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Dominant Local Binary Patterns
for Texture Classification

S. Liao, Max W. K. Law, and Albert C. S. Chung

Abstract—This paper proposes a novel approach to extract
image features for texture classification. The proposed features
are robust to image rotation, less sensitive to histogram equaliza-
tion and noise. It comprises of two sets of features: dominant local
binary patterns (DLBP) in a texture image and the supplementary
features extracted by using the circularly symmetric Gabor filter
responses. The dominant local binary pattern method makes use
of the most frequently occurred patterns to capture descriptive
textural information, while the Gabor-based features aim at
supplying additional global textural information to the DLBP
features. Through experiments, the proposed approach has been
intensively evaluated by applying a large number of classification
tests to histogram-equalized, randomly rotated and noise cor-
rupted images in Outex, Brodatz, Meastex, and CUReT texture
image databases. Our method has also been compared with six
published texture features in the experiments. It is experimentally
demonstrated that the proposed method achieves the highest
classification accuracy in various texture databases and image
conditions.

Index Terms—Circularly symmetric Gabor filter, local binary
pattern, rotation invariance, texture classification.

I. INTRODUCTION

T
EXTURE classification plays an important role in com-

puter vision and image processing applications. The ap-

plications include medical image analysis and understanding,

remote sensing, object-based image coding, and image retrieval.

As the demand of such applications increases, texture classifi-

cation has received considerable attention over the last several

decades and numerous novel methods have been proposed.

For example, Chellappa et al. used the Gaussian Markov

random fields (GMRF) to model texture patterns based on

statistical relationship between adjacent pixel intensity values

[4]. Bovik et al. applied the Gabor filters to an image and then

computed the average filter responses as features [2]. Mallat

introduced the multiresolution wavelet decomposition method,

which generates coefficients in the HL, LH, and LL channels

for subsequent classification tasks [18]. Weszka et al. [23]

applied the co-occurrence matrix to extract the mean intensity,

contrast, and correlation information from the texture images.
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However, the above techniques only encode the absolute tex-

ture orientation information, which is inadequate for rotation

invariant texture classification.

Therefore, to achieve rotation invariance in texture classifi-

cation, researchers have attempted to either discard all orienta-

tion information or capture relative orientation information. To

discard orientation information, Porter and Canagarajah [20] re-

moved the HH wavelet channels and combined the LH and HL

wavelet channels to obtain rotation invariant wavelet features.

Haley and Manjunath [8] calculated isotropic rotation invariant

features from Gabor filters. Kashyap and Khotanzad [12] con-

structed an isotropic circular Gaussian Markov random field

(ICGMRF). On the other hand, some approaches capture the

relative directional features rather than the absolute orientation

information. Deng and Clausi [6] extended the ICGMRF model

[12] into anisotropic circular GMRF model (ACGMRF) to cap-

ture rotation invariant relative orientation features. Along the

same research line, Arof and Deravi [1] utilized similar circular

neighborhoods with 1-D DFT transformation.

Although the aforementioned methods are proofed to be ro-

tation invariant, they are sensitive to the change of illumina-

tion condition which often exists in texture images because of

the limitation of the imaging devices or the change of lighting

condition. In real world applications, histogram equalization is

often performed to mitigate the adverse effect of varying illu-

mination condition. However, as we will show in the Experi-

ments and Results Section (Section IV), the performances of the

above methods drop significantly after the histogram equaliza-

tion has been applied because, for these methods, intensity mean

and image contrast are two important pieces of textural infor-

mation for texture classification. Ojala et al. [19] proposed rota-

tion and histogram equalization invariant features by observing

the statistical distributions of the uniform local binary patterns

(LBPs). Huang et al. extended the LBP method by calculating

the derivative-based LBPs in the application of face alignment

[9]. However, the uniform LBPs are not the dominating patterns

(i.e., patterns of the largest proportions in an image) in some tex-

tures with irregular edges and shapes. This observation will be

further elaborated in Section II.

In this paper, we are motivated to propose a new feature ex-

traction method that is robust to histogram equalization and ro-

tation. First, the conventional LBP approach is extended to the

dominant local binary pattern (DLBP) approach in order to ef-

fectively capture the dominating patterns in texture images. Un-

like the conventional LBP approach, which only exploits the

uniform LBP, given a texture image, the DLBP approach com-

putes the occurrence frequencies of all rotation invariant pat-

terns defined in the LBP groups. These patterns are then sorted

in descending order. The first several most frequently occurring
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patterns should contain dominating patterns in the image and,

therefore, are the dominant patterns. It is shown that the DLBP

approach is more reliable to represent the dominating pattern

information in the texture images.

Although the DLBP features encapsulate more textural infor-

mation than the conventional LBP features, they lack the con-

sideration of distant pixel interactions. The reason is that the

binary patterns are extracted in the proximity of local pixels.

The pixel interaction that takes place outside the local neigh-

borhood system is unconsidered in LBP or DLBP. To replenish

the missing information in the DLBP features, an additional fea-

ture set, features based on the Gabor filter responses are utilized

as the supplement to the DLBP features. The Gabor-based fea-

tures are computed from the normalized average magnitudes of

circularly symmetric Gabor filter responses. They are rotation

invariant and also less sensitive to histogram equalization. The

Gabor-based features are well complemented with the DLBP

ones. It is experimentally shown that the fused image features

yield significant higher texture classification rates than the mere

use of either the DLBP features or the Gabor-based features.

