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Abstract

Let J be a set of types of subspaces of a projective space. Then a

collineation or a duality is called J-domestic if it maps no flag of type J

to an opposite one. In this paper, we characterize symplectic polarities as

the only dualities of projective spaces that map no chamber to an opposite

one. This implies a complete characterization of all J-domestic dualities

of an arbitrary projective space for all type subsets J . We also completely

characterize and classify J-domestic collineations of projective spaces for

all possible J .
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1 Introduction

Abramenko and Brown [1] show that every automorphism of an irreducible
non-spherical building has infinite displacement. Their method also gives in-
formation about the spherical case. For instance, in the rank 2 case, every
automorphism maps some chamber to a chamber at codistance one, and if the
diameter of the incidence graph is even (odd), then any duality (collineation)
maps some chamber to an opposite one. For projective planes, this shows that
collineations behave normally, where ‘normal’ means that at least one chamber
is mapped onto an opposite one. However, it is easily seen that also dualities of
projective planes behave normally. Counterexamples to this normal behaviour
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are given in [1], attributed to the third author of this paper, and consist of sym-
plectic polarities in projective spaces and central collineations in generalized
polygons of even diameter. The goal of this paper is to classify all ‘abnormal’
automorphisms of projective spaces, which we will call ‘domestic’.

2 Preliminaries and statement of the main result

We will write down most definitions in the general context of spherical build-
ings, but we will only be concerned with a specific class of buildings, namely,
the projective spaces. Hence we do not define a building in full generality, but
refer to the literature.

Let Ω be a spherical building, and let θ be an automorphism of Ω. We empha-
size that θ need not be type-preserving. Then we call θ domestic if no chamber
of Ω is mapped onto an opposite chamber. More in particular, for a subset J of
the type set of Ω, we say that θ is J -domestic, if θ does not map any flag of type
J onto an opposite one. The main result of [1, Section 5], also proved earlier by
Leeb [2], using entirely different methods, asserts that every automorphism of
any (thick) spherical building is not J -domestic, for some type subset J . Hence
being not J -domestic seems to be the rule, and so it is worthwhile to look at
automorphisms which are J -domestic, for some J .

We now specialize to projective spaces. In a projective space PG(n,K), a
flag is a set of pairwise incident elements and a chamber is a flag of size n. An
i-dimensional subspace U of PG(n,K) is opposite a j-dimensional subspace V of
PG(n,K) if and only if j = n−1−i and U∩V is empty. A flag F is called opposite

a flag F ′ if every element of F is opposite an element of F ′ and conversely.

We will call a non-type preserving automorphism a duality and a type pre-
serving automorphism a collineation. Let θ be a duality of a projective space
PG(n,K), with K a skew field. Then an absolute element U is a subspace which
is incident with its image Uθ. A polarity is a duality of order 2. A symplectic po-

larity, or null-polarity, is a polarity for which every point is absolute. Then nec-
essarily K is a commutative field, n is odd, and θ is related to a non-degenerate
alternating bilinear form.

In the present paper we will show the following result:

Theorem 2.1. Every domestic duality of any finite-dimensonal projective space

is a symplectic duality, and a collineation of an n-dimensional projective space,

n ≥ 2, is domestic if and only if this collineation fixes a subspace of dimension at

least n+1

2
pointwise.
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3 Domestic dualities

In this section we will prove the following theorem.

Theorem 3.1. Every domestic duality of a projective space is a symplectic polarity.

In particular no even dimensional projective space admits domestic dualities.

It is clear that in any one-dimensional projective space, the only domestic
collineation is the identity, and for any domestic duality, all elements are abso-
lute elements (and this can be considered as a symplectic polarity).

This is enough to get an induction started. Note that the problem only makes
sense for finite dimensional projective spaces as infinite ones are never self dual.

We first prove some lemmas which are independent of the induction hypoth-
esis.

Lemma 3.2. Let θ be a duality of a projective space of dimension d > 1 with the

property that every point is absolute. Then θ is a symplectic polarity.

