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Abstract— The fuzzy rough set is a fuzzy generalization
of the classical rough set. In the traditional fuzzy rough
model, the set to be approximated is a fuzzy set. This paper
deals with an incomplete fuzzy information system with
interval-valued decision by means of generalizing the rough
approximation of a fuzzy set to the rough approximation of
an interval-valued fuzzy set. Since all condition attributes are
considered as criteria in such incomplete fuzzy information
system, the interval-valued fuzzy set is approximated by
using the information granules, which are constructed on
the basis of a dominance relation. By the proposed rough
approximation, the “at least” and “at most” decision rules
can be generated from the incomplete fuzzy information
system with interval-valued decision. To obtain the optimal
“at least” and “at most” decision rules, the concepts of the
lower and upper approximate reducts, the relative lower
and upper approximate reducts for an object are proposed
in the incomplete fuzzy information system with interval-
valued decision. The judgement theorems and discernibility
matrixes associated with these reducts are also obtained.
Some numerical examples are employed to substantiate the
conceptual arguments.

Index Terms— incomplete fuzzy information system,
interval-valued fuzzy set, dominance relation, rough set
theory, knowledge reduction, decision rule

I. INTRODUCTION

Rough set theory [27]–[33], after a rocky start in the
last stage of twentieth century, both in theoretic investi-
gations and practical applications, has received more and
more attentions by many researchers all over the world. In
recent years, the rough set theory has been demonstrated
to be useful in many fields such as Artificial Intelligence,
Automatic knowledge Acquisition, Data Mining, Pattern
Recognition and so on.

In the traditional rough set model, the lower and upper
approximations were introduced with reference to an
indiscernibility relation [27] (reflexive, symmetric, tran-
sitive), which is assumed to be an equivalence relation.
Such approximations can only be used to deal with the
information system in which the values of attributes
are assumed to be nominal data, i.e. symbols. In many
practical applications, however, the situations may be
more complex because the complicated or mixed data.
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Therefore, how to expand the classical rough set model
in complex information systems has become a necessity.

Presently, many generalizations of the rough set model-
s, have been proposed in different types of the information
systems. For example, by considering the unknown values
in the information system (i.e. incomplete information
system), many researchers have proposed different types
of binary relations (similarity relation [36]–[38], tolerance
relation [20], [23], limited tolerance relation [40] and
so on) for classification purpose and constructing of the
rough approximations [11], [16]–[21], [23], [24], [34],
[37], [38], [40], [43], [44]. By considering the linguistic
terms (i.e. fuzzy sets) of the attributes values, the rough
set model can also be generalized to different fuzzy
environments, i.e. fuzzy rough approaches [4]–[6], [10],
[15], [26], [39], [42], [46]. Moreover, since the original
rough set approach is not able to discover inconsistencies
coming from consideration of criteria, that is, attributes
with preference-ordered domains (scales), such as product
quality, market share, and debt ratio, Greco et al. have
proposed an extension of the Classic Rough Sets Ap-
proach, which is called the Dominance-based Rough Sets
Approach (DRSA) [1]–[3], [7], [8], [11]–[14], [34], [45].
This innovation is mainly based on substitution of the
indiscernibility relation by a dominance relation. Greco et
al. also generalized the DRSA to the fuzzy environment
in Ref. [10].

In the incomplete information system, the set to be
approximated is a crisp subset of the universe, which is
induced from the partition determined by the decision
attributes (decision class). In the DRSA, the sets to
be approximated are upward and downward unions of
the decision classes. On the other hand, in the fuzzy
rough model, the set to be approximated is tend to be
a fuzzy set on the universe of discourse. Moreover, it
should be noticed that by generalizing the fuzzy rough
approach, Ref. [9] proposed an extension of the fuzzy
rough set model which is used to approximate an interval-
valued fuzzy set. However, such approximations of the
interval-valued fuzzy set are only constructed in Pawlak’s
approximate space (indiscernibility relation is used for
classification purpose).

From discussion above, the purpose of this paper is to
investigate a complex information system, which is called
the incomplete fuzzy information system with interval-
valued decision. Such a system has the following four
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characteristics:

• It is a fuzzy system because it formulates of a
problem with fuzzy samples (samples containing
fuzzy representations);

• It is an incomplete information system because some
objects have unknown values on some of the condi-
tion attributes;

• All condition attributes in the incomplete fuzzy in-
formation system with interval-valued decision are
considered as criteria;

• The set to be approximated in the incomplete fuzzy
information system with interval-valued decision is
an interval-valued fuzzy set.

Obviously, the incomplete fuzzy information system with
interval-valued decision is a generalization of the incom-
plete and fuzzy information systems. By assuming that
the unknown values in such system are just “missed”, but
they do exist [18], [19], an expanded dominance relation
is used for classifying objects. The lower and upper
approximations of the interval-valued fuzzy set are then
presented, which are generalizations of the dominance-
based fuzzy rough set proposed by Greco in Ref. [10].
By the lower approximation of the interval-valued fuzzy
set, one can induce the “at least” decision rules, while
by using the upper approximation of the interval-valued
fuzzy set, the “at most” decision rules hidden in the
information system can be unravelled.

Since knowledge reduction is one of the central prob-
lems in the rough set theory, based on the proposed rough
approximations in this paper, we further propose four
types of knowledge reductions, the lower (upper) approx-
imate reducts and the relative lower (upper) approximate
reducts for an object in the universe. The lower (upper)
approximate reducts are minimal subsets of the condition
attributes, which preserve the lower (upper) approxima-
tions of the interval-valued fuzzy set. The relative lower
(upper) approximate reducts for an object in the universe,
are minimal subsets of the condition attributes, which
preserve the membership values of the lower (upper)
approximations of the interval-valued fuzzy set for such
object. Thus, by the relative lower (upper) approximate
reducts for an object in the universe, one can obtain the
optimal “at least” (“at most”) decision rules supported by
such object.

To facilitate our discussion, we first present the con-
cepts of fuzzy information system and dominance-based
fuzzy rough set in Section 2. We then propose the
rough approximations in the incomplete fuzzy information
system with interval-valued decision in Section 3. The
concepts of the lower and upper approximate reducts, the
relative lower and upper approximate reducts for an object
are laid out in Section 4. We also present the practical
approaches to compute these four types of reducts. We
then summarize our paper in Section 5.

II. DOMINANCE–BASED ROUGH SET MODEL IN FUZZY
INFORMATION SYSTEM

Definition 1: A fuzzy set F̃ defined on an universe U
may be given as

F̃ = {< x, µF̃ (x) >: x ∈ U} (1)

where µF̃ : U → [0, 1] is the membership function of
F̃ . The membership value µF̃ (x) describes the degree of
belongingness of x ∈ U in F̃ .

A fuzzy information system represents the formulation
of a problem with fuzzy samples (samples containing
fuzzy representations). A fuzzy information system can
be denoted by a pair I =< U,AT > where U is a non-
empty finite set of objects, it is called the universe, AT
is a non-empty finite set of attributes.

A fuzzy decision table is a fuzzy information system
D =< U,AT ∪ d >, where d /∈ AT . d is an attribute
called a decision, and AT is termed the condition at-
tributes set.

