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Abstract

The four serotypes of dengue virus (DENV) cause dengue fever (DF) and dengue hemorrhagic fever/dengue shock
syndrome (DHF/DSS). Severe disease has been associated with heterotypic secondary DENV infection, mediated by cross-
reactive antibodies (Abs) and/or cross-reactive T cells. The role of cross-reactive immunity in mediating enhanced disease
versus cross-protection against secondary heterotypic DENV infection is not well defined. A better understanding of the
cross-reactive immune response in natural infections is critical for development of safe and effective tetravalent vaccines.
We studied the B cell phenotype of circulating B cells in the blood of pediatric patients suspected of dengue during the
2010–2011 dengue season in Managua, Nicaragua (n = 216), which was dominated by the DENV-3 serotype. We found a
markedly larger percentage of plasmablast/plasma cells (PB/PCs) circulating in DENV-positive patients as compared to
patients with Other Febrile Illnesses (OFIs). The percentage of DENV-specific PB/PCs against DENV-3 represented 10% of the
circulating antibody-producing cells (ASCs) in secondary DENV-3 infections. Importantly, the cross-reactive DENV-specific B
cell response was higher against a heterotypic serotype, with 46% of circulating PB/PCs specific to DENV-2 and 10% specific
to DENV-3 during acute infection. We also observed a higher cross-reactive DENV-specific IgG serum avidity directed against
DENV-2 as compared to DENV-3 during acute infection. The neutralization capacity of the serum was broadly cross-reactive
against the four DENV serotypes both during the acute phase and at 3 months post-onset of symptoms. Overall, the cross-
reactive B cell immune response dominates during secondary DENV infections in humans. These results reflect our recent
findings in a mouse model of DENV cross-protection. In addition, this study enabled the development of increased technical
and research capacity of Nicaraguan scientists and the implementation of several new immunological assays in the field.
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Introduction

Dengue is the most prevalent mosquito-borne viral disease

affecting humans worldwide, mainly encountered in tropical and

sub-tropical regions in peri-urban and urban areas, with almost

half of the world’s population at risk for infection. Dengue is

caused by four dengue virus serotypes (DENV-1–4), transmitted

by Aedes aegypti and Ae. albopictus mosquitoes. DENV infection can

be asymptomatic or can cause a spectrum of disease, which spans

from classical dengue (DF) to more severe forms termed dengue

hemorrhagic fever (DHF) and dengue shock syndrome (DSS) [1].

DF is an incapacitating severe flu-like illness that usually resolves

spontaneously. The main symptoms include high fever, retro-

orbital pain and headache, muscle and joint pain, and rash. DHF/

DSS is a potentially fatal form of dengue. DHF is characterized by

hemorrhagic manifestations, platelet count #100,000 cells/mL;

and signs of plasma leakage that may include elevated hematocrit,

pleural effusion, ascites, edema, hypoproteinemia and/or hypoal-

buminemia. If plasma leakage continues without appropriate fluid

resuscitation, DSS can ensue. DSS presents with signs of

circulatory failure (narrow pulse pressure or hypotension accom-

panied by clinical signs of shock) in addition to the signs and

symptoms found in DHF. An estimated 500,000 patients require

hospitalization each year for DHF/DSS, a large proportion of

whom are children [2]. Recently, the WHO developed a new

classification of dengue disease that replaces the traditional

classification and includes Dengue with or without Warning Signs

and Severe Dengue [3]. This new classification has proven to be

useful in clinical management of DENV-infected individuals;

however, it may be less well-suited for pathogenesis studies [4].

The four DENV serotypes co-circulate in regions like South-

East Asia where dengue is hyper-endemic. In contrast, in

Nicaragua, one DENV serotype tends to dominate for several

years, before being replaced by another serotype, with lower-level

co-circulation of other DENV serotypes. DENV-3 has been the

dominant serotype circulating in the period 2008 to 2011 in

Nicaragua [5]. Prior to this, DENV-2 was the predominant

serotype between 1999 and 2002 and again between 2005 and

2007 [5,6,7,8], while DENV-1 predominated between 2002 and

2005 [9]. DENV-4 circulates at a low level in Nicaragua [9].

Although a large proportion of DENV infections remain

asymptomatic, epidemiological studies have demonstrated an

association between more severe disease and secondary (2u)

heterotypic DENV infections with a distinct serotype from the
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primary (1u) DENV infection [10,11,12,13,14]. This increase in

severity during 2u heterotypic DENV infections has been

attributed to antibody (Ab)-dependent enhancement (ADE), where

Abs to the 1u infecting serotype bind but do not neutralize the

second infecting serotype, instead facilitating an increase in viral

uptake by Fcc-receptor bearing cells [15,16,17]. In addition to

ADE, cross-reactive T cells, formed during the 1u DENV

infection, are over-activated, inducing a ‘‘cytokine-storm’’ syn-

drome implicated in the pathogenesis of shock syndrome and

severe disease [18,19,20,21].

No specific treatment is currently available for dengue, and

vaccines trials are in Phase 1 and 2. A better understanding of the

immune response developed during natural infections may be

beneficial for future vaccine design as well as for defining

correlates of protection for the current vaccine trials. Indeed, a

balanced and long-lasting T cell, B cell and Ab response against

the four serotypes is the goal of an effective tetravalent vaccine.

While cross-reactive pre-formed Abs have been implicated in

ADE, a cross-reactive B cell and Ab response may be beneficial

and protective [22,23,24,25]. In addition, we and others have

shown in a mouse model of DENV infection that cross-reactive T

cells can be protective [25,26,27]. Clearly, in humans, cross-

reactive immune responses can be protective, as the majority of 2u

DENV infections are asymptomatic or result in mild disease [12].

Different B cell compartments can be identified according to

their phenotype, and several B cell subsets circulate in the blood

during the acute phase of an infection. Naı̈ve B cells, memory B

cells and plasma cells (PCs) are phenotyped by staining with

surface markers followed by flow cytometry [28]. During a 1u

infection, naı̈ve B cells are stimulated and develop into antigen-

specific B cells. These B cells either differentiate into memory B

cells, which reside in the secondary lymphoid organs, or into PCs,

which secrete antigen-specific Abs. Prior to differentiation into

PCs, B cells undergo several cycles of proliferation and

differentiate into an intermediate state called plasmablasts (PBs)

[28]. Short-lived PCs are active during the acute infection, while

long-lived PCs (LLPCs) migrate to the bone marrow and are

responsible for long-term humoral immunity [29,30]. Memory B

cells, which retain antigen-specific Abs at their surface, undergo

affinity maturation, and only the clones bearing the Abs with the

highest affinity survive long-term [31]. This process takes several

weeks after the acute infection and continues despite the absence

of circulating antigen. Memory B cells are the cells implicated in

the antigen recall response and are rapidly activated during a 2u

infection [28].

In this study, we analyzed the phenotype of circulating B cells by

flow cytometry during the acute phase of infection in patients

suspected of dengue presenting to the National Pediatric

Reference Hospital, the Hospital Infantil Manuel de Jesús Rivera

(HIMJR), in Managua, Nicaragua. The striking increase we

observed in the percentage of PB/PCs in DENV-positive patients

prompted us to analyze the DENV-specific B cell response by

ELISPOT ex vivo (representing the circulating PCs at the time of

infection) in acute 2u infections, against the current infecting

serotype (DENV-3) and against a heterotypic serotype (DENV-2).