Proof. Suppose by way of contradiction that θ is not a polarity. Then there
is some point x for which x′ = xθ2

$= x. Consequently also H := xθ and
H ′ = x′θ are different, and we can choose a point y ∈ H, y /∈ H ′. Since lines
are thick, there is a z ∈ yx′, z /∈ {x′, y}. Since z ∈ H, we have zθ & Hθ = x′.
Similarly, x′ ∈ yθ. By assumption z ∈ zθ and y ∈ yθ. Hence the line yz is in
zθ ∩ yθ = (zy)θ ⊆ x′θ. This contradicts yz $⊆ H ′. Consequently θ is a polarity
and hence a symplectic polarity as every point is an absolute one. !

Lemma 3.3. If a line contains at least one non-absolute point, and |K| > 2, then

it contains at least two non-absolute points.

Proof. Assume by way of contradiction that the line L contains exactly one non-
absolute point x. Then xθ intersects L in some point y $= x. Since, by assump-
tion, y ∈ yθ, we see that Lθ ∩ L = {y}. If ui ∈ L, i = 1, 2, x $= ui $= y, then
uθ
i = 〈ui, Lθ〉 = 〈L,Lθ〉, implying u1 = u2, and so |K| = 2. !

Proof of Theorem 3.1. In view of the induction procedure, we assume that for
given d > 0 the only domestic dualities of a projective space of dimension d′ < d
are the symplectic polarities for odd d′, and we assume that θ is a domestic
duality of a d-dimensional projective space Π.

In view of Lemma 3.2, it suffices to show that every point of Π is absolute.
Let, by way of contradiction, x be a point which is not absolute, and let H be its
image under θ. For any subspace S in H, the image 〈S, x〉θ =: S′ is a subspace
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of H, and the correspondence S *→ S′ is clearly a duality θH of H. Since for
a subspace S of H we have that 〈S, x〉 is opposite 〈S, x〉θ if and only if S is
opposite 〈S, x〉θ in H, it follows easily that this duality is domestic (because, by
the foregoing remark, if C is a chamber in H, then it is mapped onto an opposite
chamber in H if and only if the chamber {〈x, S〉 : S ∈ C ∪ {∅}} of Π is mapped
onto an opposite one). By induction d is even and θH is a symplectic polarity.
It follows that every point of H is absolute. Now let z be any point in H. By
construction of θH , the image (xz)θ is equal to zθH , and (xz)θ

2

is equal to the
span of 〈x, zθH 〉θ and Hθ =: x′. Note that x′ /∈ H. Since θH is symplectic, z is
an absolute point and we see that (xz)θ

2

= x′z.

Let us first assume that x′ $= x. Let y be the intersection of xx′ and H. Since
y is absolute and y ∈ H, the image yθ contains xx′. Put S = H ∩ yθ. Then for
any point u ∈ xx′, the image uθ contains S, but it can only contain u if u = y
(indeed, if it contains u, and u $= y, then it contains xx′ and hence coincides
with yθ, implying u = y after all). It follows that all points of xx′ except for y
are non-absolute. But this now implies that all points of uθ, for y $= u ∈ xx′,
are absolute, replacing x by u in the previous arguments. Now we pick a line
not in yθ meeting yθ in a pre-chosen point v $= y. Lemma 3.3 implies that v is
absolute, or |K| = 2. So, by Lemma 3.2, we may assume that |K| = 2. In this
case, all points of xθ ∪ x′θ are absolute. Let z be any point not in xθ ∪ x′θ. Then
z belongs to yθ \H. Suppose moreover that z /∈ {x, x′}. The line xz meets H in
a point u that belongs to yθH . Hence y ∈ uθH ⊆ uθ. Since also x′ belongs to uθ,
we see that the line xx′ is contained in uθ. It follows that, since this line is not
contained in xθ, it is neither contained in zθ. Since zθ does contain y, we now
see that zθ does not contain x. Since zθ also contains u, it cannot contain z, and
so it is not an absolute point. We have shown that all points outside xθ ∪x′θ are
non-absolute. But now, interchanging the roles of x and z (and noting that the
next paragraph is independent of the current one), we infer that all points of zθ

are absolute, and they cannot all be contained in xθ∪x′θ, the final contradiction
of this case.

