and 9.73 ± 0.12 mg/L), pH (7.55 ± 0.10

and 7.47 ± 0.00), nitrite (0.29 ± 0.14 mg/L and 0.09 ± 0.01 mg/L) and ammonium (0.67 ± 0.22

mg/L and 0.27 ± 0.02 mg/L) were monitored twice a week and kept under the respective

thresholds in breeders’ tanks (for F1 and F7+ populations, respectively). At the beginning of

the experiment, all animals were individually tagged with P.I.T. tags (Transponder ISO 2 x 12

mm, Biolog-id) to monitor individuals all along the experiment. All fish were fed twice a day

to satiation five days a week. In alternation, they were fed three days with commercial pellets

(Sturgeon Grower N˚5, Le Gouessant) and two days with frozen squids and shrimps

(Pomona). On Saturdays and Sundays, they were fed once with commercial pellets to satiety.

Experimental design, tissue sampling and morphometric measures

In order to follow the oogenesis process, five sampling points of females were performed

throughout the reproduction cycle: T0 at the beginning of the experiment allowed us to deter-

mine the initial status of breeders, T31, T87 and T154 sampling points allowed us to check the

oogenesis along its progression and T253 the final status of the gonads before the spawning

season (Fig 1). Four to five females per tank were collected at each sampling point. Firstly, fish

were anesthetized by immersion into a Tricaine methanesulfonate solution (120 mg/L; Sigma-

Aldrich) for five minutes to collect blood from the caudal vein. Blood was centrifuged at 8000

rpm for 10 minutes in previously heparinized (4.5 mg heparin sodium salt from porcine intes-

tinal mucosa 100KU, Sigma-Aldrich) microtubes. Plasma aliquots were conserved at -80˚C for

further evaluation of sexual steroids and Vitellogenin concentrations measurements.

After blood sampling, fish were killed using an overdose of Tricaine methanesulfonate (240

mg/L; Sigma-Aldrich) in accordance to European Ethical guidelines (Directive 2010/63/UE).

Total weight was measured before collecting the gonads which were weighted to calculate the

gonado-somatic index (GSI = gonad weight/total weight�100) and fixed as described below for

histological studies.

Evaluation of steroids and Vitellogenin concentrations in the plasma

The 17-β-estradiol (E2, ng/mL) and testosterone (T, ng/mL) assays were performed on 50 μL

of plasma of each sampled female for all sampling points (around 15 females per population/

sampling point) using the DIAsource E2-ELISA kit (KAP0621, DIAsource) and the DIAsource

Testosterone ELISA kit (KAPD1559, DIAsource), respectively. Samples were diluted from 1/1

to 1/50 for E2 and from 1/1 to 1/10 for T measurements depending on the oogenesis develop-

mental stage. The E2 assay sensitivity was 5±2 pg/mL and the range of use was from 0 to 880

pg/mL with an intra assays CV varying from 4 to 17% and an inter assay CV of about 27%.
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Concerning T, the sensitivity was 0.083 ng/mL and the range of use was from 0 to 16 ng/mL.

The intra assays CV varied from 7 to 19% and the inter assay CV was about 16%.

The Vitellogenin plasmatic concentration was indirectly estimated in 80 μl of plasma by

measuring concentrations of the alkali-labile phosphate level as described in [36].

Gonads histology

Female gonads from all sampling points were fixed in Bouin’s solution for one week before

being washed in 70% alcohol. Samples were then dehydrated in ascending series of ethanol

(70–100%) before being embedded in paraffin with an orientation allowing transversal cuts.

Five micrometer sections were performed with a Leitz Wetzlar microtome and collected on

glass slides. Masson’s trichrome staining was done according to a protocol adapted from [37]

as follows: Hematoxylin solution modified according to Gill III (Merck) was used from five to

Fig 1. Graphic summary of the experimental design. The photothermal program was used to control each step of the reproductive cycle and spawning of
Eurasian perch. Fish sampling was performed at T0, T31, T87, T154 and T253 days after the beginning of the photophase initial decrease (induction of the
reproductive cycle). For each sampling point, sexual steroids and Vitellogenin levels were measured in the plasma and a histological follow up of the oogenesis
progression was performed. During spawning, each spawn was split into two parts. The first one was not fertilized and frozen for further molecular analyses while
the other part was fertilized to assess the developmental progression. All details are given in the method paragraph.

https://doi.org/10.1371/journal.pone.0226878.g001
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ten minutes; Phloxine (VWR) was diluted in water at 0.5% and used for five minutes; Light

Green (Sigma) was diluted in water at 0.5% and used from three to five minutes. Stained sec-

tions were examined, photographed and analyzed using a light upright optical microscope

(Nikon Eclipse Ni-U) associated with a DS-Fi1 digital camera and the software NIS BR (Nikon

France, Champigny-sur-Marne, France) at low magnification (x2 and x4).

Oocytes stages were determined according to [38] and classified into six classes: primary

growth (PG), early cortical alveoli stage (ECA), late cortical alveoli stage (LCA), early vitello-

genesis (EV), late vitellogenesis (LV) and atresia (A). Oogonia (O) stages were also identified.

The gonadic maturation state was determined by counting all oocytes of each class on one

complete and representative transversal stained sections of the ovary for T0-T154 and three

representative transversal sections for T253 because the gonads were then too large to be laid

on one slide.

