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To establish a successful infection plant viruses have to overcome a defense system
composed of several layers. This review will overview the various strategies plants employ
to combat viral infections with main emphasis on the current status of single dominant
resistance (R) genes identified against plant viruses and the corresponding avirulence
(Avr ) genes identified so far. The most common models to explain the mode of action
of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR)
and extreme resistance (ER), and the functional and structural similarity of R genes to
sensors of innate immunity in mammalian cell systems will be described.
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INTRODUCTION
During the past decades it has become clear that plants have a
unique and complex defense system that consists of several lay-
ers, which enables them to avoid, suppress, or actively defend
against pathogens from all kingdoms like fungi, bacteria, nema-
todes, and viruses. Of all plant viruses known, only a few cause
serious diseases and, if so, mostly limited to a very small num-
ber of crops. In general, most viruses have a limited (natural)
host range and the number of so-called non-hosts exceeds those
of hosts. In those plants that are hosts, viruses encounter differ-
ent mechanisms of defense. Some act general against all viruses
and this response is part of the innate immune system, while oth-
ers are virus-specific and involve resistance genes. Triggering of
the latter simultaneously mediates a rapid necrosis at the site of
virus entry and prevents further spread of the virus throughout
the host. In several cases resistance genes do not confer absolute
resistance and low levels of virus replication can still be observed.
In those cases the genes are referred to as partial resistance genes
or tolerance genes.

While throughout the years reviews on resistance genes have
appeared with regular intervals, these mostly had their main focus
on fungal and bacterial resistance genes, primarily due to the large
amount of data available. This review aims to present an overview
on the current status of resistance genes against plant viruses, with
emphasis on single dominant resistance genes. The very basis of
plant pathogens (among others plant viruses) not being able to
infect all plants is due to a mechanism called non-host resistance
(NHR) (For an extensive review on this, see Uma et al., 2011).
NHR holds for all plant pathogens and is a generic, nonspecific
resistance that can be divided into two main types, distinguished
by the mechanism and mode of recognition (Mysore and Ryu,
2004). Type 1 is the most pre-dominant type of NHR and presents
a basic defense mechanism that prevents pathogen invasion, e.g.,
thickening of the cell-wall, secondary metabolite production, etc.
This type of resistance usually is symptomless. In contrast, type 2

NHR is associated with induction of necrosis at the site of infec-
tion, and is induced when pathogens overcome type 1 resistance.
Here, the pathogen is recognized through specific structures or
proteins that are associated with the pathogen. The recognition of
these structures/proteins, so called microbe associated molecular
patterns (MAMPs) or PAMPS (Pathogen), takes place by pattern
recognition receptors (PRRs) on plant plasma membranes. These
PRRs recognize conserved structures of pathogens, like flaggelin
from the flagella of bacteria or chitin from the cell wall of fungi,
and induce a so called PAMP triggered immunity (PTI) response
(Jones and Dangl, 2006). Since plant viruses need to overcome
the physical barrier of a cell wall, they enter their host cells either
via mechanical inoculation or the infection is mediated by vec-
tors like insects, nematodes, or even fungi. Direct recognition of
viruses probably does not occur in the apoplast. However, a study
recently reported on the possible involvement of (intracellular)
receptor-like kinases (RLKs), of the like that are involved in PAMP
recognition by PRRs, in plant-virus interactions (Kørner et al.,
2013).

One of the first innate immune responses all plant viruses
encounter when invading a host consists of antiviral RNA silenc-
ing [also called RNA interference (RNAi) and in the very early
days post-transcriptional gene silencing (PTSG)]. RNA silencing
is a host response triggered by double stranded (ds)RNA. These
molecules thus act as a MAMP/PAMP and in which RNAi can
be regarded as PTI. The main difference with pathogens such as
fungi and bacteria is that recognition of viral MAMPs/PAMPs
occurs intracellularly (Ding and Voinnet, 2007).

