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Abstract. Kobayashi-Ochiai’s theorem says us that the set of dominant ra-

tional maps to a complex variety of general type is finite. In this paper, we
give a generalization of it in the category of log schemes.
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Introduction

In the paper [4], Kobayashi and Ochiai proved that the set of dominant rational
maps to a complex variety of general type is finite. This result was generalized
to the case over a field of positive characteristic by Dechamps and Menegaux [2].
Furthermore, Tsushima [7] established finiteness for open varieties over a field of
characteristic zero. In this paper, we consider their generalization in the category
of log schemes. As we know, logarithmic geometry is a general framework to cover
compactification and singularities in degeneration. The most typical example of
these mixed phenomena is a logarithmic structure on a semistable variety. Actually,
we deal with a log rational map on a semistable variety with a logarithmic structure.
The following finiteness theorem is the main theorem of this paper:

Theorem A (Finiteness theorem). Let k be an algebraically closed field and Mk

a fine log structure of Spec(k). Let X and Y be proper semistable varieties over k,
and let MX and MY be fine log structures of X and Y over Mk respectively such
that

(X,MX)→ (Spec(k),Mk) and (Y,MY )→ (Spec(k),Mk)

Date: 04/November/2004, 22:00(JP), (Version 1.0).

1



2 ISAMU IWANARI AND ATSUSHI MORIWAKI

are log smooth and integral. We assume that (Y,MY ) is of log general type over
(Spec(k),Mk), that is, det(Ω1

Y/k(log(MY /Mk))) is a big line bundle on Y (see Con-
ventions and terminology 10). Then, the set of all log rational maps

(φ, h) : (X,MX) 99K (Y,MY )

over (Spec(k),Mk) with the following properties (1) and (2) is finite:
(1) φ : X 99K Y is a rational map defined over a dense open set U with

codim(X \ U) ≥ 2, and (φ, h) : (U, MX |U ) → (Y,MY ) is a log morphism
over (Spec(k),Mk).

(2) For any irreducible component X ′ of X, there is an irreducible component
Y ′ of Y such that φ(X ′) ⊆ Y ′ and the induced rational map φ′ : X ′ 99K Y ′
is dominant and separable.

As an immediate corollary of the above theorem, we have the following:

Corollary B. Let X be a proper semistable variety over k and MX a fine log
structure of X over Mk such that (X,MX) → (Spec(k),Mk) is log smooth and
integral. If (X,MX) is of log general type over (Spec(k),Mk), then the set of
automorphisms of (X,MX) over (Spec(k),Mk) is finite.

Here let us give a sketch of the proof of Theorem A. For this purpose, we need to
deal with the classical case and the non-classical case. In the case where Mk = k×

and X and Y are smooth over k (the classical case), we can use the similar argu-
ments as in [2]. Actually, we prove it under the weaker conditions (cf. Theorem 7.1).
However, if Mk is not trivial (the non-classical case), we have to determine a local
description of a log structure. Indeed, we have the following theorem:

Theorem C (Local structure theorem). Let X be a semistable variety over k and
MX a fine log structure of X over Mk such that (X,MX) → (Spec(k),Mk) is log
smooth and integral. Let us take a fine and sharp monoid Q with Mk = Q × k×.
For a closed point x ∈ X, there is a good chart (Q→Mk, P →MX,x̄, Q→ P ) of
(X,MX)→ (Spec(k),Mk) at x, namely,

(a) Q→Mk/k
× and P →MX,x̄/O×X,x̄ are bijective.

(b) The diagram
Q −−−−→ P
y

y
Mk −−−−→ MX,x̄

is commutative.
(c) k ⊗k[Q] k[P ]→ OX,x̄ is smooth.

Moreover, using the good chart (Q → Mk, P → MX,x̄, Q → P ), we can determine
the local structure in the following ways:

(1) If multx(X) = 1, then Q→ P splits and P ' Q× Nr for some r.
(2) If multx(X) = 2, then we have one of the following:

(2.1) If Q→ P does not split, then P is of semistable type over Q.
(2.2) If Q→ P splits, then char(k) 6= 2 and ÔX,x is canonically isomorphic

to k[[X1, . . . , Xn]]/(X2
1 −X2

2 ).
(3) If multx(X) ≥ 3, then Q → P does not split and P is of semistable type

over Q.
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For the definition of a monoid of semistable type, see §2.
By using the above local structure result, we can see the rigidity of log morphisms

over the fixed scheme morphism, namely, we have the following:

Theorem D (Rigidity theorem). Let X and Y be semistable varieties over k and
let MX and MY be fine log structures of X and Y over Mk respectively such
that (X,MX) and (Y,MY ) are log smooth and integral over (Spec(k),Mk). Let
Supp(MY /Mk) be the union of Sing(Y ) and the boundaries of the log structure of
MY over Mk, that is,

Supp(MY /Mk) = {y ∈ Y |Mk ×O×Y,ȳ →MY,ȳ is not surjective}.
Let φ : X → Y be a morphism over k such that φ(X ′) 6⊆ Supp(MY /Mk) for
any irreducible component X ′ of X. If (φ, h) : (X,MX) → (Y,MY ) and (φ, h′) :
(X,MX)→ (Y,MY ) are morphisms of log schemes over (Spec(k),Mk), then h = h′.

By virtue of the rigidity theorem, the non-classical case can be reduced to the
classical case, so that we complete the proof of the theorem.

Finally, we would like to express our sincere thanks to Prof. Kazuya Kato for
telling us the fantastic finiteness problem.

Conventions and terminology. Here we will fix several conventions and termi-
nology for this paper.

1. Throughout this paper, we work within the logarithmic structures in the sense
of J.-M Fontaine, L. Illusie, and K. Kato. For the details, we refer to [3]. All log
structures on schemes are considered with respect to the étale topology. We often
denote the log structure on a scheme X by MX and the quotient MX/O×X by MX .

2. We denote by N the set of natural integers. Note that 0 ∈ N. For I =
(a1, . . . , an) ∈ Nn, we define Supp(I) and deg(I) to be

Supp(I) = {i | ai > 0} and deg(I) =
n∑

i=1

ai.

The i-th entry of I is denoted by I(i), i.e., I(i) = ai. For I, J ∈ Nn, a partial order
I ≥ J is defined by I(i) ≥ J(i) for all i = 1, . . . , n. The non-negative number g
with gZ = ZI(1) + · · ·+ ZI(n) is denoted by gcm(I).

3. Here let us briefly recall some generalities on monoids. All monoids in this
paper are commutative with the unit element. The binary operation of a monoid
is often written additively. We say a monoid P is finitely generated if there are
p1, . . . , pn such that P = Np1 + · · · + Npr. Moreover, P is said to be integral if
x + z = y + z for x, y, z ∈ P , then x = y. An integral and finitely generated
monoid is said to be fine. We say P is sharp if x + y = 0 for x, y ∈ P , then
x = y = 0. For a sharp monoid P , an element x of P is said to be irreducible if
x = y + z for y, z ∈ P , then either y = 0 or z = 0. It is well known that if P
is fine and sharp, then there are only finitely many irreducible elements and P is
generated by irreducible elements (cf. Proposition A.1). If k is a field and P is a
sharp monoid, then M =

⊕
x∈P\{0} k · x forms the maximal ideal of k[P ]. This

M is called the origin of k[P ]. An integral monoid P is said to be saturated if
nx ∈ P for x ∈ P gr and n > 0, then x ∈ P , where P gr is the Grothendieck group
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associated with P . A homomorphism f : Q → P of monoids is said to be integral
if f(q) + p = f(q′) + p′ for p, p′ ∈ P and q, q′ ∈ Q, then there are q1, q2 ∈ Q and
p′′ ∈ P such that q + q1 = q′ + q2, p = f(q1) + p′′ and p′ = f(q2) + p′′. Note
that an integral homomorphism of sharp monoids is injective. Moreover, we say
an injective homomorphism f : Q → P splits if there is a submonoid N of P with
P = f(Q)×N . Finally, let us recall a congruence relation. A congruence relation
on a monoid P is a subset S ⊂ P×P which is both a submonoid and a set-theoretic
equivalence relation. We say that a subset T ⊂ S generates the congruence relation
S if S is the smallest congruence relation on P containing T . Let S be an equivalent
relation on P . It is easy to see that P → P/S gives rise a structure of a monoid on
P/S if and only if S is a congruence relation.

4. Let P and Q be monoids and let f : N→ P and g : N→ Q be homomorphisms
with p = f(1) and q = g(1). Let P ×N Q be the pushout of f : N → P and
g : N→ Q:

N −−−−→ Qy
y

P −−−−→ P ×N Q
We denote this pushout P ×N Q by P ×(p,q) Q.

5. Let k be a field and R be either the ring of polynomials of n-variables over k,
or the ring of formal power series of n-variables over k, that is, R = k[X1, . . . , Xn]
or k[[X1, . . . , Xn]]. For I ∈ Nn, we denote the monomial XI(1)

1 · · ·XI(n)
n by XI .

6. Let P be a monoid, p1, . . . , pn ∈ P and I ∈ Nn. For simplicity,
∑n
i=1 I(i)pi is

often denoted by I · p.
7. Let (X,MX) be a log scheme and α : MX → OX the structure homomorphism.
Then, α(MX) \ {zero divisors of OX} give rise to a log structure because

O×X ⊆ α(MX) \ {zero divisors of OX}.
α(MX) \ {zero divisors of OX} is called the underlining log structure of MX and is
denoted by Mu

X . Let f : (X,MX) → (Y,MY ) be a morphism of log schemes such
that one of the following conditions is satisfied:

(1) X → Y is flat.
(2) X and Y are integral schemes and X → Y is a dominant morphism.

Then we have the induced morphism fu : (X,Mu
X)→ (Y,Mu

Y ).

8. Let X and Y be reduced noetherian schemes. Let φ : X 99K Y be a rational
map. We say φ is dominant (resp. separably dominant) if for any irreducible
componentX ′ ofX, there is an irreducible component Y ′ of Y such that φ(X ′) ⊆ Y ′
and the induced rational map φ′ : X ′ 99K Y ′ is dominant (resp. dominant and
separable). Moreover, we say φ is defined in codimension one if there is a dense
open set U of X such that φ is defined over U and codim(X \ U) ≥ 2.

Let f : X → T and g : Y → T be morphisms of reduced noetherian schemes. A
rational map φ : X 99K Y is called a relative rational map if there is a dense open
set U of X such that φ is defined on U , φ : U → Y is a morphism over T (i.e.,
f = g · φ) and Xt ∩ U 6= ∅ for all t ∈ T .
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9. Let k be an algebraically closed field and X a reduced algebraic scheme over
k. We say X is a semistable variety if for any closed point x ∈ X, the completion
ÔX,x at x is isomorphic to the ring of the type k[[X1, . . . , Xn]]/(X1 · · ·Xl).

10. Let k be an algebraically closed field. Let X be a proper reduced algebraic
scheme over k and H a line bundle on X. We say H is very big if there is a dense
open set U of X such that H0(X,H)⊗OX → H is surjective on U and the induced
rational map X 99K P(H0(X,H)) is birational to the image. Moreover, H is said
to be big if H⊗m is very big for some positive integer m.

1. Existence of a good chart on a generalized semistable variety

Let k be an algebraically closed field and X an algebraic scheme over k. We say
X is a generalized semistable variety if, for any closed point x of X, the completion
ÔX,x of OX,x is isomorphic to a ring of the following type:

k[[T1, . . . , Te]]/(TA1 , . . . , TAl),

where A1, . . . , Al are elements of Ne \ {0} such that Ai(j) is either 0 or 1 for all
i, j (cf. Conventions and terminology 2 and 5). Note that a generalized semistable
variety is a reduced scheme (cf. Lemma 1.6).

Let Mk and MX be fine log structures on Spec(k) and X respectively. We
assume that (X,MX) is log smooth and integral over (Spec(k),Mk). Since the map
x 7→ xn on k is surjective for any positive integer n, we can see that Mk → Mk

splits. Thus, there are a fine and sharp monoid Q and a chart πQ : Q → Mk such
that Q→Mk →Mk is bijective.

Next, let us choose a closed point x of X. In the case where X is a generalized
semistable variety, we would like to construct a chart πP : P →MX,x̄ together with
a homomorphism f : Q→ P such that P →MX,x̄ →MX,x̄ is bijective, the natural
morphism X → Spec(k) ×k[Q] Spec(k[P ]) is smooth and the following diagram is
commutative:

Q
f−−−−→ P

πQ

y
yπP

Mk −−−−→ MX,x̄.

Then, the triple (Q→Mk, P →MX,x̄, Q→ P ) is called a good chart of (X,MX)→
(Spec(k),Mk) at x. For this purpose, we need to see the following theorem.

Theorem 1.1. Let µ : (X,MX)→ (Y,MY ) be a log smooth and integral morphism
of fine log schemes. Let x ∈ X and y = µ(x). Let k be the algebraic closure
of the residue field at x and η : Spec(k) → X

µ−→ Y the induced morphism. If
X ×Y Spec(k) is a generalized semistable variety over k, then the torsion part of
Coker(M

gr

Y,ȳ →M
gr

X,x̄) is a finite group of order invertible in OX,x̄.
Proof. Let us begin with the following lemma.

Lemma 1.2. Let (X,MX) be a log scheme with a fine log structure. Then, we have
the following:

(1) Let π : P → MX |U be a local chart of MX on an étale neighborhood U .
Then, for x ∈ U , the natural map P/π−1(O×X,x̄)→MX,x̄ is bijective.
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(2) Let k be a separably closed field and η : Spec(k) → X a geometric point.
Then, the natural homomorphism MX,x̄ → η∗(MX) is an isomorphism,
where x is the image of η.

Proof. (1) The surjectivity of P/π−1(O×X,x̄)→MX,x̄ is obvious. Let us assume
that π(a) ≡ π(b) mod O×X,x̄. Then, there is u ∈ O×X,x̄ with π(a) = π(b) · u. Since
π : P → MX |U is a chart, we have the natural isomorphism

P ×π−1(O×X,x̄) O
×
X,x̄

∼−→MX,x̄.

Thus, there are α, β ∈ π−1(O×X,x̄) such that

(a, 1) + (α, π(α)−1) = (b, u) + (β, π(β)−1).

In particular, a+ α = b+ β. Thus, a ≡ b mod π−1(O×X,x̄).
(2) Let P → MX be a local chart around x and α : P → OX the induced

homomorphism. Note that MX is isomorphic to the associated log structure P a.
Let α′ : P → k be a homomorphism given by the compositions:

P
α−→ OX,x̄ → κ(x̄) ↪→ k,

where κ(x̄) is the residue field at x̄. Then, by [3, (1.4.2)], η∗(MX) is the associated
log structure of α′ : P → k. Therefore, we get the following commutative diagram:

P Py
y

MX,x̄ −−−−→ η∗(MX).
On the other hand,

a ∈ α−1(O×X,x̄)⇐⇒ α(a) ∈ O×X,x̄ ⇐⇒ α(a) 6= 0 in κ(x̄)

⇐⇒ α′(a) 6= 0⇐⇒ a ∈ α′−1(k×).

Therefore, α−1(O×X,x̄) = α′−1(k×). Thus, (1) implies (2). 2

Let us go back to the proof of Theorem 1.1. We denote X ×Y Spec(k) by X ′.
Then, we have the following commutative diagram:

X
η̃←−−−− X ′

µ

y
yµ′

Y
η←−−−− Spec(k).

Note that the natural morphism η′ : Spec(k) → X ′ gives rise to a section of
µ′ : X ′ → Spec(k). Let x′ be the image of η′. We consider the natural commutative
diagram:

MX,x̄ −−−−→ η̃∗(MX)X′,x̄′ −−−−→ η′∗(η̃∗(MX))x
x

x
MY,ȳ −−−−→ η∗(MY ) η∗(MY )

By (2) of Lemma 1.2,

MY,ȳ → η∗(MY ) and η̃∗(MX)X′,x̄′ → η′∗(η̃∗(MX))
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are bijective. Moreover, since η′∗(η̃∗(MX)) = (η̃ · η′)∗(MX), the composition

MX,x̄ → η̃∗(MX)X′,x̄′ → η′∗(η̃∗(MX))

is also bijective. Thus, we can see that

MX,x̄ → η̃∗(MX)X′,x̄′

is an isomorphism. Moreover, (X ′, η̃∗(MX)) → (Spec(k), η∗(MY )) is smooth and
integral. Thus, we may assume that Y = Spec(k), X is a generalized semistable
variety over k and x is a closed point of X.

Clearly, we may assume that p = char(k) > 0. We can take a fine and sharp
monoid Q with Mk = Q × k×. Let f : Q → MX,x̄ and f̄ : Q → MX,x̄ be the
canonical homomorphisms.