Gamete collection and fertilization

Before the spawning season, all females were caught to take some oocytes using a catheter and

determine their oocytes maturation according to [39]. On May 13rd and 15th 2015, females

from all tanks were examined and were allocated to separate tanks for the spawning season,

according to their oocyte maturation stage and regardless of their original population. Thus,

one tank contained the females having oocytes at stages I and II, another tank contained the

females at stages III and IV (which were all coming from the F1 population), and another tank

contained females that could not be staged reliably. Males from F7+ and F1 populations were

kept apart in two tanks depending on their origin. When one female spawned, all females of

this tank were monitored daily to identify ovulation and collect the eggs by stripping them.

This procedure was always performed between 4am and 5am and each spawn was treated indi-

vidually. The first spawn observed in each tank was not considered for the experiment because

once in the water, the eggs are activated and their ability to be fertilized decrease rapidly. The

spawning season took place fromMay 29th to June 22nd 2015 and each female stripped was

identified as to its original population by its P.I.T. tag. Eggs were fertilized as described in [40]

with sperm from three males (total volume of 100 μl sperm/g dry eggs). Eggs stripped in the

same day were fertilized using the same pool of sperm and at the end of the spawning season

no day effect was seen in the reproductive performance. All males used to perform fertilization

came from the F1 population, that presented a higher quality (motility estimated under a light

upright optical microscope (Nikon Eclipse Ni-U)). The other part of each spawn (18 individual

samples of about 200mg) was immediately frozen in liquid nitrogen and kept at -80˚C for sub-

sequent transcriptomic analysis.

Study of reproductive performance

In total, 32 spawn, corresponding to 32 females (13 from F7+ population and 19 from the F1),

were treated as described above. A previous study performed in our team showed that cell

cleavage timetable can be highly variable between embryos even within the same spawn [41].

Thus, we choose to perform our first evaluation of the embryonic survival at 24 hours post fer-

tilization (hpf) because it was the earliest stage to establish a relevant estimation of survival.

We were thus not able to make a distinction between non-fertilized eggs and dead embryos.

Eurasian perch eggs are surrounded by a jelly coat that protects embryos from the outside

environment [29]. This jelly coat prevents to sort the eggs depending on their survival at each

stage as it is currently performed with other fish species for which eggs are not attached. Thus,

we performed the following protocol to evaluate the survival in the same ribbon samples at

several timepoints.
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Just after fertilization, three ribbon fragments (samples) of around 500 eggs were randomly

cut from each spawn/ribbon and incubated to determine the percentage of embryos alive at

different timepoints. We considered that the borders of each fragment should be avoided since

embryonic development in this region could be impacted by the cutting. At each specific time-

point, around 100 embryos were counted and, among them, the number of alive embryos

(those reaching the proper developmental stage) was counted to evaluate the percentage of

alive embryos. These evaluations were performed in the middle of each fragment at 24, 48, 72

and 120 hpf to avoid potential border effects described above. The percentage of embryos alive

was estimated using the following formula: (number of alive embryos at one stage/total num-

ber of embryos studied at that stage) x 100. In addition, three other fertilized samples of

around 100 eggs/sample were kept apart, without manipulation, until the hatching period.

They were used to determine the percentage of embryos hatching using the following formula:

(number of hatched embryos/total number of embryos in the fragment) x 100 and deformities

rates according to [42]. The global deformities rate (Dr) and specific deformities rates allowed

studying defects in the axis (Ad), yolk (Yd), cardiac (Cd), mouth (Md), eyes (Ed) and others

(Od) as described in [42].

RNA extraction

Total RNA was extracted from unfertilized frozen eggs from the 32 spawn (mean weight of

100 mg, 10–15 eggs) using TRIzol reagent (Life Technologies) at a ratio of 100mg per mL of

reagent and following the manufacturer’s instructions with some modifications. Indeed, a

milling step was added during the homogenization step to get rid more easily of the gelatinous

envelope and chorion surrounding eggs. To do so, a bullet blender (Next Advance) and zirco-

nium oxide beads 1.0 mm were used. In addition, a supplementary centrifugation (4˚C,

30min. 13000 rpm) was performed before the addition of the chloroform to remove the lipid

content in eggs. A NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies) was

used to evaluate the quantity of total RNA and an Agilent 2100 Bioanalyzer (Agilent Technolo-

gies) was used to evaluate the integrity of the RNA extracted. Samples exhibited an integrity

score higher than 7 and were used for the microarray analysis.

Microarray analysis

The Eurasian perch array (SurePrint G3 Custom Gene Expression Microarray, 8x60K - Agilent

Technologies) contains 48,986 non-redundant probes previously identified and available from

the PhyloFish Database [43]. The “One-Color Microarray-Based Gene Expression Analysis

(Low Input Quick Amp Labeling) Protocol” was followed for samples preparation, hybridiza-

tion, washing and scanning of slides and data extractions. Briefly, 150 ng of total RNA were

used for the amplification/Cy3-labeling step. After this step, samples were purified (RNeasy

mini kit, Qiagen) and quantified using a NanoDrop ND-1000 Spectrophotometer (NanoDrop

Technologies). Samples exhibiting a yield higher than 1.03 μg of cRNA and a specific activity

higher than 10.30 pmol of Cy3/μg of cRNA were fragmented and used to hybridize arrays (one

sample failed the labeling step and was excluded from the experiment). Samples (600 ng of

Cy3-cRNA) were randomly distributed onto four slides. After 17h of hybridization at 65˚C,

slides were washed, dried and scanned with an Agilent Technologies Scanner (G2505C).