In addition, we studied the DENV-specific avidity of serum IgG

during acute infection and the neutralization capacity of the serum

during the acute phase and at 3 months post-onset of symptoms.

We found a higher number of cross-reactive DENV-specific PCs,

which was associated with greater cross-reactive DENV-specific

serum avidity during the acute phase of the infection, suggesting

an important role for cross-reactive memory B cells in 2u DENV

infections.

Materials and Methods

Ethics statement
The protocol for this study was reviewed and approved by the

Institutional Review Boards (IRB) of the University of California,

Berkeley, and of the Nicaraguan Ministry of Health. Parents or

legal guardians of all subjects provided written informed consent,

and subjects 6 years of age and older provided assent.

Study population
This study was performed from August 1, 2010, to January 31,

2011, during the peak of the dengue season in the Nicaraguan

National Pediatric Reference Hospital, Hospital Infantil Manuel

de Jesús Rivera (HIMJR), located in the capital city of Managua.

Inclusion criteria included age between 6 months and 15 years of

age, fever or history of fever less than 7 days, and one or more of

the following signs and symptoms: headache, arthralgia, myalgia,

retro-orbital pain, positive tourniquet test, petechiae, or signs of

bleeding. Exclusion criteria included: a) a defined focus other than

dengue, b) children weighing less than 8 kg, c) children less than 6

months of age, and d) children 6 years of age and older displaying

signs of altered consciousness at the time of recruitment. Patient

data such as vital signs, clinical data, and radiographic or

ultrasound results were collected on a daily basis by trained

medical personnel using a standardized clinical report form until

discharge. A blood sample was collected daily for a minimum of

three days for Complete Blood Count (CBC) with platelets, blood

chemistry, and diagnostic tests for dengue. Between days 14 and

21 after onset of symptoms, a blood sample was collected for

convalescent follow-up. In addition, blood samples were collected

at 3, 6, 12, and 18 months post-illness onset. At each time-point,

plasma and peripheral blood mononuclear cells (PBMCs) were

prepared and stored in aliquots at 280uC and liquid nitrogen,

respectively.

Preparation of PBMCs
Daily blood specimens were obtained from patients (average 2.7

samples, range 1–3), along with a convalescent/discharge sample

Author Summary

Dengue is the most common mosquito-borne viral
infection of humans, with half the world’s population at
risk for infection. Four different dengue virus serotypes
(DENV-1 to -4) can cause the disease, which can be either
inapparent or present with flu-like symptoms (Dengue
Fever), also known as ‘‘breakbone fever’’. In a number of
cases, the disease can be more severe and sometimes fatal,
with signs of bleeding and vascular leakage leading to
shock (Dengue Hemorrhagic Fever/Dengue Shock Syn-
drome). Severe disease has been associated with second-
ary sequential DENV infections, i.e., infection with a second
DENV serotype different from the serotype causing the
first infection. No specific treatment or vaccine is available.
Understanding how the human immune response devel-
ops during a natural infection can be beneficial for future
vaccine studies and trials. B cells are a subset of cells that
produce antibodies and are thus essential in the response
to natural infections and vaccines. We show here that
during secondary DENV infections in humans, the B cell
immune response to a previous infecting DENV serotype is
stronger than the response against the current infecting
serotype. In addition, this study allowed the development
of research capacity and implementation of new immu-
nological assays in Nicaragua.
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(for 96% of the enrolled patients). Analyzed samples were obtained

between 1 and 8 days post-onset of symptoms (mean of 5.660.08

days). Five mL of blood were collected in EDTA tubes (Becton-

Dickenson, Franklin Lakes, NJ) for children with a body weight

greater than 10 kg, and 4 mL were collected for children with a

body weight equal or less than 10 kg. The transport temperature

(,28uC), time of sample collection, transport, reception, and

processing (total =,2.5 hours (h)) were strictly controlled using

personal data assistants (PDAs) with barcode scanners. Upon

receipt in the National Virology Laboratory, an aliquot of 300 mL

was removed for flow cytometry staining (see below), and the

remaining 4–5 mL of fresh blood was gently pipetted into a

Leucosep tube (Greiner Bio-One) containing 3 mL of Ficoll

Histopaque (Sigma), and centrifuged at 5006 g for 20 minutes

(min) at room temperature. The plasma was removed and frozen

in aliquots. The PBMC fraction was collected and transferred to a

15 mL conical tube containing 9 mL of PBS with 2% Fetal Bovine

Serum (FBS; Denville Scientific Inc.) and 1% penicillin/strepto-

mycin (Sigma). Cells were washed 3 times in this solution by

centrifugation at 5006g for 10 min and resuspended in 10 mL of

complete media. Before the third wash, an aliquot of 500 mL was

used to obtain a cell count using a hematology analyzer (Sismex

XS-1000i). After the third wash, cells were resuspended at a

concentration of 107 cells/mL in freezing media consisting of 90%

FBS and 10% dimethyl sulfoxide and aliquotted. Average yield

was 9.66106 total cells (36106 to 17.66106). Cryovials containing

the cell suspension were placed in isopropanol containers (Mr.

Frosty, Nalgene) at 280uC overnight and then transferred to

liquid nitrogen.

Laboratory tests
Laboratory confirmation of DENV infection consisted of

reverse transcription–polymerase chain reaction (RT-PCR) am-

plification of viral RNA [32]; isolation of DENV in C6/36 Aedes

albopictus cells [7]; seroconversion of DENV-specific IgM antibod-

ies as measured by IgM capture enzyme-linked immunosorbent

assay (ELISA) [33] between acute-phase and convalescent-phase

serum samples; and/or a four-fold or greater increase in total

antibody titer, as measured by Inhibition ELISA [9,34], between

paired acute- and convalescent-phase serum samples. Identifica-

tion of DENV serotype (1–4) was achieved by RT-PCR directed to

the capsid gene [32] and/or nonstructural protein 3 gene [35]

performed with RNA extracted from serum and/or supernatant of

C6/36 cells obtained during virus isolation [36]. Primary DENV

infections were defined by an antibody titer by Inhibition ELISA

of ,10 in acute-phase samples and/or ,2,560 in convalescent-

phase samples, and secondary DENV infections were defined by

an antibody titer by Inhibition ELISA$10 in acute-phase samples

and/or $2,560 in convalescent-phase samples [6]. All serologic

and virologic assays were performed in the National Virology

Laboratory at the National Diagnosis and Reference Center

(CNDR) of the Nicaraguan Ministry of Health. All clinical

laboratory tests were performed in the Department of Clinical

Chemistry at the CNDR or at the clinical laboratory at the Health

Center Sócrates Flores Vivas [36] in Managua.

