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Abstract. Dominant point detection was considered to extract a number of important points from a set of data points 
collected from some scientific phenomena or analytical studies. The extracted data points shall be able to reflect the 
original shape of the data. Here, a method to detect the dominant points is proposed using an exclusive formula which 
involved eigenvalues of the covariance matrix. Concept of region of support which played a vital role in dominant point 
detection is discussed. A few samples where the data points are regularly spaced and irregularly spaced are used to test 
the efficiency of the method. The graphical results are presented to show shape preservation of the dominant points to the 
shape of the data. 

INTRODUCTION 

Dominant point detection (or corner detection) methods have been applied in image processing and shape 
preserving curve fitting. Basically, the approaches can be categorized as gray-level and boundary-based [1]. Gray-
level approaches directly work on gray-level images by matching corner templates or by computing gradients at 
edge points whereas boundary-based approaches detect corners on the boundaries of objects [2]. In this paper, 
boundary-based approach is our focus as the information of a shape is prominently represented by its boundary 
corner. Subri et al. [3] has claimed that corner detection is able to serve the purpose in simplifying the analysis of 
images by drastically reducing the amount of data. The aim of corner detection is to detect some potential feature 
points which sufficiently describe the shape of an image [4]. Therefore, instead of using large number of points, a 
good corner detection method is able to preserve the shape of the image with small amount of detected dominant 
points.  

Suppose we consider a curve which consists of a set of data points collected from the boundary of an image. 
Two linear segments connecting any three points form a corner. Very often, significant corners are identified as the 
points of the boundary with local maximum curvature. The curvature measures the rate at which the curve bends 
away from the tangent line at a point [5]. This measure of significance is similar to as measuring the variation of 
tangent lines. The common steps for dominant point detection techniques are first, determining significant regions 
of measure for the data points which are usually identified as region of support, then estimate the sharpness of the 
angles formed in the region of support, finally locate the points which have local sharpest angle as the significant 
corners. 

Many existing corner detection methods are reported by using curvature-based approach. Sun [1] and Wu [6] 
used K-cosine value as curvature measure to detect dominant points. Teh and Chin [7] presented a parallel 
algorithm for detecting dominant points on a digital closed curve. They first determine region of support, followed 
by computation of relative curvature-based measure by a process of non-maximum suppression. Tsai et al. [2] had 
proposed a measure for corner detection based on the eigenvalues of the covariance matrices of boundary points 
over a region of support. According to [2], curvature-based methods may detect many spurious corners for an object 
with circular arcs of varying radii. Zhu et al. [8] also presented an auto-corner detection based on eigenvalues of the 
covariance matrices of boundary points over multi-region of support. Curvature product graph is used to detect 
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corners, thus the method is free from the impact of human and threshold setting. Tsai [9] and Subri et al. [3] 
proposed a neural network approach to detect dominant points. In [9], curvature is measured by using neural 
network to identify the included angles at boundary points. In [3], a neural network classifier is presented to detect 
the corners of chain code series. The results show that there are strength and drawbacks of using neural network in 
corner detection of chain code series. The strength is that it makes corner detector more sensitive in detecting a 
corner whereas the drawbacks of the method is that it can be classified as tedious, and trial and error process. Wang 
et al. [4] used bending value to assess the degree of possibility of a point being a corner. 

 
In this paper, the data points extracted from boundary of images are considered. After region of support of every 

data points has been determined, dominant points are detected by using a formula which involved both eigenvalues 
of covariance matrices. The paper is organized as follow, we first discuss the method in determining region of 
support. Then, we discuss about the eigenvalues of covariance matrix. Some reviews on detecting dominant points 
using eigenvalues of covariance matrix are given. After that, we introduce the new measure of curvature via an 
exclusive formula involving eigenvalues. The proposed measure is able to extract significant points which preserve 
the shape of the boundary data. The results of our proposed method are illustrated by using six images. The paper 
ends with a conclusion. 