Let us choose t1, . . . , tr ∈ MX,x̄ such that d log(t1), . . . , d log(tr) form a free
basis of Ω1

X/k,x̄(log(MX/Mk)). Then, in the same way as in [3, (3.13)], we have the
following:

(i) If we set P1 = Nr ×Q and a homomorphism π1 : P1 →MX,x̄ by

π1(a1, . . . , ar, q) = a1t1 + · · ·+ artr + f(q),

then there is a fine monoid P such that P ⊇ P1, P gr/P
gr
1 is a finite group of

order invertible in OX,x̄ and that π1 : P1 →MX,x̄ extends to the surjective
homomorphism π : P → MX,x̄. Moreover, P gives a local chart around
x. Here we have the natural homomorphism h : Q → P1 ↪→ P . Then, the
following diagram is commutative:

Q
h−−−−→ Py

yπ
Mk −−−−→ MX,x̄.

(ii) The natural morphism g : X → Spec(k) ×Spec(k[Q]) Spec(k[P ]) is étale
around x.

Let p̄1, . . . , p̄e be all irreducible elements of MX,x̄ not lying in the image Q →
MX,x̄. Let us choose p1, . . . , pe ∈MX,x̄ such that the image of pi in MX,x̄ is p̄i. Let
α : MX → OX be the canonical homomorphism. We set zi = α(pi) for i = 1, . . . , e.
Then, we have the following:

Claim 1.3.1. zi 6= 0 in OX,x̄ for all i.

Since π̄ : P → MX,x̄ → MX,x̄ is surjective, there are p′1, . . . , p
′
r ∈ P with

π̄(p′i) = p̄i. Let us choose u1, . . . , ua ∈ P such that the kernel of P gr → M
gr

X,x̄ is
generated by u1, . . . , ua. Note that π(ui) ∈ O×X,x̄ and P is generated by p′1, . . . , p

′
r,

u1, . . . , ua and h(q) (q ∈ Q). Let us consider a non-trivial congruence relation

I · p′ + J · u+ h(q) = I ′ · p′ + J ′ · u+ h(q′),

where I, I ′ ∈ Nr, J, J ′ ∈ Na, q, q′ ∈ Q, Supp(I) ∩ Supp(I ′) = ∅ and Supp(J) ∩
Supp(J ′) = ∅ (See Conventions and terminology 6). Let

φ : k[Z1, . . . , Zr, U1, . . . , Ua]→ k ⊗k[Q] k[P ]
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be the natural surjective homomorphism given by φ(Zi) = 1⊗p′1 and φ(Uj) = 1⊗uj .
Then, the kernel of φ is generated by elements of the type

β(q) · ZI · UJ − β(q′) · ZI′ · UJ′ ,
where

β(q) =

{
1 if q = 0
0 if q 6= 0.

Here note that I · p̄+ f̄(q) = I ′ · p̄+ f̄(q′) and p̄i’s are irreducible. Thus,

β(q) · ZI · UJ − β(q′) · ZI′ · UJ′

is equal to either
±ZI · UJ (deg(I) ≥ 2)

or
ZI · UJ − ZI′ · UJ′ (deg(I) ≥ 2, deg(I ′) ≥ 2).

Therefore,
Ker(φ) ⊆ (Z1, . . . , Zr)2.

Now let us consider a natural homomorphism

g∗ : R = k[Z1, . . . , Zr, U1, . . . , Ua]/ ker(φ)→ OX,x̄.
Note that g∗(Z̄i) = vi · zi and g∗(Ūj) = α(π(uj)), where vi ∈ OX,x̄ and Z̄i and Ūj
are the classes of Zi and Uj in k[Z1, . . . , Zr, U1, . . . , Ua]/ ker(φ) respectively. Let
y = g(x̄). Then, since π(uj)’s are units, we can set y = (0, . . . , 0︸ ︷︷ ︸

r

, c1, . . . , ca), where

c1, . . . , ca ∈ k×. Since g is étale, g∗ : Ry → OX,x̄ is injective. Thus, if zi = 0, then
Zi ∈ Ker(φ)k[Z1, . . . , Zr, U1, . . . , Ua]y. This is a contradiction because

Ker(φ)k[Z1, . . . , Zr, U1, . . . , Ua]y ⊆ (Z1, . . . , Zr)2k[Z1, . . . , Zr, U1, . . . , Ua]y.

Note that MX,x̄ is generated by p1, . . . , pe, O×X,x̄ and the image of Q in MX,x̄,
so that, from now on, we always choose t1, . . . , tr from elements of the following
types:

piu (u ∈ O×X,x̄, i = 1, . . . , e) and v (v ∈ O×X,x̄).
We set xi = α(ti) for i = 1, . . . , r.

Claim 1.3.2. (a) xa1
1 · · ·xarr 6= 0 for any non-negative integers a1, . . . , ar.

(b) If xa1
1 · · ·xarr = x

a′1
1 · · ·xa

′
r
r for non-negative integers a1, . . . , ar, a

′
1, . . . , a

′
r,

then (a1, . . . , ar) = (a′1, . . . , a
′
r).

Let Ti be an element of k⊗k[Q] k[P ] arising from ei = (0, . . . , 1, . . . , 0) ∈ Nr (i-th
standard basis of Nr), namely, Ti = 1⊗ ei. As in the previous claim, let us choose
u1, . . . , ua ∈ P such that the kernel of P gr →M

gr

X,x̄ is generated by u1, . . . , ua. Let
P ′ be the submonoid of P gr generated by ±e1, . . . ,±er,±u1, . . . ,±ua and P .

First, let us see that f̄ : Q→ π̄(P ′) is integral. We consider an equation

p− I · ē+ f̄(q) = p′ − I ′ · ē+ f̄(q′),

where p, p′ ∈MX,x̄, q, q′ ∈ Q and I, I ′ ∈ Nr. Then,

p+ I ′ · ē+ f̄(q) = p′ + I · ē+ f̄(q′).
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Thus, since Q→MX,x̄ is integral, there are q1, q2 ∈ Q and x ∈ P such that




q + q1 = q′ + q2,

p+ I ′ · ē = f̄(q1) + x

p′ + I · ē = f̄(q2) + x.

Therefore, {
p− I · ē = f̄(q1) + x− (I + I ′) · ē
p′ − I ′ · ē = f̄(q2) + x− (I + I ′) · ē,

which shows us f̄ : Q→ π̄(P ′) is integral.
Next let us see that the natural homomorphism ν : Q × Zr → P ′ given by

ν(q, I) = f(q) + I · e is integral. For this purpose, let us consider an equation

x+ ν(q, I) = x′ + ν(q′, I ′),

where x, x′ ∈ P ′, q, q′ ∈ Q and I, I ′ ∈ Zr. Then, in π̄(P ′), we have

x̄+ I · ē+ f̄(q) = x̄′ + I ′ · ē+ f̄(q′).

Thus, there are q1, q2 ∈ Q, y ∈ P ′ and J, J ′ ∈ Za such that




q + q1 = q′ + q2

x+ I · e = ν(q1, 0) + J · u+ y

x′ + I ′ · e = ν(q2, 0) + J ′ · u+ y.

Therefore, using the equation x+ν(q, I) = x′+ν(q′, I ′), we can see that J ·u+y =
J ′ · u+ y. Thus,

x = ν(q1,−I) + z and x′ = ν(q2,−I ′) + z

for some z ∈ P ′ and

ν(q, I) + ν(q1,−I) = ν(q + q1, 0) = ν(q′ + q2, 0) = ν(q′, I ′) + ν(q2,−I ′).
Thus, we can see that ν : Q× Zr → P ′ is integral.

Therefore, by [3, Proposition (4.1)], k[P ′] is flat over k[Q×Zr]. Moreover, since

k ⊗k[Q] k[P ′] ' (k ⊗k[Q] k[Q× Zr])⊗k[Q×Zr] k[P ′],
the following diagram

Spec(k ⊗k[Q] k[P ′]) −−−−→ Spec(k[P ′])y
y

Spec(k ⊗k[Q] k[Q× Zr]) −−−−→ Spec(k[Q× Zr])
is Cartesian. Therefore,

Spec(k ⊗k[Q] k[P ′])→ Spec(k ⊗k[Q] k[Q× Zr]) = Spec(k[Zr])

is flat. In particular,

β : k[Zr] = k ⊗k[Q] k[Q× Zr]→ k ⊗k[Q] k[P ′]

is injective because k[Zr] is a integral domain. Further, β(Yi) = Ti for i = 1, . . . , r,
where k[Zr] = k[Y ±1 , . . . , Y ±r ].
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Let U be an étale neighborhood at x and V a non-empty open set of Spec(k⊗k[Q]

k[P ]) such that V = g(U) and g : U → V is étale. Moreover, we set W =
Spec(k ⊗k[Q] k[P ′]). Then, W is an open set of Spec(k ⊗k[Q] k[P ]), i.e.,

W =
{
t ∈ Spec(k ⊗k[Q] k[P ]) | Ti(t) 6= 0 ∀i (1⊗ uj)(t) 6= 0 ∀j} .

Let W be the closure of W . Note that

Spec(k ⊗k[Q] k[P ]) =

W ∪ {T1 = 0} ∪ · · · ∪ {Tr = 0} ∪ {1⊗ u1 = 0} ∪ · · · ∪ {1⊗ ua = 0}.
Moreover, if we set y = g(x̄), then (1⊗ uj)(y) 6= 0 for all j because π(uj) ∈ O×X,x̄.
Note that the local ring (k ⊗k[Q] k[P ])y is reduced because g∗ : (k ⊗k[Q] k[P ])y →
OX,x̄ is étale. Therefore, if y 6∈W , then Ti = 0 in (k⊗k[Q] k[P ])y. This contradicts
to Claim 1.3.1 because g∗(Ti) = xi. Thus, y ∈W . Let us consider

γ : k[Zr] β−→ OW → OW∩V
g∗−→ Og−1(W∩V ).

Then, γ(Yi) = xi. Further, γ is injective because β and g∗ are injective and k[Zr]
is an integral domain. Thus, we get the claim.

Here we choose t1, . . . , tr ∈MX,x̄ with the following properties:
(1) ti is equal to either pju (u ∈ OX,x̄) or a unit v for all i.
(2) d log(t1), . . . , d log(tr) form a free basis of Ω1

X/k,x̄(log(MX/Mk)).
(3) If we replace the non-unit ti 6∈ O×X,x̄ by a unit t′i ∈ O×X,x̄, then

d log(t1), . . . , d log(t′i), . . . , d log(tr)

do not form a free basis of Ω1
X/k,x̄(log(MX/Mk)).

Claim 1.3.3. For a non-unit ti and u ∈ O×X,x̄,
d log(t1), . . . , d log(tiu), . . . , d log(tr)

form a free basis of Ω1
X/k,x̄(log(MX/Mk)).

We set d log(u) = f1d log(t1) + · · · + frd log(tr). If fi ∈ O×X,x̄, then d log(ti)
belongs to a submodule generated by

d log(u), d log(t1), . . . , d log(ti−1), d log(ti+1), . . . , d log(tr).

Thus, d log(u), d log(t1), · · · , d log(ti−1), d log(ti+1), · · · , d log(tr) form a basis, so
that fi belongs to the maximal ideal of OX,x̄. Therefore,

d log(tiu) = (1 + fi)d log(ti) +
∑

j 6=i
fjd log(tj).

and 1 + fi ∈ O×X,x̄. Thus, we get the claim.

Renumbering t1, . . . , tr, we may assume that

{t1, . . . , ts} = {ti | ti is not a unit}
Claim 1.3.4. Let a1, . . . , as, a

′
1, . . . , a

′
s be non-negative integers such that either ai

or a′i is zero for all i. For u ∈ O×X,x̄, if

xa1
1 · · ·xass = ux

a′1
1 · · ·xa

′
s
s ,

then a1 = · · · = as = a′1 = · · · = a′s = 0 and u = 1.
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We assume the contrary. Let us choose a non-negative integer k such that
ai = pkbi and a′i = pkb′i for all i and that

gcm(b1, . . . , bs, b′1, . . . , b
′
s)

is prime to p. Then, by Lemma 1.4, there is v ∈ O×X,x̄ with

xa1
1 · · ·xass = vp

k

x
a′1
1 · · ·xa

′
s
s .

Moreover by our construction, replacing v by v−1 if necessarily, we can find b′i
prime to p. Thus, there is v′ ∈ O×X,x̄ with v′b

′
i = v. Hence if we replace ti by v′ti,

then we have xa1
1 · · ·xass = x

a′1
1 · · ·xa

′
s
s . Therefore, by Claim 1.3.2 and Claim 1.3.3,

a1 = a′1, . . . , as = a′s, which implies that a1 = · · · = as = a′1 = · · · = a′s = 0. This
is a contradiction.

Claim 1.3.5. t1, . . . , ts are linearly independent over Z in Coker(Qgr →M
gr

X,x̄).

We assume that a non-trivial relation a1t1 + · · · + asts = 0 (a1, . . . , as ∈ Z) in
Coker(Qgr →M

gr

X,x̄). Let t̄i be the class of ti inMX,x̄. Then, a1t̄1+· · ·+ast̄s = f̄(q)
for some q ∈ Qgr. Renumbering t1, . . . , ts, we may assume that a1, . . . , al > 0 and
al+1, . . . , as ≤ 0. Thus, we have

b1t̄1 + · · ·+ bl t̄l + f̄(q1) = bl+1t̄l+1 + · · ·+ bst̄s + f̄(q2)

for some q1, q1 ∈ Q, where b1 = a1, . . . , bl = al and bl+1 = −al+1, . . . , bs = −as.
Since f̄ is integral, there are q3, q4 ∈ Q, x ∈MX,x̄ and u, u′ ∈ O×X,x̄ with





q1 + q3 = q2 + q4

b1t1 + · · ·+ bltl = f(q3) + x+ u

bl+1tl+1 + · · ·+ bsts = f(q4) + x+ u′.

Thus, if q3 6= 0, then xb11 · · ·xbss = 0, which contradicts to Claim 1.3.2. Therefore,
q3 = 0. In the same way, q4 = 0. Thus, we get

b1t1 + · · ·+ bltl = bl+1tl+1 + · · ·+ bsts + v0

for some v0 ∈ O×X,x̄. Thus, xb11 · · ·xbll = v0x
bl+1
l+1 · · ·xbss . Therefore, by Claim 1.3.4,

b1 = · · · = bl = bl+1 = · · · = bs = 0. This is a contradiction.

Let λ : P gr →M
gr

X,x̄ be the natural surjective homomorphism and

λ′ : Coker(Qgr → P gr)→ Coker(Qgr →M
gr

X,x̄)

the induced homomorphism. Then, by using Claim 1.3.5, if we set

T = Coker (Zt1 ⊕ · · · ⊕ Ztr → Coker(Qgr → P gr))

and

T ′ = Coker
(
Zt1 ⊕ · · · ⊕ Zts → Coker(Qgr →M

gr

X,x̄)
)
,
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then we have the following commutative diagram:
0 −−−−→ Zt1 ⊕ · · · ⊕ Ztr −−−−→ Coker(Qgr → P gr) −−−−→ T −−−−→ 0yprojection

yλ′
y

0 −−−−→ Zt1 ⊕ · · · ⊕ Zts −−−−→ Coker(Qgr →M
gr

X,x̄) −−−−→ T ′ −−−−→ 0y
y

y
0 0 0

Here T is a torsion group of order prime to p. Therefore, we get our assertion. 2

Lemma 1.4. Let X be a generalized semistable variety over an algebraically closed
field k of characteristic p > 0 and x a closed point of X. Let OX,x̄ be the local ring
at x in the étale topology. Let H and G be elements of OX,x̄ and u ∈ O×X,x̄. If

Hpku = Gp
k

, then there is v ∈ O×X,x̄ with (Hv)p
k

= Gp
k

.

Proof. By Artin’s approximation theorem, it is sufficient to find v in ÔX,x̄.
Since X is a generalized semistable variety, we can set

ÔX,x̄ = k[[T1, . . . , Te]]/(TA1 , . . . , TAl),

where A1, . . . , Al ∈ Ne \ {0}. We set

Ω =
l⋃

i=1

(Ai + Ne), Σ = Ne \
l⋃

i=1

(Ai + Ne) and Σk = {I ∈ Σ | pk|A(i) ∀i}.

Then, any elements of ÔX,x̄ can be uniquely written as a form
∑

I∈Σ

αIT
I .

We set u =
∑
I∈Σ aIT

I and H =
∑
I∈Σ bIT

I . Moreover, we set

u′ =
∑

I∈Σk

aIT
I and u′′ =

∑

I 6∈Σk

aIT
I .

Then, u = u′+u′′ and there is a unit v with vp
k

= u′. Thus, Hpku′′ = (G−Hv)pk .
Therefore,

(G−Hv)pk =

(∑

I∈Σ

bp
k

I T
pkI

)
 ∑

I 6∈Σk

aIT
I


 .

Even if we delete the terms T J with J ∈ Ω, the left hand side of the above equations
consists of the terms T J with J ∈ Σk and the right hand side does not contain the
terms T J with J ∈ Σk. Thus, (G−Hv)pk = 0. 2

As a corollary of Theorem 1.1, we have the following existence of a good chart
of a log morphism.