RNA silencing consists of two major “branches”; the first one
is that of small-interfering (si)RNAs, and one of the hallmarks for
antiviral RNAi, and the second one is that of (host-gene encoded)
micro (mi)RNAs involved in gene regulation. The antiviral RNAi
response is induced by viral double stranded (ds)RNA molecules
that arise from replicative intermediates or secondary RNA fold-
ing structures. These structures are sensed by a host RNase
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type III-like enzyme called Dicer-like (DCL) protein and cleaved
into short interfering (si)RNA of 21–24 nucleotides (nt) in size
(Sharma et al., 2013). The siRNAs generated are unwound and
only one strand, the so-called guide-strand, is uploaded into
a functional protein complex termed RNA-induced silencing
complex (RISC). This activated complex next surveils and sub-
sequently degrades (viral) RNA target molecules with sequence
complementarity to the guide-strand. Degradation of the target
RNA is mediated by slicer, the core component of RISC, which
is represented by a member of the Argonaut (AGO) family of
proteins (Vaucheret, 2008; Sharma et al., 2013). After primary
siRNAs have been generated, in plants an amplification of siR-
NAs follows, which is required to mount an RNAi response to
effectively combat virus infections locally and systemically. This
amplification involves host RNA dependent RNA polymerases
(RDRs) that are able to convert (aberrant) viral (m)RNAs into
dsRNA in a siRNA-dependent and -independent manner (Csorba
et al., 2009). Their subsequent processing by DCL leads to the
generation of secondary siRNAs that correspond to sequences
outside the primary target sequence, a process also called tran-
sitive silencing (Sijen et al., 2001). The antiviral RNAi response
acts against all RNA and DNA viruses (Incarbone and Dunoyer,
2013), but in general is a relatively slow process that does not lead
to complete clearance of viral infections. For an extensive descrip-
tion of RNAi readers are referred to nice reviews from e.g., Ding
(2010) and Sharma et al. (2013).

Besides RNAi, viruses may also run into another, second layer
of defense that involves resistance genes. While most of these
are triggered by and confer resistance to a specific virus only,
some act against several (related) viruses. The major class of
these genes represent single dominant resistance genes (and of
which the biggest group consists of the NB-LRR type), while
others are recessive, tolerance, or partial resistance genes. A very
nice example of a dominant resistance gene of the latter case has
recently been described with the cloning and characterization of
the Ty-1 resistance gene from tomato against Tomato yellow leaf
curl geminivirus (TYLCV) This gene encodes an RNA-dependent
RNA polymerase (RdRp) and is proposed to confer resistance
to TYLCV by amplifying the RNAi signal (Verlaan et al., 2013).
Tomato plants containing Ty-1 do not show symptoms upon a
challenge with TYLCV, but low levels of virus can still be detected.

Recessive resistance (Truniger and Aranda, 2009) acting
against viruses, relies on the observation that viruses require host
factors (also called susceptibility factors) to enable an infection.
The inability of interaction between such host factor and the virus
leads to resistance. Since susceptibility factors are dominant, a
resistance based on these requires all gene copies to be in the
(resistant) recessive state. This explains why such resistance is gen-
erally termed recessive resistance. The majority of the recessive
resistance genes known against plant viruses have been reported
for potyviruses (Kang et al., 2005) and encode translation initia-
tion factors of the 4E or 4G family (eIF4E/eIF4G) (Truniger and
Aranda, 2009). The latter proteins need to interact with the cap-
structure on (viral) transcripts, to allow for translation. Potyviral
transcripts do not contain a cap structure, but provide a VPg
(Virus-protein genome linked) to render their transcripts trans-
latable in a cap-independent manner. Potyvirus infection leads to

host shut off of cap-dependent transcripts, but only allow the cap-
independent transcripts to be translated mediated by a subgroup
of translation initiation factors; eIF(iso)4E/G. Viruses that encode
their own cap-like structure (like potyviruses: VPg) require inter-
action with the translation initiation factors eIF4E/eIF4G for
translation, this in turn induces a selection pressure on the host
to escape the interaction between VPg and eIF4e, leading to reces-
sive resistance. Recessive resistance genes toward other pathogens,
such as fungi and bacteria have only been described to a lim-
ited extent and their encoded susceptibility factors (S genes) are
proposed to provide a more durable resistance than dominant R
genes. However due to their functions they may cause pleiotropic
effects when knocked out from the host genome (Gawehns et al.,
2013).