Viruses and cell lines
DENV was propagated in Aedes albopictus C6/36 cells (gift from

P. Young, University of Queensland, Australia) in M199 medium

(Invitrogen) with 10% FBS at 28uC. Cell supernatants were

collected on days 5, 6, 7 and 8 post-infection and either frozen at

280uC directly or after concentration. Concentrated virus was

prepared by centrifugation through Amicon filters (50 kDa,

3,2506 g for 20 min at 4uC). To prepare antigen for avidity

and ELISPOT assays, DENV was cultivated in Vero cells in

DMEM medium (Invitrogen) with 10% FBS at 37uC and 5%

CO2. Cell supernatants were collected on days 5, 6, 7 and 8 post-

infection, clarified and concentrated by ultracentrifugation

(26,0006 g for 2 h at 4uC) and resuspended in TNE (Tris buffer,

NaCl and EDTA) or PBS. DENV-2 (strain N172, passage 2) and

DENV-3 (strain N7236, passage 3) are clinical strains from two

Nicaraguan patients isolated in the National Virology Laboratory

in Managua, Nicaragua, and passaged minimally in our

laboratory. Virus titers were obtained by plaque assay on baby

hamster kidney cells (BHK21, clone 15) as previously described

[37]. Raji-DC-SIGN-R cells (gift from B. Doranz, Integral

Molecular, Philadelphia, PA) were grown in RPMI-1640 medium

(Invitrogen) with 5% FBS at 37uC in 5% CO2 for use in

neutralization assays [38,39].

Flow cytometry
On days 1, 2, and 3 of hospitalization, 300 ul of fresh whole

blood was collected. Red blood cells were lysed using 16 RBC

lysis buffer (eBioscience). Cells were then blocked in 5% Normal

Rat serum (Jackson ImmunoResearch Inc.) before staining. Cells

were stained with anti-CD138 (MI-15) or anti-HLA-DR FITC

(G46-6), anti-CD20 PECy7 (2H7), anti-CD27 PE (O323), and

anti-CD38 PECy-5 (HIT2). For the analysis of marginal zone

(MZ) B cells, cells were stained with anti-IgD FITC (IA6-2), anti-

CD20 PECy7, anti-CD27 PE, and anti-IgM PECy-5 (G20-127).

Finally, cells were fixed in 2% paraformaldehyde. Samples were

analyzed on a 4-color flow cytometer (Epics XL, Beckman-

Coulter). Results were analyzed using FlowJo software, version

7.2.5 (TreeStar Software). All flow cytometric analysis was

performed in the National Virology Laboratory at the CNDR in

Managua.

ELISPOT assay
To quantify the number of DENV-specific PCs, frozen PBMCs

from day 6 post-onset of symptoms were thawed and analyzed by

ELISPOT ex vivo [40]. Ninety-six-well filter plates were first coated

with 10 mg/well 4G2 monoclonal antibody (MAb) (mouse, pan-

DENV) overnight at 4uC and then blocked for 2 h at 37uC with

RPMI-1640 medium plus 10% FBS. Viruses DENV-2 N172 or

DENV-3 N7236 prepared from infected Vero cells by ultracen-

trifugation were UV-inactivated for 10 min and then incubated

with the plates at a dilution of 1:25 in PBS to capture the virus. To

detect the total number of IgG-secreting cells (including both

DENV-specific and non-specific ASCs), wells were coated with

donkey anti-human IgG (10 mg/mL, Jackson ImmunoResearch

Inc.). Virus-coated and anti-IgG-coated plates were incubated for

5–6 h with PBMCs to allow formation of Ab-antigen complexes

(anti-DENV Abs with DENV and total IgG with anti-IgG).

Duplicate samples of 16105 PBMCs per well (for wells containing

DENV antigen) and 36104 per well (for wells containing anti-

human IgG) were plated in the first well, and four 2-fold dilutions

were distributed in the subsequent wells. After the incubation

period, cells were removed, and plates were washed and incubated

with biotinylated anti-human IgG Ab overnight (1/1,000, Jackson

ImmunoResearch Inc.), followed by Streptavidin-Alkaline Phos-

phatase (AP, Vector Inc.) and BCIP/NBT substrate (Vector Inc.).

Resulting spots, representing DENV-specific Ab-producing B cells

or total IgG Ab-producing cells, were counted by visual inspection

using an inverted microscope. Control wells were coated with 4G2

MAb and PBS with no virus. For each sample, spots counted in

the control wells were subtracted from the spots counted in the test

wells coated with DENV-specific antigen. ELISPOT responses

Cross-Reactive B Cells in Dengue Virus Infection
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were considered to be positive if the number of spots was .200

spots/106 PBMCs for total IgG.

Neutralization assay
Serum samples from the acute phase (day 6 post-onset of

symptoms) and 3 months post-onset of symptoms were heat-

inactivated at 56uC for 20 min and then diluted using eight 3-fold

dilutions, beginning at 1:10 and extending to 1:21,870. Neutral-

ization was assessed by flow cytometry using a reporter (GFP)

system with pseudo-infectious DENV reporter virus particles

(RVPs) [39]. DENV RVP production (DENV-1, Western Pacific

74; DENV-2, S16803; DENV-3, CH53489; DENV-4, TVP360;

gift from B. Doranz, Integral Molecular) was performed in

293TREx cell lines as described [38,39]. Supernatants containing

RVPs were harvested, passed through 0.45-mm filters, aliquotted,

and stored at 280uC. For all experiments, DENV RVPs were

rapidly thawed from cryopreservation in a 37uC water bath and

placed on ice for use in neutralization assays. DENV RVPs in

RPMI-1640 complete medium were pre-incubated with an equal

volume of serially diluted serum samples for 1 h at room

temperature with slow agitation. Raji DC-SIGN-R cells were

added to each well at a density of 40,000 cells per well, followed by

incubation at 37uC in 5% CO2 for 48 h. Cells were subsequently

fixed in 2% paraformaldehyde and analyzed for the percentage of

cells expressing GFP by flow cytometry (Becton-Dickinson LSRII).

The percent infection for each serum dilution was calculated, and

the raw data was expressed as percent infection versus log10 of the

reciprocal serum dilution. The data were fitted to a sigmoidal

dose-response curve, using Prism (GraphPad Prism 5.0 Software)

to determine the titer of antibody that achieved a 50% reduction

in infection (50% neutralization titer, NT50). The NT50 titer is

expressed as the reciprocal of the serum dilution. Maximum

infection was determined in the absence of serum.

Avidity assay
Serum avidity was measured using a modified ELISA protocol

with urea washes [25,41,42]. Supernatant from Vero cells infected

with DENV-2 N172 and DENV-3 N7236 was ultracentrifuged

(26,0006g for 2 h at 4uC) to prepare concentrated virus. Viruses

were UV-inactivated for 10 min, plated in carbonate buffer

overnight in a flat-bottom 96-well plate, washed, and then blocked

with PBS-T (PBS with 0.1% Tween-20) containing 5% nonfat dry

milk. Wells were incubated for 1 h with serum samples from 1u or

2u DENV infections diluted in blocking buffer. Convalescent

samples (day 14 to 21 post-onset of symptoms) were used for the

analysis of 1u DENV infections, while acute samples (day 6 post-

onset of symptoms) were used for the analysis of 1u DENV

infections. The plates were washed for 10 min with different

concentrations of urea (6 M urea for primary DENV cases and

9 M urea for secondary DENV cases) before adding the secondary

biotin-conjugated Ab (donkey anti-human IgG) and streptavidin-

AP conjugate. Finally, PnPP substrate was added to the wells, and

optical density (OD) values were measured at 405 nm using KC

Junior software. Background levels were measured in wells that

were treated with normal human serum. For each plate,

background was subtracted, and percentage of IgG bound was

calculated by dividing the adjusted OD after urea washes by the

adjusted OD after PBS.