In a fuzzy decision table D , if A ⊆ AT and A =
{a1, · · · , am} is the set of condition attributes, d is
the decision attribute, then we consider an universe of
discourse U and m+1 fuzzy sets, denoted by ã1, · · · , ãm
and d̃, defined on U by means of membership functions
µãi

: U → [0, 1], i ∈ {1, · · · ,m} and µd̃ : U → [0, 1].
µãi

(x) and µd̃(x) are used to represent the values of the
object x with respect to the condition attribute ai and the
decision attribute d respectively.

Suppose that we want to approximate knowledge con-
tained in d̃ by using knowledge about {ã1, · · · , ãm}.
Then, the lower approximation of the fuzzy set d̃
given the information on ã1, · · · , ãm is a fuzzy set
App(ã1, · · · , ãm, d̃), whose membership value for each
x ∈ U , denoted by µApp(ã1,···,ãm,d̃)(x), is defined as [10]:

µApp(ã1,···,ãm,d̃)(x) = infz∈D↑
A(x){µd̃(z)}; (2)

where for each x ∈ U , D↑
A(x) is a non-empty set such

that

D↑
A(x)=D↑

{ã1,···,ãm}(x)

=
{
y ∈ U : µãi

(y) ≥ µãi
(x), i ∈ {1, · · · ,m}

}
,

D↑
A(x) is the set of objects dominating x in terms of the

set of condition attributes A.
The lower approximation membership value

µApp(ã1,···,ãm,d̃)(x) can be interpreted as an “at least”
decision rule:

µã1
(y) ≥ µã1

(x) ∧ µã2
(y) ≥ µã2

(x) ∧ · · · ∧
µãm

(y) ≥ µãm
(x) → µd̃(y) ≥ µApp(ã1,···,ãm,d̃)(x).

Similarity, the upper approximation of d̃ giv-
en the information on ã1, · · · , ãm is a fuzzy set
App(ã1, · · · , ãm, d̃), whose membership value for each
x ∈ U , denoted by µApp(ã1,···,ãm,d̃)(x), is defined as [10]:

µApp(ã1,···,ãm,d̃)(x) = supz∈D↓
A(x){µd̃(z)}; (3)
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where for each x ∈ U , D↓
A(x) is a non-empty set such

that

D↓
A(x)=D↓

{ã1,···,ãm}(x)

=
{
y ∈ U : µãi

(y) ≤ µãi
(x), i ∈ {1, · · · ,m}

}
,

D↓
A(x) is the set of objects dominated by x in terms of

the set of condition attributes A.
The upper approximation membership value

µApp(ã1,···,ãm,d̃)(x) can be interpreted as an “at most”
decision rule:

µã1
(y) ≤ µã1

(x) ∧ µã2
(y) ≤ µã2

(x) ∧ · · · ∧
µãm

(y) ≤ µãm
(x) → µd̃(y) ≤ µApp(ã1,···,ãm,d̃)(x).

[
App(ã1, · · · , ãm, d̃), App(ã1, · · · , ãm, d̃)

]
is referred

to as a pair of rough set of the fuzzy set d̃ by using
knowledge about {ã1, · · · , ãm} in terms of the dom-
inance principle. For more details about properties of
[App(ã1, · · · , ãm, d̃), App(ã1, · · · , ãm, d̃)], we refer the
readers to Ref. [10].

III. DOMINANCE-BASED ROUGH SET APPROACH TO
INCOMPLETE FUZZY INFORMATION SYSTEM WITH

INTERVAL-VALUED DECISION

A. Rough Approximation of Interval-valued Fuzzy Set

In this section, what will be discussed is a complex
decision table which is called the Incomplete Fuzzy In-
formation System with Interval-valued Decision (IFISID).
Such a decision table is still denoted without confusion by
D =< U,AT∪d >. However, it should be noticed that the
incomplete fuzzy information system with interval-valued
decision is different from the traditional fuzzy decision
table because the following reasons:

• Precise values of some objects on the fuzzy attributes
are not known, i.e. unknown values. In this paper, the
special symbol “*” is used to express the unknown
value. Moreover, we assume here that the unknown
value is just “missed”, but it does exist. By such
explanation, the unknown value “*” is considered as
to be comparable with any real value in the domain
of the corresponding attribute.

• The set to be approximated in the IFISID is not
a fuzzy set, but an interval-valued fuzzy set. The
membership function of such interval-valued fuzzy
set is µ

[̃d]
: U → I[0, 1] where I[0, 1] is the the set

of all closed subintervals of the interval [0, 1].
Since the existence of unknown values, the traditional

dominance relation should be generalized.
Definition 2: [34] Let D be an IFISID, A =

{a1, · · · , am} ⊆ AT , the dominance relation in terms of
A is defined as:

D(A) =
{
(x, y) ∈ U2 : µãi

(x) ≥ µãi
(y) ∨

µãi
(x) = ∗ ∨ µãi

(y) = ∗
}

(4)

where i ∈ {1, · · · ,m}.

Different from the traditional dominance relation pro-
posed by Greco in Ref. [12], the dominance relation
D(A) is reflexive but–in general–does not need to be
symmetric or transitive. Thus, D(A) is a binary relation
which satisfies

D(A) =
∩
ai

D({ai}), i ∈ {1, · · · ,m}; (5)

A1 ⊆ A2 ⇒ D(A1) ⊇ D(A2). (6)

By D(A), one can define the following two sets for
each x ∈ U :

• the set of objects may dominate x in terms of the set
of condition attributes A, i.e.

D↑∗
A (x) = D↑∗

{ã1,···,ãm}(x) = {y ∈ U : (y, x) ∈ D(A)},
(7)

• the set of objects may be dominated by x in terms
of the set of condition attributes A, i.e.

D↓∗
A (x) = D↓∗

{ã1,···,ãm}(x) = {y ∈ U : (x, y) ∈ D(A)}.
(8)

Since by the decision attribute d, the set to be approx-
imated is an interval-valued fuzzy set [̃d], ∀x ∈ U , let
us denote µ−

[̃d]
(x) and µ+

[̃d]
(x) by the lower and upper

limits of the object x with respect to the decision attribute
d respectively with the condition µ−

[̃d]
(x) ≤ µ+

[̃d]
(x).

Moreover, ∀x, y ∈ U , let us denote by

• µ
[̃d]
(x) = µ

[̃d]
(y) ⇔ µ−

[̃d]
(x) = µ−

[̃d]
(y), µ+

[̃d]
(x) =

µ+

[̃d]
(y);

• µ
[̃d]
(x) ≤ µ

[̃d]
(y) ⇔ µ−

[̃d]
(x) ≤ µ−

[̃d]
(y), µ+

[̃d]
(x) ≤

µ+

[̃d]
(y);

• µ
[̃d]
(x) < µ

[̃d]
(y) ⇔ µ

[̃d]
(x) ≤ µ

[̃d]
(y), µ

[̃d]
(x) ̸=

µ
[̃d]
(y).

• The complementary of [̃d] = [µ−
[̃d]
(x), µ+

[̃d]
(x)] is de-

noted by [̃d]
C

where [̃d]
C
= [1−µ+

[̃d]
(x), 1−µ−

[̃d]
(x)].