This paper is organized as follows. Section II describes the

feature extraction procedure using the dominant local binary

patterns (DLBP). Section III then gives the feature extraction

procedure using Gabor filters. Section IV presents the experi-

mental results as well as the details of the experiments, including

the methods in the comparison study, a brief description of the

support vector machines (SVM) classifier, and the experiment

setups. Section V gives the conclusions of this paper.

II. DOMINANT LOCAL BINARY PATTERNS (DLBP)

A. An Overview of Local Binary Patterns (LBP)

The method using local binary patterns (LBPs) is first pro-

posed by Ojala et al. [19] to encode the pixel-wise information

in the texture images. At a center pixel , each neighboring

pixel is assigned with a binary label, which can be either “0”

or “1,” depending on whether the center pixel has higher inten-

sity value than the neighboring pixel (see Fig. 1 for an illus-

tration). The neighboring pixels are the angularly evenly dis-

tributed sample points over a circle with radius centered at

the center pixel. The LBP label for that center pixel is given by

(1)

where represents the center pixel, is the th neighboring

pixel, , is the total number of neighboring

pixels, is the circle radius which determines how far the neigh-

boring pixels are located away from the center pixel, and

if else . The value of is assigned according

to the value of as suggested in [19]. In our implementation,

when ; when ; and when

. It is noted that computing LBP based on (1) is a rota-

tion invariant operation. Rotating an image causes the circular

shifting of the binary labels at locations , and .

This shifting effect can be eliminated by finding the minimum

value among all possible values of in (1). This minimum value

denotes the rotation invariant LBP at the center pixel . Fur-

thermore, the absolute pixel intensity information at and

Fig. 1. Example of finding the binary labels of eight circular neighboring pixels
at locations � � � � � � �, and � , given the center pixel � . ��� � � � represents
a step function, where ���� � � when � � �; else, ���� � �.

Fig. 2. Proportions of the uniform LBPs for � � � and � � � in the texture
images obtained from the Brodatz database (a), (b), Meastex database (c), (d)
and CURet database (e), (f).

is discarded by using the step function in (1) when

calculating LBP. Therefore, the LBP operator is not sensitive to

histogram equalization.

B. Dominant Local Binary Patterns (DLBP)

In the conventional LBP method proposed by Ojala et

al. [19], only the uniform LBPs are considered. At a pixel,

it gives a uniform LBP if the corresponding binary label

sequence has no more than two transitions between “0” and

“1” among all pairs of the adjacent binary labels. For example,

the binary label sequences “10001111” and “00011000” are

uniform LBPs. But the sequence “01001111” is not a uniform

LBP because it has four transitions. In the textures which

mostly consist of straight edges or low curvature edges, the

uniform LBPs effectively capture the fundamental information

of textures. However, in practice, there are some texture images
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Fig. 3. Proportions of the first � patterns among all patterns appeared in the texture images of the (a) Brodatz database, (b) Meastex database, and (c) CUReT
database.

having more complicated shapes. These shapes can contain high

curvature edges, crossing boundaries or corners. Performing

texture classification on these textures based on uniform LBPs

is possibly problematic. The reason is that the uniform LBPs

extracted from such images are not necessary to be the patterns

having dominating proportions. For illustration, Fig. 2 shows

the proportions of the uniform LBPs extracted from texture

images of the Brodatz, Meastex and CURet databases. It is

observed that the uniform LBPs are not necessary to occupy the

major pattern proportions. Consequently, textural information

cannot be effectively represented by solely considering the

histogram of the uniform LBPs.

Although utilizing the uniform LBPs is insufficient to

capture textural information, we avoid considering all the

possible patterns to perform classification. As pointed out by

Ojala et al. [19], the occurrence frequencies of different patterns

vary greatly and some of the patterns rarely occur in a texture

image. The proportions of these patterns are too small and

inadequate to provide a reliable estimation of the occurrence

possibilities of these patterns.

Therefore, we propose to use dominant local binary patterns

(DLBPs) which consider the most frequently occurred patterns

in a texture image. It avoids the aforementioned problems en-

countered by merely using the uniform LBPs or making use

of all the possible patterns, as the DLBPs are defined to be

the most frequently occurred patterns. In this paper, it will be

demonstrated that a minimum set of pattern labels that repre-

sents around 80% of the total pattern occurrences in an image

can effectively captures the image textural information for clas-

sification tasks. Figs. 3(a)–(c) shows the pattern proportions oc-

cupied by different numbers of most frequently occurred pat-

terns in the texture images obtained from the Brodatz, Meastex,

and CUReT databases, respectively.

In practice, given a set of training images, the required

number of patterns to occupy 80% pattern occurrences is

determined prior to extracting the features of DLBP. This

required number of patterns remains the same as the DLBP

features are subsequently extracted from the training image set

or new testing images. Nonetheless, for two different texture

images, the dominant patterns can be of different types. That

is, the DLBP approach is not limited to consider only a fixed

set of patterns (e.g., uniform patterns). This is distinct to the

conventional LBP framework, in which the final feature vector

representing an input image is the occurrence histogram of the

fixed set of uniform patterns.