Statistical analysis
Non-parametric analyses using the two-sided Wilcoxon Rank

Sum test were used for pairwise comparisons, and the Mann-

Whitney test was used for non-paired analysis. The Spearman test

was used to examine correlations. Calculations were performed in

GraphPad Prism 5.0 software.

Results

Study participants
Between August 1, 2010, and January 31, 2011, 216 patients

were enrolled for suspected dengue at the National Pediatric

Reference Hospital, HIJMR. Twelve patients were excluded from

analysis; one patient dropped out of the study after enrollment and

11 patients had an undetermined dengue diagnostic result.

Overall, 204 patients were followed up and their characteristics

are shown in Table 1. One hundred and thirty patients (63.7%)

were laboratory-confirmed as dengue-positive. Among these, 75

(36.8%) were 1u and 55 (63.2%) were secondary 2u DENV

infections (Table 1). Serotype identification was achieved in 86.2%

of dengue-positive cases, with 108 of 112 (96.4%) confirmed as

DENV-3 infections. Of note, the severity of disease was relatively

low in this season, with 32 (26.4%) dengue-positive cases classified

as DHF/DSS [1]. Prior to circulation of DENV-3 as the dominant

serotype in 2008–2010 [5], DENV-2 was the predominant

circulating serotype in Nicaragua between 1999 and 2002 and

again between 2005 and 2007 [6,7,8], while DENV-1 predom-

Table 1. Characteristics of patients enrolled in the hospital-
based study during the 2010–2011 dengue season, Managua,
Nicaragua.

Total participants (n =204*)

Sex

Male 101 (49.5%)

Female 103 (50.5%)

Age (years)

,1 7 (3.4%)

1–4 44 (21.6%)

5–9 82 (40.2%)

10–14 69 (33.8%)

.14 2 (1.0%)

Median (range) 7.9 yrs (7 months-15.8 yrs)

Final result

Dengue-positive 130 (63.7%)

Other Febrile Illness 74 (36.3%)

Immune Status

Primary DENV infection 75 (36.8%)

Secondary DENV infection 55 (63.2%)

Serotype

DENV-1 3 (2.3%)

DENV-2 1 (0.8%)

DENV-3 108 (83.1%)

Unknown 18 (13.8%)

Severity

DF 98 (75.4%)

DHF 30 (23.1%)

DSS 2 (1.5%)

*Out of 216 participants enrolled, 1 participant dropped out and 11 participants
were excluded for indeterminate dengue diagnostic results.
doi:10.1371/journal.pntd.0001568.t001
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inated between 2002 and 2005 [9]. Thus, children with secondary

DENV infections were most probably previously infected with

DENV-1, DENV-2, or both.

Increased percentage and numbers of PB/PCs in DENV-
positive cases
Fresh whole blood collected during the first three days of

hospitalization in the HIMJR was stained with MAbs and

analyzed by flow cytometry in order to phenotype the B cells

circulating at the time of infection. Dengue diagnostic (RT-PCR)

results were obtained within 24 h after hospital admission. B cells

from all cases were phenotyped on day 1, while B cells from all

dengue-positive cases and one out of every five OFI cases were

phenotyped on all three days. This staining allowed us to

distinguish between naı̈ve B cells (CD20+CD272), memory B

cells (CD20+CD27+) and PB/PCs (CD20lowCD27high) (Figure 1A).

In addition, among the memory B cells, the marginal zone (MZ) B

cell subset was analyzed (IgD+IgM+) (Figure 1B). As expected, the

PB/PCs expressed high levels of CD38, which is a marker of cell

activation, and variable levels of CD138, which is a cell surface

marker found only on PCs. In addition, this population expressed

high levels of HLA-DR, indicating activation of these cells

(Figure 1A).

The percentages of different B cell subsets were then analyzed

over time. While no increase in percentage of PB/PCs over time

was observed in OFI cases, this percentage increased and peaked

on day 5 post-onset of symptoms in DENV-positive. On day 5, a

significant increase in percentage of PB/PCs was found in DENV-

positive patients as compared to OFI cases (mean DENV-

positive = 4.7260.97% vs. mean OFI= 0.9660.69%, p= 0.022)

(Figure 2A). Of note, among DENV-positive patients, no statistical

difference in percentage of PB/PCs was found at day 5 post-onset

of symptoms between 1u and 2u infections (mean 1u=4.996

1.35% vs. mean 2u=4.2561.38%, p= 0.76) (Figure 2B) or

between DF and DHF/DSS cases (mean DF=4.4261.23% vs.

mean DHF/DSS= 5.5061.51%, p= 0.48) (data not shown). A

lower percentage of memory B cells was found on day 4 post-onset

of symptoms in DENV-positive cases (mean DENV-posi-

tive = 1.9360.42% vs. mean OFI= 7.5262.07%, p= 0.020), but

no clear increase over time was seen in either of the two

populations (Figure 2C). A slightly higher percentage of naı̈ve B

cells was noted on day 3 post-onset of symptoms in DENV-positive

cases (mean DENV-positive = 7.1660.76% vs. mean OFI= 5.146

1.52%, p= 0.032), but again no clear increase over time was seen

in either population (Figure 2D). A significantly higher percentage

of MZ B cells was found on day 2 post-onset of symptoms in OFI

cases (mean DENV-positive = 6.5762.55% vs. mean OFI= 20.82

63.09%, p= 0.020), but no significant differences were found at

later time-points (Figure 2E). These data correlate with data on

absolute numbers of B cells calculated based on the number of

total lymphocytes (Figure S1). Of note, despite a higher number of

total lymphocytes in OFI, the numbers of PB/PCs are greater in

DENV-positive patients when compared to OFI between days 4

and 6 post-onset of symptoms.

Increased numbers of cross-reactive DENV-specific PCs
on day 6 post-onset of symptoms in secondary DENV
infections
The characteristics of the patients with 2u DENV infections

enrolled during the study are shown in Table 2. Among the 55

cases, only confirmed DENV-3-positive cases were processed by

ELISPOT to measure the number of DENV-specific PCs

circulating in the peripheral blood during the acute phase (day 6

post-onset of symptoms). Concentrated preparations of virions

from clinical isolates of DENV-2 and DENV-3 from Nicaragua,

minimally passaged in the laboratory, were used as antigen in

order to match as closely as possible the virus to which the patients

were exposed. Of 33 cases with detectable ASCs, DENV-3-specific

PCs represented 11.5% of the total ASC/106 PBMCs (mean

DENV-3-specific ASC=1,0086295 ASC/106 PBMCs and mean

total ASC=8,78361,028 ASC/106 PBMCs) (Figure 3A).

The median age of patients experiencing secondary DENV

infection was 10.5 years, with a range of 5.5 to 15.8 years.

According to epidemiological data regarding the DENV serotypes

that have been circulating recently in Nicaragua [6,7,8,9,43], these

children could have been previously infected by DENV-1 and/or

DENV-2. As these are pediatric cases, the volume of blood drawn

is restricted and thus the availability of PBMCs was limited.