Similar to the fuzzy set theory [47], the operators
⊆,∩,∪ of the interval-valued fuzzy sets are defined as
follows. Suppose that [̃d1], [̃d2] are two different interval-
valued fuzzy sets induced by two different decisions d1
and d2, then

• [̃d1] ⊆ [̃d2] ⇔ µ
[̃d1]

(x) ≤ µ
[̃d2]

(x) for each x ∈ U ;
• µ

[̃d1]∩[̃d2]
(x) =

[
min{µ−

[̃d‘]
(x), µ−

[̃d2]
(x)},

min{µ+

[̃d1]
(x), µ+

[̃d2]
(x)}

]
;

• µ
[̃d1]∪[̃d2]

(x) =
[
max{µ−

[̃d1]
(x), µ−

[̃d2]
(x)},

max{µ+

[̃d1]
(x), µ+

[̃d2]
(x)}

]
.

Definition 3: Let D be an IFISID, A =
{a1, · · · , am} ⊆ AT , the lower approximation of the
interval-valued fuzzy set [̃d] given the information
on ã1, · · · , ãm is an interval-valued fuzzy set
[App(ã1, · · · , ãm, [̃d])], whose membership value
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for each x ∈ U , denoted by µ
[App(ã1,···,ãm,[̃d])]

(x),
where

µ
[App(ã1,···,ãm,[̃d])]

(x)

=
[
µ−
[App(ã1,···,ãm,[̃d])]

(x), µ+

[App(ã1,···,ãm,[̃d])]
(x)

]
=

[
infz∈D↑∗

A (x){µ
−
[̃d]
(z)}, infz∈D↑∗

A (x){µ
+

[̃d]
(z)}

]
, (9)

the upper approximation of the interval-valued fuzzy
set [̃d] given the information on ã1, · · · , ãm is an
interval-valued fuzzy set [App(ã1, · · · , ãm, [̃d])], whose
membership value for each x ∈ U , denoted by
µ
[App(ã1,···,ãm,[̃d])]

(x), where

µ
[App(ã1,···,ãm,[̃d])]

(x)

=
[
µ−
[App(ã1,···,ãm,[̃d])]

(x), µ+

[App(ã1,···,ãm,[̃d])]
(x)

]
=

[
supz∈D↓∗

A (x){µ
−
[̃d]
(z)}, supz∈D↓∗

A (x){µ
+

[̃d]
(z)}

]
.(10)

The pair
[
[App(ã1, · · · , ãm, [̃d])], [App(ã1, · · · , ãm, [̃d])]

]
is referred to as the rough approximation of the interval-
valued fuzzy set [̃d] by using the knowledge about
{ã1, · · · , ãm}, i.e. rough interval-valued fuzzy set in
terms of the dominance principle in the incomplete
environment.

Remark 1:
• If for each x ∈ U , µ

[App(ã1,···,ãm,[̃d])]
(x) =

µ
[App(ã1,···,ãm,[̃d])]

(x), then the interval-valued fuzzy

set [̃d] is definable in the IFISID. Otherwise, it is
undefinable.

• If [̃d] is an ordinary fuzzy set on universe U , then
[App(ã1, · · · , ãm, [̃d])] and [App(ã1, · · · , ãm, [̃d])]
would degenerate to be the ordinary lower and upper
approximate fuzzy sets in terms of the dominance
principle in the incomplete environment.

By the lower and upper approximations of the interval-
valued fuzzy set [̃d], one can induce the corresponding
decision rules for each training example x ∈ U such that

• “at least” decision rules:

µã1
(y) ≥ µã1

(x) ∧ µã2
(y) ≥ µã2

(x) ∧ · · · ∧
µãm

(y) ≥ µãm
(x) → µ

[̃d]
(y) ≥ µ

[App(ã1,···,ãm,[̃d])]
(x);

• “at most” decision rules:

µã1
(y) ≤ µã1

(x) ∧ µã2
(y) ≤ µã2

(x) ∧ · · · ∧
µãm

(y) ≤ µãm
(x) → µ

[̃d]
(y) ≤ µ

[App(ã1,···,ãm,[̃d])]
(x).

In this paper, the above two types of decision rules are
referred to as the initial “at least” and “at most” decision
rules derived from the IFISID.

Example 1: To demonstrate the IFISID, let us consider
data in Table 1, which describes a small training set
with fuzzy objects. The universe of discourse is U =
{x1, x2, · · · , x10}. AT = {a1, a2, a3, a4} is the set of
condition attributes and d is the decision attribute, which
are used to describe such ten objects. In Table 1, the set
to be approximated is an interval-valued fuzzy set such
that

TABLE I.
AN EXAMPLE OF INCOMPLETE FUZZY INFORMATION SYSTEM WITH

INTERVAL-VALUED DECISION.

U a1 a2 a3 a4 d

x1 0.9 * 0.2 0.7 [0.5, 0.7]
x2 0.9 0.2 0.2 0.1 [0.8, 1.0]
x3 0.1 0.1 0.1 0.9 [0.0, 0.3]
x4 0.0 0.9 * 0.8 [0.2, 0.5]
x5 0.1 0.1 1.0 0.8 [0.4, 0.7]
x6 * 0.2 0.9 0.1 [0.3, 0.6]
x7 0.0 0.1 0.9 0.2 [0.0, 0.2]
x8 0.9 0.9 0.1 1.0 [0.6, 0.9]
x9 0.8 0.4 1.0 1.0 [0.9, 1.0]
x10 0.0 1.0 1.0 * [0.1, 0.4]

[̃d] = [0.5,0.7]
x1

+ [0.8,1.0]
x2

+ [0.0,0.3]
x3

+ [0.2,0.5]
x4

+ [0.4,0.7]
x5

+
[0.3,0.6]

x6
+ [0.0,0.2]

x7
+ [0.6,0.9]

x8
+ [0.9,1.0]

x9
+ [0.1,0.4]

x10
.

By Definition 3, we obtain the following lower and
upper approximations of [̃d]:
[App(ã1, ã2, ã3, ã4, [̃d])] = [0.5,0.7]

x1
+ [0.3,0.6]

x2
+

[0.0,0.3]
x3

+ [0.1,0.4]
x4

+ [0.4,0.7]
x5

+ [0.1,0.4]
x6

+ [0.0,0.2]
x7

+ [0.6,0.9]
x8

+
[0.9,1.0]

x9
+ [0.1,0.4]

x10
,

[App(ã1, ã2, ã3, ã4, [̃d])] = [0.8,1.0]
x1

+ [0.8,1.0]
x2

+
[0.0,0.3]

x3
+ [0.3,0.6]

x4
+ [0.4,0.7]

x5
+ [0.8,1.0]

x6
+ [0.0,0.2]

x7
+ [0.6,0.9]