Scanned images were extracted with Agilent Feature Extraction software.

Data extracted from scanned images were normalized and log(2) transformed for statistical

analyses (all data are available in the Gene Expression Omnibus database under the accession

code GSE119802). Using the GeneSpring software, an unpaired t-test followed by a Benja-

mini-Hochberg correction was used to identify genes differentially expressed (DEG) between
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the two populations (p<0.05). Then, a hierarchical clustering analysis (unsupervised average

linkage) was performed using Cluster 3.0 software (version1.52). Clusters were visualized

using TreeView software (version 1.1.6r4).

Gene ontology analyses

In order to give an overview of gene ontology (GO) terms represented among differentially

expressed genes between F1 and F7+ populations, they were functionally annotated and classi-

fied using Blast2GOv4.1.9 software [44]. Default parameters were used for blastx and GO

annotations.

In the following, we performed a GO overrepresentation analysis in which we compared

the list of DEG to a reference list corresponding to all expressed genes in the microarray. To

retrieve this reference list, we first filtered all genes present in the array. Genes were, consid-

ered as expressed when they presented a signal above background in at least 75% of the sam-

ples and in at least one of the populations. In a second time, as the Eurasian perch genome is

not yet available in any databases allowing performing GO analyses, we chose to retrieve

human orthologs identifiers for the reference and DEG lists. It allowed us to perform the anal-

ysis. In order to find these identifiers, we aligned probes designed for the array corresponding

to each sequence in the lists against the Eurasian perch transcriptome extracted from the

genome, provided by [45], with minimap2 (version 2.7 with -m 20 parameters). Because the

gene prediction file had small UTRs, we extended the prediction on both transcript sides by

2kb. If a probe had a unique alignment, it was assigned to the corresponding transcript. If the

probe had two corresponding transcripts located one after the other on the genome, we

assigned it to the transcript having the match closest to its center. Probes with no match or

over two matches were not assigned to a transcript. We then retrieved the human orthologs

identifiers from the annotation file provided by [45]. The genes still missing identifiers in the

DEG list were manually annotated using UniProt accessions. In total, among the 358 DEG,

265 human orthologs identifiers were found. The GO overrepresentation analysis was per-

formed using Panther14.0 [46]. Parameters were set at default, meaning that a Fisher’s exact

test and a Benjamini-Hochberg correction were applied. We asked for GO-Slim Biological

Processes (BP) and Pathways and only corrected p-values<0.05 were considered as

significant.

Real-time PCR analysis

Genes presenting a log(2) fold change (log(2)FC)> 4 in microarray were additionally studied

by real-time qPCR in all samples previously used for the microarray. After RNA extraction, a

DNase treatment (DNase I, RNase free—Thermo Scientific) was applied to 5 μg of all samples

(n = 32) following the manufacturer’s protocol. The reverse transcription was performed in a

final volume of 20 μl using a M-MLV Reverse Transcriptase (Sigma-Aldrich), 1 μg of RNA

and random nonamers (2.5 μM—Sigma-Aldrich) and following the manufacturer’s protocol.

Reverse transcript products were diluted 1:27 and 5 μl were used for the real-time PCR, using

PerfeCTa SYBR Green SuperMix (Quanta Bioscience) and 5 pmol of each primer. Primers

were designed using Primer3Plus or Primer design Tool-NCBI software (S1 Table). The real-

time qPCR was performed using a Step One Plus system (Applied Biosystems, Foster City,

USA). The PCR program consists of a first step at 95˚C for two minutes followed by 40 cycles

consisting of a denaturation step at 94˚C for 15s, an annealing step at 50–58˚C depending on

the primers pairs for 15s and an elongation step at 72˚C for 30s. The amplification was fol-

lowed by a melting curve stage, according to manufacturer’s parameters in order to check the

primers specificity. The abundance of the target cDNA in each sample was calculated using a
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serial dilution of a pool of all cDNA samples using the StepOne Software (Applied Biosystems,

version 2.1). This dilution curve was used to certify the reaction efficiency (80–120%). All sam-

ples were analyzed in duplicate and the geometric mean of the expression level data of the

adenosine kinase-like, RNA18s, TATA-box binding and ELAV-like protein 1-like (S1 Table) was

used as reference to normalize the data obtained. These genes were found as stable in microar-

ray and preliminary real-time qPCR analyses in all samples. The values obtained after normali-

zation were analyzed using a Mann-Whitney test (RStudio software version 1.0.143) to

compare differences of gene expression between populations (p<0.05).