To retrieve the DLBP feature vectors from an input image, the

pattern histogram which considers all the patterns in the input

image is constructed and the histogram bins are sorted in non-

increasing order. Based on the previously computed number of

patterns, the occurrence frequencies corresponding to the most

frequently occurred patterns in the input image are served as

the feature vectors. It is noted that the DLBP feature vectors do

not bear information regarding the dominant pattern types, and

they only contain the information about the pattern occurrence

frequencies. According to the experimental results, omitting the

dominant pattern type information in the DLBP feature vectors

is not harmful. It is because the 80% dominant patterns of DLBP

is a preponderance of the overall patterns, and the DLBP feature

vectors are already very descriptive. It is practically improbable

to have two distinct texture types which can resemble dominant

pattern proportions of each other.

Without encapsulating the pattern type information, the

DLBP features also possess surpassing robustness against

image noise, as compared to the conventional LBP features.

Under the effect of image noise, the binary label of a neigh-

boring pixel is possible to be flipped by the intensity distortion

induced by noise. Flipped binary labels alter the extracted

LBPs. As a result, even though some LBPs are computed on

the same type of image structures, the extracted LBP type can

vary significantly. Thus, the pattern type information is unre-

liable. In the conventional LBP framework, the pattern types

are categorized as uniform patterns or nonuniform patterns. In

which, under the effect of image noise, a large amount of useful

patterns turns into nonuniform ones that are unconsidered in the

conventional LBP method. On the contrary, the DLBP approach

processes all 80% dominant patterns disregarding the pattern

types. As reflected by the noisy texture classification experi-

ments in Section IV-D, the number of dominant patterns for

classifying noisy textures soars as the noise level increases [see

the rows of “Experiment setup #2 (noisy textures)” in Table I].

The DLBP approach is then capable of capturing more pattern

types to deal with the pattern distortion induced by image noise.

It in turn retains the high DLBP-based classification accuracies

of noise corrupted textures.
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TABLE I
NUMBER OF DOMINANT PATTERNS OF ���� ����� � IN THE EXPERIMENT SETUP #1 AND #2. IN THE ROW OF “EXPERIMENT SETUP #2 (NOISY

TEXTURES),” THE AVERAGE NUMBERS OF DOMINANT PATTERNS OBTAINED IN SIX INDEPENDENT NOISY TESTS ARE SHOWN

As a summary, the pseudo codes on determining the number

of dominant patterns of DLBP and extracting DLBP feature vec-

tors are presented in Algorithm 1 and Algorithm 2, respectively.

The computational complexity of DLBP is analyzed as follows.

Assuming that neighboring pixels are considered with respect

to each center pixel for the evaluation of the (1), and there

are pixels in total for an input image. The time complexity

to evaluate (1) is because circular shiftings are re-

quired for each pixel, and there are pixels in total. For the

sake of implementation simplicity, an array with elements

is utilized to represent the pattern histogram (i.e., the length of

the occurrence histogram in Algorithms 1 and 2). Therefore,

the sorting of the histogram takes

time. The time complexity of DLBP is .

Since the value of is a user specified parameter ( or

24 in our experiments), it can be regarded as a constant. Thus,

the computation of DLBP is a linear time process.

Algorithm 1 Determining the number of dominant patterns

of DLBP

Input: Training image set, and the parameters and for

DLBP

Output: The required number of patterns for 80% pattern

occurrences

1. Initialize .

2. FOR each image in the training image set

3. Initialize the pattern histogram,

4. FOR each center pixel

5. Compute the pattern label of , (1)

6. Increase the corresponding bin by 1,

7. END FOR

8. Sort the histogram in descending order

9. Find the number of patterns for 80% pattern occurrences

in

10. .

11. END FOR

12.

13. Return

Algorithm 2 Extracting a DLBP feature vector

Input: A training or a testing image , the required number

of dominant patterns , and the parameters and for

DLBP

Output: The DLBP feature vector corresponding to image

1. Initialize the pattern histogram,

2. FOR each center pixel

3. Compute the pattern label of , (1)

4. Increase the corresponding bin by 1,

5. END FOR

6. Sort the histogram in descending order

7. Return as the feature vector of DLBP

III. SUPPLEMENT TO DOMINANT LOCAL BINARY PATTERNS

DLBP is capable of encoding the pixel-wise information in

the texture images. However, it does not take into account the

long range pixel interaction that takes place outside the coverage

of its circular neighborhood system, which normally has a radius

of 2 or 3 pixels. It is noted that capturing such interaction is vital

to provide descriptive features for texture classification. In this

section, we elaborate the procedure to extract global features

from the Gabor filter responses to complement with the DLBP

features.

A. Overview of Circularly Symmetric Gabor Filters

Computing an average response magnitude from a Gabor

filtered image is a widely used feature extraction method [2],
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[8], [11], [15], [16], [21], [24], [27]. Since Gabor filters can be

viewed as bandpass filters, the average magnitude response for

each Gabor filtered image can reflect the image signal power

of the corresponding filter passing band. The passing band

of a traditional Gabor filter is orientation dependent, which

makes it orientation sensitive and rotation variant. To achieve

rotation invariance, circularly symmetric Gabor filters are used

because each filter has the same passing band in all directions.