Therefore, only a subset of samples was processed using a second

DENV serotype, in this case DENV-2, in addition to DENV-3 as

antigen (Table 2). DENV-2 was chosen to represent a cross-

reactive, heterotypic serotype to which patients in the study were

likely to have been exposed. A significantly higher number of

DENV-2-specific ASC was found in these 2u DENV infections

when compared to the number of DENV-3-specific ASC (mean

DENV-2 ASC=4,4026823 ASC/106 PBMCs vs. mean DENV-3

ASC=1,1296373 ASC/106 PBMCs; p,0.0001) (Figure 3B).

DENV-2-specific ASC represented on average 4667% of the total

ASC circulating at the time of infection, compared to 1063%

DENV-3-specific ASC (p,0.0001) (Figure 3C). Overall, these data

show an increase in DENV-specific PCs during acute 2u DENV

infections, with a greater increase in cross-reactive PCs that are

specific to a previous infecting serotype rather than the current

infecting serotype. A positive correlation was found between the

titer of total DENV-specific Abs as measured by Inhibition ELISA

and the number of DENV-2-specific PCs during acute infection,

while no correlation was found with the number of DENV-3-

specific PCs (Figure 3D and E). This result suggests that the anti-

DENV specific Abs are mostly produced by the cross-reactive PCs

during an acute 2u DENV infection.

Increased cross-reactive DENV-specific serum avidity in
secondary DENV infections
In order to measure IgG serum avidity, we used a modified

ELISA with urea washes [25,41,44]. The same clinical viral

isolates from Nicaragua that were used in the ELISPOT assays

were used in the avidity assay. To validate the assay using samples

and virus from Nicaragua, we tested a subset of 42 1u DENV-3

cases from the 2010 hospital study. As the amount of IgG is low

during the acute phase of 1u infections, we used serum samples

from the convalescent phase (day 14 to 21 post-onset of

symptoms). The serum avidity of these samples was measured

against both DENV-2 and DENV-3. As expected, higher avidity

was found against the infecting DENV serotype, DENV-3, with a

low level of cross-reactivity against DENV-2 (mean % IgG bound

to DENV-3= 27.761.4% vs. mean % IgG bound to DENV-

2=9.460.9%; p,0.0001) (Figure 4A).

We then measured the DENV-specific serum avidity during the

acute phase of 2u DENV-3 infections (day 6 post-onset of

symptoms). The same subset of samples that was processed for

DENV-2 and DENV-3 ELISPOT was processed by the avidity

assay. As shown in Figure 4B, the cross-reactive serum avidity

against DENV-2 was significantly higher than the homotypic

serum avidity against DENV-3 (mean % IgG bound to DENV-

2=61.363.7% vs. mean % IgG bound to DENV-3= 50.763.6%;

p= 0.030). Overall, these data show a greater cross-reactive

DENV-specific IgG serum avidity as compared to homotypic
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DENV-specific IgG serum avidity during the acute phase of 2u

DENV infections.

Cross-reactive DENV-specific neutralization profile of
serum in secondary DENV infections
Finally, we measured the DENV-specific neutralization capacity

of patient serum against the 4 DENV serotypes using an RVP flow

cytometry-based neutralization assay. The same subset of samples

that was processed for DENV-2 and DENV-3 ELISPOTs was

processed by the neutralization assay. The NT50 titer of 2u DENV-

3 infections at 3 months post-onset of symptoms is shown in

Figure 5A. The NT50 titer was high not only against DENV-3

(mean 9866276), the current infecting serotype, but also against

DENV-2 (mean 20396371). The NT50 against DENV-1 (mean

Figure 1. Flow cytometry staining of B cell subsets in peripheral blood of DENV-infected patients. A. Phenotype of circulating B cells in
patients suspected of DENV infection. Whole blood was collected during the first 3 days of hospitalization and stained directly with anti-CD138 or anti-
HLA-DR FITC, anti-CD20 PECy7, anti-CD27 PE, and anti-CD38 PECy-5. Cells were gated on the lymphocyte population, and B cell sub-populations were
discriminated using anti-CD20 and anti-CD27 MAbs. Naı̈ve B cells are CD20+CD272, memory B cells are CD20+CD27+, and PB/PCs are CD20lowCD27high.
Histograms represent levels of CD38, CD138 and HLA-DR expression on PB/PCs; dark grey line, positive stained sample; light grey line, negative
unstained control sample. One representative flow cytometry staining (from day 5 post-onset of symptoms) is shown out of 22 OFI and 38 DENV-positive
cases processed by flow cytometry. B. Phenotype of MZ B cells in patients suspected of DENV infection. For MZ B cell analysis, cells were processed as in
Figure 1A and stained with anti-IgD FITC, anti-CD20 PECy7, anti-CD27 PE, and anti-IgM PECy-5. Cells were gated on the lymphocyte population, and B
cell sub-populations were identified using anti-CD20 and anti-CD27 MAbs. MZ B cells are CD20+CD27+IgD+IgM+. One representative flow cytometry
staining (from day 2 post-onset of symptoms) is shown out of 23 OFIs and 31 DENV-positive cases processed by flow cytometry.
doi:10.1371/journal.pntd.0001568.g001
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Figure 2. Increased percentage of PB/PCs in peripheral blood of DENV-infected patients. A. Percentage of PB/PCs circulating in the blood
of patients suspected of DENV infection. Mean and SE of the percentage of PB/PCs among total lymphocytes plotted according to day post-onset of
symptoms. As the same patient may have had up to 3 samples processed, the patient may be represented more than once over time. The number of
samples processed is shown below the graph. The percentage of PB/PCs increased over time in DENV-positive samples and peaked at day 5 post-
onset of symptoms. Statistical analysis was performed using the Mann-Whitney test, and a significant difference in percentage of PB/PC between OFIs
and DENV-positive cases was found at day 5 post-onset of symptoms. The p-value is shown below the symbol legend. B. Percentage of PB/PCs at day
5 post-onset of symptoms in 1u and 2u DENV infections. Statistical analysis was performed using the Mann-Whitney test, and no significant difference
in percentage of PB/PCs was found at day 5 post-onset of symptoms between 1u and 2u DENV infections. n = 14 for 1u DENV infections; n = 8 for 2u
DENV infections. C. Percentage of memory B cells circulating in the blood of patients suspected of DENV infection. Mean and SE of the percentage of
memory B cells plotted according to day post-onset of symptoms. As the same patient may have had up to 3 samples processed, the patient may be
represented more than once over time. The number of samples processed is shown below the graph. The evolution over time of the percentage of
memory B cells in OFIs and DENV-positive cases is similar. Statistical analysis was performed using the Mann-Whitney test, and a significant difference
between OFIs and DENV-positive cases was found on day 4 post-onset of symptoms. The p-value is shown below the symbol legend. D. Percentage
of naı̈ve B cells circulating in the blood of patients suspected of DENV infection. Mean and SE of the percentage of naı̈ve B cells plotted according to
day post-onset of symptoms. As the same patient may have had up to 3 samples processed, the patient may be represented more than once over
time. The number of samples processed is shown below the graph. The evolution over time of the percentage of naı̈ve B cells in OFIs and DENV-
positive cases is similar. Statistical analysis was performed using the Mann-Whitney test, and a significant difference between OFIs and DENV-positive
cases was found on day 3 post-onset of symptoms. The p-value is shown below the symbol legend. E. Percentage of MZ B cells circulating in the
blood of patients suspected of DENV infection. Mean and SE of the percentage of MZ B cells plotted according to day post-onset of symptoms. As the
same patient may have had up to 3 samples processed, the patient may be represented more than once over time. The number of samples processed
is shown below the graph. The evolution over time of the percentage of MZ B cells in OFIs and DENV-positive cases is similar. Statistical analysis was
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404691) and DENV-4 (mean 3906192) were lower but

detectable. Thus, after 2u DENV infections, a broad cross-reactive

neutralization response develops against the 4 serotypes, consistent

with previous reports.