Genetic variability between populations

Genomic DNA was extracted from 42 fin samples representing the two populations (21 F1 and

21 F7+), using the universal salt-extraction method, according to [47]. Purity and quantity of

genomic DNA were assessed using a NanoDrop ND-1000 Spectrophotometer (NanoDrop

Technologies). Eight microsatellites previously used on P. fluviatilis [48] were selected: PflaL1,

PflaL2, PflaL4, PflaL6 [49], SviL7 [50], Svi17 [51], YP60 and YP111 [52]. Two multiplex ampli-

fications were done using fluorescently labeled primers. The first multiplex (A) contained

PflaL2 (FAM), PflaL4 (PET), SviL7 (VIC), Svi17 (FAM) and YP111 (PET). The second one (B)

contained YP60 (FAM), PflaL1 (VIC) and PflaL6 (FAM). Polymerase chain reaction was car-

ried out using the Multiplex TEMPase 2XMasterMix (VWR), 10 pmol of fluorescent primer

mix, genomic DNA and water for a final volume of 30 μl. PCR conditions for multiplex A

were: 95˚C for five minutes, 28 cycles at 95˚C for 30 seconds, 55˚C for 90 seconds and 72˚C

for 30 seconds, and a final extension of 45 seconds at 60˚C. For multiplex B, PCR conditions

were: 95˚C for five minutes, six cycles at 95˚C for 30s, 48˚C for 90s and 72˚C for 30s, 22 cycles

at 95˚C for 30s, 50˚C for 90s and 72˚C for 30s, and a final extension at 60˚C for 45s. PCR prod-

ucts were diluted (1:151) with deionized water and added Hi-Di™ Formamide (Applied Biosys-

tems) and GeneScan 600 LIZ Size Standard (Applied Biosystem). The fragment analysis was

performed on a 3500 Genetic Analyzer (Applied Biosystems HITACHI) and alleles were

scored with Geneious 11.0.2 [53].

Genetic diversity was estimated through calculation of observed (Ho) and expected (He) het-

erozygosities in GENETIX [54]. Population differentiation was assessed by estimating the

“global” FST statistic on populations through an analysis of molecular variance (AMOVA when

considering only one group of populations) performed in Arlequin with 10000 permutations.

Divergence between populations was estimated with a FST-pairwise test (10000 permutations).

Statistical analysis

Differences in GSI, sexual steroids and Vitellogenin concentrations, oocytes stages abundance

on histological cut and specific deformities were estimated using a non-parametric Wilcoxon-

Mann-Whitney. Normality and homogeneity of variance were tested using respectively Sha-

piro-Wilk and Levene’s test.

In order to investigate possible differences of embryonic development between populations,

percentage of embryos alive at 24, 48, 72 and 120 hpf and at hatching were compared between

populations using a one-way repeated-measures ANOVA. The statistical model included as

fixed effect the percentage of alive embryos for F1 and F7+ populations. It has been controlled

by the introduction of the females as covariate. This model was chosen after comparison with

a second one without a covariate. They were ranked according to their Akaike information cri-

terion and the one having the lowest criterion was chosen [55]. A TukeyHSD was performed

to identify differences between populations at different times individually.
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For all tests, a p-value� 0.05 was considered statistically significant. All values given are

represented as means ± standard error of mean (SEM). All tests were performed using R

(v.1.1.423) [56]. The package stats was used to perform Shapiro-Wilk, Wilcoxon-Mann-Whit-

ney, ANOVA and TukeyHSD tests. While car was employed for Levene’s test.

Results

Two Eurasian perch populations (F1 and F7+) were used in the present study. Analysis of their

genetic differentiation using microsatellites revealed a FST of 0.1055 (p< 0.001). In addition,

the F7+ population presented a higher observed heterozygosity (mean = 0.440) compared to

the F1 (mean = 0.348), indicating a larger genetic diversity of the F7+ population.

Follow up of the gonadogenesis progression reveals few differences between
populations

Five sampling points of females were performed as shown in Fig 1. The GSI of both popula-

tions increased progressively all along gonadogenesis to reach close to 13% one month before

the spawning season (S1A Fig). The only difference between populations can be seen at T31

with a higher GSI (p = 0.02) for the F7+ females (0.91 ± 0.05%) compared to the F1 ones

(0.69 ± 0.06%). A follow up of the hormonal status of females did not present any significant

difference of the testosterone level between populations. At T253 a higher level was recorded

for the F1 (50.35 ± 5.89 ng/mL) compared to the F7+ (35.81 ± 6.49 ng/mL, p = 0.06 –S1B Fig).

Similar data were obtained for the 17-β-œstradiol (E2), except for the T253 for which the hor-

monal level was higher (p = 0.03) for F7+ (8.71 ± 0.34 ng/mL) than for F1 (7.39 ± 0.44 ng/mL),

no other statistical difference was found (S1C Fig). The follow up of the Vitellogenin level in

the blood did not present any significant difference between F7+ and F1 populations (S1D

Fig).

These data suggest that the oogenesis progression for both populations was similar. How-

ever, the histological study of gonads revealed that F1 females presented higher percentage of

late vitellogenesis oocytes (57 ± 6%) at the end of the oogenesis in comparison to the F7+ ones

(41 ± 4%; T253, Fig 2A and 2B), suggesting that oogenesis was slightly more advanced in the

F1 than in the F7+.

The embryonic survival is higher in F1 than in F7+ spawn

Following the observation of a slightly faster oocytes development in F1 population, the first

spawning was more precocious for F1 than for F7+ fish. F1 females, coming from all three

original replicate tanks, spawned between thirteen and seven days earlier than F7+ first

spawner (Fig 3).

The main effect for population yielded an F ratio of F(1,30) = 4.266, p = 0.0476, indicating a

significance difference on the number of embryos alive depending on the population.

Since an overall population effect on the percentage of embryos alive was observed,

TukeyHSD tests were performed between populations and revealed significant differences

between them at 48 (p = 0.02), 72 (p = 0.03) and 120 hpf (p = 0.05) and at hatching (p = 0.03).