Therefore, it is capable of extracting information regarding the

image signal strength associated with the filter passing band,

disregarding the orientation information.

A circularly symmetric Gabor filter is constructed in the

Fourier domain and its formulation in the Fourier domain is

given by

(2)

where and are frequencies in and directions, respec-

tively, controls the passing bandwidth of the filter and is

the center frequency of the filter passing band. With regard to

the passing bands of the Gabor filters being utilized, the design

strategy of the Gabor filters, presented in [26], is employed. This

strategy maximizes the coverage of the frequency domain while

minimizing the overlap between filters. In this paper, we use

four circularly symmetric Gabor filters, , , and

with different corresponding center frequencies (measured in

cycles/image) , , and .

The values of are different for these four filters, ,

, , and so that the upper

cut-off frequencies of , and are the same as the lower

cut-off frequencies of , and in order to cover sufficient

bandwidths in the Fourier domain to perform classification, the

design strategy can be referred to [20].

B. Utilizing Gabor Filter Responses

Conventionally, the averages of the Gabor filter response

magnitudes are exploited to represent a Gabor filtered texture

image. The average magnitude reflects the signal strength of an

image in a particular frequency band. A vital drawback of using

the average magnitudes is that it is very sensitive to histogram

equalization. This drawback conflicts to the DLBP method,

which is invariant to histogram equalization.

To overcome the aforementioned drawback, the Gabor av-

erage magnitudes are normalized prior to being utilized as tex-

tural features. Suppose , , and are the averaged

magnitudes of the image filtered by the Gabor filters , ,

and , respectively, and , the

features extracted from the Gabor filter responses are ,

, and .

The above normalized average magnitudes quantify the dis-

tribution of the image signal power falling in various passing

bands of the corresponding Gabor filters. The image DC signal

is out of the passing bands of all the Gabor filters being used.

Therefore, the normalized average Gabor filter response magni-

tudes are invariant to the change of the image intensity average

caused by histogram equalization. Meanwhile, the image con-

trast information is eliminated in the normalized average mag-

nitudes which is now invariant to the change of intensity vari-

ance [13]. The contrast information is unreliable under the effect

of histogram equalization. The normalized average Gabor filter

response magnitudes are, therefore, less sensitive to histogram

equalization. Thus, it is suitable to provide global information

as a supplement to the histogram equalization insensitive DLBP

features, which lacks the consideration of distant pixel interac-

tions.

IV. EXPERIMENTS AND RESULTS

The proposed methods are evaluated against six published

approaches under various image conditions. Prior to the dis-

cussion of experimental results, we elaborate the implemen-

tation details of the experiments. Meanwhile, two sets of ex-

periments have been carried out for testing. The first experi-

ment setup presented in Section IV-C aims at demonstrating

that our experimental implementation can replicate the classifi-

cation results as reported in the state-of-the-art study [19]. This

setup utilizes the same texture databases (Brodatz and Outex

databases), which were used in the experiments for the evalu-

ation of the LBP approach, see [19] for details of the experi-

ments and databases. The second experiment setup thoroughly

and intensively examines the classification performance of var-

ious approaches under five different conditions, original tex-

tures, randomly rotated textures, histogram-equalized textures,

histogram-equalized and randomly rotated textures, and noise

corrupted textures.

A. Methods in the Comparison Study

The classification accuracies of the proposed features have

been compared with six well founded feature extraction tech-

niques for texture classification in this section. These six pub-

lished techniques include.

• Daubechies wavelet transform features (DBWP) [18],

[20]: The input texture image is decomposed into three

levels. The HH channel of each level is discarded in the

experiments because it mainly reflects the noise property

in the images. The feature vector has seven dimensions,

which consist of the averaged norms of the coefficients

in the HL and LH channels at all three levels, plus the

averaged norm of the coefficients in the LL channel.

• Rotation invariant Daubechies wavelet transform features

(RDBWP) [20]: This is the rotation invariant version of

DBWP described above. The input image is decomposed

into three levels. The rotation invariance is achieved by

taking an average of the corresponding averaged norms

of the coefficients in the HL and LH channels at each level.

As such, the feature vector has four dimensions.

• Traditional Gabor filters (TGF) [2]: Eight Gabor filters are

employed with center frequencies, 2.00, 3.17, 5.04

and 8.00 and oriented at angles of 0 and 90 degrees to

achieve optimal coverage in the Fourier domain. The av-

eraged response magnitude of each filtered image is used

as one of the features. The feature vector has eight dimen-

sions.

• Circular Gabor filters (CGF) [8]: Four circularly sym-

metric Gabor filter with center frequencies 2.00,

3.17, 5.04 and 8.00 are employed. The averaged response
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magnitude of each filtered image is utilized as one of the

features. The feature vector has four dimensions.

• Anisotropic circular Gaussian MRFs (ACGMRF) [6]: It

is an improved version of the Gaussian Markov random

field method [4]. It is rotation invariant and sensitive to

directional features. In total, 19 parameters are calculated

using the approximated least square estimation based on

a third-order neighborhood system with 24 symmetrical

orientations.

• Uniform local binary patterns (LBP) [19]: The occurrence

histograms of the uniform local binary patterns are com-

puted using 8, 16, 24 with 1, 2, 3, respectively.