x8
+

[0.9,1.0]
x9

+ [0.3,0.6]
x10

.
By the above results, we can derive the following initial

decision rules from Table 1:
“at least” decision rules:
r1: µã1

(y) ≥ 0.9 ∧ µã2
(y) ≥ ∗ ∧ µã3

(y) ≥ 0.2 ∧
µã4

(y) ≥ 0.7 → µ
[̃d]
(y) ≥ [0.5, 0.7] // supported by x1

r2: µã1
(y) ≥ 0.9 ∧ µã2

(y) ≥ 0.2 ∧ µã3
(y) ≥ 0.2 ∧

µã4
(y) ≥ 0.1 → µ

[̃d]
(y) ≥ [0.3, 0.6] // supported by x2

r3: µã1
(y) ≥ 0.1 ∧ µã2

(y) ≥ 0.1 ∧ µã3
(y) ≥ 0.1 ∧

µã4
(y) ≥ 0.9 → µ

[̃d]
(y) ≥ [0.0, 0.3] // supported by x3

r4: µã1
(y) ≥ 0.0 ∧ µã2

(y) ≥ 0.9 ∧ µã3
(y) ≥ ∗ ∧

µã4
(y) ≥ 0.8 → µ

[̃d]
(y) ≥ [0.1, 0.4] // supported by x4

r5: µã1
(y) ≥ 0.1 ∧ µã2

(y) ≥ 0.1 ∧ µã3
(y) ≥ 1.0 ∧

µã4
(y) ≥ 0.8 → µ

[̃d]
(y) ≥ [0.4, 0.7] // supported by x5

r6: µã1
(y) ≥ ∗ ∧ µã2

(y) ≥ 0.2 ∧ µã3
(y) ≥ 0.9 ∧

µã4
(y) ≥ 0.1 → µ

[̃d]
(y) ≥ [0.1, 0.4] // supported by x6

r7: µã1
(y) ≥ 0.0 ∧ µã2

(y) ≥ 0.1 ∧ µã3
(y) ≥ 0.9 ∧

µã4
(y) ≥ 0.2 → µ

[̃d]
(y) ≥ [0.0, 0.2] // supported by x7

r8: µã1
(y) ≥ 0.9 ∧ µã2

(y) ≥ 0.9 ∧ µã3
(y) ≥ 0.1 ∧

µã4
(y) ≥ 1.0 → µ

[̃d]
(y) ≥ [0.6, 0.9] // supported by x8

r9: µã1
(y) ≥ 0.8 ∧ µã2

(y) ≥ 0.4 ∧ µã3
(y) ≥ 1.0 ∧

µã4
(y) ≥ 1.0 → µ

[̃d]
(y) ≥ [0.9, 1.0] // supported by x9

r10: µã1
(y) ≥ 0.0 ∧ µã2

(y) ≥ 1.0 ∧ µã3
(y) ≥ 1.0 ∧

µã4
(y) ≥ ∗ → µ

[̃d]
(y) ≥ [0.1, 0.4] // supported by x10

“at most” decision rules:
r
′

1: µã1
(y) ≤ 0.9 ∧ µã2

(y) ≤ ∗ ∧ µã3
(y) ≤ 0.2 ∧

µã4
(y) ≤ 0.7 → µ

[̃d]
(y) ≤ [0.5, 0.7] // supported by x1

r
′

2: µã1
(y) ≤ 0.9 ∧ µã2

(y) ≤ 0.2 ∧ µã3
(y) ≤ 0.2 ∧

µã4
(y) ≤ 0.1 → µ

[̃d]
(y) ≤ [0.3, 0.6] // supported by x2

r
′

3: µã1
(y) ≤ 0.1 ∧ µã2

(y) ≤ 0.1 ∧ µã3
(y) ≤ 0.1 ∧

µã4
(y) ≤ 0.9 → µ

[̃d]
(y) ≤ [0.0, 0.3] // supported by x3
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r
′

4: µã1
(y) ≤ 0.0 ∧ µã2

(y) ≤ 0.9 ∧ µã3
(y) ≤ ∗ ∧

µã4
(y) ≤ 0.8 → µ

[̃d]
(y) ≤ [0.1, 0.4] // supported by x4

r
′

5: µã1
(y) ≤ 0.1 ∧ µã2

(y) ≤ 0.1 ∧ µã3
(y) ≤ 1.0 ∧

µã4
(y) ≤ 0.8 → µ

[̃d]
(y) ≤ [0.4, 0.7] // supported by x5

r
′

6: µã1
(y) ≤ ∗ ∧ µã2

(y) ≤ 0.2 ∧ µã3
(y) ≤ 0.9 ∧

µã4
(y) ≤ 0.1 → µ

[̃d]
(y) ≤ [0.1, 0.4] // supported by x6

r
′

7: µã1
(y) ≤ 0.0 ∧ µã2

(y) ≤ 0.1 ∧ µã3
(y) ≤ 0.9 ∧

µã4
(y) ≤ 0.2 → µ

[̃d]
(y) ≤ [0.0, 0.2] // supported by x7

r
′

8: µã1
(y) ≤ 0.9 ∧ µã2

(y) ≤ 0.9 ∧ µã3
(y) ≤ 0.1 ∧

µã4
(y) ≤ 1.0 → µ

[̃d]
(y) ≤ [0.6, 0.9] // supported by x8

r
′

9: µã1
(y) ≤ 0.8 ∧ µã2

(y) ≤ 0.4 ∧ µã3
(y) ≤ 1.0 ∧

µã4
(y) ≤ 1.0 → µ

[̃d]
(y) ≤ [0.9, 1.0] // supported by x9

r
′

10: µã1
(y) ≤ 0.0 ∧ µã2

(y) ≤ 1.0 ∧ µã3
(y) ≤ 1.0 ∧

µã4
(y) ≤ ∗ → µ

[̃d]
(y) ≤ [0.1, 0.4] // supported by x10

B. Properties of Rough Interval-valued Fuzzy Set

Theorem 1: Let D be an IFISID, then we have the
following properties:

1) Contraction and extension:

[App(ã1, · · · , ãm, [̃d])] ⊆ [̃d] ⊆ [App(ã1, · · · , ãm, [̃d])];
(11)

2) Monotone (with the monotone of the interval-valued
fuzzy set)

[̃d1] ⊆ [̃d2] ⇒
[App(ã1, · · · , ãm, [̃d1])] ⊆ [App(ã1, · · · , ãm, [̃d2])],

[App(ã1, · · · , ãm, [̃d1])] ⊆ [App(ã1, · · · , ãm, [̃d2])];

3) Monotone (with the monotone of the condition
attributes)

{a1, · · · , am} ⊆ {a1, · · · , an} ⇒
[App(ã1, · · · , ãm, [̃d])] ⊆ [App(ã1, · · · , ãn, [̃d])],

[App(ã1, · · · , ãm, [̃d])] ⊇ [App(ã1, · · · , ãn, [̃d])];

4) Multiplication and addition

[App(ã1, · · · , ãm, [̃d1] ∩ [̃d2])] =

[App(ã1, · · · , ãm, [̃d1])] ∩ [App(ã1, · · · , ãm, [̃d2])],

[App(ã1, · · · , ãm, [̃d1] ∪ [̃d2])] ⊇

[App(ã1, · · · , ãm, [̃d1])] ∪ [App(ã1, · · · , ãm, [̃d2])],

[App(ã1, · · · , ãm, [̃d1] ∪ [̃d2])] =

[App(ã1, · · · , ãm, [̃d1])] ∪ [App(ã1, · · · , ãm, [̃d2])],

[App(ã1, · · · , ãm, [̃d1] ∩ [̃d2])] ⊆
[App(ã1, · · · , ãm, [̃d1])] ∩ [App(ã1, · · · , ãm, [̃d2])];