Consequently, embryonic survivorship was significantly higher in F1 than in F7+ population

from 48 hpf (Fig 4A and S2 Table). Interestingly, more heterogeneity of survivorship is seen in

F7+ population at all timepoints (coefficient of variation (CV) = 62%, 88%, 95%, 90% and

121% at 24, 48, 72 and 120 hpf and at hatching, respectively) in comparison to F1 in the same

stages (CV = 51%, 56%, 56%, 59% and 64% at 24, 48, 72 and 120 hpf and at hatching, respec-

tively). The overall occurrence of deformities and that of specific deformities were comparable

between populations and did not present any statistical difference (Fig 4B and S3 Table).
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Fig 2. Histological follow up of the oogenesis progression. (A) Percentage of each cellular stage in gonads belonging to F7+ and F1
populations during oogenesis period. Stages are represented as: primary growth and oogonia—PG+O, early cortical alveoli—ECA, late cortical
alveoli stage—LCA, early vitellogenesis—EV, late vitellogenesis—LV and atresia—A. Differences between the two populations were tested
using non-parametric Wilcoxon-Mann-Whitney test (p<0.05). Significance levels are represented as follows: �, p = 0.05–0.01; ��, p = 0.01–
0.001; ���, p = 0.001–0.0001; and ����, p< 0.0001. (B) Histological section of gonads representative of F7+ and F1 ovaries at T253. Arrows
points to LV stages and arrowheads indicate the PG+O stages. Scale bars represent 1000 μm.

https://doi.org/10.1371/journal.pone.0226878.g002
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Eggs transcriptomic analysis

A large scale analysis was performed on 31 spawn to compare the maternal transcriptomic

profiles of non fertilized eggs. The statistical analysis revealed 358 differentially expressed

genes (DEG) between populations (S4 Table). An unsupervised average linkage clustering

analysis was performed using the expression data of these 358 DEG. It allowed splitting apart

both populations revealing that 172 genes were over-expressed in the F7+ population and 186

genes were over-expressed in the F1 population (Fig 5A and S5 Table).

A functional annotation of these 172 and 186 over-expressed genes allowed mapping 86

genes for each population, among which 73 and 76 genes containing specific GO annotations

were identified for F7+ and F1 populations, respectively (S6 and S7 Tables).

Using Panther software, no Pathways was enriched and the term “immune system” was

overrepresented (FDR p-value = 0.00251; S8 Table). Four of the genes represented belong to

the butyrophilin or the butyrophilin-like family but two of them were up-regulated in the F1

population while the others were down-regulated in this population. For three of these genes,

the log(2)FC was>2 and were thus among the 16% most differentially expressed genes

between the two populations.

Indeed, among the 358 DEG only 60 presented a log(2)FC> 2 between the two popula-

tions. Fifty DEG showed a log(2)FC between 2 and 3-fold (S4 Table) and 10 genes had a log(2)

FC higher than 4-fold (5 over-expressed in the F7+ population and 5 in the F1; Fig 5B). We

choose to check the expression level of the genes having a log(2)FC> 4 by real-time qPCR.

Among them, three sequences could not be identified because the probes actually recognized

contigs grouping numerous unidentified genes in the Eurasian perch transcriptomic database

(Fig 5B). Among the remaining genes, four were more expressed in the F7+ population:

mex3b (log(2)FC = 8.26), bloc1s1 (log(2)FC = 4.91), an uncharacterized protein (log(2)

FC = 4.57) and hace1 (log(2)FC = 5.53). In the same way, per2 (log(2)FC = 5.68), nibl1 (log(2)

FC = 4.04) and iyd (log(2)FC = 4.62) were more abundant in the F1 population.

Expression level differences were confirmed formex3b (log(2)FC = 7.26 for the RT-qPCR),

the uncharacterized protein (log(2)FC = 1.65 for the RT-qPCR), hace1 (log(2)FC = 1.65 for the

RT-qPCR) and per2 (log(2)FC = 3.13 for the RT-qPCR; Fig 6). However, for bloc1s1 and nibl1

the expression levels between both populations were not significantly different by RT-qPCR

even if they followed the same profile than in the microarray (Fig 6). In addition, concerning

iyd not only no significantly different expression was observed, but also the profile observed by

Fig 3. Timetable of the spawn obtained for both populations during the spawning season in relation to temperature and photophase increase at the
end of the photothermal program. Bars with numbers correspond to the number of spawn obtained each day for F1 and F7+ females.

https://doi.org/10.1371/journal.pone.0226878.g003
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RT-qPCR was in favor to a higher expression in the F7+ population, which is in contradiction

with the microarray data.