DOMINANT RESISTANCE
EFFECTOR-MEDIATED TRIGGERING OF SINGLE DOMINANT
RESISTANCE GENES
Plant pathogens need to evade or suppress the PTI response in
plants and achieve the latter by encoding effector proteins that
can interfere with the recognition by PRRs, usually by binding
to the substrate that PRRs would otherwise recognize. This pro-
cess allows the pathogen to establish a successful infection, and is
referred to as Effector Triggered Susceptibility (ETS) (Figure 1):
a strategy that also applies to antiviral RNAi. One of the most
common strategies plant viruses use to counteract RNAi is to
encode RNA silencing suppressors (RSS), viral proteins that inter-
fere with a specific part of the RNAi pathway and thereby reduce
its effectiveness against plant viruses (Burgyan and Havelda,
2011). The majority of plant virus RSS proteins exert this activ-
ity through binding of small interfering (si)RNAs, or sometimes
(also) long dsRNA, and thereby prevent their uploading into RISC
and Dicer-cleavage, respectively (Lakatos et al., 2006). In recent
years some RSS have also been discovered to inhibit the RNAi
pathway in other ways, e.g., by binding directly to key-enzyme
proteins like AGO1, the core component of RISC during the
antiviral RNAi response (Zhang et al., 2006; Giner et al., 2010).
Viral suppression of RNAi leads to a stage of ETS during which
viruses are able to establish a successful infection.

Single dominant resistance (R) gene products (in)directly
sense the presence of a specific pathogen by their effector, termed
avirulence factors (Avr), as a counter defense against ETS, leading
to a stage called Effector-Triggered Immunity (ETI) (Figure 1).
Triggering of R genes is generally associated with a (concomitant)
induction of a programmed cell death response, as visualized
by the rapid appearance of necrotic lesions (a hypersensitive
response, HR) or in rare occasions extreme resistance (ER) dur-
ing which no necrosis is observed at all. However, more and more
evidence is presented, that there is an uncoupling of the resistance
response from the programmed cell death response, although
both can work in concert. Due to these responses, viruses (and
other pathogens) are confined to the site of entry/invasion where
infections are prevented. In contrast to the slower onset of antivi-
ral RNAi, the R gene response generally is rapid and within ∼3/4
days lead to containment of the virus.

Dominant R genes basically can be grouped into two classes,
namely those that encode NB-LRRs and all others. The major
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FIGURE 1 | Zig-zag-model. A visual presentation of the arms race
between pathogen and host according to Jones and Dangl (2006). Here, a
slightly modified version of that model is presented and as described in this
review. MAMPs/PAMPs, Microbe/Pathogen associated molecular patterns;
PTI, PAMP triggered immunity; ETS, Effector triggered susceptibility; ETI,
Effector-triggered immunity; RB, resistance breaker.

class of R genes consists of the NB-LRR type and encode proteins
that, irrespective of the pathogen they recognize, consist of three
domains; (1) the Nucleotide Binding Site (NBS) in the center of
the protein, (2) a Leucine Rich Repeat (LRR) at the C-terminal
end, and (3) a Coiled-coil (CC) or Toll and Interleukin-1 Receptor
(TIR) domain at the N-terminal end of the resistance gene prod-
uct (Moffett, 2009). The LRR determines the specificity of the
target protein and is the most variable part of the protein, there-
fore considered to be under selection pressure to evolve for
recognition of (new) target proteins. The NBS is composed of
a conserved part that contains the Nucleotide Binding site (NB)
and an ARC-domain, both required to bind and hydrolyze ATP. R
genes that contain an N-terminal TIR domain are only found in
dicots from the angiosperms (Collier et al., 2011), and through
this domain share homology to Toll-like receptor (TLR) pro-
teins, that act as PRRs in the innate immunity response in animal
systems. Those with no predicted structure at its N-terminus,
are grouped with the CC-domain (Maekawa et al., 2011a; Hao
et al., 2013) in the non-TIR group. All three domains are involved
in an interaction with each other and change conformationally
upon activation to subsequently induce the resistance response
(Lukasik and Takken, 2009; Slootweg et al., 2010).

Only a few cases have been described in which the dominant
R gene product recognizes an Avr protein through direct interac-
tion (Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006;
Krasileva et al., 2010; Chen et al., 2012; Cesari et al., 2013), of
which one is the TMV-p50 helicase domain (Ueda et al., 2006).
In the majority of known R genes recognition of the pathogen
occurs indirectly and involves host proteins, which are considered
guardees, decoys, or baits, depending on the model, as further dis-
cussed below (Model of R Gene Recognition) (Van Der Biezen
and Jones, 1998; Jones and Dangl, 2006; Van Der Hoorn and
Kamoun, 2008; Collier and Moffett, 2009).