5) Complement[
App(ã1, · · · , ãm, [̃d]

C
)
]
=

[
App(ã1

C , · · · , ãCm, [̃d])
]C

,[
App(ã1, · · · , ãm, [̃d]

C
)
]
=

[
App(ã1

C , · · · , ãCm, [̃d])
]C

,

where ãi
C (i ∈ {1, · · · ,m}) is the complementary

of the fuzzy set ãi such that for each x ∈ U

µãi
C (x) =

{
1− µãi

(x) : µãi
(x) ̸= ∗

: otherwise
Proof:

1) Suppose that {a1, · · · , am} = A. Since D(A) is
reflexive, we have x ∈ D↑∗

A (x). Thus

infz∈D↑∗
A (x){µ

−
[̃d]
(z)} ≤ µ−

[̃d]
(x),

infz∈D↑∗
A (x){µ

+

[̃d]
(z)} ≤ µ+

[̃d]
(x),

hold, from which we can conclude that

µ
[App(ã1,···,ãm,[̃d])]

(x) ≤ µ
[̃d]
(x). (12)

Similarity, it is not difficult to prove that

µ
[̃d]
(x) ≤ µ

[App(ã1,···,ãm,[̃d])]
(x). (13)

2) Suppose that {a1, · · · , am} = A. By [̃d1] ⊆ [̃d2],
for each z ∈ D↑∗

A (x), we have µ
[̃d1]

(z) ≤ µ
[̃d2]

(z),
from which we obtain that

infz∈D↑∗
A (x){µ

−
[̃d1]

(z)} ≤ infz∈D↑∗
A (x){µ

−
[̃d2]

(z)},

infz∈D↑∗
A (x){µ

+

[̃d1]
(z)} ≤ infz∈D↑∗

A (x){µ
+

[̃d2]
(z)},

i.e.

µ
[App(ã1,···,ãm,[̃d1])]

(x) ≤ µ
[App(ã1,···,ãm,[̃d2])]

(x)

(14)
holds. Similarity, it is not difficult to prove that

µ
[App(ã1,···,ãm,[̃d1])]

(x) ≤ µ
[App(ã1,···,ãm,[̃d2])]

(x).

(15)
3) Suppose that A1 = {a1, · · · , am} ⊆ A2 =

{a1, · · · , an}. By Definition 2 we have D↑∗
A1

(x) ⊇
D↑∗

A2
(x) and D↓∗

A1
(x) ⊇ D↓∗

A2
(x) for each x ∈ U .

Thus

infz∈D↑∗
A1

(x){µ
−
[̃d]
(z)} ≤ infz∈D↑∗

A2
(x){µ

−
[̃d]
(z)},

infz∈D↑∗
A1

(x){µ
+

[̃d]
(z)} ≤ infz∈D↑∗

A2
(x){µ

+

[̃d]
(z)},

hold, from which we can conclude that

µ
[App(ã1,···,ãm,[̃d])]

(x) ≤ µ
[App(ã1,···,ãn,[̃d])]

(x).

(16)
Similarity, it is not difficult to prove that

µ
[App(ã1,···,ãm,[̃d])]

(x) ≥ µ
[App(ã1,···,ãn,[̃d])]

(x).

(17)
4) Suppose that {a1, · · · , am} = A. For each x ∈ U ,

by the properties of the interval-valued fuzzy set,
we have

infz∈D↑∗
A (x){µ

−
[̃d]1∩[̃d]2

(z)} = min
{

infz∈D↑∗
A (x){µ

−
[̃d]1

(z)},

infz∈D↑∗
A (x){µ

−
[̃d]2

(z)}
}
,

infz∈D↑∗
A (x){µ

+

[̃d]1∩[̃d]2
(z)} = min

{
infz∈D↑∗

A (x){µ
+

[̃d]1
(z)},

infz∈D↑∗
A (x){µ

+

[̃d]2
(z)}

}
,
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from which we can conclude that

µ
[App(ã1,···,ãm,[̃d1]∩[̃d2])]

(x) = min{

µ
[App(ã1,···,ãm,[̃d1])]

(x), µ
[App(ã1,···,ãm,[̃d2])]

(x)}.

Other formulas can be proved analogously.
5) For each x ∈ U ,

µ
[App(ã1,···,ãm,[̃d]

C
)]
(x)

=
[
infz∈D↑∗

A (x){µ
−
[̃d]

C (z)}, infz∈D↑∗
A (x){µ

+

[̃d]
C (z)}

]
=

[
infz∈D↑∗

A (x){1− µ+

[̃d]
(z)},

infz∈D↑∗
A (x){1− µ−

[̃d]
(z)}

]
.

Suppose that {a1, · · · , am} = A, thus,

D↑∗
A (x) = D↑∗

{ã1,···,ãm}(x)

= {y ∈ U : µãi
(y) ≥ µãi

(x) ∨
µãi

(x) = ∗ ∨ µãi
(y) = ∗}

= {y ∈ U : 1− µãi
(y) ≤ 1− µãi

(x) ∨
µãi

(x) = ∗ ∨ µãi
(y) = ∗}

= D↓∗
{ã1

C ,···,ãm
C}(x)

where i ∈ {1, · · · ,m}, then

infz∈D↑∗
A (x){1− µ+

[̃d]
(z)} =

1− supz∈D↑∗
A (x){µ

+

[̃d]
(z)} =

1− supz∈D↓∗
{ã1

C,···,ãmC}
(x){µ

+

[̃d]
(z)},

infz∈D↑∗
A (x){1− µ−

[̃d]
(z)} =

1− supz∈D↑∗
A (x){µ

−
[̃d]
(z)} =

1− supz∈D↓∗
{ã1

C,···,ãmC}
(x){µ

−
[̃d]
(z)},

hold, from which we can conclude that

[infz∈D↑∗
A (x){µ

−
[̃d]

C (z)}, infz∈D↑∗
A (x){µ

+

[̃d]
C (z)}]

=
[
1− supz∈D↓∗

{ã1
C,···,ãmC}

(x){µ
+

[̃d]
(z)},

1− supz∈D↓∗
{ã1

C,···,ãmC}
(x){µ

−
[̃d]
(z)}

]
=
[
supz∈D↓∗

{ã1
C,···,ãmC}

(x){µ
−
[̃d]
(z)},

supz∈D↓∗
{ã1

C,···,ãmC}
(x){µ

+

[̃d]
(z)}

]C
,

i.e.

µ
[App(ã1,···,ãm,[̃d]

C
)]
(x) = 1−µ

[App(ãC
1 ,···,ãC

m,[̃d])]
(x).

Similarity, it is not difficult to prove that[
App(ã1, · · · , ãm, [̃d]

C
)
]
=

[
App(ã1

C , · · · , ãCm, [̃d])
]C

.

Definition 4: Let D be an IFISID,
• If [App(ã1, · · · , ãm, [̃d1])] =

[App(ã1, · · · , ãm, [̃d2])], then the interval-valued
fuzzy sets [̃d1] and [̃d2] are referred to as lower
approximate equal, which is denote by [̃d1] =L [̃d2];

• If [App(ã1, · · · , ãm, [̃d1])] =

[App(ã1, · · · , ãm, [̃d2])], then the interval-valued
fuzzy sets [̃d1] and [̃d2] are referred to as upper
approximate equal, which is denote by [̃d1] =U [̃d2];

• If [̃d1] =L [̃d2] and [̃d1] =U [̃d2], then [̃d1] and [̃d2]
are referred to as rough equal, which is denote by
[̃d1] =R [̃d2].