Discussion

The Differentiation Index (FST) illustrates a genetic divergence between populations ranging

from 0 (gene flow between populations) to 1 (isolated populations without any gene flow). In

the literature, a lower FST (0.002, p< 0.0023) was found between various samples of Eurasian

perch all around the Geneva Lake [48] and authors considered that there was only one popula-

tion in the lake. The same authors showed a minimum FST of 0.45 (p< 0.0001) between a wild

Fig 4. Evaluation of the embryonic developmental success in F1 and F7+ populations. (A) Percentage of embryos
surviving at 24, 48, 72 and 120 hours post-fertilization (hpf) and at hatching in F1 (light gray dots) and F7+ (black
dots) populations estimated based on the total number of studied embryos (about 100 embryos). In (A), dots represent
population means ± SEM at each observed time (n = 19 and 13 for F1 and F7+, respectively). P-values presented
represent comparisons between populations at each time of observation obtained using a TukeyHSD preceded by a
significant one-way ANOVA in repeated measures (p� 0.05 were considered as significant). (B) Total deformities
rates (Dr) and specific rates in various tissues at hatching in F1 and F7+ populations (Ad—Axis, Cd—Cardiac, Yd—
Yolk, Md—Mouth, Od–Other, Ed—Eyes). No significant difference has been identified between populations using
non-parametric Wilcoxon-Mann-Whitney test (p<0.05; n = 23).

https://doi.org/10.1371/journal.pone.0226878.g004
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Fig 5. Heatmaps showing differentially expressed genes between F1 and F7+ populations. (A) Unsupervised hierarchical cluster analysis of 358
differentially expressed genes (p< 0.05) between populations. The dendrogram on the left represents gene correlation distances between the genes. (B)
Unsupervised hierarchical cluster analysis of the 10 most differentially expressed genes (p< 0.05) with a log(2)FC>4, between populations. Gene
abbreviated name and log(2)FC are shown between parentheses on the right. In both parts of the figure, red color indicates over-expression, and green color
indicates under-expression while black is used for median expression. Top bar indicates the origin of the samples: black for F7+ samples and gray for F1
ones. Node similarity score bars represents the similarity between tree branches. It ranges from 1 (identical) to -1 (opposites), while 0 means they are
completely uncorrelated.

https://doi.org/10.1371/journal.pone.0226878.g005
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and nine farmed populations of Eurasian perch that were all supposed to originate from the

same geographic location [24]. They were considered as distinct populations. In comparison,

our FST (0.1055, p< 0.0001) is in between the above mentioned examples. The interpretation

of significant differences when using highly variable loci, such as microsatellites, has to be very

carefully analyzed since its biological meaning can often be weak [57]. In the present study, we

selected the most variable microsatellites according to literature on Eurasian perch

Fig 6. Compared analysis of seven genes among the most differentially expressed (log(2)FC>4) between microarray and RT-qPCR experiments.
The same egg samples were used to perform both techniques for F7+ (n = 13) and F1 (n = 18 for microarray and n = 19 for RT-qPCR) populations. An
unpaired t-test followed by a multiple testing correction Benjamini-Hochberg was applied on microarray results while a Mann-Whitney-Wilcoxon test was
used on RT-qPCR results. Bars correspond to the means ± standard error. Significance levels are represented as follows: �, p = 0.05–0.01; ��, p = 0.01–
0.001; ���, p = 0.001–0.0001; and ����, p< 0.0001.

https://doi.org/10.1371/journal.pone.0226878.g006
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microsatellite differentiation. In addition, the higher heterozygosity index for the F7+ (0.440)

compared to the F1 (0.348) shows a higher heterogeneity in the F7+ population compared to

the F1. Our F7+ population came from a partner fish farmer but first originated from the

transfer from another fish farm. The initial stock was supposedly from Geneva lake but it was

difficult to obtain a reliable traceability. Consequently, it is possible that some individuals from

different geographic locations may have been introduced in the F7+ stock, which is a common

practice in aquaculture [24]. Alternatively, the random independent sampling process to create

each population stock (F1 and F7+) could have led to different degrees of genetic drift in each

stock. In our conditions, none of these hypotheses can be ruled out.

Control of the reproductive cycle

The oogenesis progression was similar between populations even if females from the F1 popu-

lation seemed to respond faster to the photothermal stimulation and kept a slight non-signifi-

cant advance all along the process. This advance became significant one month before the

spawning with a higher proportion of late vitellogenesis oocytes and may contribute to explain

the early onset of the spawning season of F1 females (thirteen to seven days before the F7

+ ones). For technical reasons it has not been possible to determine the end of the spawning

season of F7+ fish. The short spawning season of F7+ population in comparison to F1 is thus

not relevant. It is worthy to note that at the end of the experimental period all remaining

females that did not spawn presented developed gonads, once they were all slaughtered at the

end of the experiment.

In this study, sexual steroids and Vitellogenin levels were either slightly or not different dur-

ing the reproduction cycle between populations. The same pattern has been observed for the

GSI. Differences found may either be mediated by yet unknown mechanisms or very subtle

variations of hormone levels controlling the oogenesis progression. From the current knowl-

edge, it remains difficult to precisely point which of these parameters imposed these modula-

tions between the two populations.

Concerning the developmental success, results showed that F1 population presented an

embryonic survival higher than the F7+ one with differences ranging from 16 to 26% of sur-

vival depending on the timepoint. This difference is the lowest at 24 hpf (16%), leading to a

non-significant result at this timepoint. In any case, differences between populations may be

due to egg quality issues that led either to fertilization impairments or higher mortality occur-

rence. These results enable us to conclude that the overall egg quality was higher in F1 than in

F7+ population. Egg quality relies greatly upon its intrinsic content and some molecules may

have very early and essential effect during embryogenesis, including pronuclear congregation

and mitotic spindle assembly [58]. In addition, only few exchanges occur between the develop-

ing embryos and the environment [34] reinforcing the importance of the egg content during

early embryogenesis. Moreover, the F7+ population shows more heterogeneous survivorship.