Now we assume that x′ = x. As before, we deduce that no point u /∈ H is
absolute (taking u $= x, considering the line ux and noting that (ux)θ contains
ux ∩H). But then all points of uθ are absolute, for u /∈ H. For u $= x we obtain
points outside H that are absolute, contradicting what we just deduced.

So we have shown that the symplectic polarities are the only domestic duali-
ties in projective space. This proves Theorem 3.1. !

This has a few consequences. We assume that the type of an element of a
projective space is its projective dimension as a projective subspace.



Domesticity in projective spaces 145

Corollary 3.4. Let J be a subset of the set of types of an n-dimensional projective

space, n ≥ 2. If either J contains no even elements, or n is even, or the ground

field (if defined) is nonabelian, then there is no J -domestic duality. In all other

cases, symplectic dualities are the only J -domestic dualities.

Proof. This follows from the fact that any symplectic polarity maps an even-
dimensional subspace to a non-opposite subspace, and there exists a subspace
of any odd dimension that is mapped onto an opposite subspace. These claims
are easy to check and well known. Further, there do not exist symplectic polari-
ties in even-dimensional projective space, and in projective spaces defined over
proper skew fields. !

We can actually compute the displacement of a symplectic polarity ρ (the
displacement of an automorphism is the maximal possible distance between a
chamber and its image, see [1]). To do this, we first remark that , if U is a
subspace of even dimension, then Uρ meets U in at least one point (otherwise
the permutation of the set of subspaces of U sending a subspace W to W ρ ∩ U
would be a symplectic polarity, contradicting the fact that U has even dimen-
sion). Hence, if the projective space is (2n − 1)-dimensional, the image of any
chamber contains at least n elements that are not opposite their image. In or-
der to “walk” to an opposite chamber, we need at least n steps. This shows that
the codistance from a chamber to its image is at least n. We now show that
this minimum is reached. To that end, we consider the symplectic polarity ρ of
PG(2n− 1,K), with K a field, given by the standard alternating bilinear form

n∑

i=1

X2i−1Y2i −X2iY2i−1,

where we introduced coordinates (x1, x2, . . . , x2n). Now we just consider the
chamber C whose element of type i is given by the span of the first i + 1 basis
points (or, in other words, the set of points whose last 2n − i − 1 coordinates
are zero). In dual coordinates, a straightforward computation shows that the
element of type i of the image under ρ of C is given by putting the first i + 1
coordinates equal to zero, if i is odd, and by putting the first i − 1 coordinates
equal to zero, together with the (i + 1)st coordinate equal to zero, if i is even.
Subsequently applying the coordinate change switching the (2i − 1)st and 2ith

coordinates, for i taking the (subsequent) values 1, 2, . . . , n, we obtain a gallery
of chambers ending in a chamber opposite C. This shows that minimal gallery
codistance between a chamber and its image under a symplectic polarity in
(2n− 1)-dimensional space is equal to n.
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4 J -domestic collineations

Now we consider collineations of projective spaces. Let us fix the projective
space PG(n,K), with K any skew field. Let J be a subset of the type set. Define
J to be symmetric if, whenever i ∈ J , then n − i − 1 ∈ J . Then clearly, if J is
not symmetric, then every collineation is J -domestic. Indeed, no flag of type J
is in that case opposite any flag of type J . Hence, from now on, we assume that
J is symmetric. We first prove two reduction lemmas. The first one reduces the
question to type subsets of size 2, the second one reduces the question to single
subspaces instead of pairs.

Lemma 4.1. Let J be a symmetric subset of types for PG(n,K). Let i be the largest

element of J satisfying 2i < n. Then a collineation θ of PG(n,K) is J -domestic if

and only if it is {i, n− i− 1}-domestic.