Corollary 1.5. Let X be a generalized semistable variety over an algebraically
closed field k. Let Mk and MX be fine log structures on Spec(k) and X respectively.
We assume that (X,MX) is log smooth and integral over (Spec(k),Mk). Let Q be
a fine and sharp monoid with Mk ' Q× k× and πQ : Q→ Mk the composition of
Q → Q × k× (q 7→ (q, 1)) and Q × k× ∼−→ Mk. Moreover, let x be a closed point
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of X. Then, there is a fine and sharp monoid P together with homomorphisms
πP : P → MX,x̄ and f : Q → P such that a triple (πQ : Q → Mk, πP : P →
MX,x̄, f : Q → P ) is a good chart of (X,MX) → (Spec(k),Mk) at x, namely, the
following properties are satisfied:

(1) The diagram

Q
f−−−−→ P

πQ

y
yπP

Mk −−−−→ MX,x̄

is commutative.
(2) The homomorphism P →MX,x̄ →MX,x̄ is an isomorphism.
(3) The natural morphism g : X → Spec(k)×Spec(k[Q]) Spec(k[P ]) is smooth in

the usual sense.

Proof. This is a corollary of Theorem 1.1, Proposition A.2 and Proposition A.3.
2

Finally let us consider the following lemma, which is needed to see that a gener-
alized variety is a reduced scheme.

Lemma 1.6. Let k[[T1, . . . , Te]] be the ring of formal power series over k. Let
A1, . . . , Al be elements of Ne \ {0} such that Ai(j) is either 0 or 1 for all i, j. Let
I be an ideal of k[[T1, . . . , Te]] generated by TA1 , . . . , TAl . Then, I is reduced, i.e.,√
I = I.

Proof. We prove this by induction on e. If e = 1, our assertion is obvious, so
that we assume that e > 1. Let f ∈ √I. Then, there is n > 0 with fn ∈ I. It is easy
to see that there are a1, . . . , ae ∈ k[[T1, . . . , Ti−1, Ti+1, . . . , Te]] and b ∈ k[[T1, . . . , Te]]
with

f = a1 + T1a2 + · · ·+ T1 · · ·Ti−1ai + · · ·+ T1 · · ·Te−1ae + T1 · · ·Teb.
Then, f(0, T2, . . . , Te) = a1 ∈ k[[T2, . . . , Te]]. If 1 ∈ Supp(Ai) for all i, then

f(0, T2, . . . , Te)n = 0.

Thus, a1 = 0. In particular, a1 ∈ I. Otherwise,

an1 = f(0, T2, . . . , Te)n ∈
∑

1 6∈Supp(Ai)

TAik[[T2, . . . , Te]].

Thus, by hypothesis of induction, a1 ∈ I. Therefore, (f − a1)n ∈ I. Note that
(f − a1)(T1, 0, T3, . . . , Te) = T1a2. Thus, in the same way as before, we can see
that T1a2 ∈ I. Hence, (f − a1 − T1a2)n ∈ I. Proceeding with the same argument,
T1 · · ·Ti−1ai ∈ I for all i. On the other hand, T1 · · ·Te ∈ I. Therefore, f ∈ I. 2

2. Monoids of semistable type

In this section, we consider a monoid of semistable type. First of all, let us give
its definition. Let f : Q → P be an integral homomorphism of fine and sharp
monoids with Q 6= {0}. We say P is of semi-stable type

(r, l, p1, . . . , pr, q0, bl+1, . . . , br)

over Q if the following conditions are satisfied:
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(1) r and l are positive integers with r ≥ l, p1, . . . , pr ∈ P , q0 ∈ Q \ {0}, and
bl+1, . . . , br are non-negative integers.

(2) P is generated by f(Q) and p1, . . . , pr. The submonoid of P generated by
p1, . . . , pr in P , which is denoted by N , is canonically isomorphic to Nr,
namely, a homomorphism Nr → N given by (t1, . . . , tr) 7→

∑
i tipi is an

isomorphism.
(3) We set ∆l, B ∈ Nr as follows:

∆l = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
r−l

) and B = (0, . . . , 0︸ ︷︷ ︸
l

, bl+1, . . . , br).

Then, ∆l · p = f(q0) + B · p, i.e., p1 + · · · + pl = f(q0) +
∑
i>l bipi (cf.

Conventions and terminology 6).
(4) If we have a relation

I · p = f(q) + J · p (I, J ∈ Nr)
with q 6= 0, then I(i) > 0 for all i = 1, . . . , l (cf. Conventions and terminol-
ogy 2).

Remark 2.1. In the case where l = 1, by using (2) of the following proposition,
we can see P = f(Q)× Np2 × · · · × Npr. Conversely, if P has a form f(Q)× Nr−1

and Q 6= {0}, then P is of semistable type in the following way: Let q0 be an
irreducible element of Q and p1 = f(q0). Let ei be the standard basis of Nr−1. We
set pi = (0, ei−1) for i = 2, . . . , r. Then, since Q is sharp, Np1 ' N. Thus, the
submonoid generated by p1, . . . , pr in P is isomorphic to Nr. Finally, let us consider
a relation

∑
i aipi = f(q) +

∑
i cipi with q 6= 0. Then,

f(a1q0) +
∑

i≥2

aipi = f(q + c1q0) +
∑

i≥2

cipi.

Thus, a1q0 = q + c1q0. Hence, if a1 = 0, then q = 0. Therefore, a1 > 0.

First, let us see elementary properties of a monoid of semistable type.

Proposition 2.2. Let f : Q→ P be an integral homomorphism of fine and sharp
monoids. We assume that P is of semi-stable type

(r, l, p1, . . . , pr, q0, bl+1, . . . , br)

over Q. Then, we have the following:
(1) Let I · p = f(q) + J · p (I, J ∈ Nr) be a relation with q 6= 0. Then, q = nq0

for some n ∈ N. Moreover, if Supp(I) ∩ Supp(J) = ∅, then I = n∆l and
J = nB.

(2) Let us consider two elements

f(q) + T · p and f(q′) + T ′ · p
of P such that there are i and j with 1 ≤ i, j ≤ l and T (i) = T ′(j) = 0. If
f(q) + T · p = f(q′) + T ′ · p, then q = q′ and T = T ′.

(3) Let U (resp. V ) be the submonoid of P generated by p1, . . . , pl (resp. f(Q)
and pl+1, . . . , pr). Then, U ' Nl, V ' Q×Nr−l and the natural homomor-
phism

U ×(∆l·p, f(q0)+B·p) V → P

is bijective (cf. Conventions and terminology 4).



DOMINANT RATIONAL MAPS IN THE CATEGORY OF LOG SCHEMES 15

Proof. (1) First we assume that Supp(I) ∩ Supp(J) = ∅. We set

n = min{I(1), . . . , I(l)} and I ′ = I − n∆l.

Then, I ′(i) = 0 for some i with 1 ≤ i ≤ l and I · p = n∆l · p+ I ′ · p. Thus,

f(nq0) + (nB + I ′) · p = f(q) + J · p.
Therefore, since f : Q → P is integral, there are q1, q2 ∈ Q and T ∈ Nr such that
nq0 + q1 = q + q2,

(nB + I ′) · p = f(q1) + T · p and J · p = f(q2) + T · p.
Note that (nB + I ′)(i) = 0 for some i (1 ≤ i ≤ l). Thus, q1 = 0. Moreover,
since {1, . . . , l} ⊆ Supp(I), we have Supp(J) ⊆ {l + 1, . . . , r}, so that q2 = 0.
Therefore, q = nq0 and (nB + I ′) · p = J · p. In particular, nB + I ′ = J . Note that
(nB+ I ′)(i) = I ′(i) and J(i) = 0 for i = 1, . . . , l. Thus, I ′(1) = · · · = I ′(l) = 0. We
assume that Supp(I ′) 6= ∅. Let us choose i ∈ Supp(I ′). Then, i > l and J(i) = 0.
Thus, nB(i) + I ′(i) = 0, which implies I ′(i) = 0. This is a contradiction. Hence,
I ′ = 0. Therefore, q = nq0, I = n∆l and J = nB.

Next let us consider a general case. We define T ∈ Nr by T (i) = min{I(i), J(i)},
and we set I ′ = I − T and J ′ = J − T . Then, I ′ · p = f(q) + J ′ · p and Supp(I ′) ∩
Supp(J ′) = ∅. Thus, we can see q = nq0 for some n ∈ N.

(2) Since f : Q → P is integral, there are q1, q2 ∈ Q and h ∈ Np1 + · · · + Npr
such that T · p = f(q1) + h, T ′ · p = f(q2) + h and q + q1 = q′ + q2. Here T (i) = 0
for some i = 1, . . . , l. Thus, q1 = 0. In the same way, q2 = 0. Therefore, q = q′.
Hence T · p = T ′ · p.

(3) By (2), it is easy to see that U ' Nl and V ' Q × Nr−l. Let us choose
I, I ′, J, J ′ ∈ Nr such that Supp(I),Supp(I ′) ⊆ {1, . . . , l} and Supp(J),Supp(J ′) ⊆
{l + 1, . . . , r}. It is sufficient to see that if

I · p+ f(q) + J · p = I ′ · p+ f(q′) + J ′ · p
for some q, q′ ∈ Q, then

(I · p, f(q) + J · p) ∼ (I ′ · p, f(q′) + J ′ · p)
in U ×(∆l·p, f(q0)+B·p) V . We set

n = min{I(1), . . . , I(l)} and n′ = min{I ′(1), . . . , I ′(l)}.
Moreover, we set T = I − n∆l and T ′ = I ′ − n′∆l. Then

(T + J + nB) · p+ f(q + nq0) = (T ′ + J ′ + n′B) · p+ f(q′ + n′q0).

Thus, by (2), T + J + nB = T ′ + J ′ + n′B and q + nq0 = q′ + n′q0. In particular,
T = T ′ and J + nB = J ′ + n′B. Therefore, since (∆l · p, 0) ∼ (0, f(q0) +B · p),

(I · p, f(q) + J · p) = ((T + n∆l) · p, f(q) + J · p)
∼ (T · p, f(q + nq0) + (J + nB) · p)
= (T ′ · p, f(q′ + n′q0) + (J ′ + n′B) · p)
∼ ((T ′ + n′∆l) · p, f(q′) + J ′ · p)
= (I ′ · p, f(q′) + J ′ · p).

2
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Remark 2.3. By the above properties, k ⊗k[Q] k[P ] is canonically isomorphic to

k[X1, . . . , Xr]/(X1 · · ·Xl).

The converse of the above remark holds under a kind of assumptions of P .

Proposition 2.4. Let k be a field and f : Q → P an integral homomorphism of
fine and sharp monoids with Q 6= {0}. Let R be the completion of k ⊗k[Q] k[P ] (k
is a k[Q]-module via the canonical homomorphism Q → {0}) at the origin and m
the maximal ideal of R. We assume the following:

(1) f : Q → P does not split, i.e., there is no submonoid N of P with P =
f(Q)×N .

(2) Let R′ = R[[T1, . . . , Te]] be the ring of formal power series over R and m′

the maximal ideal of R′. Then, R′ is reduced, dimkm
′/m′2 = dimR′ + 1

and dimR′/K ′ = dimR′ for all minimal primes K ′ of R′.
Let p1, . . . , pr be all irreducible elements of P which is not lying in f(Q). Let l be
the number of minimal primes of R. Then, after renumbering p1, . . . , pr, P is of
semi-stable type

(r, l, p1, . . . , pr, q0, bl+1, . . . , br)
over Q for some q0 ∈ Q \ {0} and bl+1, . . . , bl ∈ N.

Proof. Let us consider a natural homomorphism

H : Q× Nr → P

given by H(q, T ) = f(q) + T · p. Since f : Q → P is integral, the system of
congruence relations of H is generated by

{Iλ · p = f(qλ) + Jλ · p}λ∈Λ ,

where for each λ ∈ Λ, qλ ∈ Q and Iλ, Jλ ∈ Nr with Supp(Iλ) ∩ Supp(Jλ) = ∅. Let
φ : k[[X1, . . . , Xr]]→ R be the homomorphism arising from

k[Nr] = k ⊗k[Q] k[Q× Nr]→ k ×k[Q] k[P ].

Then, the kernel of φ is generated by{
XIλ − β(qλ)XJλ

}
λ∈Λ

,

where β is given by

β(q) =

{
1 if β = 0
0 if β 6= 0.

Let m be the maximal ideal of R. Then, it is easy to see that R is reduced,
dimkm/m

2 = dimR + 1 and dimR/K = dimR for all minimal primes K of R.
Let M be the maximal ideal of k[[X1, . . . , Xr]]. Here pi’s are irreducible. Thus,
deg(Iλ) ≥ 2 if qλ 6= 0, and deg(Iλ) ≥ 2 and deg(Jλ) ≥ 2 if qλ = 0. Hence,
Ker(φ) ⊆M2. Therefore,

dimkm/m
2 = dimkM/(M2 + Ker(φ)) = dimkM/M2 = r,

which says us that r = dimR + 1. Since R is reduced, Ker(φ) =
√

Ker(φ). Thus,
we have a decomposition

Ker(φ) = K1 ∩ · · · ∩Kl

such that Ki’s are prime, Ki 6⊆ Kj for all i 6= j and each Ki corresponds to a
minimal prime of R. Note that dim k[[X1, . . . , Xr]]/Ki = r − 1 for each i. Here
k[[X1, . . . , Xr]] is a UFD. Thus, each Ki’s are generated by an irreducible element,
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so that we can see that there is f ∈ k[[X1, . . . , Xr]] with Ker(φ) = (f). Here we
claim the following:

Claim 2.4.1. There is λ ∈ Λ with qλ 6= 0.

We assume the contrary. Let N be a submonoid of P generated by pi’s. Let us
see that

f(q) + n = f(q′) + n′ (q, q′ ∈ Q,n, n′ ∈ N) =⇒ q = q, n = n′.

Since f : Q → P is integral, there are q1, q2 ∈ Q and n′′ ∈ N such that n =
f(q1)+n′′, n′ = f(q2)+n′′ and q+ q1 = q′+ q2. Here qλ = 0 for all λ ∈ Λ. We can
see q1 = q2 = 0. Thus, n = n′ = n′′ and q = q′. This observation shows us that
P = Q×N , which contradicts to our assumption.

By the above claim, Ker(φ) contains an element of the form XIλ . Note that
f is a factor of XIλ , R is reduced and R contains l minimal primes. Thus, after
renumbering p1, . . . , pr, we can set f = X1 · · ·Xl = X∆l . Next we claim the
following:

Claim 2.4.2. qλ 6= 0 for all λ ∈ Λ..

We assume that there is λ ∈ Λ with qλ = 0. Then, X1 · · ·Xl divides XIλ −XJλ .
This is impossible because Supp(Iλ) ∩ Supp(Jλ) = ∅.

By the above claim, we can see that N is isomorphic to Nr. Moreover, Ker(φ)
is generated by

{
XIλ

}
λ∈Λ

. Thus, there is λ ∈ Λ with Iλ = ∆l. Hence, we have a
congruence relation ∆l · p = f(q0) +B · p.

Finally, let us consider a relation

I · p = f(q) + J · p
with q 6= 0. Then, XI is an element of Ker(φ). Thus, I(i) > 0 for all i = 1, . . . , l.

2

3. Local structure theorem on a semistable variety

The purpose of this section is to prove the following local structure theorem of
a smooth log structure on a semistable variety.

Theorem 3.1. Let k be an algebraically closed field and Mk a fine log structure
of Spec(k). Let X be semistable varieties over k and MX a fine log structures
of X. We assume that (X,MX) is log smooth and integral over (Spec(k),Mk).
For a closed point x ∈ X, let (Q → Mk, P → MX,x̄, Q → P ) be a good chart of
(X,MX) → (Spec(k),Mk) at x, that is, Q → Mk and P → MX,x̄ are bijective
homomorphisms of fine and sharp monoids, k⊗k[Q] k[P ]→ OX,x̄ is smooth and the
following diagram

Q −−−−→ Py
y

Mk −−−−→ MX,x̄

is commutative. Then, we have the following:
(1) If multx(X) = 1, that is, x is a regular point, then Q → P splits and

P ' Q× Nr for some r.
(2) If multx(X) = 2, then we have one of the following:
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(2.1) If Q→ P does not split, then P is of semistable type over Q.
(2.2) If Q→ P splits, then char(k) 6= 2 and ÔX,x is canonically isomorphic

to
k[[X1, . . . , Xr]]/(X2

1 −X2
2 ).

More precisely, let p1, . . . , pr be all irreducible elements of P not lying
in the image of Q→ P , and let α be the compositions of

P →MX,x̄ → OX,x̄ → ÔX,x.
Then, after renumbering p1, . . . , pr, the isomorphism

β : k[[X1, . . . , Xr]]/(X2
1 −X2

2 ) ∼−→ ÔX,x
is given by β(Xi mod X2

1 −X2
2 ) = α(pi) for all i.

(3) If multx(X) ≥ 3, then Q → P does not split and P is of semistable type
over Q.