It is potentially related to individuals’ history in the tank during the oogenesis (e.g. behavioral

difference). In any case this difference of egg quality may be explained by the resource alloca-

tion theory [12]. Even if domestication of Eurasian perch begun 20 years ago, numerous ques-

tions remain to properly achieve their breeding in recirculating aquaculture systems. Since no

selective program has begun yet for this species [23], the artificial selection driven by farmers

remains empirical. In addition, rearing conditions are not fully optimized and fish farmers

continue to make changes in their practices. Consequently, an imbalance between biological

functions may occur in this species because resource intakes are allocated toward certain traits

at the expense of other functions, such as reproduction. No zootechnical practices may be

undertaken to compensate the lack of intake that may occur at each generation. This data is in
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accordance with numerous studies showing a decrease of the reproductive success in domesti-

cated populations. Indeed, lower fertilization and hatching rates in farmed Atlantic cod (G.

morhua) [18,19], lower survival rate at the eyed stage in farmed Atlantic salmon (S. salar) [59],

lower hatching rate in cultured common sole (Solea solea) [60] and oogenesis impairments in

captive-reared greater amberjack (S. dumerili) [20] were described in comparison with their

respective wild counterparts. Therefore, this problem is widely observed in fish species and

further studies are needed to test the hypotheses proposed in the resource allocation theory

during fish domestication. If these hypotheses are confirmed, it means that a more accurate

knowledge of metabolic needs for each biological function at each step of the life cycle is

required before starting any selection program. Farmers should then take this information

into account in order to implement a compensation program when the resource allocation is

imbalanced. In this manner, all biological functions may beneficiate from an increase of the

global resource intake. In addition, the choice of selected biological traits in addition to the fol-

low up of the fitness of individuals should be assessed properly in order to detect early any

deviation.

Concerning the Eurasian perch (P. fluviatilis), other studies showed that wild populations

had higher reproductive performance than captive ones but with even more drastic differences

than in the present work [21,22]. Differences between our study and these ones may be due to

accumulation of the domestication effect on oogenesis and spermatogenesis, since in those

studies developmental performance of embryos was evaluated from pure crosses from each

population. In the present study, our goal was to investigate exclusively the effect of the domes-

tication on females’ performance. Consequently, we chose to reduce the potential effect of

sperm quality and fertilized all spawn with sperm from F1 males. Another explanation could

be that rearing conditions using in other studies were different (tank size and colour, first

spawn or not. . .) from ours and influenced differently wild populations in the different

studies.

Variations of gene expression profiles between wild and “domesticated” populations have

been demonstrated in whole larvae and embryos of Atlantic salmon (S. salar) [15,61], fertilized

eggs of Atlantic cod (G.morhua) [18] and whole larvae of steelhead trout (O.mykiss) [3] but

no study investigated the maternal mRNA profile. These observations strengthen the necessity

to better understand the contribution of maternal mRNA to the embryonic early development

in our conditions.

Eggs transcriptome

Our working hypothesis was that the domestication process may impact the maternal mRNA

content of the eggs and thus the transcriptomic profile of unfertilized eggs coming from F1

and F7+ populations. In total, 358 genes presented a significant difference of expression

between populations.

The GO analysis revealed one biological process term overrepresented among the DEG list

that we analyzed, suggesting that this function may be affected by the domestication process.

This biological process corresponds to the “immune system” grouping proteins usually

involved in the regulation of the adaptative immune response such as activation and prolifera-

tion of effective T cells and cytokine production [62], controlling inflammation. However,

these genes can be expressed in several tissues and may thus be involved in other biological

functions. In fish, the T cell receptor signaling pathway seems to be as complex as in mammals

but remains yet to be understood [63,64]. Some transcriptomic studies in eggs, embryos and

early larvae showed that genes related with the immune system are often differentially

expressed depending on egg quality or the domestication level. Concerning studies on the egg
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quality, genes representing the immune system are mostly down-regulated in eggs presenting

lower potential to properly develop [65,66]. Concerning domestication comparisons, several

genes involved in the immune system were down-regulated in a domesticated population of

Atlantic salmon (S. salar) compared to their wild counterparts [15,16]. In the latter case, the

populations used were selected for their growth abilities and authors proposed the existence of

a trade-off between growth and immune response during the selection process. In another

study performed in the steelhead trout (O.mykiss) [3], authors proposed that it could simply

reflect an adaptation of individuals to the captive environment, implying an up-regulation of

genes involved in this function in domesticated fish. However, no information on the direction

of perturbations (up- or down-regulation of genes in domesticated or wild populations) was

given. In our study, the term “immune system” involved genes that were up-regulated either in

the F1 population (five genes) or in the F7+ population (four genes). Additionally, most of the

highlighted genes code for Butyrophilin proteins involved in several biological functions, on

top of their role in the immune system. More particularly, they regulate the oil droplets secre-

tion in the milk produced by mammals [67]. Eurasian perch eggs contain a large oil droplet

necessary for proper embryonic development since impairments in its formation have been

correlated to embryogenesis defects [68]. It would be interesting to further investigate a poten-

tial role of these proteins in the formation of oil droplets in fish eggs.