REGION OF SUPPORT (ROS) 

Region of support is an important concept to be applied while detecting dominant points. Before we start to 
extract dominant points using any measure of significance, it is advisable to determine the regions of interest of 
every boundary data point of an image first. The connected sequences of points on either side of a point of interest 
are identified as the “arms” of the point. Set of points that come before the point of interest is regarded as “left arm” 
whereas set of points which come after the point of interest is regarded as “right arm” irrespective of the direction of 
traversal of the curve [10]. A point may have symmetric ROS in which same number of points is considered on both 
left and right arms, otherwise it may have asymmetric ROS. Guru and Dinesh [10] claimed that it is more 
reasonable and natural to have asymmetric ROS. Teh and Chin [7] emphasized that besides accuracy of the measure 
of significance, precise determination of ROS is also a main factor that affects the performance of dominant point 
detection. Wu [11] used the adaptive bending value to determine the ROS for each point on the curve. Teh and Chin 
[7] determined the ROS for each point based on its local geometric properties. Wu [6] modified the Teh-Chin’s 
method such that the ROS for each point depends on the ROS for the previous point. That is, the determination of 
the ROS for each point can be done dynamically by using the information of the previously found ROS. 

Some researchers proposed corner detection method based on fixed size of symmetric ROS. For instance, the 
same size of symmetric ROS for every data point was fixed up in [2] before the corner was detected. Teh and Chin 
[7] had pointed out this approach caused the difficulty in such a way that there is seldom any basis for selecting 
suitable values for the parameters to successfully determine true corner points as features describing a curve varies 
enormously in size and extent. 

In this paper, an asymmetric ROS from [12] is adopted. The method proposed in [12] involved simple 
calculation. Furthermore, it is scale and rotation invariant. The main concept is trying to obtain a left or right arm 
with the longest line segment but minimum error. The error is referred to the sum of squared perpendicular distance 
from each data point in an arm to the line segment that joins the point of interest and the end point of the arm. Then, 
a function F = length-error is used to determine the size of ROS. The method started its F calculation within the 
point of interest and the second neighboring point. The support region is outwards to its corresponding left or right 
side until termination condition is achieved. That is, the value of previous F is greater than the current value of F. 
We have applied the method on few boundary data. One of the tests was finding the size of ROS for a diamond 
shape. Due to the original method being less accurate in detecting the ROS for the points which are next to a sharp 
corner, here, a minor modification has been made. Our calculation on F started with the very next neighboring 
point, i.e. the first point next to the point of interest which gives zero error. 

EIGENVALUES OF COVARIANCE MATRIX 

Once the region of support is determined, we can start to detect dominant points based on the corresponding 
region of support. Let’s consider the sequence of n data points describing the boundary W of an object, 

 
},...,3,2,1),,({ niyxpW iii .
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FIGURE 1. (a) Angle formed by ip , ip  and rip . (b) Eigenvalues against angle  (in degree).(i) L  (ii) S  (iii) 

R  

 
Suppose )( ii pL  and )( ii pR  be the left arm and right arm of ROS of point ip respectively. 
 

},,1,...,2,1|{)(},,1,...,2,1|{)( ririiijppRiiiijppL jiijii  
 

where  and r denote the size of the left and right arms respectively. Let )( ipS be defined as 
 

},1,...,1,,1,...,1,|{)()()( ririiiiiijppRpLpS jiii . 
 
The covariance matrix C of a segment )( ipS  is given by  
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where L  S .   
     To extract the shape information about a boundary curve, the eigenvalues of the matrix C can be used. If 

)( ipS  is a straight line, the S  will be zero, regardless of the length and orientation of the line segment. If 

)( ipS  is a full circle, then S  and L are equal. Besides that, if the shape of )( ipS  is an ellipse, then 
 and are the semimajor and semiminor axial lengths of the ellipse [2]. 

      Eigenvalue S  has been utilized as a measure for corner detection in [2]. The authors claimed that the 
L S
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data points with sharper angles have larger S  than smoother ones. The S of a corner point is usually a local 

maximum among the S  of the points on the boundary segment [13]. According to Yahya [14], S  is not 
only affected by the sharpness of curves but also by the size of support. It is not suitable in detecting sharp 
corner for equidistant data points produced from circular arcs of various radii and curved corners of different 
sharpness and sizes. Thus, the ratio  

SL

S
R  

was proposed to replace eigenvalue S  as the measure for the sharpness. Yahya [14] had compared the S  
and R in measuring the curvature of circular arc with various radii and sizes of support, and claimed that this 
ratio R  reflects the effect of sharpness and range of support very well. Though the R  has better 

performance than S  in measuring curvature, a drawback can be identified for both R  and S . Consider a 

set )( ipS of three points, i.e. = r = 1 in Figure 1(a), three points ip , ip  and rip  form an angle. Then, 
the graphs of the eigenvalues against angle are shown in Figure 1(b) with unit length of arms.  
     The values of S  and R  are increasing for )60,0( , but decreasing for )360,60(  while L

acting contrary. This indicates the values of S  and R do not exactly reflect the sharpness of corner. From 

this observation, we conclude that either S  or R  is suitable to measure the curvature only in certain 
circumstance. 