Theorem 2: Let D be an incomplete fuzzy information
system with interval decision, we have

[̃d1] =L [̃d2] ⇔ ([̃d1] ∩ [̃d2]) =L [̃d1], [̃d2];

[̃d1] =U [̃d2] ⇔ ([̃d1] ∪ [̃d2]) =U [̃d1], [̃d2];
Proof: By 4) of Theorem 1 and Definition 4, we

have

[̃d1] =L [̃d2] ⇔
[App(ã1, · · · , ãm, [̃d1])] = [App(ã1, · · · , ãm, [̃d2])] ⇔

[App(ã1, · · · , ãm, [̃d1])] ∩ [App(ã1, · · · , ãm, [̃d2])] =

[App(ã1, · · · , ãm, [̃d1] ∩ [̃d2])] =

[App(ã1, · · · , ãm, [̃d1])] = [App(ã1, · · · , ãm, [̃d2])] ⇔

([̃d1] ∩ [̃d2]) =L [̃d1], [̃d2].

Similar to the above progress, it is not difficult to prove
that [̃d1] =U [̃d2] ⇔ ([̃d1] ∪ [̃d2]) =U [̃d1], [̃d2].

IV. KNOWLEDGE REDUCTIONS OF ROUGH
INTERVAL-VALUED FUZZY SET

One fundamental aspect of rough set theory involves
the search for particular subsets of attributes, which
provide the same information for classification or some
other purposes as the full set of the condition attributes.
Such subsets are called reducts. In recent years, many
types of knowledge reductions [22], [25], [41], [42], [48],
[49] have been proposed based on different types of
rough set models. In the following, based on the rough
approximation of the interval-valued fuzzy set proposed
in the above section, we will propose the following four
types of knowledge reductions.

Definition 5: Let D be an IFISID, A =
{ã1, · · · , ãm} ⊆ AT = {ã1, · · · , ãn},

1) If [App(ã1, · · · , ãm, [̃d])] = [App(ã1, · · · , ãn, [̃d])],
then A is referred to as a lower approximate consis-
tent attributes set of D ; if A is a lower approximate
consistent attributes set of D and no proper subset
of A is the lower approximate consistent attributes
set of D , then A is referred to as the lower approx-
imate reduct of D ;

2) If [App(ã1, · · · , ãm, [̃d])] = [App(ã1, · · · , ãn, [̃d])],
then A is referred to as a upper approximate consis-
tent attributes set of D ; if A is a upper approximate
consistent attributes set of D and no proper subset
of A is the upper approximate consistent attributes
set of D , then A is referred to as the upper approx-
imate reduct of D ;
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3) ∀x ∈ U , if µ
[App(ã1,···,ãm,[̃d])]

(x) =

µ
[App(ã1,···,ãn,[̃d])]

(x), then A is referred to as
a relative lower approximate consistent attributes
set for x in D ; if A is a relative lower approximate
consistent attributes set for x in D and no proper
subset of A is the relative lower approximate
consistent attributes set for x in D , then A is
referred to as the relative lower approximate reduct
for x in D ;

4) ∀x ∈ U , if µ
[App(ã1,···,ãm,[̃d])]

(x) =

µ
[App(ã1,···,ãn,[̃d])]

(x), then A is referred to as
a relative upper approximate consistent attributes
set for x in D ; if A is a relative upper approximate
consistent attributes set for x in D and no proper
subset of A is the relative upper approximate
consistent attributes set for x in D , then A is
referred to as the relative upper approximate reduct
for x in D .

By the above definition, we can see that the lower
(upper) approximate consistent attributes sets of D are
subsets of the condition attributes, which preserve the
lower (upper) approximations of the interval-valued fuzzy
set [̃d]; the lower (upper) approximate reducts of D
are minimal subsets of the condition attributes, which
preserve the lower (upper) approximations of the interval-
valued fuzzy set [̃d]. The sets of the lower (upper)
approximate reducts of D are denoted by RedL (RedU ).

The relative lower (upper) approximate consistent at-
tributes sets for x in D are subsets of the condition
attributes, which preserve the lower (upper) approximate
membership values of the interval-valued fuzzy set [̃d] for
x; the relative lower (upper) approximate reducts for x in
D are minimal subsets of the condition attributes, which
preserve the membership values of the lower (upper)
approximate interval-valued fuzzy set [̃d] for x. The sets
of the relative lower (upper) approximate reducts for x in
D are denoted by RedL(x) (RedU (x)).

Suppose that D is an IFISID, A = {a1, · · · , am} ⊆
AT = {a1, · · · , an}, ∀x ∈ U ,
rx : µã1

(y) ≥ µã1
(x) ∧ µã2

(y) ≥ µã2
(x) ∧ · · · ∧

µãn
(y) ≥ µãn

(x) → µ
[̃d]
(y) ≥ µ

[App(ã1,···,ãn,[̃d])]
(x)

is the initial “at least” decision rule supported by x,
then it is not difficult to observe that:

• If A is a relative lower approximate consistent at-
tributes set for x in D , then the rule
r
′

x : µã1
(y) ≥ µã1

(x) ∧ µã2
(y) ≥ µã2

(x) ∧
· · · ∧ µãm

(y) ≥ µãm
(x) → µ

[̃d]
(y) ≥

µ
[App(ã1,···,ãm,[̃d])]

(x)

is a simplified “at least” decision rule supported by
x in D ;

• If A is a relative lower approximate reduct for x in
D , then the rule
r
′

x : µã1
(y) ≥ µã1

(x) ∧ µã2
(y) ≥ µã2

(x) ∧
· · · ∧ µãm

(y) ≥ µãm
(x) → µ

[̃d]
(y) ≥

µ
[App(ã1,···,ãm,[̃d])]

(x)

is an optimal “at least” decision rule supported by x
in D .

Similarity, it is not difficult to obtain the simplified and
optimal “at most” decision rules which are supported by
x in D .

Reducts’ computation can also be translated into the
computation of prime implicants of a Boolean function.
It has been shown by Skowron and Rauszer [35] that the
problem of finding reducts may be solved as a case in
Boolean reasoning. We will generalize this approach to
compute the above four types of reducts in the IFISID.