In addition, we measured the NT50 titer of these same samples

during the acute phase of the infection at day 6 post-onset of

symptoms. As expected, NT50 titers were higher during the acute

phase when compared to the 3-month samples. The NT50 titer

was high not only against DENV-3 (mean 478361687), the

current infecting serotype, but also against DENV-2 (mean

397961274), DENV-1 (mean 324461049), and DENV-4 (mean

465461342). Thus, as at 3 months post-onset of symptoms, we

found a broadly cross-reactive response to all 4 serotypes during

the acute phase of the infection (Figure 5B). Of note, no statistical

significant difference was found between anti-DENV-2 and anti-

DENV-3 NT50 titers, either during the acute phase or at the 3-

month time-point.

Discussion

In this study, we used flow cytometry to phenotype the B cell

components circulating at the time of DENV infection, using fresh

whole blood in Nicaragua. In addition, we measured the number

of DENV-specific PCs during acute infection by ELISPOT using

Nicaraguan virus preparations as antigen. Finally, we measured

both the DENV-specific IgG serum avidity and neutralization

capacity of the serum against different serotypes of DENV.

Overall, we show that a large number of PB/PCs circulate during

DENV infection when compared to OFIs, both during 1u and 2u

DENV infections. We find a strikingly higher number of DENV-

specific PCs and serum IgG avidity directed to a heterotypic

DENV serotype (DENV-2) as opposed to the current infecting

serotype (DENV-3). Overall, we show that a cross-reactive B cell

response dominates during the acute phase of 2u human DENV

infections.

A large percentage of PB/PCs circulate in the blood of DENV-

infected children during the acute phase of infection, in both 1u

and 2u DENV infections, as compared to children with OFIs. Of

note, the amount of PB/PCs does not vary with age [45]. The

percentage of PB/PCs circulating in the blood peaked at day 5

post-onset of symptoms. While we would have expected a high

percentage of PB/PCs in both DENV-infected and OFI patients,

the difference was marked and might point to either a stronger B

cell response during DENV infections when compared to OFIs or

to a difference between the time-points after infection at which the

samples were collected in DENV-positive cases versus OFI cases.

The definitive diagnosis of OFI cases is not known; however,

possible differential diagnoses include influenza, rickettsiosis, and

leptosporosis, among others. In an effort to define the possible viral

etiology of OFIs, we analyzed DENV-negative cases using viral

microarrays followed by deep sequencing and detected Human

Herpesvirus 6 sequence and sequences related to other Herpesviridae

and Circaviridae [46]. The course of disease of the OFIs, which may

be different from dengue illness, and the fact that PB/PCs

circulate in the blood for only a short period of time as compared

to other B cell components [47] may explain the differences in

performed using the Mann-Whitney test, and a significant difference between OFIs and DENV-positive cases was found on day 2 post-onset of
symptoms. The p-value is shown below the symbol legend.
doi:10.1371/journal.pntd.0001568.g002

Table 2. Characteristics of patients with secondary DENV infection with PBMCs processed by ELISPOT.

Secondary infections (n =55) DENV-3 ELISPOT (n=33)* DENV-2 and DENV-3 ELISPOT (n=17)**

Sex

Male 27 17 8

Female 28 16 9

Age (years)

,1 0 0 0

1–4 0 0 0

5–9 20 15 7

10–14 31 16 9

.14 4 2 0

Median (range) 10.5 yrs (5.5–15.8 yrs) 10.2 yrs (5.5–14.9 yrs) 9.8 yrs (5.7–13.2 yrs)

Serotype

DENV-1 1 0 0

DENV-2 1 0 0

DENV-3 47 33 17

Unknown 6 0 0

Severity

DF 36 21 12

DHF 17 11 4

DSS 2 1 1

*Subset of secondary DENV infections among the 55 patients for which only DENV-3-specific ASC were assayed by ELISPOT.
**Subset of secondary DENV infections among the 33 patients for which both DENV-2- and DENV-3-specific ASC were assayed by ELISPOT.
doi:10.1371/journal.pntd.0001568.t002
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Figure 3. Increased cross-reactive DENV-specific PCs during acute secondary DENV infections. A. Number of DENV-3-specific ASCs and
total ASCs circulating in the peripheral blood during 2u DENV-3 infections. PBMCs from day 6 post-onset of symptoms from 33 patients enrolled with
2u DENV-3 infections were prepared and frozen in liquid nitrogen. Thawed PBMCs were plated on 96-well filter plates coated with either DENV-3 virus,
to detect DENV-3-specific ASCs, or anti-human IgG (positive control), to detect the total number of ASCs. B. Number of DENV-2-specific ASCs and
DENV-3-specific ASCs circulating in peripheral blood during 2u DENV-3 infections. PBMCs from day 6 post-onset of symptoms from 17 patients
enrolled with 2u DENV-3 infections were prepared and frozen in liquid nitrogen. Thawed PBMCs were plated on 96-well filter plates coated with either
DENV-2 virus, to detect DENV-2-specific ASCs, or DENV-3 virus, to detect DENV-3-specific ASCs. Statistical analysis was performed by Wilcoxon Rank
Sum test, and a significant difference in the number of DENV-2-specific ASCs vs. DENV-3-specific ASCs was found. The p-value is shown in the graph.
C. Percentage of DENV-2-specific ASCs and DENV-3-specific ASCs circulating in peripheral blood during 2u DENV-3 infections, in relation to total ASCs.
The percentage of DENV-2-specific and DENV-3-specific ASCs was calculated by dividing the number of DENV-2- and DENV-3-specific ASCs by the
number of total ASCs. PBMCs were processed as in Figure 3C. Statistical analysis was performed by Wilcoxon Rank Sum test, and a significant
difference in the percentage of DENV-2-specific ASCs vs. DENV-3-specific ASCs was found. The p-value is shown in the graph. D. Correlation between
DENV-2-specific PCs and total anti-DENV antibody titer during the acute phase of DENV-3 2u infections. The number of DENV-2-specific PCs/106

PBMCs measured by ex vivo ELISPOT at day 6 post-onset of symptoms is plotted against the total anti-DENV antibody titer measured during the acute
phase of the infection (n = 17). Statistical analysis was performed using the Spearman test. A weak positive statistical significant correlation was found
between the two variables. The r2 and the p-values are shown in the graph. E. Correlation between DENV-3-specific PCs and total anti-DENV antibody
titer. The number of DENV-3-specific PCs/106 PBMCs measured by ex vivo ELISPOT at day 6 post-onset of symptoms is plotted against the total anti-
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percentage of PB/PCs between these two groups. In addition,

certain viruses, like influenza and measles, are known to depress

the immune system [48]; thus, some OFI patients may experience

decreased proliferation of B cells either directly or secondarily due

to decreased proliferation of T-helper cells, resulting in reduced

numbers of PB/PCs. Of note, no difference in percentage of PB/

PCs circulating in blood was noted when comparing 1u and 2u

DENV infections.