The features are obtained by combining the three sets of

features computed over , ; , ;

and , together. It is claimed to have the best

performance of the local binary patterns in the experiments

conducted by Ojala et al. [19]. Noted that the local vari-

ance measure suggested in [19] is not employed along with

the LBP features as this measure is sensitive to the change

of illumination conditions of textures [19]. The number of

feature dimensions is 54 in LBP: 10 from ; 18 from

; and 26 from .

• The proposed methods (NGF, , ,

, and ): The clas-

sification performance of the above techniques are studied

along with the proposed methods, which embody two com-

ponents—the DLBP features and the normalized average

magnitudes of circularly symmetric Gabor filter responses.

For the DLBP approach, we also study the classification

rate by using and in (1). With the supplement

of Gabor features, there are in total five different types of

features based on the proposed methods including normal-

ized Gabor filter response average magnitudes (NGF), the

DLBP features with different values of ( and

) and their fused features (

and ). It is worth mentioning that

the number of image features extracted by the DLBP ap-

proach varies as training images change. The lengths of the

DLBP feature vectors for different testing cases are listed

in Table I.

B. Implementation Details of the Experiments

Analogous to the works presented in [10] and [14], each fea-

ture extraction technique is evaluated and compared with others

by passing the features through the same classifier. To appro-

priately examine the classification performance of various tech-

niques, the support vector machines (SVM) [25], which is well

developed to handle classification problems, is employed in this

paper as the classifier to perform texture classification based

on the extracted features. Based on two-class SVMs, a multi-

class classification scheme is constructed by cascading multiple

standard two-class SVM classifiers [25] to classify textures with

multiple classes.

Given that a texture classification problem involving

kinds of textures, each two-class SVM classifier is trained by

making use of two distinct types of texture images. There are in

total two-class SVM classifiers. Each two-class

SVM classifier finds the optimal hyperplane to partition the

feature space into two halves in order to distinguish the training

samples belonging to the two given classes.

Suppose is the feature vector of the th training sample,

which has a class label . The values of the class labels are

represented as indices . We define a function

, which maps each class label to a binary value

if

if
(3)

and its inverse , i.e., . Each SVM classifier

predicts whether a new testing sample belongs to either

class or class , where . The class prediction

is given as

(4)

where represents the bias parameter of the optimal hyper-

plane of the SVM dedicated to classify the texture classes and

, are non-negative Lagrangian multipliers for the training

sample used in the SVM associated with the texture classes

and . The values of and are estimated by maximizing

the margin of the decision boundary to classify feature samples

belonging to class and samples belonging to class . A prede-

fined constant is employed to deal with the cases that training

samples cannot be well separated by the decision boundary. This

parameter is the upper bound of the Lagrangian multipliers, i.e.,

. Meanwhile, is a radial basis kernel function,

, where is the Euclidean

-Norm and is a parameter governing the spread of .

Ideally, the SVM classifiers associated with the true class

label of a testing sample deliver correct classification results,

while the rest of the classifiers randomly report wrong class la-

bels to that sample. As such, the final multiclass classification

result can be retrieved by finding the class label, which is mostly

reported by all the two-class SVM classifiers.

The experiments are conducted in MatLab version 7.2. A pub-

licly available MatLab SVM Toolbox [17] is employed. The fea-

ture vectors are normalized to have zero mean and unit variance

along each dimension. The values of the parameters and of

SVMs are specified using a grid search scheme. In this scheme,

the parameters and are searched exponentially in the ranges

of and , respectively, with a step size of

to probe the highest classification rate. The bilinear interpola-

tion method is applied to retrieve the intensity at the positions

that are not on the image grid.

C. Experiment Setup #1

In the first experiment setup, we utilized the same set of tex-

ture images, which was also used in the performance study re-

ported in [19]. The main reason to carry out this experiment is

to demonstrate that our experiment implementation is capable

of producing similar testing results as presented in [19].

1) Texture Databases: Brodatz (16 Classes): The sixteen

textures in the Brodatz database were downloaded from the
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TABLE II
PERFORMANCE OF LBP AND THE PROPOSED METHODS IN THE Brodatz DATABASE. THE CLASSIFICATION ACCURACY OF LBP PUBLISHED IN [19] IS BRACKETED

IN THE FIRST COLUMN

TABLE III
PERFORMANCE OF LBP AND THE PROPOSED METHODS IN THE Outex DATABASE. THE CLASSIFICATION ACCURACIES OF LBP PUBLISHED IN [19] ARE

BRACKETED IN THE THIRD COLUMN

Fig. 4. Texture images with the illumination condition “inca” and zero rotation
angle from the 24 classes of textures on Outex database.

website1 of the authors of [19]. These sixteen Brodatz textures

were previously utilized to conduct the texture classification

experiments presented in [19]. There were eight samples for

each texture class and the first sample was utilized for training.

The rest of the images were served as the testing samples. The

training samples were then artificially rotated in four different

angles 0 , 30 , 45 and 60 , while the testing set consisted

of rotation angles 20 , 70 , 90 , 120 , 135 , and 150 . As

such, there were in total four training images and 42 images

presented in the testing set for each texture class. Finally, each

image was split into 121 disjoint 16 16 subimages for both

training and testing in the experiments.