(4) If multx(X) ≥ 2 and P gr is torsion free, then Q→ P does not split and P
is of semistable type over Q.

In particular, if MX is saturated, then, for all x ∈ X, P is a monoid of semistable
type over Q.

In order to prove the above theorem, we need several preparations. First, let us
consider a log smooth monoid on a smooth variety.

Proposition 3.2. Let k be a field and f : Q → P an integral homomorphism of
fine and sharp monoids (note that Q might be {0}). Let R be the completion of
k⊗k[Q] k[P ] (k is a k[Q]-module via the canonical homomorphism Q→ {0}) at the
origin and R[[T1, . . . , Te]] the ring of formal power series over R. If R[[T1, . . . , Te]]
is regular, then there are a nonnegative integer r and a homomorphism g : Nr → P
such that the homomorphism

h : Q× Nr → P

given by h(q, x) = f(q) + g(x) is bijective.

Proof. First of all, note that R is regular. Let p1, . . . , pr be all irreducible
elements of P which are not lying in f(Q). Then, we have a homomorphism g :
Nr → P given by g(n1, . . . , nr) =

∑r
i=1 nipi. Thus, we get h : Q × Nr → P as in

the statement of our proposition. Clearly, h is surjective. Then, since f : Q → P
is integral, the congruence relation is generated by a system

{Iλ · p = f(qλ) + Jλ · p}λ∈Λ ,

where qλ ∈ Q and Iλ, Jλ ∈ Nr with Supp(Iλ)∩ Supp(Jλ) = ∅ for each λ. Then, the
kernel K of

k[[X1, . . . , Xr]]→ R

is generated by {
XIλ − β(qλ)XJλ

}
λ∈Λ

,

where β is given by

β(q) =

{
1 if q = 0
0 if q 6= 0.
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Using the fact that pi’s are irreducible, we can see that K ⊂ M2, where M is the
maximal ideal of k[[X1, . . . , Xr]]. Let m be the maximal ideal of R. Then,

m/m2 = M/(M2 +K) = M/M2.

Thus, dimkm/m
2 = r. On the other hand, if we have a congruence relation, then

K 6= {0}. Thus, dimR < r. Therefore, K = {0}, which means that h is injective.
2

In order to proceed with our arguments, let us see elementary facts of the ring

k[[X1, . . . , Xn]]/(XI0 −XJ0).

Proposition 3.3. Let k be a field and k[[X1, . . . , Xn]] the ring of formal power
series of n-variables over k. Let I0 and J0 be elements of Nn such that Supp(I0) ∩
Supp(J0) = ∅, I0 6= (0, . . . , 0) and J0 6= (0, . . . , 0). Here let us consider the ring

R = k[[X1, . . . , Xn]]/(XI0 −XJ0).

The image of XI in R is denoted by xI . Then, we have the following:
(1) The multiplication of Xi in R is injective.
(2) For I, J ∈ Nn and h ∈ R, if xI = xJh and I 6≥ J , then either I ≥ I0 or

I ≥ J0 (cf. Conventions and terminology 2).
(3) Let u and v be units of R. For I, J ∈ Nn, if xIu = xJv, then u = v and

xI = xJ .
(4) For I, J ∈ Nn, let us set I = I ′+aI0+bJ0 and J = J ′+a′I0+b′J0 such that

a, b, a′, b′ ∈ N and that I ′ 6≥ I0, I ′ 6≥ J0, J ′ 6≥ I0 and J ′ 6≥ J0 If xI = xJ ,
then I ′ = J ′ and a+ b = a′ + b′.

(5) If gcm(I0) and gcm(J0) are coprime, then XI0 − XJ0 is irreducible in
k[[X1, . . . , Xn]] (cf. Conventions and terminology 2).

Proof. (1) Clearly Xi and XI0 − XJ0 are coprime. We assume that Xig = 0
for some g ∈ R. Then, there is h ∈ k[[X1, . . . , Xr]] such that Xig = (XI0 −XJ0)h.
Thus, g is divisible by XI0 −XJ0 , which means that g = 0 in R.

(2) We set XI −XJh = (XI0 −XJ0)g. Moreover, we set

h =
∑

T

aTX
T and g =

∑

T

bTX
T .

Then, we have

XI −
∑

T

aTX
T+J =

∑

T

bTX
I0+T −

∑

T

bTX
J0+T .

Since I 6≥ J , the term XI does not appear in
∑
T aTX

T+J . Thus, the term XI

must appear in either
∑
T bTX

I0+T or
∑
T bTX

J0+T . Thus, we get (2).

(3) We set

a = max{k ∈ N | I−kI0 ≥ (0, . . . , 0)} and b = max{k ∈ N | I−kJ0 ≥ (0, . . . , 0)}.
Moreover, we set I ′ = I − aI0 − bJ0. Then, I ′ ∈ Nn, I ′ 6≥ I0 and I ′ 6≥ J0. In
the same way, we can find a′ and b′ such that if we set J ′ = J − a′I0 − b′J0, then
J ′ ∈ Nn, J ′ 6≥ I0 and J ′ 6≥ J0. Thus,

xI = xI
′
x(a+b)I0 and xJ = xJ

′
x(a′+b′)I0
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because xI0 = xJ0 . In order to see u = v, we may assume that a′ + b′ ≥ a + b.
Then, by (1), we have

xI
′
= xJ

′+lI0(v/u),
where l = (a′ + b′) − (a + b). Thus, by (2), we have I ′ ≥ J ′ + lI0. Since I ′ 6≥ I0,
we can see l = 0. Hence, I ′ ≥ J ′. On the other hand, xJ

′
= xI

′
(u/v). Thus, by

(2), J ′ ≥ I ′. Therefore, we get I ′ = J ′, so that we can obtain u = v, which implies
xI = xJ .

(4) First, xI = xI
′ · x(a+b)I0 and xJ = xJ

′ · x(a′+b′)I0 . Clearly, we may assume
that a′ + b′ ≥ a + b. Thus, xI

′
= xJ

′+(a′+b′−a−b)I0 . Therefore, by (2), I ′ ≥
J ′ + (a′ + b′ − a − b)I0. Here I ′ 6≥ I0. Thus, a + b = a′ + b′, so that I ′ ≥ J ′ and
xJ

′
= xI

′
. By using (2) again, we have J ′ ≥ I ′. Therefore, I ′ = J ′.

(5) First, we need the following lemma:

Lemma 3.4. Let T be a fine and sharp monoid such that T gr is torsion free. Then,
k[T ] and the completion k[[T ]] at the origin are integral domains.

Proof. First of all, it is well known that if σ is a finitely generated cone in
Qn with σ ∩ −σ = {0}, then there is an isomorphism φ : Qn → Qn such that
φ(σ) ⊆ Qn≥0. Thus, we can find an injective homomorphism ψ : T gr → Zn such
that Coker(ψ) is finite and ψ(T ) ⊆ Nn, where n = rk(T gr). Thus, k[T ] ↪→ k[Nn] =
k[X1, . . . , Xn] and k[[T ]] ↪→ k[[Nn]] = k[[X1, . . . , Xn]]. 2

Let us go back to the proof of Proposition 3.3. Let N be the monoid arising
from monomials of k[X1, . . . , Xn]/(XI0−XJ0). Then, k[N ] = k[X1, . . . , Xn]/(XI0−
XJ0). By the above lemma, it is sufficient to show that Ngr has no torsion. We
assume the contrary, that is,

(
xS/xT

)n = 1 and xS/xT 6= 1, where Supp(S) ∩
Supp(T ) = ∅ and n > 1. Then, xnS = xnT . Thus, by (4), there is L ∈ N and
a, b, a′, b′ ∈ N such that nS = L+ aI0 + bJ0, nT = L+ a′I0 + b′J0, L 6≥ I0, L 6≥ J0

and a + b = a′ + b′. Since Supp(S) ∩ Supp(T ) = ∅, we have L = 0. Hence either
b = 0, a′ = 0 or a = 0, b′ = 0. Considering xT /xS , we may assume that b = 0
and a′ = 0. Therefore, we get nS = aI0 and nT = aJ0. Here there are integers
t1, . . . , tn, t

′
1, . . . , t

′
n such that

t1I0(1) + · · ·+ tnI0(n) + t′1J0(1) + · · · t′nJ0(n) = 1.

Thus,

a =
n∑

i=1

tiaI0(i) +
n∑

i=1

t′iaJ0(i) = n

(
n∑

i=1

tiS(i) +
n∑

i=1

t′iT (i)

)
.

Hence a = nl for some l ∈ N. Thus, S = lI0 and T = lJ0. Then,

xS/xT =
(
xI0/xJ0

)l
= 1.

This is a contradiction. 2

Corollary 3.5. We assume that k is algebraically closed. Let I0 and J0 be elements
of Nn such that deg(I0) ≥ 1, deg(J0) ≥ 1 and Supp(I0) ∩ Supp(J0) = ∅. We set
g = gcm(gcm(I0), gcm(J0)), I0 = gI ′0 and J0 = gJ ′0. Then,

XI0 −XJ0 = (XI′0 −XJ′0)(XI′0 − ζXJ′0) · · · (XI′0 − ζg−1XJ′0)

is the irreducible decomposition of XI0 − XJ0 , where ζ is a g-th primitive root of
the unity.



DOMINANT RATIONAL MAPS IN THE CATEGORY OF LOG SCHEMES 21

Proof. It is sufficient to show that XI′0 − ζiXJ′0 is irreducible. Changing coor-
dinates X1, . . . , Xn by c1X1, . . . , cnXn, we can make XI′0 − XJ′0 of XI′0 − ζiXJ′0 .
Thus, by (5) of Proposition 3.3, we have our corollary. 2

Corollary 3.6. We assume that k is algebraically closed. Let I0 and J0 be elements
of Nn such that deg(I0) ≥ 1, deg(J0) ≥ 1 and Supp(I0) ∩ Supp(J0) = ∅. If

k[[X1, . . . , Xn]]/(XI0 −XJ0)

is isomorphic to the ring of the type k[[T1, . . . , Te]]/(T1 · · ·Tl) (l ≥ 2), then char(k) 6=
2 and there are i, j ∈ {1, . . . , n} such that i 6= j and XI0 −XJ0 = X2

i −X2
j .

Proof. We set g = gcm(gcm(I0), gcm(J0)), I0 = gI ′0 and J0 = gJ ′0. Then, by
the above corollary,

XI0 −XJ0 = (XI′0 −XJ′0)(XI′0 − ζXJ′0) · · · (XI′0 − ζg−1XJ′0)

is the irreducible decomposition of XI0 −XJ0 , where ζ is a g-th primitive root of
the unity. Since k[[X1, . . . , Xn]]/(XI0 − XJ0) is reduced, char(k) does not divide
g. Here k[[T1, . . . , Tn]]/(T1 · · ·Tl) has l-minimal primes, so that g = l. Moreover,
since every irreducible component is regular, either XI′0 or XJ′0 is linear. Clearly,
we may assume that XI′0 is linear, namely, XI′0 = Xi for some i. Let m be the
maximal ideal of k[[X1, . . . , Xn]]/(XI0−XJ0). Let V be a vector subspace of m/m2

generated by xi− xJ0 , xi− ζxJ′0 , . . . , xi− ζl−1xJ
′
0 . Then, we must have dimk V = l

because
k[[X1, . . . , Xn]]/(XI0 −XJ0) ' k[[T1, . . . , Tn]]/(T1 · · ·Tl).

If deg(J ′0) ≥ 2, then dimk V = 1. This contradict to the fact l ≥ 2. Thus,
deg(J ′0) = 1, so that XJ′0 = Xj for some j. In this case, dimk V ≤ 2. Therefore,
g = l = 2. 2

Proposition 3.7. Let k be a field, N a fine and sharp monoid, and k[[N ]] the
completion of k[N ] at the origin. Let α : N → k[[N ]] be the canonical homomor-
phism. Let p1, . . . , pr be all irreducible elements of N and h : Nr → N the natural
homomorphism given by h(a1, . . . , ar) =

∑r
i=1 aipi. Let φ : k[[X1, . . . , Xr]]→ k[[N ]]

be the homomorphism induced by h. Let R′ = k[[N ]][[X1, . . . , Xe]] be the ring of
formal power series over k[[N ]] and m′ the maximal ideal of R′. We assume that
R′ is reduced, dimkm

′/m′2 = dimR′ + 1 and dimR′/K ′ = dimR′ for all minimal
primes K ′ of R′. Then, we have the following.

(1) The kernel of φ is generated by an element of the form XI0 − XJ0 such
that I0, J0 ∈ Nr, deg(I0) ≥ 2, deg(J0) ≥ 2, Supp(I0) ∩ Supp(J0) = ∅ and
gcm(gcm(I0), gcm(J0)) is not divisible by char(k).

(2) Renumbering of p1, . . . , pr, we assume that

Supp(I0) ⊆ {1, . . . , l} and Supp(J0) ⊆ {l + 1, . . . , r}.
Let U (resp. V ) be the submonoid of N generated by p1, . . . , pl (resp.
pl+1, . . . , pr). Then, U ' Nl, V ' Nr−l and the natural homomorphism

U ×(I0·p, J0·p) V → N

is bijective (cf. Conventions and terminology 4).
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Proof. (1) Let us consider all relations

{Iλ · p = Jλ · p}λ∈Λ

in N , where Iλ, Jλ ∈ Nr and Supp(Iλ) ∩ Supp(Jλ) = ∅ for all λ. Then, the kernel
of φ is generated by {

XIλ −XJλ
}
λ∈Λ

.

Let m be the maximal ideal of k[[N ]]. Then, it is easy to see that k[[N ]] is reduced,
dimkm/m

2 = dim k[[N ]]+1 and dim k[[N ]]/K = dim k[[N ]] for all minimal primes K
of k[[N ]]. Let M be the maximal ideal of k[[X1, . . . , Xr]]. Since pi’s are irreducible,
deg(Iλ) ≥ 2 and deg(Jλ) ≥ 2. Thus, Ker(φ) ⊆M2. Therefore,

m/m2 = M/(Ker(φ) +M2) = M/M2.

Then, in the same way as in the proof of Proposition 2.4, there is f ∈ k[[X1, . . . , Xr]]
with Ker(φ) = (f). We set XIλ −XJλ = fuλ for all λ ∈ Λ. If uλ is not a unit for
every λ ∈ Λ, then XIλ −XJλ ∈ f ·M . Thus, there is λ ∈ Λ such that uλ is a unit.
Hence we get (1).

(2) By using (4) of Proposition 3.3, it is easy to see that U ' Nl and V ' Nr−l.
Let I, I ′, J, J ′ ∈ Nr such that

Supp(I),Supp(I ′) ⊆ {1, . . . , l} and Supp(J),Supp(J ′) ⊆ {l + 1, . . . , r}.
It is sufficient to see that if I ·p+J ·p = I ′ ·p+J ′ ·p, then (I ·p, J ·p) ∼ (I ′ ·p, J ′ ·p) in
U ×(I0·p, J0·p) V . We set I = T +aI0, I ′ = T ′+a′I0, J = S+ bJ0 and J ′ = S′+ b′J0

such that a, a′, b, b′ ∈ N and T 6≥ I0, T ′ 6≥ I0, S 6≥ J0 and S′ 6≥ J0. Then, by (4) of
Proposition 3.3, we can see that T +S = T ′ +S′ and a+ b = a′ + b′. In particular,
T = T ′ and S = S′. Therefore, since (I0 · p, 0) ∼ (0, J0 · p),

(I · p, J · p) = ((T + aI0) · p, (S + bJ0) · p) ∼ (T · p, (S + (a+ b)J0) · p)
= (T ′ · p, (S′ + (a′ + b′)J0) · p) ∼ ((T ′ + a′I0) · p, (S′ + bJ0) · p)
= (I ′ · p, J ′ · p).

2

Let us start the proof of Theorem 3.1. This is a consequence of all results in §2
and §3. Indeed, if x 6∈ Sing(X), then our assertion holds by Proposition 3.2. Thus,
we may assume that x ∈ Sing(X).

We assume that Q→ P split, so that P ' Q×N for some N . Then,

k ⊗k[Q] k[P ] ' k[N ].

Since k[N ]→ OX is smooth, k[[N ]][[X1, . . . , Xe]] is isomorphic to the ring of the type
k[[T1, . . . , Tn]]/(T1 · · ·Tl). Thus, by Corollary 3.6 and Proposition 3.7, char(k) 6= 2
and l = 2. Moreover, if P gr is torsion free, then Ngr is torsion free. Thus, k[[N ]]
is an integral domain by Lemma 3.4. This is a contradiction. Therefore, if P gr is
torsion free, then Q→ P does not split.

If Q→ P does not split, then we get our assertion by Proposition 2.4. 2
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4. Rigidity of log morphisms

In this section, we consider a uniqueness problem of a log morphism for the fixed
scheme morphism, which is one of main results of this paper.