CLONED R GENES AND THEIR KNOWN Avr DETERMINANTS
While for fungi and bacteria many resistance genes have been
cloned and characterized, resistance genes against plant viruses
have received growing interest during the last two decades, still

only few of the latter have been cloned so far. Table S1.1 gives an
up-to-date summary of all R genes against plant viruses, known
or currently under investigation. For some of these genes the viral
Avr determinant has been identified. From this large, extensive list
of R genes (>200), only 22 have been cloned and characterized.
Some R genes have functional alleles in other plant species, often
showing a similar Avr recognition. The majority of the known R
gene products are of the CC-NB-LRR type, whereas only a small
group belongs to the TIR-NB-LRR group (Table 1).

A few dominant R genes against viruses have been described
that do not belong to the NB-LRR type of genes, e.g., RTM1,
RTM2, and RTM3. Latter resistance genes have been identified
from A. thaliana and prevent the systemic spread of several
potyviruses. In those cases the virus is not able to upload into
the phloem to systemically disseminate into the host. In addi-
tion, there is also no induction of HR or production of salicylic
acid (SA), as commonly observed with NB-LRR mediated resis-
tance responses (Cosson et al., 2012). No direct interaction occurs
between the RTM proteins with the potyvirus CP (Avr) pro-
tein. A resistance gene recently identified is JAX, a lectin gene
that resembles the RTM gene based resistance and works broadly
against potexviruses in A. thaliana, indicating an important role
for lectins in plant immunity (Yamaji et al., 2012). Another type of
a distinct R gene is Tm-1, found in the wild tomato species S. hir-
sutum, encoding a protein that contains a TIM-barrel. This barrel
binds the replication proteins of Tomato mosaic virus (ToMV)
and thereby inhibits RNA replication (Ishibashi et al., 2007). Also
here, no typical NB-LRR type-associated response, like HR, is
induced. Many homologs of Tm-1 are found in other organisms
from different kingdoms, like fungi, archae, and bacteria, sug-
gesting that this gene (originally) presents a housekeeping gene
(Ishibashi et al., 2012). Both RTM and Tm-1 seem to play a role
in the inhibition of a specific step required for successful infec-
tion by the virus. Whether these present a new class of dominant
resistance genes remains to be determined.

From only a 1/3 of the total number of R genes directed against
plant viruses, the virus Avr determinant is identified (Tables 1 and
S1.1). Interestingly, functionally quite different viral proteins act
as Avr determinants. Several R genes belong to the same locus
(for instance the L-proteins in Capsicum spec.) or clearly act as
homologs (Rx1 and Rx2 from S. tuberosum) and recognize the
same Avr protein from overlapping virus species, indicating that
these conserved R proteins are able to recognize similar structures
but with an adapted spectrum (Bendahmane et al., 1995, 2000;
Moury and Verdin, 2012). For several viruses, their correspond-
ing R genes have not been identified yet, but their single dominant
nature is deduced from the observation that an HR is being trig-
gered. In some of these cases, the viral gene responsible for the
induction of resistance, as indirectly monitored by HR, has been
identified.

As described before and clear from Table 1, many different
viral proteins can act as Avr determinants; whether it is the coat
protein (e.g., L-locus from Capsicum against Tobamoviruses),
the movement protein (e.g., Tm-2/Tm-22 from tomato against
Tobamoviruses), the replicase protein (e.g., Tm-1 from tomato
against Tobacco mosaic virus) or the RNAi suppressor protein
(e.g., HRT from A. thaliana against Turnip crinkle virus), all
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Table 1 | Cloned dominant resistance genes against plant viruses, organized into the NB-LRRs and the non-NB-LRRs, and their Avr

determinants (when identified).