In contrast to PB/PCs, which circulate in the blood during a

narrow time-window, the number of memory B cells circulating in

the blood increases later during infection [47]. We observed an

increase over time of memory B cells in DENV-infected patients,

whereas this subset of cells decreased in OFI patients. Marginal

zone (MZ) B cells are IgM+ ‘‘memory’’ B cells that have been

implicated in the response against encapsulated bacteria, such as S.

pneumoniae [49]. These cells are implicated in T-cell-independent

immune responses and despite the presence of IgM at their

surface, they present hypermutated immunoglobulin receptors

[50,51,52]. Recently, highly neutralizing IgM+ MAbs have been

generated from individuals infected by influenza [53], and these

MAbs have been shown to arise from the MZ B cell population

[53]. We did not find a clear difference in the percentage of this

population between the two groups. Thus, this subset of cells may

not play a role during DENV infections.

In order to further characterize the PB/PCs circulating during

acute DENV infection, we measured the number of DENV-

specific PCs at day 6 post-onset of symptoms by ex vivo ELISPOT,

i.e., without any stimulation of the PBMCs. First, we found that

DENV-3-specific PCs constitute a substantial proportion (,10%)

of total ASCs in the blood of patients with a 2u DENV-3 infection.

Among the patients experiencing a 2u DENV-3 infection, a subset

of samples were processed by ELISPOT against both DENV-2

and DENV-3 viruses. Interestingly, we found a higher number of

PCs specific for the non-infecting serotype (DENV-2) when

compared to the currently infecting serotype (DENV-3). These

DENV-2-specific PCs made up 46% of the total ASCs. These

findings were associated with the IgG serum avidity data, where

higher serum avidity was detected against DENV-2 as compared

to DENV-3. Thus, during an acute 2u DENV infection, cross-

reactive PCs and cross-reactive Abs responsible for the higher

avidity increase more than homotypic PCs and homotypic Abs

directed to the current infecting serotype. In addition, a positive

correlation between the total anti-DENV Ab titer was found only

with DENV-2 specific PCs but not with DENV-3 specific PCs,

consistent with other reports [44]. Thus, the increased number of

anti-DENV Abs circulating during a 2u infection may be induced

by cross-reactive PCs, and this rise in Ab titer is associated with an

increased IgG serum avidity against a heterotypic serotype. These

findings support the initial concept of ‘‘original antigenic sin’’ in

dengue immunopathogenesis, whereby the humoral immune

response in a secondary DENV infection is stronger to the prior

infecting serotype [54,55].

These data are in accordance with our findings in our mouse

model of sequential DENV infection, where we observed an

increase in PCs, memory B cells, and highly avid Abs against the

previous infecting serotype rather than against the current

infecting serotype [25]. These data are also in accordance with

recently published human data, which show an increase in cross-

reactive memory B cells and cross-reactive serum avidity during

the acute phase of 2u DENV infection in a population of DENV-

infected children in Thailand [44]. These two sets of data are

complementary, as we measured the number of DENV-specific

DENV antibody titer measured during the acute phase of the infection (n = 33). Statistical analysis was performed using the Spearman test. No
statistical significant correlation was found between the two variables. The r2 and the p-values are shown in the graph.
doi:10.1371/journal.pntd.0001568.g003

Figure 4. Increased cross-reactive DENV-specific IgG serum avidity during acute secondary DENV infections. A. DENV-specific IgG
serum avidity at convalescence in 1u DENV-3 infections. Convalescent serum (day 14 to 21 post-onset of symptoms) from a subset (n = 42) of 1u
DENV-3 infections was tested for DENV-specific avidity using a modified ELISA with 6 M urea washes. The same serum samples were tested in parallel
against DENV-2 and DENV-3 Nicaraguan viruses. Statistical analysis was performed by Wilcoxon Rank Sum test, and a significant difference in DENV-2-
specific IgG serum avidity vs. DENV-3-specific IgG serum avidity was found. The p-value is shown above the graph. B. DENV-specific IgG serum avidity
at day 6 post-onset of symptoms in 2u DENV-3 infections. Acute serum from day 6 post-onset of symptoms from a subset (n = 18) of 2u DENV-3
infections was tested for DENV-specific avidity using a modified ELISA with 9 M urea washes. The same serum samples were tested in parallel against
DENV-2 and DENV-3 Nicaraguan viruses. Statistical analysis was performed by Wilcoxon Rank Sum test, and a significant difference in DENV-2-specific
IgG serum avidity vs. DENV-3-specific IgG serum avidity was found. The p-value is shown above the graph.
doi:10.1371/journal.pntd.0001568.g004
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PCs ex vivo (plated directly for ELISPOT without prior in vitro

stimulation) during acute infection, while Mathew et al. [44]

measured the number of memory B cells obtained from PBMCs

polyclonally stimulated in vitro. Overall, these two studies suggest

that the increase in cross-reactive PCs during an acute 2u DENV

infection is mediated by the cross-reactive memory B cells formed

during a previous infection with a different serotype.

Neutralization assays during the acute phase and at 3 months

post-onset of symptoms show a broadly cross-reactive response

against the four serotypes of DENV, as previously described [56].

Thus, there appears to be no association during 2u DENV

infection between neutralization capacity of the serum and the

number of circulating DENV-specific PCs or increased DENV-

specific serum avidity. Direct correlation between neutralization

capacity of serum and serum avidity has not been shown thus far

during DENV infection. In fact, it was found that no direct

correlation exists between neutralization capacity and affinity of

anti-DENV MAbs [57](K. Williams and E. Harris, unpublished

data). In addition, in our mouse model of sequential DENV

infection, we demonstrated an uncoupling of the neutralization

and avidity responses during 2u DENV infections, with a higher

DENV-specific avidity against the 1u infecting serotype and an

increased neutralization capacity of the serum against the 2u

infecting serotype [25]. Further analysis of 1u and 2u serum

samples, including samples from patients enrolled in our

Nicaraguan or other cohort studies for which the 1u infecting

serotype is known, are needed to further investigate this question

in humans.

While other groups have used recombinant proteins for avidity

and ELISPOT assays [44], we used viral particles as antigen,

prepared from Nicaraguan clinical viral isolates. Previous data

have shown that human anti-DENV and anti-West Nile Virus

(WNV) Abs bind to the viral prM/M protein and to sites on the

envelope (E) protein or on several E monomers on the virion that

are not preserved in the recombinant E formulation [58,59,60].

Thus, we preferred to use whole viral particles in our assays to

better approximate the viral antigen seen by the immune response

in vivo. In addition, the use of clinical viral isolates from Nicaragua

represents the most relevant viral strains.