 

 
FIGURE 2. (a) The graphs of sum  with different lengths of  arms. (b) The graphs C  with different lengths of arms.   

(i) 1;1 riiii pppp
 
   (ii) 4;4 riiii pppp     (iii) 2;1 riiii pppp   (iv) 

3;1 riiii pppp
 

DOMINANT POINT DETECTION 

Based on the example in Figure 1(a), S  and R  are not ideal measures to estimate curvature of data 
point ip . Therefore, the sum of the eigenvalues  

020014-4



2211 ccSLsum

is proposed as a new measure of curvature. The graph of sum is shown in Figure 2(a) with different length
of arms. Clearly, the value of sum is gradually increasing when the angle increases from 0o to 180o. Hence,

sum is an appropriate measure for detecting sharp corner. If the value of sum is smaller than a
predetermined threshold, the point ip will be selected as a dominant point. 

The range of sum varies with the lengths ii pp  and rii pp . This makes the sum inefficient in

detecting corners for asymmetric ROS and irregular data points. In order to minimize the range of measure, 
an improved measure is introduced by  

2
riiii

SL
C

pppp .  (2) 

Note that the angles  of 0o and 180o produce zero for S and R . Hence, these two angles cannot be

differentiated by S and R . However, C has the smallest value for angle 0o and increases gradually for

the larger angles up to the largest value for angle 180o, see Figure 2(b). Therefore, C can effectively detect

any different angle from 0o and 180o. In other words, the sharper the angle , the smaller the value of C .

Hence, C is a reasonable measure to detect sharp corners.

Besides that, C is also suitable for detecting dominant points in both regular and irregular spaced data

since it is not affected much by the lengths of arms. For the cases ii pp  = rii pp , the graphs of C are

identical. As shown in Figure 2(b) the values C are very close to each other, even though they are

calculated by using different lengths of arms of ROS. Hence, it is easier to adjust the threshold for C

compared to sum which can exclude those false corner of large angle and lengths.
The algorithm may detect consecutive data points as dominant points. We believe that these dominant 

points carry the similar information about the shape of the boundary image since they are near to each other. 
Therefore, we replace them by selecting a point which has smallest value of C . The algorithm for the
proposed dominant points detection is as follow: 

Step 1: Determine region of support. 
Step 2: Form the covariance matrix C for every segment )( ipS and determine eigenvalues L and S as

in (1).
Step 3: Find the value of C as defined in (2).
Step 4: The point pi is chosen as dominant point if its C exceeds a predetermined threshold.
Step 5: The consecutive dominant points are replaced by a point among them which gives smallest value 

of C .

TABLE 1. Data of six images.

Data Number of Data Points Number of Dominant Points
Hypocycloid 100 10
Epicycloid 100 10
Shape T 252 8
Maple 280 21
Shark 209 15
Leaf 246 12
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THE RESULTS 

The proposed method is applied on several images. Here, six selected images (Table 1) are displayed in 
order to show the effectiveness of the method (see Figure 3). The “o” in the figure indicates the selected 
dominant points. Table 1 shows the total number of data points and the number of dominant points detected 
for every data set used. The dominant points are joined with the line segments to show the preservation of the 
shape of the data. Figure 3(a) and Figure 3(b) show two examples of irregularly spaced data whereas the rest 
(Figure 3(c)-3(f)) show regularly spaced data. 
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FIGURE 3. Examples of dominant points detection. (a) hypocycloid (b) epicycloid (c) shape T (d) maple 
(e) shark (f) leaf 
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CONCLUSION 

An exclusive formula was introduced which involves the eigenvalues of covariance matrix to detect 
dominant points from the boundary data. The results show that the proposed method is not only able to detect 
the sharp corner but preserves the original shape of the boundary data at the same time. In future study, the 
method is hoped to be enhanced so that it will be more precise in application for the asymmetric ROS. 
Furthermore, the work can be used to establish dominant points detection for 3D data. 
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