Theorem 4.1. Let k be an algebraically closed field and Mk a fine log structure
of Spec(k). Let X and Y be semistable varieties over k, and MX and MY fine log
structures of X and Y respectively. We assume that (X,MX) and (Y,MY ) are log
smooth and integral over (Spec(k),Mk). We set

Supp(MY /Mk) = {y ∈ Y |Mk ×O×Y,ȳ →MY,ȳ is not surjective}.
Let φ : X → Y be a morphism over k such that φ(X ′) 6⊆ Supp(MY /Mk) for
any irreducible component X ′ of X. If (φ, h) : (X,MX) → (Y,MY ) and (φ, h′) :
(X,MX)→ (Y,MY ) are morphisms of log schemes over (Spec(k),Mk), then h = h′.

Proof. This is a local question. Let us take a fine and sharp monoid Q with
Mk = Q × k×. Let x be a closed point of X and y = f(x). Let us choose étale
local neighborhoods U and V at x and y respectively with f(U) ⊆ V . Moreover,
shrinking U and V enough, by Corollary 1.5, we may assume that there are good
charts

(Q→Mk, π : P → MX |U , f : Q→ P )

and
(Q→Mk, π

′ : P ′ → MY |V , f ′ : Q→ P ′)

of (X,MX)→ (Spec(k),Mk) and (Y,MY )→ (Spec(k),Mk) at x and y respectively.
Let π̃ : P×O×X,x̄ →MX,x̄ and π̃′ : P ′×O×Y,ȳ →MY,ȳ be the natural homomorphisms
induced by π and π′. Note that π̃ and π̃′ are isomorphisms. Let H : P ′ ×O×Y,ȳ →
P ×O×X,x̄ and H ′ : P ′×O×Y,ȳ → P ×O×X,x̄ be homomorphisms of monoids such that
the following diagrams are commutative:

P ′ ×O×Y,ȳ
H−−−−→ P ×O×X,x̄

π̃′
y

yπ̃
MY,ȳ

h−−−−→ MX,x̄

α′
y

yα

OY,ȳ φ∗−−−−→ OX,x̄

P ′ ×O×Y,ȳ
H′−−−−→ P ×O×X,x̄

π̃′
y

yπ̃

MY,ȳ
h′−−−−→ MX,x̄

α′
y

yα

OY,ȳ φ∗−−−−→ OX,x̄
Here α and α′ are the canonical homomorphism. By abuse of notation, α · π̃ and
α′ · π̃′ are also denoted by α and α′. Then, α(p, u) = α(π(p)) · u and α′(p′, u′) =
α′(π′(p′)) · u′.

First we claim the following:

Claim 4.1.1. H(0, u) = H ′(0, u) for all u ∈ O×Y,ȳ.
We set H(0, u) = (f(q) +

∑r
i=1 aipi, v), where p1, . . . , pr are all irreducible el-

ements of P not lying in f(Q). Let us consider the above commutative diagram.
Then,

φ∗(u) = φ∗(α′(0, u)) = α(H(0, u)) = β(q)xa1
1 · · ·xarr v,
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where xi = α(pi, 1) and β is given by

β(q) =

{
1 if q = 0
0 if q 6= 0.

Since φ∗(u) is a unit in OX,x̄ and x1, . . . , xr are not units, we have q = 0 and
a1 = · · · = ar = 0. Thus, v = φ∗(u). Hence H(0, u) = (0, φ∗(u)). In the same way,
we can see H ′(0, u) = (0, φ∗(u)). Therefore, H(0, u) = H ′(0, u).

Next we claim

Claim 4.1.2. H(f ′(q), 1) = H ′(f ′(q), 1) for all q ∈ Q.

Let us consider homomorphisms

f̃ : Q→MX,x̄
π̃−1

−→ P ×O×X,x̄ and f̃ ′ : Q→MY,ȳ
π̃
′−1

−→ P ′ ×O×Y,ȳ.
Then, we can set f̃(q) = (f(q), γ(q)) and f̃ ′(q) = (f ′(q), γ′(q)). Here, h and h′ are
homomorphisms over Mk. Thus the following diagrams are commutative.

P ′ ×O×Y,ȳ
H−−−−→ P ×O×X,x̄

π̃′
y

yπ̃
MY,ȳ

h−−−−→ MX,x̄x
x

Q Q.

P ′ ×O×Y,ȳ
H′−−−−→ P ×O×X,x̄

π̃′
y

yπ̃

MY,ȳ
h′−−−−→ MX,x̄x

x
Q Q.

Hence, we can see

H(f ′(q), γ′(q)) = H ′(f ′(q), γ′(q)) = (f(q), γ(q)).

Thus,

H(f ′(q), 1) = H((f ′(q), γ′(q)) + (0, γ′(q)−1)) = (f(q), γ(q)) + (0, φ∗(γ′(q))−1)

= (f(q), γ(q) · φ∗(γ′(q))−1).

In the same way, we have H ′(f ′(q), 1) = (f(q), γ(q) · φ∗(γ′(q))−1). Thus, we get
our claim.

From now on, we consider the following four cases:
(A) f : Q→ P splits and f ′ : Q→ P ′ splits.
(B) f : Q→ P does not split and f ′ : Q→ P ′ splits.
(C) f : Q→ P splits and f ′ : Q→ P ′ does not split.
(D) f : Q→ P does not split and f ′ : Q→ P ′ does not split.

For each case, let U1, · · · , Ul and V1, · · · , Vl′ be all irreducible components of U and
V respectively. Here since Sing(Y ) ⊆ Supp(MY /Mk) and φ(Uj) 6⊆ Supp(MY /Mk),
for each j, there is a unique i with φ(Uj) ⊆ Vi. We denote this i by σ(j). Note that
we have a map σ : {1, . . . , l} → {1, . . . , l′}. In the following, we give p1, . . . , pr ∈ P
(resp. p′1, . . . , p

′
r′ ∈ P ′) for each case (A), (B), (C) and (D) such that P (resp. P ′)

is generated by f(Q) and p1, . . . , pr (resp. f ′(Q′) and p′1, . . . , p
′
r′). The last claim

is the following:

Claim 4.1.3. H(p′i, 1) = H ′(p′i, 1) for all i = 1, · · · , r′.
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For this purpose, we fix common notation for all cases. We denote α(pj , 1) by
xj and α′(p′i, 1) by yi. Here we set

(4.1.4) H(p′i, 1) = (f(qi) + Ii · p, ui) and H ′(p′i, 1) = (f(q′i) + I ′i · p, u′i) ,
where Ii, I

′
i ∈ Nr, qi, q′i ∈ Q and ui, u

′
i ∈ O×X,x̄. Then, since α(H(p′i, 1)) =

φ∗(α′(p′i, 1)) and α(H ′(p′i, 1)) = φ∗(α′(p′i, 1)), we have

(4.1.5) φ∗(yi) = β(qi) · xIi · ui = β(q′i) · xI
′
i · u′i.

Let us begin with Case A.

(Case A): In this case, there are submonoids N and N ′ of P and P ′ respectively
such that P = f(Q)×N and P ′ = f ′(Q)×N ′. Let p1, . . . , pr (resp. p′1, . . . , p

′
r′) be

all irreducible elements of N (resp. N ′). By Theorem 3.1,

Supp(MY /Mk) = {y1 = 0} ∪ · · · ∪ {yr′ = 0}.
around ȳ. Thus,

φ∗(yi)|Uj = β(qi) · xIi · ui
∣∣
Uj

= β(q′i) · xI
′
i · u′i

∣∣∣
Uj
6= 0

for all j. In particular, qi = q′i = 0 for all i = 1, . . . , r′. Therefore,

xIi · ui = xI
′
i · u′i

for all i. Thus, by (3) of Proposition 3.3, ui = u′i and xIi = xI
′
i . Note that the

natural homomorphism k[N ]→ OX,x̄ is injective. Thus, we get Ii · p = I ′i · p.
(Case B): In this case, there is a submonoid N ′ of P ′ such that P ′ = f ′(Q)×N ′.

Let p′1, . . . , p
′
r′ be all irreducible elements of N ′. Moreover, by Proposition 2.4, P

is of semistable type
(r, l, p1, . . . , pr, q0, bl+1, . . . , br)

over Q. Renumbering U1, . . . , Ul, we may assume that Uj is defined by xj = 0. By
Theorem 3.1,

Supp(MY /Mk) = {y1 = 0} ∪ · · · ∪ {yr′ = 0}.
around ȳ. Thus

φ∗(yi)|Uj = β(qi) · xIi · ui
∣∣
Uj

= β(q′i) · xI
′
i · u′i

∣∣∣
Uj
6= 0

for all j. In particular, qi = q′i = 0 and Ii(j) = I ′i(j) = 0 for j = 1, . . . , l. Further
since OUj ,x̄ is a UFD, we can see that Ii = I ′i. Moreover, ui|Uj = u′i|Uj for all j.
Thus, ui = u′i. Therefore, H(p′i, 1) = H ′(p′i, 1) for all i = 1, . . . , r′.

(Case C): There is a submonoid N of P such that P = f(Q)×N . Let p1, . . . , pr
be all irreducible elements of N . Moreover, by Proposition 2.4, P ′ is of semistable
type

(r′, l′, p′1, . . . , p
′
r′ , q

′
0, b

′
l+1, . . . , b

′
r)

over Q. Renumbering V1, . . . , Vl′ , we may assume that Vi is defined by yi = 0. Note
that

Supp(MY /Mk) = Sing(Y ) ∪ {yl′+1 = 0} ∪ · · · ∪ {yr′ = 0}
around ȳ. Therefore, if i 6= σ(j), then φ∗(yi)|Uj 6= 0. Thus, we can see qi = q′i = 0
for i 6= σ(j).
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First, we consider the case where σ(1) = · · · = σ(l) = s. Note that s ≤ l′. Then,
for i 6= s, qi = q′i = 0. Thus, xIi · ui = xI

′
i · u′i for all i 6= s. Therefore, in the same

way as in Case A, we can see

Ii · p = I ′i · p and ui = u′i
for all i 6= s. On the other hand, we have the relation p′1 + · · · + p′l′ = f ′(q′0) +∑
i>l′ b

′
ip
′
i. Therefore, we have H(p′s, 1) = H ′(p′s, 1).

Hence, we may assume that #(σ({1, · · · , l})) ≥ 2. In this case, we can conclude
that qi = q′i = 0 for all i. Therefore, in the same way as in Case A, we can see

Ii · p = I ′i · p and ui = u′i
for all i.

(Case D): By Proposition 2.4, P and P ′ are of semistable type

(r, l, p1, . . . , pr, q0, bl+1, . . . , br) and (r′, l′, p′1, . . . , p
′
r′ , q

′
0, b

′
l′+1, . . . , b

′
r′)

over Q. Renumbering U1, . . . , Ul and V1, . . . , Vl′ , we may assume that Uj is defined
by xj = 0 and Vi is defined by yi = 0. Note that

Supp(MY /Mk) = Sing(Y ) ∪ {yl′+1 = 0} ∪ · · · ∪ {yr′ = 0}
around ȳ. Therefore, if i 6= σ(j), then φ∗(yi)|Uj 6= 0. Thus, we can see qi = q′i = 0
and Ii(j) = I ′i(j) = 0. Moreover, since OUj ,x̄ is a UFD, considering φ∗(yi)|Uj , we
can see that

Ii = I ′i and ui|Uj = u′i|Uj .
Gathering the above observations, we get the following: For all i = 1, · · · , r′ and
j = 1, . . . , l with i 6= σ(j),

(4.1.6)





qi = q′i = 0,
Ii(j) = I ′i(j) = 0,
Ii = I ′i,
ui|Uj = u′i|Uj .

Let us see that for all i > l′,

qi = q′i = 0, ui = u′i, Ii = I ′i.

Note that if i > l′, then i 6= σ(j) for all j = 1, . . . , l. Thus, we get qi = q′i = 0 and
Ii = I ′i. Moreover, ui|Uj = u′i|Uj for all j = 1, . . . , l. Thus, ui = u′i. Therefore,

(4.1.7) H(p′i, 1) = H ′(p′i, 1) for all i > l′.

First, we consider the case where σ(1) = · · · = σ(l) = s. Then, for i 6= s,

qi = q′i = 0, Ii = I ′i.

Moreover, for all j = 1. . . . , l and i 6= s, ui|Uj = u′i|Uj . Therefore, ui = u′i for i 6= s.
Thus, H(p′i, 1) = H ′(p′i, 1) for all i 6= s. On the other hand, we have the relation
p′1 + · · ·+ p′l′ = f ′(q′0) +

∑
i>l′ b

′
ip
′
i. Therefore, we have H(p′s, 1) = H ′(p′s, 1).

Hence, we may assume that #(σ({1, · · · , l})) ≥ 2. In this case, we can conclude
that

qi = q′i = 0, Ii = I ′i
for all i. Moreover, ui|Uj = u′i|Uj if i 6= σ(j). Since p′1+· · ·+p′l′ = f ′(q′0)+

∑
i>l′ b

′
ip
′
i,

H(p′1 + · · ·+ p′l′ , 1) = H ′(p′1 + · · ·+ p′l′ , 1).
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Thus, considering the O×X,x̄-factor, we find

u1 · · ·ul′ = u′1 · · ·u′l′ .
Moreover, if we set Si = {1, . . . , l} \ σ−1(i), then Si ∪ Si′ = {1, . . . , l} for all i 6= i′.
Further, if we set vi = ui/u

′
i, then

v1 · · · vl′ = 1 and vi|Uj = 1 for all j ∈ Si and all i = 1, . . . , l′.

Therefore, using the following Lemma 4.2, we have vi = 1 for all i = 1, . . . , l′.
Hence, we can see H(p′i, 1) = H ′(p′i, 1) for i = 1, . . . , l′. 2

Lemma 4.2. Let k be a fields, R = k[[X1, . . . , Xn]]/(X1 · · ·Xl) and Λ = {1, . . . , l}.
Let πj : R → R/XiR be the canonical homomorphism for j ∈ Λ. Let S1, . . . , Ss be
subsets of Λ with Si ∪ Si′ = Λ for i 6= i′. Moreover, let u1, . . . , us be units in R. If
u1 · · ·us = 1 and, for each i, πj(ui) = 1 for all j ∈ Si, then u1 = · · · = us = 1.

Proof. If Si0 = ∅ for some i0, then Si = Λ for all i 6= i0. Thus, ui = 1 for all
i 6= i0 because

π1 × · · · × πl : R→ R/X1R× · · · ×R/XlR

is injective. Then, ui0 = 1. Therefore, we may assume that Si 6= ∅ for all i.
For a monomial Xa1

1 · · ·Xan
n , the support with respect to Λ is given by

SuppΛ(Xa1
1 · · ·Xan

n ) = {i ∈ Λ | ai > 0}.
For a subset S of Λ, let ΓS be the set of formal sums of monomials Xa1

1 · · ·Xan
n

with SuppΛ(Xa1
1 · · ·Xan

n ) = S. Note that Γ∅ = k[[Xl+1, . . . , Xn]]. Then,

k[[X1, . . . , Xn]] =
⊕

S⊆Λ

ΓS .

Moreover, the natural map
⊕

S(Λ ΓS → R is an isomorphism as k-vector spaces.
We denote the image of ΓS in R by ΓS . For fS ∈ ΓS and fS′ ∈ ΓS′ , fS ·fS′ ∈ ΓS∪S′
if S ∪ S′ ( Λ, and fS · fS′ = 0 if S ∪ S′ = Λ.

Here we set ui =
∑
S(Λ fi,S , where fi,S ∈ ΓS . Then, for all j ∈ Si,

πj(ui) =
∑

j 6∈S(Λ

fi,S = 1.

Thus, fi,∅ = 1 and fi,S = 0 for all S 6= ∅ with j 6∈ S. Therefore, if we set

∆i = {S ( Λ | Si ⊆ S},
we can write

ui = 1 +
∑

S∈∆i

fi,S .

Since Si ∪ Si′ = Λ (i 6= i′), for S ∈ ∆i and S′ ∈ ∆i′ with i 6= i′, we can easily see
(1) S ∪ S′ = Λ and (2) S 6= S′. Thus, using the above (1), we obtain

u1 · · ·us = 1 +
s∑

i=1

∑

S∈∆i

fi,S .

Moreover, using the above (2), we can find fi,S = 0. Thus, we get ui = 1 for all
i. 2
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Remark 4.3. If we do not assume the condition

“φ(X ′) 6⊆ Supp(MY /Mk) for any irreducible component X ′ of X”

in Theorem 4.1, then the assertion of the theorem does not hold in general. For
example, let us consider A1

k = Spec(k[X]). Let M be a log structure associated
with α : N× N→ k[X] given by

α(a, b) =

{
Xb if a = 0
0 if a 6= 0.