Proof. Clearly, if θ is {i, n − i − 1}-domestic, then it is J -domestic. So assume
that θ is J -domestic. Let i be as in the statement of the lemma. Suppose that
θ is not {i, n − i − 1}-domestic and let U and V be subspaces of dimension i,
n − i − 1, respectively, such that U ⊆ V with {U, V } opposite {Uθ, V θ}, i.e.,
U ∩ V θ = V ∩ Uθ = ∅.

Now choose in U any flag F<i of type J<i, where with obvious notation,
J<i = {j ∈ J : j < i}. Let F be an arbitrary extension of type J of the flag
F<i ∪ {U, V }. Then F is opposite Fθ if and only if each subspace W ∈ F of type
j > n− i−1 is disjoint from the unique subspace W ′ of Fθ

<i of type n−j−1 and
each subspace Z ∈ F<i of type j < i is disjoint from the unique subspace Z ′ of
Fθ of type n− j−1. The latter is equivalent with saying that each subspace Y of
F of type n− j− 1 > n− i− 1 is disjoint from the unique subspace Y ′ ∈ Fθ−1

<i of
type j. So, we deduce that F is opposite Fθ if, and only if, the flag F>n−i−1 (with
obvious notation) is opposite the two flags Fθ

<i and Fθ−1

<i . But one can always
choose a flag opposite two given flags of the same type in any projective space.
Indeed, this follows easily from the fact that we can always choose a subspace
complementary to two given subspaces of the same dimension. Hence we have
proved that θ is not J -domestic, a contradiction.

The lemma is proved. !

So we have reduced the situation to symmetric type sets of two elements.
With a similar technique, we reduce this further. But first a definition. For
i ≤ n− i− 1 we say that a collineation is i-∗-domestic, if θ maps no subspace of
dimension i to a disjoint subspace.

Then we have:
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Lemma 4.2. Let i ≤ n− i− 1. Then a collineation θ of PG(n,K) is {i, n− i− 1}-

domestic if and only if it is i-∗-domestic.

Proof. It is clear that, if θ is i-∗-domestic, then it is {i, n − i − 1}-domestic.
Suppose now that θ is {i, n− i− 1}-domestic and not i-∗-domestic.

Then there exists some subspace U of dimension i mapped onto a subspace
Uθ disjoint from U . We can now choose a subspace V through U of dimension
n − i − 1 such that V is disjoint from both Uθ and Uθ−1

. That flag {U, V } is
mapped to an opposite flag, a contradiction.

The lemma is proved. !

Note that we can dualize the previous definition and lemma. We will not do
this explicitly, and we will not need to use this duality.

So, in order to classify all J -domestic collineations of PG(n,K) for arbitrary
J , it sufficies to classify all i-∗-domestic collineations, for all i ≤ n − i − 1. In
order to do so, we may suppose that a given collineation θ is i-∗-domestic, with
i ≤ n − i − 1, but not j-∗-domestic, for every j < i. We say that θ is sharply

i-∗-domestic.

In this setting, we can prove the following theorem. In the proof we need the
following notation. For an i-dimensional subspace V of PG(n,K), 0 ≤ i < n−1,
we denote by Res(V ) the projective space the point set of which consists of the
subspaces of dimension i + 1 containing V , and, more generally, the nontrivial
subspaces of Res(V ) are the nontrivial subspaces of PG(n,K) containing V . If
V = {v} is a point, we also denote Res({v}) by Res(v).

Theorem 4.3. A collineation θ of PG(n,K) is sharply i-∗-domestic, i ≤ n− i− 1,

if and only if it fixes a subspace of dimension n − i pointwise, but it does not fix

any subspace of larger dimension pointwise.

Proof. First suppose that θ is sharply i-∗-domestic. If θ would fix a subspace F
of dimension n−i+1 pointwise, then it would be (i−1)-∗-domestic, since every
subspace of dimension i−1 has at least one point in common with F and hence
cannot be mapped onto a disjoint subspace.