Definition 6: Let D be an IFISID, AT =
{a1, a2, · · · , an} is the set of condition attributes,
∀x, y ∈ U , denote

DL
AT = {(x, y) ∈ U2 : µ

[App(ã1,···,ãn,[̃d])]
(x) > µ

[̃d]
(y)},

DU
AT = {(x, y) ∈ U2 : µ

[App(ã1,···,ãn,[̃d])]
(x) < µ

[̃d]
(y)},

define

DL
AT (x, y) =

{
{ai ∈ AT : (y, x) /∈ D(ai)}: (x, y) ∈ DL

AT

AT : otherwise

DU
AT (x, y) =

{
{ai ∈ AT : (x, y) /∈ D(ai)}: (x, y) ∈ DU

AT

AT : otherwise

where 1 ≤ i ≤ n, DL
AT (x, y) and DH

AT (x, y) are referred
to as the lower and upper approximate discernibility
sets for pair of the objects (x, y) respectively, DL

AT =

{DL
AT (x, y) : (x, y) ∈ DL

AT } and DU
AT = {DU

AT (x, y) :

(x, y) ∈ DU
AT } are referred to as the lower and upper

approximate discernibility matrixes of D respectively.
Theorem 3: Let D be an IFISID, A =

{a1, a2, · · · , am} ⊆ AT = {a1, a2, · · · , an}, then
we have

1) A is the lower approximate consistent attributes sets
of D ⇔ A ∩DL

AT (x, y) ̸= ∅, ∀(x, y) ∈ DL
AT ;

2) A is the upper approximate consistent attributes sets
of D ⇔ A ∩DU

AT (x, y) ̸= ∅, ∀(x, y) ∈ DU
AT ;

3) ∀x ∈ U , A is the relative lower approximate consis-
tent attributes sets for x in D ⇔ A∩DL

AT (x, y) ̸= ∅,
∀y ∈ U ∧ (x, y) ∈ DL

AT ;
4) ∀x ∈ U , A is the relative upper approximate consis-

tent attributes sets for x in D ⇔ A∩DU
AT (x, y) ̸= ∅,

∀y ∈ U ∧ (x, y) ∈ DU
AT .

Proof:
1) “⇒”: Suppose that ∃(x, y) ∈ DL

AT such that A ∩
DL

AT (x, y) = ∅, then by Definition 6 we have
(y, x) ∈ D(A), y ∈ D↑∗

A (x). By Definition 3,
we obtain that µ

[App(ã1,···,ãm,[̃d])]
(x) ≤ µ

[̃d]
(y).

Since A is the lower approximate consistent at-
tributes set of D , i.e. µ

[App(ã1,···,ãm,[̃d])]
(x) =

µ
[App(ã1,···,ãn,[̃d])]

(x) for each x ∈ U , we obtain
µ
[App(ã1,···,ãn,[̃d])]

(x) ≤ µ
[̃d]
(y), which contradict-

s that µ
[App(ã1,···,ãn,[̃d])]

(x) > µ
[̃d]
(y) because

(x, y) ∈ DL
AT .

“⇐”: Since A ⊆ AT , by 3) of Theo-
rem 1, we obtain that µ

[App(ã1,···,ãm,[̃d])]
(x) ≤
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µ
[App(ã1,···,ãn,[̃d])]

(x) for each x ∈ U . Suppose
that A is not the lower approximate consistent
attributes set of D , then there must be x ∈ U such
that µ

[App(ã1,···,ãm,[̃d])]
(x) < µ

[App(ã1,···,ãn,[̃d])]
(x),

from which we can conclude that there must be
y ∈ U where µ

[App(ã1,···,ãn,[̃d])]
(x) > µ

[̃d]
(y)

such that (y, x) ∈ D(A), i.e. (x, y) ∈ DL
AT and

A ∩ DL
AT (x, y) = ∅. From discussion above, we

can draw the following conclusion: ∀x, y ∈ U , if
(x, y) ∈ DL

AT and A ∩ DL
AT (x, y) ̸= ∅, then A is

the lower approximate consistent attributes set of
D .

2) “⇒”: Suppose that ∃(x, y) ∈ DU
AT such that A ∩

DU
AT (x, y) = ∅, then by Definition 6 we have

(x, y) ∈ D(A), y ∈ D↓∗
A (x). By Definition 3,

we obtain that µ
[̃d]
(y) ≤ µ

[App(ã1,···,ãm,[̃d])]
(x).

Since A is the upper approximate consistent at-
tributes set of D , i.e. µ

[App(ã1,···,ãm,[̃d])]
(x) =

µ
[App(ã1,···,ãn,[̃d])]

(x) for each x ∈ U , we obtain
µ
[̃d]
(y) ≤ µ

[App(ã1,···,ãn,[̃d])]
(x), which contradict-

s that µ
[App(ã1,···,ãn,[̃d])]

(x) < µ
[̃d]
(y) because

(x, y) ∈ DU
AT .

“⇐”: Since A ⊆ AT , by 3) of Theo-
rem 1, we obtain that µ

[App(ã1,···,ãm,[̃d])]
(x) ≥

µ
[App(ã1,···,ãn,[̃d])]

(x) for each x ∈ U . Suppose
that A is not the upper approximate consistent
attributes set of D , then there must be x ∈ U such
that µ

[App(ã1,···,ãm,[̃d])]
(x) > µ

[App(ã1,···,ãn,[̃d])]
(x),

from which we can conclude that there must be
y ∈ U where µ

[App(ã1,···,ãn,[̃d])]
(x) < µ

[̃d]
(y)

such that (x, y) ∈ D(A), i.e. (x, y) ∈ DU
AT and

A ∩ DU
AT (x, y) = ∅. From discussion above, we

can draw the following conclusion: ∀x, y ∈ U , if
(x, y) ∈ DU

AT and A ∩ DU
AT (x, y) ̸= ∅, then A is

the upper approximate consistent attributes set of
D .

3) The proofs of 3) and 4) are similar to the proofs of
1) and 2) respectively.

Definition 7: Let D be an IFISID, define

∆L =
∧

(x,y)∈U2

∨
DL

AT (x, y)

=
∧

(x,y)∈DL
AT

∨
DL

AT (x, y); (18)

∆U =
∧

(x,y)∈U2

∨
DU

AT (x, y)

=
∧

(x,y)∈DU
AT

∨
DU

AT (x, y); (19)

∆L(x) =
∧
y∈U

∨
DL

AT (x, y)

=
∧

(x,y)∈DL
AT

∨
DL

AT (x, y); (20)

∆U (x) =
∧
y∈U

∨
DU

AT (x, y)

=
∧

(x,y)∈DU
AT

∨
DU

AT (x, y); (21)

∆L and ∆H are referred to as the lower and upper
approximate discernibility functions of D respectively,
∆L(x) and ∆H(x) are referred to as the relative lower
and upper approximate discernibility functions for x in D
respectively.

By using Boolean reasoning techniques, we can obtain
the following Theorem 4 from Theorem 3 immediately.

Theorem 4: Let D be an IFISID, A ⊆ AT , then
1) A is the lower (upper) approximate reduct of D

if and only if
∧
A is a prime implicant of the

lower (upper) approximate discernibility function
∆L (∆U );

2) ∀x ∈ U , A is the relative lower (upper) approximate
reduct for x in D if and only if

∧
A is a prime

implicant of the relative lower (upper) approximate
discernibility function ∆L(x) (∆U (x)).

Example 2: Following Example 1, computing all of the
optimal decision rules in Table 1.

By Definition 6, we have
DL

AT =
{
(x1, x3), (x1, x4), (x1, x5), (x1, x6), (x1, x7),

(x1, x10), (x2, x3), (x2, x4), (x2, x7), (x2, x10), (x3, x7),
(x4, x3), (x4, x7), (x5, x3), (x5, x4), (x5, x6), (x5, x7),
(x5, x10), (x6, x3), (x6, x7), (x8, x1), (x8, x3), (x8, x4),
(x8, x5), (x8, x6), (x8, x7), (x8, x10), (x9, x1), (x9, x2),
(x9, x3), (x9, x4), (x9, x5), (x9, x6), (x9, x7), (x9, x8),
(x9, x10), (x10, x3), (x10, x7)

}
.