Further, let f : N → N × N be a homomorphism defined by f(a) = (a, 0). Then,
(A1

k,M) is log smooth and integral over (Spec(k),N × k×). Here let us consider a
morphism φ : A1

k → A1
k induced by a homomorphism ψ : k[X] → k[X] given by

ψ(X) = 0. Then, φ(A1
k) = Supp(M/N × k×). Moreover, we consider a homomor-

phism

h : N× N→ N× N
defined by h(1, 0) = (1, 0) and h(0, 1) = (a0, b0) (a0 > 0). Then, it is easy to see
that the following diagrams are commutative:

N× N h−−−−→ N× N
f

x
xf

N N

N× N h−−−−→ N× N
α

y
yα

k[X]
ψ−−−−→ k[X]

Thus, (φ, h) : (A1
k,M) → (A1

k,M) is a log morphism over (Spec(k),N). On the
other hand, we have infinitely many choices of a0 and b0.

5. Log differential sheaves on a semistable variety

Here, let us consider a log differential module on a semistable variety.

Proposition 5.1. Let k be an algebraically closed field and Mk a fine log structure
of Spec(k). Let X be a semistable variety over k and MX a fine log structure of
X. We assume that (X,MX) is log smooth and integral over (Spec(k),Mk). Let
ν : X̃ → X be the normalization of X and M eX the underlining log structure of
ν∗(MX), that is, M eX = ν∗(MX)u (cf. see Conventions and terminology 7). Then,
(X̃,M eX) is log smooth over (Spec(k), k×) and Ω1

eX(log(M eX/k
×)) is isomorphic to

ν∗Ω1
X(log(MX/Mk)).

Proof. First of all, there is a fine and sharp monoid Q with Mk = Q× k×. Let
α : MX → OX and α′ : ν∗(MX) → O eX be the canonical homomorphisms. For a
closed point x ∈ X̃, let (πQ : Q → Mk, πP : P → M

X,ν(x)
, f : Q → P ) be a good

chart of (X,MX)→ (Spec(k),Mk) at ν(x). Here we consider three cases:

(A) ν(x) is a smooth point of X.
(B) ν(x) is a singular point of X and f : Q→ P splits.
(C) ν(x) is a singular point of X and f : Q→ P does not split.

Claim 5.1.1. (X̃,M eX)→ (Spec(k), k×) is log smooth at x.
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(Case A): In this case, ν(x) = x. Then, by Theorem 3.1, P = f(Q) × Nr.
Let ei be the i-th standard basis of Nr and Ti = 1 ⊗ ei in k ⊗k[Q] k[P ]. Then,
k[T1, . . . , Tr](T1,...,Tr) → OX,x̄ is smooth. Therefore, adding indeterminates Tr+1, . . . , Tn,
we have

h : k[T1, . . . , Tr, Tr+1, . . . , Tn](T1,...,Tn) → OX,x̄
is étale. We set ti = α(πP (ei)) for i = 1, . . . , r. Then, t1, . . . , tr form a part of local
parameters of OX,x̄ because h(Ti) = ti for i = 1, . . . , r and h is étale. Moreover,
M eX,x̄ is generated by t1, . . . , tr and O×X,x̄. Thus, we get our assertion.

(Case B): In this case, by Theorem 3.1, char(k) 6= 2, P = f(Q)×N and N is a
monoid such that

k[N ] = k[T1, . . . , Tr]/(T 2
1 − T 2

2 ).
Moreover, adding indeterminates Tr+1, . . . , Tn+1,

h : k[T1, . . . , Tr, Tr+1, . . . , Tn+1](T1,...,Tn+1)/(T
2
1 − T 2

2 )→ O
X,ν(x)

is étale. We set ti = α(πP (T̄i)) for i = 1, . . . , r. Changing the sign of πP (T̄2), we
may assume that X̃ at x is the component corresponding to t1 = t2. Note that
h(T̄i) = ti for i = 1, . . . , r. Thus, M eX,x̄ is generated by t2, . . . , tr and O×X,x̄, and
t2, . . . , tr form a part of local parameters of O eX,x̄. This shows us our assertion.

(Case C): In this case, by Theorem 3.1, P is of semistable type

(r, l, p1, . . . , pr, q0, cl+1, . . . , cr)

over Q. Then, we have

k ⊗k[Q] k[P ] ' k[T1, . . . , Tr]/(T1 · · ·Tl).
via the correspondence 1 ⊗ pi ←→ Ti. Adding indeterminates Tr+1, . . . , Tn+1, we
have

k[T1, . . . , Tr, Tr+1, . . . , Tn+1](T1,...,Tn+1)/(T1 · · ·Tl)→ OX,ν(x)
is étale. We denote α(πP (pi)) by ti for i = 1, . . . , r. Renumbering p1, . . . , pr, we
may assume that the component X̃ at x is given by t1 = 0. Note that h(T̄i) = ti for
i = 1, . . . , r. Thus, M eX,x̄ is generated by t2, . . . , tr and O×X,x̄, and t2, . . . , tr form a
part of local parameters of O eX,x̄. Hence, we get our assertion.

Next we claim the following:

Claim 5.1.2. For a ∈M eX,x̄, there is b ∈ ν∗(MX)x̄ with α′(b) = a. Moreover, b⊗1
is uniquely determined in ν∗(MX)grx̄ ⊗Z O eX,x̄.

The existence of b is obvious, so that we consider only the uniqueness of b. We
use the same notation as in Claim 5.1.1 for each case.

(Case A): We set a = u · ta1
1 · · · tarr (u ∈ O×X,x̄ and a1, . . . , ar ∈ N). In order to

see the uniqueness of b, we set b = (f(q), b1, . . . , br, v) (q ∈ Q, b1, . . . , br ∈ N and
v ∈ O×X,x̄). Then, α′(b) = β(q) · v · tb11 · · · tbrr , where β is given by

β(q) =

{
1 if q = 0
0 if q 6= 0.

Thus, q = 0, v = u and (b1, . . . , br) = (a1, . . . , ar).
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(Case B): We can set a = u · ta2
2 · · · tarr (u ∈ O×eX,x̄ and a2, . . . , ar ∈ N). Moreover,

we set b = (f(q), T̄ b11 · T̄ b22 · · · T̄ brr , v) (q ∈ Q, b1, . . . , br ∈ N and v ∈ O×eX,x̄). Then,

α′(b) = β(q) · v · tb1+b22 · tb33 · · · tbrr . Thus,

q = 0, v = u, a2 = b1 + b2 and (b3, . . . , br) = (a3, . . . , ar).

Therefore, for b′ = (f(q′), T̄ b
′
1

1 · T̄ b
′
2

2 · · · T̄ b
′
r
r , v′), if α′(b) = α′(b′) = a, then

b = b′ + (0, (T̄2/T̄1)c, 1)

in ν∗(MX)grx̄ for some c ∈ Z. Here char(k) 6= 2 and (T̄2/T̄1)2 = 1. Hence, b ⊗ 1 =
b′ ⊗ 1 in ν∗(MX)grx̄ ⊗Z O eX,x̄.

(Case C): We set a = u · ta2
2 · · · tarr (u ∈ O×eX,x̄ and a2, . . . , ar ∈ N). Let us see

the uniqueness of b. Let us set b = (f(q) +
∑r
i=1 bipi, v) (q ∈ Q, b1, . . . , br ∈ N

and v ∈ O×eX,x̄). Then, α′(b) = β(q) · v · tb11 · · · tbrr . Thus, q = 0, v = u, b1 = 0 and
(b2, . . . , br) = (a2, . . . , ar).

By Claim 5.1.2, there is a natural homomorphism

γ : Ω1
eX(log(M eX/k

×))→ Ω1
eX(log(ν∗(MX)/Mk)).

Moreover, we have a natural homomorphism

γ′ : ν∗(Ω1
X(log(MX/Mk)))→ Ω1

eX(log(ν∗(MX)/Mk)).

Claim 5.1.3. γ and γ′ are isomorphisms.

(Case A): In this case, γ′ is an isomorphism around x. We set tj = h(Tj)
for j = r + 1, . . . , n. Then, d log(t1), . . . , d log(tr), dtr+1, . . . , dtn form a basis of
Ω1

eX,x̄(log(M eX/k
×)). Moreover, d log(e1), . . . , d log(er), dtr+1, . . . , dtn form a basis

of Ω1
eX,x̄(log(ν∗(MX)/Mk)). On the other hand, γ(d log(ti)) = d log(ei) for i =

1, . . . , r and γ(dtj) = dtj for j = r+ 1, . . . , n. Thus, γ is an isomorphism around x.

(Case B): We set tj = h(T̄j) for j = r + 1, . . . , n+ 1. Then,

d log(t2), . . . , d log(tr), dtr+1, . . . , dtn+1

form a basis of Ω1
eX,x̄(log(M eX/k

×)). Moreover, γ(d log(ti)) = d log(T̄i) for i =
2, . . . , r and γ(dtj) = dtj for j = r + 1, . . . , n + 1. Let N ′ be the submonoid
of N generated by T̄2, . . . , T̄r. Then, we can see that Ngr = N ′gr × 〈T̄1/T̄2〉,
(T̄1/T̄2)2 = 1 and N ′ ' Nr−1. Thus, if we set M ′ = f(Q) × N ′ × O×eX,x̄, then the
natural homomorphism

Ω1
eX,x̄(log(M ′/Mk))→ Ω1

eX,x̄(log(ν∗(MX)/Mk))

is an isomorphism because char(k) 6= 2. Moreover, M ′ is log smooth over Mk.
Therefore, Ω1

eX,x̄(log(ν∗(MX)/Mk)) is a free O eX,x̄-module whose basis is

d log(T̄2), . . . , d log(T̄r), d log(tr+1), . . . , d log(tn+1).

Thus, γ is an isomorphism. On the other hand, we can choose

d log(T̄2), . . . , d log(T̄r), d log(tr+1), . . . , d log(tn+1)

as a basis of ν∗Ω1
X(log(MX/Mk))x̄. Thus, γ′ is also an isomorphism.
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(Case C): We set tj = h(T̄j) for j = r + 1, . . . , n+ 1. Then,

d log(t2), . . . , d log(tr), dtr+1, . . . , dtn+1

forms a basis of Ω1
eX,x̄(log(M eX/k

×)). Moreover, γ(d log(ti)) = d log(pi) for i =
2, . . . , r and γ(dtj) = dtj for j = r + 1, . . . , n + 1. Let P ′ be the submonoid of P
generated by f(Q) and p2, . . . , pr. Then, since

p1 = −(p2 + · · ·+ pl) + f(q0) +
∑

i>l

cipi,

we have P ′gr = P gr. Thus, if we set M ′ = P ′ ×O×eX,x̄, then the natural homomor-
phism

Ω1
eX,x̄(log(M ′/Mk))→ Ω1

eX,x̄(log(ν∗(MX)/Mk))

is an isomorphism. Moreover, since P ′ = f(Q)×Nr−1, we can see M ′ is log smooth
over Mk. Therefore, Ω1

eX,x̄(log(ν∗(MX)/Mk)) is a free O eX,x̄-module whose basis is

d log(p2), . . . , d log(pr), d log(tr+1), . . . , d log(tn+1).

Thus, γ is an isomorphism. On the other hand,

d log(p2), . . . , d log(pr), d log(tr+1), . . . , d log(tn+1)

is a basis of ν∗Ω1
X(log(MX/Mk))x̄. Thus, γ′ is also an isomorphism. 2

6. Geometric preliminaries

6.1. Relative rational maps. Let k be an algebraically closed field, X and Y
proper algebraic varieties over k, and T a reduced algebraic scheme over k. Let
Φ : X ×k T 99K Y ×k T be a relative rational map over T , namely, there is a dense
open set U of X×k T such that Φ is defined over U , Φ : U → Y ×k T is a morphism
over T and for all t ∈ T , U ∩ (X × {t}) 6= ∅. In this subsection, we consider the
following proposition.

Proposition 6.1.1. Let k, X, Y , T and Φ : U → Y ×k T be the same as above.

(1) {t ∈ T | Φ|X×{t} is dominant} is closed.
(2) {t ∈ T | Φ|X×{t} is separably dominant} is locally closed.
(3) We assume that X is normal. Let DX and DY be reduced divisors on X

and Y respectively. For a rational map φ : X 99K Y , we denote by Xφ the
maximal open set over which φ is defined. Then,

{
t ∈ T | (Φ|X×{t})−1(DY ) ⊆ DX on XΦ|X×{t}

}

is constructible.
(4) Let Z be a subvariety of Y . Then, {t ∈ T | Φ|X×{t} (X) ⊆ Z} is closed.
(5) Let h : F → G be a homomorphism of locally free sheaves on X ×k T such

that ht : Ft → Gt is not zero for every t ∈ T . Then,

{t ∈ T | the image of ht : Ft → Gt is rank one}
is closed.
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Proof. (1) Let Z be the closure of Φ(U) and p : Z → T the projection induced
by Y ×k T → T . Since Z is proper over T , it is well know that the function T → Z
given by t 7→ dimZt is upper semicontinuous. Moreover, dimZt ≤ dimY and the
equality hold if and only if Zt = Y . Thus, we get (1).

(2) By virtue of (1), we may assume that Φ|X×{t} is dominant for all t ∈ T .
In this case, we need to prove that it is open. Then, this can be easily checked
by Lemma 6.1.2 and the following fact: Let L be a finitely generated field over a
field K. Then, dimL Ω1

L/K ≥ tr.degK(L) and the equality holds if and only if L is
separable over K.

(3) First we assume that T is normal. We may assume that U is maximal.
Then, since X ×k T is normal, codim(X × {t} \ U) ≥ 2 for all t ∈ T . Thus,
(Φ|X×{t})−1(DY ) ⊆ DX on XΦ|X×{t} if and only if (Φ|(X×{t})∩U )−1(DY ) ⊆ DX .
Here we set W = Φ−1(DY ×k T )\DX ×k T on U . Let q : W → T be the projection
induced byX×kT → T . Then, t 6∈ q(W ) if and only if (Φ|(X×{t})∩U )−1(DY ) ⊆ DX ,
which proves our assertion by Chevalley’s lemma.

Next we consider a general case. Let π : T̃ → T be the normalization of T .
Then,

{
t ∈ T | (Φ|X×{t})−1(DY ) ⊆ DX on XΦ|X×{t}

}

= π
({
t̃ ∈ T̃ | (Φ|X×{t̃})−1(DY ) ⊆ DX on XΦ|X×{t̃}

})

Thus, we get (3).

(4) Let W be the Zariski closure of Φ−1(Z×k T ). Then, Φ|X×{t} (X) ⊆ Z if and
only if X ×{t} = Wt. Since W is proper over T , it is well known that the function
T1 → Z given by t 7→ dimWt is upper semicontinuous. Moreover, dimWt ≤ dimX
and the equality hold if and only if Wt = X. Thus, we obtain (4).

(5) Let K be the function field of X. Let us consider homomorphisms F ⊗kK →
G⊗k K. Since ht 6= 0 for all t ∈ T , we have (5) by Lemma 6.1.2. 2

Lemma 6.1.2. Let K[X1, . . . , Xr] be the r-variable polynomial ring over a field K
and k an algebraically closed subfield of K. Let I be an ideal of k[X1, . . . , Xr] and
A(X1, . . . , Xr) an n×m-matrix whose entries are elements of

K[X1, . . . , Xr]/IK[X1, . . . , Xr].

Then, the function given by

kr ⊇ V (I) 3 (t1, . . . , tr) 7→ rkA(t1, . . . , tr) ∈ Z
is lower semi-continuous, where

V (I) = {(x1, . . . , xr) ∈ kr | f(x1, . . . , xr) = 0 ∀f ∈ I}.
Proof. Clearly we may assume that I = {0}. Considering minors of the matrix

A(X1, . . . , Xr), it is sufficient to see the following claim:

Claim 6.1.2.1. For f1, . . . , fl ∈ K[X1, . . . , Xr], the set

{(x1, . . . , xr) ∈ kr | f1(x1, . . . , xr) = · · · = fl(x1, . . . , xr) = 0}
is closed.



DOMINANT RATIONAL MAPS IN THE CATEGORY OF LOG SCHEMES 33

Replacing K by a field generated by coefficients of f1, . . . , fl over k, we may
assume that K is finitely generated over k. Since k is algebraically closed, K
is separated over k. Thus, there are T1, . . . , Ts of K such that T1, . . . , Ts are alge-
braically independent over k andK is a finite separable extension over k(T1, . . . , Ts).
By taking the Galois closure of K over k(T1, . . . , Ts), we may assume that K is
a Galois extension over k(T1, . . . , Ts). For f =

∑
I aIX

I ∈ K[X1, . . . , Xr] and
σ ∈ Gal(K/k(T1, . . . , Ts)), we denote

∑
I σ(aI)XI by fσ. Here, we set

Fi =
∏

σ∈Gal(K/k(T1,...,Ts))

fσi

for i = 1, . . . , l. Then, F1, . . . , Fl ∈ k(T1, . . . , Tl)[X1, . . . , Xr] and, for (x1, . . . , xr) ∈
kr,

Fi(x1, . . . , xr) = 0 ⇐⇒ fi(x1, . . . , xr) = 0

for i = 1, . . . , l. Indeed, if Fi(x1, . . . , xr) = 0, then fσi (x1, . . . , xr) = 0 for some
σ ∈ Gal(K/k(T1, . . . , Ts)), which implies

0 = σ−1(fσi (x1, . . . , xr)) = fi(x1, . . . , xr).