Outex: The Outex database contains textural images captured

from a wide variety of real materials. The texture images in the

Outex database are presented as test suites. The test suites com-

prise of different textures and are used for evaluating algorithms

for various types of texture analysis. In the experiment setup

#1, we made use of the Outex test suites Outex_TC_0010 and

Outex_TC_0012, which were created for the classification of

rotation invariant textures, and also for the classification of ro-

tation and illumination invariant textures, respectively. In these

two test suites, there are 24 classes of texture images captured

under various illumination conditions, referred as “inca” (see

Fig. 4), “tl84” and “horizon.” For each condition, there are nine

rotation angles, 0 , 5 , 10 , 15 , 30 , 45 , 60 , 75 , and 90 . In

a given illumination condition, each rotation angle consists of

twenty 128 128 images for each texture class. The 24 20

samples with illumination condition “inca” and rotation angle

0 were adopted as the training data. Three tests using three indi-

vidual testing sets, which comprised of Outex textures acquired

1http://www.ee.oulu.fi/mvg/page/image_data.

under the illumination conditions “inca,” “tl84,” and “horizon,”

were conducted.

2) Classification Accuracy: Tables II (first column) and III

(third column) list the classification accuracies of LBP. These

accuracies are obtained based on the experiment setup #1, which

follows closely the testing environments presented in [19]. As

a comparison, according to [19], the classification accuracies of

LBP are listed in the brackets of the same columns. In these ta-

bles, by comparing the values of LBP with the corresponding

bracketed values, it is observed that our experiment implementa-

tion is able to obtain similar testing results of LBP as compared

to those results presented in [19]. The classification accuracies

of the proposed methods are also listed in the tables. It is exper-

imentally shown that our methods using both DLBP and Gabor

filter responses can achieve high accuracy, as compared with

LBP.

D. Experiment Setup #2

In this section, the performance of the proposed features

has been evaluated on three databases with large sets of image

textures. The three databases are Brodatz album [3], Meastex

database [22], and CUReT database [5]. For these databases,

classification accuracies have been measured in five different

subsets of experiments using original textures (subset #1),

histogram-equalized textures (subset #2), randomly-rotated

textures (subset #3), histogram-equalized and randomly-ro-

tated textures (subset #4), and textures corrupted by additive

Gaussian noise (subset #5).

The reasons of performing the above sets of experiments and

their details are the followings. First, applying histogram equal-

ization on texture images aims at minimizing the differences in

image contrast and illumination condition among different tex-

ture samples. However, histogram equalization also alters the

image gray level properties of the texture samples, in particular,

the mean and standard deviation. As will be shown in the ex-

periment subsets #2 and #4, this can affect the texture classifi-

cation accuracy of the features, which heavily depend on image

intensity mean and standard deviation. In the experiment sub-

sets #2 and #4, all texture images, including training and testing

images, were histogram-equalized by using the same transfor-

mation function, , which is given as [7],

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 15, 2009 at 01:42 from IEEE Xplore.  Restrictions apply. 



1114 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 5, MAY 2009

Fig. 5. 24 texture images from the Brodatz album.

, where and represent the output and input

image intensity levels, , is the number of

intensity levels ( in this paper), is the number of

pixels having intensity level , and denotes the total number

of pixels in an image.

Second, randomly rotating the texture samples can help val-

idate the rotation invariance of different features. In the experi-

ment subsets #3 and #4, for each database, each texture sample

was rotated according to a randomly generated angle. The angle

fell uniformly within 0 and 360 degrees. The classification tests

for different features were performed on each database and re-

peated ten times. Then, the mean accuracy and its associated

standard deviation were estimated for the experiment subsets

#3 and #4 using the randomly-rotated textures.

Finally, performing texture classification under a noisy envi-

ronment can examine the robustness against noise in real world

applications of different features. In experiment subset #5, for

each database, each texture sample was corrupted by the zero

mean additive Gaussian noise, where its standard deviation

was determined according to the corresponding SNR value.

The classification tests were conducted on each database and

repeated eight times. For each database, the mean and standard

deviation of the classification accuracy were obtained for the

comparison between different features.

1) Texture Databases: Brodatz (24 Classes): There are

twenty four homogeneous texture images selected from the

Brodatz album [3] (see Fig. 5). Each texture image has the

size of 640 640 pixels and represents a texture class. In the

experiments, each texture image was partitioned into twenty

five nonoverlapping sub-images with the size of 128 128

pixels. For the experiments using the original textures and

histogram equalized textures, each 128 128 sub-image was

downsampled to the size of 64 64 pixels by taking the

average between four adjacent pixels. To avoid the boundary

problem when the sub-images were rotated, for each 128 128

sub-image, instead of downsampling, only the center 64 64

pixels were used in the experiments. Therefore, in all the ex-

periments, twenty five 64 64 texture samples were generated

for each texture class. The SVM classifier was trained by using

thirteen samples of each class. The other twelve samples were

used for validation.

Meastex: In the Meastex database [22], there are sixty nine

texture images selected (see Fig. 6). Each image has the size of

512 512 pixels. The texture images are categorized into 28

kinds of homogeneous textures. For the experiments using the

original textures and histogram equalized textures, each 512

512 texture image was partitioned into sixty four nonoverlap-

ping sub-images with the size of 64 64 pixels. For the exper-

iments using the rotated textures, each texture image was parti-

Fig. 6. 69 texture images from the Meastex database.