The 2010–2011 dengue season in Nicaragua was characterized

by low disease severity, with only 30 (23.1%) cases of DHF and 2

cases (1.5%) of DSS in our study. We did not find any difference in

the number of DENV-specific PCs or in serum avidity during the

acute infection between DF and DHF/DSS, but differences may

exist in more severe cases. Further analyses of the B cell response

during subsequent seasons with greater severity are warranted to

study such associations. In addition, disease severity can be

influenced by the serotype-specific sequence of infections and the

time interval between sequential DENV infections [61,62,63],

issues that are better addressed using samples from prospective

cohort studies. A separate study of a prior DENV-2 epidemic in

Managua revealed a trend towards decreased serum avidity in

more severe DSS cases when compared to DF and DHF cases

(M.O. Pohl, S. Zompi and E. Harris, unpublished data) using both

a urea-based ELISA and a virus competition ELISA [55]. More

refined analysis of the serum avidity by surface plasmon resonance

may be more sensitive, and such studies are currently underway.

This study has several strengths. Given our established mouse

model of DENV infection and disease, we can study the immune

response in parallel in mice and humans. The mouse model allows

a more complete mechanistic approach, e.g., allowing the

investigation of the role of the different immune components

during DENV infections [25], while the human studies extend the

relevance of the findings to the clinical situation. For the first time,

Figure 5. Cross-reactive DENV-specific serum neutralization during secondary DENV infections. A. DENV-specific neutralization of the
serum at 3 months post-onset of symptoms in 2u DENV-3 infections. Longitudinal serum samples, obtained 3 months post-onset of symptoms from a
subset (n = 20) of 2u DENV-3 infections, were analyzed in a flow cytometry-based neutralization assay. Briefly, serial dilutions of the serum samples
were incubated with RVPs containing the GFP gene and C-prM/M-E from the 4 different DENV serotypes for one h, and then incubated with Raji-DC-
SIGN-R cells for 48 h. The percentage of infection, as defined by expression of GFP in the infected cells, was detected by flow cytometry. The NT50,
calculated using Prism software (see Material and Methods), represents the serum dilution at which 50% neutralization of infection is achieved.
Statistical analysis was performed by Wilcoxon Rank Sum test to compare the NT50 of each heterotypic serotype (DENV-1, DENV-2 and DENV-4) to the
infecting serotype (DENV-3). No significant difference was found. B. DENV-specific neutralization of serum at day 6 post-onset of symptoms in 2u
DENV-3 infections. Samples obtained at day 6 post-onset of symptoms from a subset (n = 20) of 2u DENV-3 infections were analyzed in a flow
cytometry-based neutralization assay to measure the NT50 as described in the legend to Figure 5A. Statistical analysis was performed by Wilcoxon
Rank Sum test to compare the NT50 of each heterotypic serotype (DENV-1, DENV-2 and DENV-4) to the infecting serotype (DENV-3). No significant
difference was found.
doi:10.1371/journal.pntd.0001568.g005
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B cell- and Ab-based assays, including ELISPOTs and urea-based

ELISAs, were carried out using viral particles purified from

clinical isolates from the field as antigen. Using this type of antigen,

prepared by propagating the virus in mammalian Vero cells,

enables as close an approximation to the in vivo situation as

possible. Finally, the flow cytometry was performed at the NVL/

CNDR in Managua, Nicaragua. Although this limited the analysis

to several four-color panels due to the cytometer available at the

CNDR, it allowed analysis of fresh whole blood from children

enrolled in the hospital-based dengue study. Importantly,

establishing this assay in Nicaragua increased the research and

technical skills of NVL personnel, which is complemented by our

program of continuous training of Nicaraguan scientists at UC

Berkeley in relevant scientific and technical areas. In-country use

of the cytometer also resulted in continuous maintenance of the

machine, which is now being used for additional projects, such as

flow cytometry-based neutralization assays for serological investi-

gation of DENV infection over time.

One of the main limitations of this study was the low level of

severity observed during the 2010–2011 season, which did not

allow correlations between the number of DENV-specific PCs

circulating during acute infection and disease severity to be

performed. The use of samples from future more severe epidemics

will be useful in investigating this question. In addition, the

previous infecting serotype(s) of the 2u DENV infections

hospitalized in this study is unknown. The use of samples from

cohort studies, in which patients are followed prospectively over

time, will allow an improved analysis of the serotype-cross-reactive

response initially observed in this study.

Overall, we have shown that during DENV infection, a high

number of PB/PCs circulate in the blood and that during 2u

DENV infection, the DENV-specific PCs are mostly cross-reactive

and likely arise from memory B cells formed during previous

heterotypic infections. This is associated with an increase in cross-

reactive DENV-specific IgG serum avidity. The assays used in this

study were either performed at the NVL in Managua, Nicaragua,

or at UC Berkeley in collaboration with a researcher from

Nicaragua who was trained in ELISPOT and avidity ELISA

assays, thus increasing research capacity of Nicaraguan scientists.

In addition, these assays were performed using clinical viral

isolates from Nicaragua, better approximating the in vivo situation

in humans. Lastly, these assays should be useful in the

characterization of the humoral immune response induced by

candidate dengue vaccines.

Supporting Information

Figure S1 Absolute number of B cell sub-populations

circulating in the blood of DENV-suspected cases at day

6 post-onset of symptoms. A. Absolute number of lympho-

cytes in the blood of patients suspected of DENV infection. Mean

and SE of the number of lymphocytes were plotted according to day

post-onset of symptoms. As the same patient may have had up to 3

samples processed, the patient may be represented more than once

over time. The number of samples processed is shown below the

graph. The number of lymphocytes increased over time in DENV-

positive and OFI samples. Statistical analysis was performed using

the Mann-Whitney test, and a significant difference in number of

lymphocytes between OFI and DENV-positive cases was found

between day 2 and day 5 post-onset of symptoms. The p-value is

shown below the symbol legend. B. Absolute number of PB/PCs in

the blood of patients suspected of DENV infection. Mean and SE of

the number of lymphocytes were plotted according to the day post-

onset of symptoms. As the same patient may have had up to 3

samples processed, the patient may be represented more than once

over time. The number of samples processed is shown below the

graph. Statistical analysis was performed using the Mann-Whitney

test, and no significant difference in number of PB/PCs was found

between DENV-positive and OFI cases, with a trend towards

higher numbers in DENV-positive cases between days 3 and 6 post-

onset of symptoms. C. Absolute number of memory B cells

circulating in the blood of patients suspected of DENV infection.

Mean and SE of the number of memory B cells were plotted

according to day post-onset of symptoms. As the same patient may

have had up to 3 samples processed, the patient may be represented

more than once over time. The number of samples processed is

shown below the graph. The number of memory B cells decreases

over time in OFI cases, while it increases over time in DENV-

positive cases. Statistical analysis was performed using the Mann-

Whitney test, and a significant difference between OFI and DENV-

positive cases was found between days 2 and 4 post-onset of

symptoms. The p-value is shown below the symbol legend. D.

Absolute number of naı̈ve B cells circulating in the blood of patients

suspected of DENV infection. Mean and SE of the number of naı̈ve

B cells were plotted according to the day post-onset of symptoms. As

the same patient may have had up to 3 samples processed, the

patient may be represented more than once over time. The number

of samples processed is shown below the graph. The evolution over

time of the number of naı̈ve B cells in OFI and DENV-positive cases

is similar. Statistical analysis was performed using the Mann-

Whitney test, and a significant difference between OFI and DENV-

positive cases was found on day 2 post-onset of symptoms. The p-

value is shown below the symbol legend.
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