We now show that θ fixes some subspace of dimension n − i pointwise. To
that aim, let U be a subspace of dimension i−1 which is mapped onto a disjoint
subspace Uθ. Let V be an arbitrary i-dimensional subspace containing U and
not contained in X =: 〈U,Uθ〉. Since θ is i-∗-domestic, the subspace V θ has at
least one point v in common with V . If V ∩ V θ contained a line, then that line
would meet both U and Uθ and so both V and V θ would be contained in X, a
contradiction. It is now our aim to show that v is fixed. But we prove a slightly
stronger statement.
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Let W be any (i + 1)-dimensional subspace of PG(d,K) containing V and
intersecting V θ in just v. Since (i + 1) + i ≤ n, such a subspace exists. If, on
the one hand, W θ met W in at least a plane, then such a plane would intersect
V θ in a line, contradicting our hypothesis W ∩ V θ = {v}. If, on the other hand,
W ∩W θ were equal to {v}, then any i-dimensional subspace of W not through v
and not through vθ

−1

would be mapped onto a disjoint subspace, contradicting
i-∗-domesticity. So W∩W θ is a line L (and note that L is of course not contained
in V ). We now claim that θ fixes L pointwise. Indeed, suppose that some point
x on L is not fixed under θ. Then consider all subspaces of dimension i through
x contained in W and not containing L. It is easy to see that all these subspaces
have only the point x in common. Hence the images only have xθ in common,
and if x $= xθ then there is at least one image, say V ′θ, that does not contain x.
But the intersection V ′ ∩ V ′θ is contained in L. Since V ′ meets L in x and
V ′θ does not contain x, it follows that V ′ and V ′θ are disjoint, contradicting
i-∗-domesticity. Our claim is proved.

Now let {Wi : i = 1, 2, . . . , n − i} be a set of (i + 1)-dimensional subspaces
containing V , not being contained in 〈V, V θ〉 and spanning PG(n,K). Such a set
can easily be obtained by choosing a set of n − i independent (and hence gen-
erating) points in the (n− i− 1)-dimensional projective space Res(V ) avoiding
the subspace 〈V, V θ〉. Let {Li : i = 1, 2, . . . , n − i} be the corresponding set of
pointwise fixed lines (Li = Wi∩W θ

i ). Since all Li contain v and are fixed point-
wise, θ fixes the space Z generated by the Li, i = 1, 2, . . . , n− i, pointwise. The
independence of the Wi in Res(V ) now implies that the Li are also independent
in Res(v), and hence the subspace Z has dimension n − i, and that is what we
had to prove.

Now suppose that θ fixes a subspace Z of dimension n − i pointwise, but it
does not fix any subspace of larger dimension pointwise. Clearly, every subspace
of dimension i meets Z and so is not mapped onto a disjoint subspace. Hence
θ is i-∗-domestic. But if it were j-∗-domestic for j < i, then by the foregoing,
it would fix a subspace of dimension n − j > n − i pointwise, a contradiction.
Hence θ is sharply i-∗-domestic and the theorem is proved. !

As a consequence, we can now characterize all domestic collineations of
PG(n,K).

Corollary 4.4. A collineation θ of an n-dimensonal projective space, n ≥ 2, is

domestic if and only if θ fixes a subspace of dimension at least n+1
2

pointwise.

Proof. For n ≥ 3, this follows from Lemmas 4.1 and 4.2, and Theorem 4.3. For
n = 2, every collineation is automatically point-domestic and line-domestic, so
cannot be chamber-domestic (by Leeb [2]), unless it is the identity. !
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Concerning the maximal distance between a chamber and its image with
respect to a domestic collineation, it is clear that this depends on the specific
collineation. The maximum maximal distance occurs when the fixed point set
is minimal, i.e., when the collineation is i-∗-domestic, for i ∈ {n−1

2
, n−2

2
}. For n

odd, the minimal codistance is in this case equal to 1, and for n even, it is equal
to 3. In the other extreme, i.e., if the collineation fixes a hyperplane pointwise,
then the maximal gallery distance between a chamber and its image is 2n + 1;
this is codistance n2

−3n−2

2
, which is rather large.
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