Fig. 7. 47 texture images from the CUReT database.

tioned into sixteen 128 128 nonoverlapping sub-images. The

center 64 64 pixels were then used. As such, sixteen samples

were generated for each texture image for the experiments using

rotated textures. In all the experiments, half of the samples were

placed in the training set, while the rest of the samples were put

in the test-sets.

CUReT: For the CUReT database [5], there are forty seven

kinds of homogeneous textures (see Fig. 7). Each kind of tex-

tures is represented by one texture image, which has the size of

320 320 pixels. We partitioned each 320 320 texture image

into nine 106 106 nonoverlapping sub-images. For the ex-

periments using the original textures and histogram equalized

textures, the center 64 64 pixels were used without the need

of interpolation. For the rotated texture-based experiments, the

center 64 64 pixels were used after rotation. In total, nine 64

64 samples were generated for each texture image. Five sam-

ples were used as the training data, and the other four samples

were utilized as the testing data.

E. Classification Accuracy

The experimental results on classification accuracy are pre-

sented in Tables IV–IX. The proposed methods are compared

with other six widely used methods, which include DBWP

(Row 1), RDBWP (Row 2), TGF (Row 3), CGF (Row 4),

ACGMRF (Row 5), and LBP (Row 6).

For the results obtained using NGF alone, see Row 7 in the

tables. For the results obtained using DLBP alone with

and , see (Row 8) and (Row

9), respectively. For the results obtained using both the DLBP
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TABLE IV
PERFORMANCE OF DIFFERENT FEATURES OF 64 � 64 IMAGE RESOLUTIONS IN THE Brodatz Database. FOR EACH TEST (EACH COLUMN CORRESPONDINGLY),

THE HIGHEST TWO MEAN CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN BOLD

TABLE V
PERFORMANCE OF DIFFERENT FEATURES OF 64� 64 IMAGE RESOLUTION IN THE Meastex Database. FOR EACH TEST (EACH COLUMN CORRESPONDINGLY), THE

HIGHEST TWO MEAN CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN BOLD

and the Gabor features, see (Row 10) and

(Row 11), respectively.

1) Results on the Original Textures: In the second column of

Tables IV–VI, the use of dominant patterns instead of uniform

patterns is justified by comparing the classification accuracies

in the 8th and 9th rows with the sixth row. DLBP methods with

and give higher accuracies than the conventional

LBP. Furthermore, the improvement of using DLBP instead of

conventional LBP for the texture databases Meastex and CUReT

(Tables V and VI, respectively) is higher than those for Brodatz

(Table IV). It is because the texture images in the Brodatz data-

base contain more obvious edges, and, thus, it has higher pro-

portion of uniform patterns than those in the images of Meastex

and CUReT.

2) Rotation Invariance: Experiment subsets #3 and #4 have

been carried out to study the rotation invariance property of our

features and other features. The experimental results are listed

in Table IV for the Brodatz album, Table V for the MeasTex

database, and Table VI for the CUReT database. In each table,

to study the performance regarding the rotation invariance, we

can compare the classification accuracies of different features

between the “Original Textures” (2nd column) and the “Ran-

domly-rotated Textures” (fourth column). The accuracies can

also be compared between the “Histogram-equalized Textures”

(third column) and the “Histogram-equalized & Randomly-ro-

tated Textures” (fifth column). In the tables, the results of other

features and our methods are listed in Rows 1–6 and Rows 7–11,

respectively.

From the tables, it is observed that our methods (Rows 7–11)

do not give significant accuracy drop when image rotation is

applied, as compared with other features, e.g., DBWP, TGF and

GMRF. In the experiments, the performance of different values

of the radius parameter of DLBP is tested when is equal to

2 and 3. The case is not considered in the experiments,

as pointed out by [19] that when the neighborhoods

are limited to the short distance referring to the center pixel,

and, therefore, the pattern’s structural property may not be well

reflected. Under the same image resolution and image condition,

the DLBP features (for both and ) outperform

the other six methods in the comparison. As we can see, when

, fusing the DLBP features with the Gabor-based features

yields higher classification accuracy than the case when .

3) Less Sensitive to Histogram Equalization: In Table IV, we

can compare the accuracies 1) between the “Original Textures”

(second column) and “Histogram-equalized Textures” (third

column); and 2) between the “Randomly-rotated Textures”

(fourth column) and “Histogram-equalized & Randomly-ro-

tated Textures” (fifth column). It is found that our methods also
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TABLE VI
PERFORMANCE OF DIFFERENT FEATURES OF 64� 64 IMAGE RESOLUTION IN THE CUReT Database. FOR EACH TEST (EACH COLUMN CORRESPONDINGLY), THE

HIGHEST TWO MEAN CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN BOLD

TABLE VII
PERFORMANCE OF DIFFERENT FEATURES OF 64 � 64 IMAGE RESOLUTION IN THE Brodatz Database IN THE ADDITIVE GAUSSIAN NOISE ENVIRONMENT OF

DIFFERENT SIGNAL-TO-NOISE RATIOS (SNR). FOR EACH TEST (EACH COLUMN CORRESPONDINGLY), THE HIGHEST TWO MEAN CLASSIFICATION ACCURACIES

ARE HIGHLIGHTED IN BOLD

do not have significant accuracy drop. LBP, DLBP and NGF

are robust to histogram equalization. Obviously, the uniform

binary patterns and nonuniform binary patterns of LBP and

DLBP are not affected by histogram equalization, which is

an intensity monotonic increasing transform. The normalized

average Gabor filter responses magnitudes are more robust than

that of plain Gabor average response-based features, i.e., TGF

and CGF.