In addition, some of the genes presenting the wider variations of expression between popu-

lations are known to be involved during the early embryogenesis and may partly explain devel-

opmental defects leading to early lethalities observed in the F7+ population. The period2 gene

(per2) codes for a protein belonging to the basic-helix-loop-helix-PAS (bHLH-PAS) protein

family and belongs to the clock genes controlling many developmental and physiological

events [69]. However, in several mammalian species, numerous clock genes, including per2,

have been observed in the developing oocytes and eggs as maternal mRNA. These mRNA are

not controlled by circadian rhythms and disappear after the MZT [70,71]. Authors proposed

that per2 could be involved in the control of meiosis but, up to now, no proof has corroborated

this hypothesis and further investigations are needed to study their role in this tissue. Similar

data have been observed in the developing spermatogonia in mice in which clock genes are

expressed without any link with the circadian rhythm. In this study, authors made the hypoth-

esis that this gene is mainly linked to the differentiation process [72]. Our study shows for the

first time that a per2 gene is expressed in fish eggs, suggesting similarities with mammals. In

addition, it is highly expressed in eggs of the F1 population. Our study does not allow making

any hypothesis about the role of per2 or if it is dependent or independent of the circadian

rhythm. However, it suggests that per2 role during the gonadogenesis may be evolutionary

conserved.

The gene hace1 codes for the HECT domain and Ankyrin repeat Containing E3 ubiquitin-

protein ligase 1. It was first identified as a potential tumor suppressor in humans [73]. Later,

absence or mutation of this gene was related with developmental issues such as some neurode-

velopmental syndromes in humans [74], a shortening of the body axis, an inhibition of eye pig-

ments formation and a delay in neural tube closure in xenopus [75]. In this last study, authors

compared their data with another work performed with zebrafish and showing no clear phe-

notype in this species. They argued that the zebrafish study revealed the role of HACE1 by

using splice-sites morpholino efficient to repress zygotic but not maternal RNA [76] while

their study involved translational blocking morpholinos blocking both maternal and zygotic

RNA. Thus they suggest that phenotypes in xenopus could be linked to the maternal pool of

RNA. Recently, a study demonstrated that HACE1 is involved in the normal development and

proper function of the heart in zebrafish [77]. However, authors used splice-site morpholinos

suggesting that this cardiac phenotype could be due to later zygotic expression of HACE1.
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Consequently, even if no maternal role of HACE1 has been studied in the zebrafish, studies

performed on xenopus suggest that a maternal expression of these mRNA have consequences

on the neural tube development. Up to now, two main targets of Hace1 have been identified:

Rac1 involved in the cell cycle control and NADPH oxidase regulating the reactive oxygen spe-

cies production. A previous study showed that some enzymes involved in the control of the

oxidative stress present a variation of expression depending on oocytes quality in Eurasian

perch [78]. In some marine invertebrate species, a modification of redox homeostasis may

help to avoid the polyspermy during fertilization [79]. In our study, the mRNA abundance of

hace1 is higher in the F7+ population, potentially accelerating NADPH oxydase degradation

and thus influencing fertilization. With the current knowledge, no transduction pathway

could be favored.

Similarly, the mRNA abundance ofmex3bmRNA was higher in the domesticated popula-

tion.Mex3b, ormuscle excess 3, codes for an evolutionary conserved RNA-binding protein

involved in post-transcriptional regulations [80]. It is associated to proper embryonic develop-

ment by establishing antero-posterior patterning in Tribolium [81], Caenorhabditis elegans

[82] and Xenopus laevis [83]. As a whole, embryonic patterning is regulated by expression and

spatial distribution of many transcripts. In xenopus,mex3bmRNA presents a long conserved

untranslated 3’UTR involved in its auto regulation [83]. In turn, the protein is involved in the

mRNA stability and regulates the abundance of several genes, involved in diverse cellular func-

tions [83]. In the present work, the maternal expression ofmex3bmRNA presents the highest

variation of expression level between the two populations (log2FC> 7 in the RT-qPCR). Con-

sequently, the high expression of this transcript in the F7+ eggs may be linked to fine tuning of

numerous molecular functions in the embryo and lead to diverse phenotypes.

Finally, a mRNA coding for an uncharacterized protein was found to be significantly more

expressed in the eggs laid by F7+ females. BLAST analyses against the Uniprot and NCBI data-

bases showed that they are highly homologous to other uncharacterized proteins in other fish

species presenting homologies with some domains of ADP ribosylation enzymes. However,

these sequences have not been identified yet.

Conclusions

Our study showed that reproductive performance of Eurasian perch females may be influenced

by the domestication process which is probably closely related to the rearing practices poten-

tially leading to several genetic and/or epigenetic modifications. This study revealed that even

if the breeders of two Eurasian perch populations (F1 vs. F7+) were reared and induced in the

same conditions, the F1 population started to spawn earlier than the F7+ during the spawning

season. In other words, it shows that, in our conditions, the domestication process may influ-

ence the responsiveness of females to the reproductive environmental stimuli in captive

environment.

The F1 population produced eggs having a better potential to develop properly until hatch-

ing compared to eggs from the F7+ population. These differences in egg quality may be linked

with the important variation in the eggs transcriptomic content between populations. The

identification of several genes presenting distinct expression between the two populations

could open new paths of investigation to understand their role and mechanism of regulation

during embryogenesis and depending on the domestication level.

Finally, the genetic differentiation analysis between studied populations did not allow us to

isolate the domestication as the only factor explaining our data. It reinforces the necessity of

studying populations presenting a clearer life history to further understand the dynamic of

modifications occurring during the domestication process. It is particularly important in the
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perspective of a growing pressure toward fish farmers and scientists to initiate selection pro-

grams for several fish species.
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