By the above observation, we may assume that K = k(T1, . . . , Ts). By multiplying
some φ(T1, . . . , Tr) ∈ k[T1, . . . , Ts] to fi, we may further assume that

f1, . . . , fl ∈ k[T1, . . . , Ts][X1, . . . , Xr].

We set
fi =

∑

J

ci,JT
J (ci,J ∈ k[X1, . . . , Xr])

for i = 1, . . . , l. Then, for (x1, . . . , xr) ∈ kr,
fi(x1, . . . , xr) = 0 ⇐⇒ ci,J(x1, . . . , xr) = 0 ∀J.

Thus,

{(x1, . . . , xr) ∈ kr | fi(x1, . . . , xr) = 0 ∀i}
= {(x1, . . . , xr) ∈ kr | ci,J(x1, . . . , xr) = 0 ∀i, J}.

Therefore, we get the claim. 2

6.2. Geometric trick for finiteness. Let k be an algebraically closed field. Let
X be a proper normal variety over k and Y a proper algebraic variety over k. Let
E be a vector bundle on X and H a line bundle on Y . We assume that there is
a dense open set Y0 of Y such that H0(Y,H) ⊗k OY → H is surjective over Y0.
Let φ : X 99K Y be a dominant rational map over k. Let Xφ be the maximal
open set of X over which φ is defined. We also assume that there is a non-trivial
homomorphism θ : φ∗(H) → E|Xφ . Then, since codim(X \ Xφ) ≥ 2, we have a
sequence of homomorphisms

H0(Y,H)→ H0(Xφ, φ
∗(H))→ H0(Xφ, E) = H0(X,E).

We denote the composition of the above homomorphisms by

β(φ, θ) : H0(Y,H)→ H0(X,E).

Then, we have the following.
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Lemma 6.2.1. Let L be the image of

H0(Y,H)⊗k OX β(φ,θ)⊗kid−−−−−−−→ H0(X,E)⊗k OX −−−−→ E.

Then, the rank of L is one and the rational map

φ′ : X 99K P(H0(Y,H))

induced by H0(Y,H)⊗k OX → L is the composition of rational maps

X
φ99K Y

φ|H|99K P(H0(Y,H)),

namely, φ′ = φ|H| · φ.
Proof. Considering the following commutative diagram:

H0(Y,H)⊗k OXφ
β(φ,θ)⊗kid−−−−−−−→ H0(X,E)⊗k OXφy

y
φ∗(H) θ−−−−→ E|Xφ ,

we can see that θ gives rise to an isomorphism

φ∗(H)|Xφ∩φ−1(Y0)
∼−→ L|Xφ∩φ−1(Y0)

.

Moreover, the rational map Xφ 99K P(H0(Y,H)) given by H0(Y,H) ⊗k OXφ →
φ∗(H) is φ|H| · φ. Thus, the rational map φ′ : X 99K P(H0(Y,H)) induced by
H0(Y,H)⊗k OX → L is nothing more than the composition of rational maps

X
φ99K Y

φ|H|99K P(H0(Y,H)).

2

From now on, we assume that H is very big, that is, the morphism Y0 →
P(H0(Y,H)) induced by H0(Y,H) ⊗k OY0 → H|Y0

is a birational morphism. Let
C be a subset of Ratk(X,Y ) (the set of all rational maps of X into Y over k). We
assume that for all φ ∈ C,

(1) φ is a dominant rational map, and
(2) we can attach a non-trivial homomorphism θφ : φ∗(H)→ E|Xφ to φ, where

Xφ is the maximal Zariski open set of X over which φ is defined.
As before, we have an homomorphism

β(φ, θφ) : H0(Y,H)→ H0(X,E).

We denote the class of β(φ, θφ) in P(Homk(H0(Y,H),H0(X,E))∨) by γ(φ).

Lemma 6.2.2. For φ, ψ ∈ C, if γ(φ) = γ(ψ), then φ = ψ.

Proof. By our assumption, there is a ∈ k× with aβ(φ) = β(ψ). Hence, we have
the following commutative diagram:

H0(Y,H)⊗k OX β(φ,θφ)⊗kid−−−−−−−−→ H0(X,E)⊗k OX −−−−→ E∥∥∥
y×a

y×a

H0(Y,H)⊗k OX β(ψ,θψ)⊗kid−−−−−−−−→ H0(X,E)⊗k OX −−−−→ E



DOMINANT RATIONAL MAPS IN THE CATEGORY OF LOG SCHEMES 35

Let Lφ (resp. Lψ) be the image of H0(Y,H)⊗kOX → E in terms of β(φ, θφ) (resp.
β(ψ, θψ)). Then, the above diagram gives rise to a commutative diagram

H0(Y,H)⊗k OX −−−−→ Lφ∥∥∥
y×a

H0(Y,H)⊗k OX −−−−→ Lψ.

Let φ′ : X 99K P(H0(Y,H)) and ψ′ : X 99K P(H0(Y,H)) be the rational maps in-
duced by H0(Y,H)⊗kOX → Lφ and H0(Y,H)⊗kOX → Lψ respectively. Then, by
the above diagram, we can see φ′ = ψ′. Hence, we get our lemma by Lemma 6.2.1.

2

Next we consider the following proposition.

Proposition 6.2.3. Let T be a connected proper normal variety over k, and

Φ : X ×k T 99K Y ×k T
be a relative rational map over T (cf. Conventions and terminology 8). Let f :
X×kT → T and g : Y ×kT → T be the projections to the second factor respectively,
and let p : X ×k T → X and q : Y ×k T → Y be the projections to the first factor
respectively. We assume that there are an open set T0 of T and a non-trivial
homomorphism Θ : Φ∗(q∗(H)) → p∗(E)|U such that, for all t ∈ T0, Φ|X×{t} ∈ C
and the class of β(Φt,Θt) in P(Homk(H0(Y,H),H0(X,E))∨) is γ(Φt), where U
is the maximal open set over which Φ is defined. Then, there is φ ∈ C such that
Φ = φ× idT .

Proof. Since X ×k T is normal, we may assume that codim((X ×k T ) \U) ≥ 2.
Here we have a homomorphism

H0(Y,H)⊗k OT = g∗(q∗(H))→ (f |U )∗(Φ∗(q∗(H))) Θ−→ (f |U )∗(p∗(E)).

We claim that the natural homomorphism f∗(p∗(E)) → (f |U )∗(p∗(E)) is an iso-
morphism. Indeed, if W is an open set of T , then

(f |U )∗(p∗(E))(W ) = H0(U ∩ (X ×k W ), p∗(E)).

Note that codim((X×kW )\U ∩(X×kW )) ≥ 2. Thus, H0(U ∩(X×kW ), p∗(E)) =
H0(X ×k W,p∗(E)). Hence we get a homomorphism

β : H0(Y,H)⊗k OT → H0(X,E)⊗OT .
Here, T is proper and irreducible. Hence, there is β0 ∈ Homk(H0(Y,H),H0(X,E))
such that β = β0 ⊗ id. This means that β(Φt,Θt) = β0. Thus, by Lemma 6.2.2,
there is φ ∈ C such that Φt = φ for all t ∈ T0. Therefore, we get our proposition. 2

Finally, let us see the following proposition.

Proposition 6.2.4. There are a closed subset T of P(Homk(H0(Y,H),H0(X,E))∨)
and a relative rational map Φ : X ×k T 99K Y ×k T over T such that if we consider
γ : C → P(Homk(H0(Y,H),H0(X,E))∨), then γ(C) ⊆ T and Φ|X×{γ(φ)} = φ.

Proof. We set P = P(Homk(H0(Y,H),H0(X,E))∨). Then, there is the canon-
ical homomorphism

Homk(H0(Y,H),H0(X,E))∨ ⊗k OP → OP (1),
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which gives rise to a universal homomorphism

β : H0(Y,H)⊗k OP (−1)→ H0(X,E)⊗k OP ,
that is, for all t ∈ P , the class of

βt : H0(Y,H)⊗k (OP (−1)⊗ κ(t))→ H0(X,E)

in P coincides with t, where κ(t) is the residue field of OP at t. Here we consider
the composition of homomorphisms

h : H0(Y,H)⊗k OP (−1)⊗k OX β⊗id−→ H0(X,E)⊗k OP ⊗k OX → E ⊗k OP
on X ×k P . Then, by (5) of Proposition 6.1.1, if T1 is the set of all t ∈ P such that
the image of ht is of rank 1, then T1 is closed. Let L be the image of

h|T1
: H0(Y,H)⊗k OT1(−1)⊗k OX → E ⊗k OT1 .

Then, we have the surjective homomorphism

H0(Y,H)⊗k OX×kT1 → L⊗OX×kT1
OX×kT1(1).

Let U1 be the maximal Zariski open set of X ×k T1 such that L is invertible over
U1. Here, note that, for all t ∈ T1, U1 ∩ (X ×k {t1}) 6= ∅. Thus, we get a relative
rational map

Φ1 : X ×k T1 99K P(H0(Y,H))×k T1

over T1 (cf. Conventions and terminology 8). Let Y1 be the closure of the image of
φ|H|(Y ). By (4) of Proposition 6.1.1, the set

T = {t ∈ T1 | (Φ1)t(X) ⊆ Y1}
is closed. Hence we obtain a relative rational map

Φ2 : X ×k T 99K Y1 ×k T,
which gives rise to a relative rational map

Φ : X ×k T 99K Y ×k T.
By our construction, this rational map has the following properties: For all t ∈ T ,
let βt : H0(Y,H)→ H0(X,E) be the homomorphism modulo k× corresponding to
t ∈ P , and Lt the image of

H0(Y,H)⊗OX → H0(X,E)⊗OX → E.

Here, the rank of Lt is one. Thus, we have a rational map φt : X 99K P(H0(Y,H))
induced by H0(Y,H)⊗OX → Lt. Then, φt(X) ⊆ Y1 and the following diagram is
commutative:

X
Φ|X×{t} //

φt ÃÃA
AA

AA
AA

Y

φ|H|~~~~
~~

~~
~

Y1

Therefore, by Lemma 6.2.1, Φ : X ×k T 99K Y ×k T is our desired relative rational
map. 2
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7. Finiteness theorem over the trivial log structure

Let k be an algebraically closed field and let X and Y be proper normal algebraic
varieties over k. Let DX and DY be reduced divisors on X and Y respectively. Let
MX and MY be fine log structures of X and Y respectively such that

MX = jX∗(O×X\DX ) ∩ OX and MY ⊆ jY ∗(O×Y \DY ) ∩ OY ,
where jX and jY are natural inclusion maps X \ DX ↪→ X and Y \ DY ↪→ Y
respectively. Then, for a rational map φ : X 99K Y , φ extends to (X,MX) →
(Y,MY ) if φ−1(DY ) ⊆ DX . We assume that (X,MX) and (Y,MY ) are log smooth
over (Spec(k), k×). Note that if X is smooth over k, then the log smoothness of
(X,MX) over (Spec(k), k×) guarantees that MX = jX∗(O×X\DX ) ∩ OX for DX =
Supp(MX/O×X) (cf. Theorem 3.1). Moreover, we assume that (Y,MY ) is of log
general type over (Spec(k), k×), namely, det Ω1

Y (log(MY /k
×)) is big. Thus, there

is a positive integer m such that det Ω1
Y (log(MY /k

×))⊗m is very big. Here we set

H = det Ω1
Y (log(MY /k

×))⊗m and E = Symm(∧dimY Ω1
X(log(MX/k

×))).

Then, if φ : (X,MX) 99K (Y,MY ) is a rational map, then we have a natural
homomorphism

θφ : φ∗(H)→ E|Xφ ,
where Xφ is the maximal open set over which φ is defined. Moreover, if φ is
separably dominant, then θφ is non-trivial. Let SDRat((X,MX), (Y,MY )) be the
set of separably dominant rational maps (X,MX) 99K (Y,MY ) over (Spec(k), k×).

Theorem 7.1. SDRat((X,MX), (Y,MY )) is finite.

Proof. First we need the following lemma.

Lemma 7.2. Let T be a smooth proper curve over k and Φ : X ×k T 99K Y ×k T
a relative rational map over T (cf. Conventions and terminology 8). If there is a
non-empty open set T0 of T such that for all t ∈ T0, Φt is separably dominant and
Φ−1
t (DY ) ⊆ DX , then there is a rational map φ : X 99K Y with Φ = φ× idT .

Proof. First of all, by Proposition 6.1.1, for all t ∈ T , Φ|X×{t} : X 99K Y is
dominant. Let us take a effective divisor D on X such that

Φ|−1
X×{t} (DY ) ⊆ DX ∪D

for all t ∈ T \ T0. By using de-Jong’s alteration [1], there are a smooth proper
variety X ′ and a separable and generically finite morphism µ : X ′ → X such that
µ−1(DX ∪ D) is a normal crossing divisor on X ′. Let DX′ = µ−1(DX ∪ D) and
MX′ = jX′∗(O×X′\DX′ ) ∩ OX′ , where jX′ : X ′ \DX′ → X ′ is the natural inclusion
map. Then, (X ′,MX′) is log smooth over (Spec(k), k×). We set Φ′ = Φ · (µ× idT ).
Then, for all t ∈ T , Φ′|−1

X×{t} (DY ) ⊆ DX′ . Moreover, for all t ∈ T0, Φ′|X×{t} is
separably dominant. Thus, in order to prove our lemma, we may assume that for
all t ∈ T , Φ|−1

X×{t} (DY ) ⊆ DX .
Let f : X ×k T → T and g : Y ×k T → T be the projections to the second

factor respectively, and let p : X ×k T → X and q : Y ×k T → Y be the projections
to the first factor respectively. Let U be the maximal open set over which Φ is
defined. Then, we have a rational map (X ×k T, p∗(MX)) 99K (Y ×k T, q∗(MY ))
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and (X ×k T, p∗(MX)) and (Y ×k T, q∗(MY )) are log smooth over (T,O×T ). Thus,
there is a non-trivial homomorphism

Θ : Φ∗(q∗(H))→ p∗(E)|U .
Therefore, we get our lemma by Proposition 6.2.3. 2

Let us go back to the proof of Theorem 7.1. If φ ∈ SDRat((X,MX), (Y,MY )),
then we have the non-trivial homomorphism

θφ : φ∗(H)→ E|Xφ .
Thus, by Proposition 6.2.4, there is a closed subset T of

P(Homk(H0(Y,H),H0(X,E))∨)

and a relative rational map Φ : X ×k T 99K Y ×k T over T such that if we consider

γ : SDRat((X,MX), (Y,MY ))→ P(Homk(H0(Y,H),H0(X,E))∨),

then
γ(SDRat((X,MX), (Y,MY ))) ⊆ T

and Φ|X×{γ(φ)} = φ. Note that γ is injective by Lemma 6.2.2. Let T1 be the set

of all t ∈ T such that Φ|X×{t} is separably dominant and Φ|−1
X×{t} (DY ) ⊆ DX .

Then, by Proposition 6.1.1, T1 is constructible. Let T2 be the Zariski closure of
T1. If dimT2 = 0, then we have done, so that we assume that dimT2 > 0. Then,
there is a proper smooth curve C and π : C → T2 such that the generic point of
C goes to T1 via π. Moreover, we have a rational map Ψ : X ×k C 99K Y ×k C
induced by X×k T2 99K Y ×k T2. By our construction, there is an open set C0 of C
such that for all t ∈ C0, Ψ|X×kC0

is separably dominant and Ψ|−1
X×{t} (DY ) ⊆ DX .

Thus, by Lemma 7.2, there is a rational map ψ : X 99K Y with Ψ = ψ × id.
We choose x1, x2 ∈ C with π(x1) 6= π(x2) and π(x1), π(x2) ∈ T1. Then, we have
φ1, φ2 ∈ SDRat((X,MX), (Y,MY )) with γ(φ1) = π(x1) and γ(φ2) = π(x2). Since
γ is injective, φ1 6= φ2. On the other hand,

ψ = Ψ|X×k{xi} = Φ|X×k{π(xi)} = φi

for each i. This is a contradiction. 2

8. The proof of the finiteness theorem

In this section, let us consider the proof of the finiteness theorem in general.

Theorem 8.1. Let k be an algebraically closed field and Mk a fine log structure of
Spec(k). Let X and Y be proper semistable varieties over k, and let MX and MY be
fine log structures of X and Y respectively. We assume that (X,MX) and (Y,MY )
are integral and smooth over (Spec(k),Mk). If (Y,MY ) is of log general type over
(Spec(k),Mk), then the set of all separably dominant rational maps (X,MX) 99K
(Y,MY ) over (Spec(k),Mk) defined in codimension one is finite (see Conventions
and terminology 8).