For more challenging databases such as Meastex and CUReT,

it is observed that the proposed method is less sensitive to his-

togram equalization. As shown in Tables V and VI, the classi-

fication rates of the combined features drop less than 4% after

performing histogram equalization on the textures. It is also ob-

served that LBP and ACGMRF are robust to histogram equal-

ization, as compared with their performance under the original

texture environment. However, we should bear in mind that the

classification accuracy of the proposed method is much higher

than those of both LBP and ACGMRF.

4) Robustness to Noise: In this section, we evaluate the per-

formance of various methods under the noisy environment. In

the experiment subset #5, the original texture images are added

with additive Gaussian noise with different signal-to-noise ra-

tios (SNR). The classification process is performed 6 times in-

dependently in the additive Gaussian noise environment. Then

the average classification accuracies and the standard deviations

are calculated for each database.

As we can see, all approaches maintain their performances

in all databases when . It is reflected by the high

average classification accuracies and small standard deviation.

The reason is that in such cases, the noise power is negligible

compared to the texture image signal power. The textures are

not significantly distorted. However, when the SNR value drops

below 30, the noise power rises so that different methods have

considerable declines of accuracies.

In the Brodatz database, by combining the DLBP and Gabor

features, it is more robust against noise as they capture both

the local and global texture information. Even though in the

toughest situation , the proposed method effectively

extract the existing texture information to deliver promising

classification rates. The proposed method achieves moderate

classification accuracy (83.84%) in the toughest case as shown

in Table VII. In the Meastex database, as a challenging data-

base, the classification abilities of various methods reduce

significantly when SNR falls below 15 (Table VIII). In contrast,

the proposed method outperforms other approaches with a

barely moderate accuracy. On the other hand, for the CUReT

database, it contains the largest number of classes which causes

higher risk of mis-classification than other databases mentioned
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TABLE VIII
PERFORMANCE OF DIFFERENT FEATURES OF 64 � 64 IMAGE RESOLUTION IN THE Meastex Database IN THE ADDITIVE GAUSSIAN NOISE ENVIRONMENT OF

DIFFERENT SIGNAL-TO-NOISE RATIOS (SNR). FOR EACH TEST (EACH COLUMN CORRESPONDINGLY), THE HIGHEST TWO MEAN CLASSIFICATION ACCURACIES

ARE HIGHLIGHTED IN BOLD

TABLE IX
PERFORMANCE OF DIFFERENT FEATURES OF 64 � 64 IMAGE RESOLUTION IN THE CUReT Database IN THE ADDITIVE GAUSSIAN NOISE ENVIRONMENT OF

DIFFERENT SIGNAL-TO-NOISE RATIOS (SNR). FOR EACH TEST (EACH COLUMN CORRESPONDINGLY), THE HIGHEST TWO MEAN CLASSIFICATION ACCURACIES

ARE HIGHLIGHTED IN BOLD

above. High mis-classification risk limits the classification

performances of different techniques. The proposed method

outperforms other methods in the noisy cases (Table IX). Mean-

while, it is able to achieve mediocre classification accuracies

(66.84% and 71.28% for and , respectively, see

Table IX) when the SNR is 5.

V. DISCUSSIONS AND CONCLUSIONS

This paper proposes the dominant local binary patterns

(DLBP) as a texture classification approach. The DLBP ap-

proach on one side guarantees to be able to represent the

dominant patterns in the texture images. On the other side,

it retains the rotation invariant and histogram equalization

invariant properties of the conventional LBP approach. It is

simple and computationally efficient. Regarding the selection

of the first 80% most frequently appeared patterns as features

after the pattern frequency histogram is constructed and sorted,

as demonstrated in Section II. It is experimentally shown that it

gives good texture classification results.

The global features extracted by using the circularly sym-

metric Gabor filter responses encapsulate the spatial relation-

ships between distant pixels. The global features extracted from

Gabor filter responses are rotation invariant and less sensitive to

histogram equalization. They, therefore, complement with the

DLBP local features as mirrored by the experimental results.

As demonstrated by the experimental results, it is found that

when , the DLBP and the Gabor-based features achieve

the best classification results. The robustness of the proposed

approach to image histogram equalization, random rotation and

noise is validated by the experiments carried out under five dif-

ferent image conditions: original textures; histogram equalized

textures; randomly rotated textures and; histogram equalized

and randomly rotated textures; textures with additive Gaussian

noise.

Moreover, its excellent classification performance is demon-

strated in three databases, which contain low image resolution

textures (Brodatz), similar appearance textures (Meastex), tex-

ture set with large number of classes (CUReT). Besides, the per-

formance of the proposed method is compared with six widely

used image features. The experimental results show that the pro-

posed method outperforms the other image features in terms of

the classification rates in various image conditions.
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