By Definition 7, we obtain that ∆L = a1∧a2∧a3∧a4.
By Theorem 4, the set of attributes {a1, a2, a3, a4} is the
lower approximate reduct of Table 1, i.e. no condition
attribute is redundant in Table 1 for preserving the lower
approximation of [̃d].

By Definition 7, we can also obtain the following
results:
RedL(x1) = {{a1, a4}};
RedL(x2) = {a1};
RedL(x3) = {a1, a4};
RedL(x4) = {a2};
RedL(x5) = {{a1, a3}};
RedL(x6) = {a2};
RedL(x7) = AT ;
RedL(x8) = {{a1, a4}};
RedL(x9) = {{a1, a3}};
RedL(x10) = {a2, a3}.
By these relative lower approximate reducts, we can

generate all of the optimal “at least” decision rules from
Table 1:
R1: µã1

(y) ≥ 0.9 ∧ µã4
(y) ≥ 0.7 → µ

[̃d]
(y) ≥

[0.5, 0.7] // supported by RedL(x1)
R2: µã1

(y) ≥ 0.9 → µ
[̃d]
(y) ≥ [0.3, 0.6] // supported

by RedL(x2)
R3: µã1

(y) ≥ 0.1 ∨ µã4
(y) ≥ 0.9 → µ

[̃d]
(y) ≥

[0.0, 0.3] // supported by RedL(x3)
R4: µã2

(y) ≥ 0.9 → µ
[̃d]
(y) ≥ [0.1, 0.4] // supported

by RedL(x4)
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R5: µã1
(y) ≥ 0.1 ∧ µã3

(y) ≥ 1.0 → µ
[̃d]
(y) ≥

[0.4, 0.7] // supported by RedL(x5)
R6: µã2

(y) ≥ 0.2 → µ
[̃d]
(y) ≥ [0.1, 0.4] // supported

by RedL(x6)
R7: µã1

(y) ≥ 0.0 ∧ µã2
(y) ≥ 0.1 ∧ µã3

(y) ≥ 0.9 ∧
µã4

(y) ≥ 0.2 → µ
[̃d]
(y) ≥ [0.0, 0.2] // supported by

RedL(x7)
R8: µã1

(y) ≥ 0.9 ∧ µã4
(y) ≥ 1.0 → µ

[̃d]
(y) ≥

[0.6, 0.9] // supported by RedL(x8)
R9: µã1

(y) ≥ 0.8 ∧ µã3
(y) ≥ 1.0 → µ

[̃d]
(y) ≥

[0.9, 1.0] // supported by RedL(x9)
R10: µã2

(y) ≥ 1.0 ∨ µã3
(y) ≥ 1.0 → µ

[̃d]
(y) ≥

[0.1, 0.4] // supported by RedL(x10)
Similarity, we obtain that ∆U = a1 ∧ a2 ∧ a3. By

Theorem 4, the set of attributes {a1, a2, a3} is the upper
approximate reduct of Table 1. Moreover,
RedU (x1) = {a3, a4};
RedU (x2) = {a2, a3, a4};
RedU (x3) = {{a2, a3}};
RedU (x4) = {a1};
RedU (x5) = {{a1, a2}};
RedU (x6) = {a2, a3, a4};
RedU (x7) = {{a1, a2}, {a2, a4}};
RedU (x8) = {a3};
RedU (x9) = AT ;
RedU (x10) = {a1}.
Thus, we can generate the following optimal “at most”

decision rules from Table 1:
R

′

1: µã3
(y) ≤ 0.2 ∨ µã4

(y) ≤ 0.7 → µ
[̃d]
(y) ≤

[0.5, 0.7] // supported by RedU (x1)
R

′

2: µã2
(y) ≤ 0.2 ∨ µã3

(y) ≤ 0.2 ∨ µã4
(y) ≤ 0.1 →

µ
[̃d]
(y) ≤ [0.3, 0.6] // supported by RedU (x2)

R
′

3: µã2
(y) ≤ 0.1 ∧ µã3

(y) ≤ 0.1 → µ
[̃d]
(y) ≤

[0.0, 0.3] // supported by RedU (x3)
R

′

4: µã1
(y) ≤ 0.0 → µ

[̃d]
(y) ≤ [0.1, 0.4] // supported

by RedU (x4)
R

′

5: µã1
(y) ≤ 0.1 ∧ µã2

(y) ≤ 0.1 → µ
[̃d]
(y) ≤

[0.4, 0.7] // supported by RedU (x5)
R

′

6: µã2
(y) ≤ 0.2 ∨ µã3

(y) ≤ 0.9 ∨ µã4
(y) ≤ 0.1 →

µ
[̃d]
(y) ≤ [0.1, 0.4] // supported by RedU (x6)

R
′

7: µã2
(y) ≤ 0.1 ∧ (µã1

(y) ≤ 0.0 ∨ µã4
(y) ≤ 0.2) →

µ
[̃d]
(y) ≤ [0.0, 0.2] // supported by RedU (x7)

R
′

8: µã3
(y) ≤ 0.1 → µ

[̃d]
(y) ≤ [0.6, 0.9] // supported

by RedU (x8)
R

′

9: µã1
(y) ≤ 0.8 ∧ µã2

(y) ≤ 0.4 ∧ µã3
(y) ≤ 1.0 ∧

µã4
(y) ≤ 1.0 → µ

[̃d]
(y) ≤ [0.9, 1.0] // supported by

RedU (x9)
R

′

10: µã1
(y) ≤ 0.0 → µ

[̃d]
(y) ≤ [0.1, 0.4] // supported

by RedU (x10)

V. CONCLUSION

In recent years, how to expand the traditional rough set
model in different types of complex information systems
playing an important role in the development of the rough
set theory. In this paper, we have developed a general

framework for the study of the dominance–based fuzzy
rough set in the incomplete fuzzy information system with
interval-valued decision. In our approach, the rough ap-
proximation of the interval-valued fuzzy set is constructed
on the basis of an expanded dominance relation. Such
rough approximation is a generalization of the dominance-
based fuzzy rough set in the fuzzy environment. Based on
the proposed rough approximation of the interval-valued
fuzzy set, we also propose four types of the knowledge
reductions, lower and upper approximate reducts, relative
lower and upper approximate reducts for an object. By
the relative lower and upper approximate reducts for an
object, one can induce optimal “at least” and “at most”
decision rules which are supported by such object in the
information system.

For further research, the proposed approach can be
extended to more general and complex information sys-
tems such as the information system with interval-valued
domains of the condition attributes. On the other hand, the
rough approximation of the interval-valued fuzzy set in
the incomplete environment with some other explanations
of the unknown values (e.g. the unknown value is a non-
existing one) are exciting areas to be explored. We will
study these issues in our future works.
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[36] R. Słowiński and D. Vanderpooten, “A generalized defini-
tion of rough approximations based on similarity,” IEEE
Transactions on Knowledge and Data Enginerring, vol.
12, no. 2, pp. 331–336, 2000.

[37] J. Stefanowski and A. Tsoukiàs, “On the extension of
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