Proof. First we need the following lemma:

Lemma 8.2. Let Y be a semistable variety over k and H a line bundle on Y .
Let Y ′ be an irreducible component of the normalization of Y and µ : Y ′ → Y the
natural morphism. If H is big, then µ∗(H) is big.
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Proof. Let m be a positive integer m such that H⊗m is very big. Let V be the
image of H0(Y,H⊗m)→ H0(Y ′, µ∗(H⊗m)). Then, we have the following diagram:

Y ′
µ //

**TTTTTTTTTTT

$$I
I

I
I

I
I

I
I

I
I

I
I Y //____ P(H0(Y,H⊗m))

P(V )
?Â

OO

P(H0(Y ′, f∗(H⊗m)))

OOÂ
Â
Â

Let Y1 and Y2 be the image of Y ′ 99K P(V ) and Y ′ 99K P(H0(Y ′, µ∗(H⊗m)))
respectively. Then,

k(Y ′) = k(Y1) ⊆ k(Y2) ⊆ k(Y ′).
Thus, we can see that Y ′ 99K Y2 is birational. 2

Let us go back to the proof of Theorem 8.1. Let X1, . . . , Xr and Y1, . . . , Ys be ir-
reducible components of the normalizations of X and Y respectively. Moreover, let
fi : Xi → X and gj : Yj → Y be the canonical morphisms. We set MXi = f∗i (MX)u

and MYj = g∗j (MY )u (cf. see Conventions and terminology 7). Then, by Proposi-
tion 5.1, (Xi,MXi) and (Yj ,MYj ) are integral and log smooth over (Spec(k), k×).
Further, by Proposition 5.1 again,

Ω1
Xi(log(MXi)) = f∗i (Ω1

X(log(MX/Mk)))

and
Ω1
Yj (log(MYj )) = g∗j (Ω

1
Y (log(MY /Mk))).

Thus, by the above lemma, (Yj ,MYj ) is of log general type over (Spec(k), k×) for
every j. We denote the set of all separably dominant rational maps (X,MX) 99K
(Y,MY ) defined in codimension one over (Spec(k),Mk) by

SDRat((X,MX), (Y,MY )).

Moreover, the set of all separably dominant rational maps (Xi,MXi) 99K (Yj ,MYj )
over (Spec(k), k×) is denoted by

SDRat((Xi,MXi), (Yj ,MYj )).

Then, we have a natural map

Ψ : SDRat((X,MX), (Y,MY )) −→
∐

σ∈S(r,s)

r∏

i=1

SDRat((Xi,MXi), (Yσ(i),MYσ(i)))

as follows. Here S(r, s) is the set all maps from {1, . . . , r} to {1, . . . , s}. Let
(φ, h) ∈ SDRat((X,MX), (Y,MY )). Then, for each i, there is a unique σ(i) such
that the Zariski closure of φ(Xi) is Yσ(i). Then, we have (φ|Xi , hi) : (Xi,MXi)→
(Yσ(i),MYσ(i)) (cf. Conventions and terminology 7). By Theorem 7.1,

SDRat((Xi,MXi), (Yj ,MYj ))

is finite for every i, j. Therefore, it is sufficient to see that Ψ is injective. Let us pick
up (φ, h), (φ′, h′) ∈ SDRat((X,MX), (Y,MY )) with Ψ(φ) = Ψ(φ′). Then, clearly,
φ = φ′. Thus, by Theorem 4.1, we have h = h′. 2
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Appendix

In this appendix, we consider several results, which are well known facts for
researchers of log geometry. It is however difficult to find references, so that for
reader’s convenience, we prove them here. First, let us consider irreducible elements
of a fine and sharp monoid.

Proposition A.1. Let P be a fine and sharp monoid. Then, P is generated by
irreducible elements and there are finitely many irreducible elements of P .

Proof. In this proof, the binary operation of P is written by product. We define
a vector subspace M of Q[P ] to be

M =
⊕

x∈P\{1}
Qx.

Here we claim M is a maximal ideal of Q[P ]. For x ∈ P and x′ ∈ P \ {1}, we have
x · x′ ∈ P \ {1} because P is sharp. This shows us that M is an ideal. Moreover,
Q[P ]/M ' Q. Thus, we get the claim. We set R = Q[P ]M (the localization at
M) and m = MQ[P ]M . Note that

⋂
n≥0m

n = {0} because R is a noetherian local
ring. Moreover, since P is integral, the natural map P → R is injective and x 6= 0
in R for all x ∈ P .

For x ∈ P , we define deg(x) to be

deg(x) = max{n ∈ N | x ∈ mn}.
Then, it is easy to see that deg(x) = 0 if and only if x = 1 and deg(x · y) ≥
deg(x) + deg(y) for x, y ∈ P . We say x is decomposable by irreducible elements if
there are irreducible elements p1, . . . , ps such that x = p1 · · · ps. Here we set

Σ = {x ∈ P \ {1} | x is not decomposable by irreducible elements}.
We would like to show Σ = ∅. We assume the contrary. Let us choose x ∈ Σ such
that deg(x) is minimal in {deg(y) | y ∈ Σ}. Then, x is not irreducible, so that we
have a decomposition x = y · z (y 6= 1 and z 6= 1). Then, deg(x) ≥ deg(y) + deg(z),
deg(y) 6= 0 and deg(z) 6= 0. Thus, deg(y),deg(z) < deg(x), which implies y, z 6∈ Σ.
Therefore, y and z are decomposable by irreducible elements. Thus, so does x.
This is a contradiction.

Next, let us see that we have only finitely many irreducible elements. Since P
is finitely generated, there is a surjective homomorphism h : Nn → P . Let p be an
irreducible element of P . Let us choose I ∈ Nn such that h(I) = p and deg(I) is
minimal in {deg(J) | h(J) = p}. Here we claim that I is irreducible in Nn. We
suppose I = I ′ + I ′′ (I ′ 6= 0 and I ′′ 6= 0). Then, h(I ′) · h(I ′′) = p. Here p is
irreducible. Thus, either h(I ′) = 1 or h(I ′′) = 1, which means that either h(I ′) = p
or h(I ′′) = p. This is a contradiction because deg(I ′),deg(I ′′) < deg(I). Therefore,
I is irreducible. Note that an irreducible element of Nn has a form (0, . . . , 1, . . . , 0).
Hence, we have only finitely many irreducible elements. 2

Finally, let us consider two propositions concerning the existence of a good chart
of a smooth log morphism (cf. [6]).

Proposition A.2. Let (φ, h) : (X,MX)→ (Y,MY ) be a morphism of log schemes
with fine log structures. Let x ∈ X and y = φ(x). We assume the following:
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(1) The homomorphism h̄x : MY,ȳ → MX,x̄ induced by hx : MY,ȳ → MX,x̄

is injective and the torsion part of Coker(h̄grx : M
gr

Y,ȳ → M
gr

X,x̄) is a finite
group of order invertible in OX,x̄.

(2) There is a splitting homomorphism sy : MY,ȳ →MY,ȳ of the natural homo-
morphism py : MY,ȳ →MY,ȳ, that is, py · sy = idMY,ȳ

.

Then, there is a splitting homomorphism sx : MX,x̄ → MX,x̄ of the natural homo-
morphism px : MX,x̄ →MX,x̄ such that px · sx = idMX,x̄

and the following diagram
is commutative:

MY,ȳ
h̄x−−−−→ MX,x̄

sx

y
ysy

MY,ȳ
hx−−−−→ MX,x̄

Proof. First of all, note that Coker(O×X,x̄ → φ∗(MY )x̄) = MY,ȳ. Moreover,

s′y : MY,ȳ
sy−→MY,ȳ → φ∗(MY )x̄

gives rise to a splitting homomorphism of φ∗(MY )x̄ →MY,ȳ.
Let us consider the following commutative diagram:

0 −−−−→ O×X,x̄ −−−−→ φ∗(MY )grx̄ −−−−→ M
gr

Y,ȳ −−−−→ 0∥∥∥
y

y
0 −−−−→ O×X,x̄ −−−−→ Mgr

X,x̄ −−−−→ M
gr

X,x̄ −−−−→ 0,

which gives rise to

Hom(M
gr

X,x̄,M
gr
X,x̄) −−−−→ Hom(M

gr

X,x̄,M
gr

X,x̄)
δ1−−−−→ Ext1(M

gr

X,x̄,O×X,x̄)y
yγ1

yλ
Hom(M

gr

Y,ȳ,M
gr
X,x̄) −−−−→ Hom(M

gr

Y,ȳ,M
gr

X,x̄)
δ2−−−−→ Ext1(M

gr

Y,ȳ,O×X,x̄)x
xγ2

∥∥∥
Hom(M

gr

Y,ȳ, φ
∗(MY )grx̄ ) −−−−→ Hom(M

gr

Y,ȳ,M
gr

Y,ȳ)
δ3−−−−→ Ext1(M

gr

Y,ȳ,O×X,x̄).
By using the diagram

M
gr

Y,ȳ

h̄grx−−−−→ M
gr

X,x̄∥∥∥
∥∥∥

M
gr

Y,ȳ

h̄grx−−−−→ M
gr

X,x̄,

we can see that γ1(idMgr
X,x̄

) = h̄grx and γ2(idMgr
Y,ȳ

) = h̄grx . Note that the exact
sequence

0→ O×X,x̄ → φ∗(MY )grx̄ →M
gr

Y,ȳ → 0

splits by s′gry . Thus,

λ(δ1(idMgr
X,x̄

)) = δ2(γ1(idMgr
X,x̄

)) = δ2(γ2(idMgr
Y,ȳ

)) = δ3(idMgr
Y,ȳ

) = 0.

On the other hand, by our assumption, we can see that

Ext1(MX,x̄/MY,ȳ, OX,x̄) = 0.
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Thus, we obtain that λ is injective. Therefore, δ1(idMgr
X,x̄

) = 0. Hence, we have a

splitting homomorphism s : M
gr

X,x̄ →Mgr
X,x̄ of Mgr

X,x̄ →MX,x̄.
Here we claim that s(MX,x̄) ⊆ MX,x̄. Indeed, let us choose a ∈ MX,x̄. Then,

there is b ∈ MX,x̄ with px(b) = a. Since px(s(a)) = a, there is c ∈ O×X,x̄ such that
s(a) = b+ c in Mgr

X,x̄. Here b, c ∈MX,x̄, which implies s(a) ∈MX,x̄.
Therefore, we get a diagram

MY,ȳ
h̄x−−−−→ MX,x̄

sy

y
ys

MY,ȳ
hx−−−−→ MX,x̄.

Our problem is that the above diagram is not necessarily commutative. By our
assumption, for all a ∈MY,ȳ, there is a unique u ∈ O×X,x̄ such that s(h̄x(a)) + u =
hx(sy(a)). We denote this u by µ(a). Thus, we have a homomorphism µgr : M

gr

Y,ȳ →
O×X,x̄. Here we consider an exact sequence

0→M
gr

Y,ȳ →M
gr

X,x̄ →M
gr

X,x̄/M
gr

Y,ȳ → 0,

which gives rise to

Hom(M
gr

X,x̄,O×X,x̄)→ Hom(M
gr

Y,ȳ,O×X,x̄)→ Ext1(M
gr

X,x̄/M
gr

Y,ȳ,O×X,x̄) = {0}.
Thus, there is ν ∈ Hom(M

gr

X,x̄,O×X,x̄) with ν · h̄grx = µgr. Here we set sx = s + ν.
Then,

sx(h̄x(a)) = s(h̄x(a)) + ν(h̄x(a)) = s(h̄x(a)) + µ(a) = hx(sy(a)).

Thus, we get our desired sx. 2

Proposition A.3. Let (φ, h) : (X,MX) → (Y,MY ) be a smooth morphism of log
schemes with fine log structures. Let us fix x ∈ X and y = φ(x). We assume
that there are (a) étale neighborhoods U and V of x and y respectively, (b) charts
πP : P → MX |U and πQ : Q → MY |V , and (c) a homomorphism f : Q → P with
the following properties:

(1) φ(U) ⊆ V .
(2) The induced homomorphism P →MX,x̄ and Q→MY,ȳ are bijective.
(3) The following diagram is commutative:

Q
f−−−−→ P

πQ

y
yπP

MY |V
h−−−−→ MX |U .

Then, the canonical morphism g : X → Y ×Spec(Z[Q]) Spec(Z[P ]) is smooth around
x in the classical sense.

Proof. We consider the natural homomorphism

α : Coker(Qgr → P gr)⊗Z OX,x̄ → Ω1
X/Y,x̄(log(MX/MY )).

Let us begin with the following claim:
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Claim A.3.1. α is injective and gives rise to a direct summand of

Ω1
X/Y,x̄(log(MX/MY )).

In the same way as in [3, (3.13)], we can construct a chart πP ′ : P ′ →MX,x̄ and
an injective homomorphism f ′ : Q→ P ′ with the following properties:

(i) The torsion part of Coker(Qgr → P ′gr) is a finite group of order invertible
in OX,x̄.

(ii) The following diagram is commutative:

Q
f ′−−−−→ P ′

πQ

y
yπP ′

MY,ȳ −−−−→ MX,x̄.

(iii) The natural homomorphism

α′ : Coker(Qgr → P ′gr)⊗Z OX,x̄ → Ω1
X/Y,x̄(log(MX/MY ))

is an isomorphism. Moreover, there are t1, . . . , tr ∈ P ′ such that a subgroup
generated by t1, . . . , tr in Coker(Qgr → P ′gr) is a free group of rank r and
its index in Coker(Qgr → P ′gr) is invertible in OX,x̄. In particular,

d log(πP ′(t1)), . . . , d log(πP ′(tr))

form a free basis of Ω1
X/Y,x̄(log(MX/MY )).

Considering the commutative diagram

Q
∼−−−−→ MY,ȳ

∼←−−−− Q

f ′
y h̄x

y
yf

P ′ −−−−→ MX,x̄
∼←−−−− P,

we have a surjective homomorphism λ : P ′ → P with λ · f ′ = f . Thus, we obtain
the natural surjective homomorphism

β : Coker(Qgr → P ′gr)⊗Z OX,x̄ → Coker(Qgr → P gr)⊗Z OX,x̄.
Hence, we have the following commutative diagram:

Coker(Qgr → P ′gr)⊗Z OX,x̄ ∼
α′

//

β

²²

Ω1
X/Y,x̄(log(MX/MY ))

Coker(Qgr → P gr)⊗Z OX,x̄
α

44iiiiiiiiiiiiiiiii

In order to see the claim, it is sufficient to see that γ = β·α′−1·α is an automorphism
on Coker(Qgr → P gr) ⊗Z OX,x̄ because (β · α′−1) · (α · γ−1) = id. Here we set
πP ′(ti) = piui (pi ∈ P , ui ∈ O×X,x̄) for i = 1, . . . , r. Let us consider the natural
surjective homomorphism

θ : Ω1
X/Y,x̄(log(MX/MY ))⊗Z κ(x̄)→

Coker(M
gr

Y,ȳ →M
gr

X,x̄)⊗Z κ(x̄) ' Coker(Qgr → P gr)⊗Z κ(x̄)
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given by d log(a) 7→ a⊗1 as in [3, (3.13)]. This is nothing more than (β ·α′−1)⊗κ(x̄).
Indeed, {

(β · α′−1)(d log(πP ′(ti))) = β(ti) = pi

θ(d log(πP ′(ti))) = ti = pi mod O×X,x̄.
On the other hand, we have the natural map

α⊗ κ(x̄) : Coker(Qgr → P gr)⊗Z κ(x̄)→ Ω1
X/Y,x̄(log(MX/MY ))⊗Z κ(x̄)

given by a⊗1 7→ d log(a), which is a section of θ. Therefore, γ⊗κ(x̄) = id. Thus, by
Nakayama’s lemma, γ is surjective, so that γ is an isomorphism by [5, Theorem 2.4].

We set X ′ = Y ×Spec(Z[Q])Spec(Z[P ]). Let ψ : X ′ → Spec(Z[P ]) be the canonical
morphism and MP the canonical log structure on Spec(Z[P ]). We set MX′ =
ψ∗(MP ). Let o the origin of Spec(Z[P ]) and x′ = (y, o). Then, MX′,x̄′ = O×X′,x̄′×P .
Here, Ω1

X′/Y,x̄′ is generated by {d(1⊗x)}x∈Z[P ]ō . Thus, there is a natural surjective
homomorphism

Coker(Qgr → P gr)⊗Z OX′,x̄′ → Ω1
X′/Y,x̄′(log(MX′/MY )).

Therefore, we have a surjective homomorphism

Coker(Qgr → P gr)⊗Z OX,x̄ → g∗(Ω1
X′/Y,x̄′(log(MX′/MY ))).

Thus, by the claim,

g∗(Ω1
X′/Y,x̄′(log(MX′/MY )))→ Ω1

X/Y,x̄(log(MX/MY ))

is injective and g∗(Ω1
X′/Y,x̄′(log(MX′/MY ))) is a direct summand of

Ω1
X/Y,x̄(log(MX/MY )).

Therefore, by [3, Proposition (3.12)], g is a smooth log morphism. Moreover, note
that g∗(MX′) = MX . Thus, g is smooth in the classical sense. 2
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