Plant host R gene Type: NB-LRR Recognizes Virus genus AVR References

Arabidopsis thaliana
Mouse ear cress

HRT CC-NB-LRR
[HR]

TCV [Turnip crinkle virus] Carmovirus CP 1, 2

RCY1 CC-NB-LRR
[HR]

CMV [Cucumber mosaic
virus]

Cucumovirus CP 3–6

Brassica campestris
Field mustard

BcTuR3 TIR-NBS-LRR TuMV [Turnip mosaic
virus]

Potyvirus Unknown 17, 18

Capsicum
annuum
frutescens
chinense
chacoense
Pepper

L-locus:
L1

L2

L3

L4

CC-NB-LRR TMV [Tobacco mosaic
virus] by L1234

ToMV [Tomato mosaic
virus] by L1234

TMGMV [Tobacco mild
green mosaic virus] by
L1234

BPeMV [Bell pepper
mottle virus] by L1234

PaMMV [Paprika mild
mottle virus] by L234

ObPV [Obuda pepper
virus] by L234

PMMoV [Pepper mild
mottle virus] by
L34(isolate dependent)

Tobamovirus CP (all) 25,
31–34,
43–45

Glycine max
Soybean

Rsv1
(locus)

CC-NB-LRR
[ER/HR]

SMV [Soybean mosaic
virus]

Potyvirus P3+
HC-Pro

65–69

Cucumis melo
Muskmelon

Pvr1
Pvr2

TIR-NB-LRR PRSV [Papaya ringspot
virus]

Potyvirus Unknown
Unknown

50,
288

Nicotiana glutinosa
Tobacco

N TIR-NB-LRR
[cell-cell mov.]

TMV [Tobacco mosaic
virus]

Tobamovirus p50 [Helicase] 105–111

Phaseolus vulgaris
Kidney bean

I
(locus)

TIR-NB-LRR
[ER/HR/phloem
necr.]

BCMV [Bean common
mosaic virus]
BNMV [Bean necrotic
mosaic virus]
BICMV [Blackeye
cowpea mosaic virus]
AzMV [Azuki mosaic
virus]
CABMV [Cowpea
aphid-borne mosaic virus]
PWV [Passionfruit
woodiness virus]
SMV [Soybean mosaic
virus]
ThPV [Thailand passiflora
virus]
WMV [Watermelon
mosaic virus]
ZYMV [Zucchini yellow
mosaic virus]

Potyvirus Unknown 127–133

PvVTT1 TIR-NB-LRR
[HR]

BDMV [Bean dwarf
mosaic virus]

Begomovirus BV1
(NSP)

134–139

PvCMR1
(RT4-4)

TIR-NB-LRR
[syst. necrosis]

CMV [Cucumber mosaic
virus]

Cucumovirus 2a 156

Poncirus trifoliate
Trifoliate orange

Ctv
(locus)

CC-NB-LRR CTV [Citrus tristeza virus] Closterovirus Unknown 158–160

(Continued)
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Table 1 | Continued

Plant host R gene Type: NB-LRR Recognizes Virus genus AVR References

Solanum peruvianum
Tomato

Sw5b CC-NB-LRR
[HR]

TSWV [Tomato spotted
wilt virus]
and other tospoviruses

Tospovirus NSm 179–183

Tm-2 CC-NB-LRR
[HR]

TMV [Tobacco mosaic
virus]
ToMV [Tomato mosaic
virus]
and other tobamoviruses

Tobamovirus 30 kD MP 171, 188,
189

Tm-22 CC-NB-LRR
[HR]

ToMV [Tomato mosaic
virus]
TMV [Tobacco mosaic
virus]
and other tobamoviruses

Tobamovirus 30 kD MP 171,
190–193

Solanum tuberosum
Potato

Rx1 CC-NB-LRR
[ER/HR]

PVX [Potato virus X ]
and other potex viruses

Potexvirus CP 195, 198,
199,
230–234

Rx2 CC-NB-LRR PVX [Potato virus X ] Potexvirus CP 138, 232

Y-1 TIR-NB-LRR PVY [Potato virus Y ] Potyvirus Unknown 237, 238

Vigna mungo
Black gram

CYR1 CC-NB-LRR MYMV [Mungbean
yellow mosaic virus]

Begomovirus CP 256, 257

Plant host R gene Type: non NB-LRR Recognizes Virus genus AVR References

Arabidopsis thaliana
Mouse ear cress

JAX1 Jacalin-like
[lectin gene]

Broad resistance against
potexvirus

Potexvirus Unknown 258

RTM1
RTM2
RTM3

Jacalin-like
[prev. syst. mov.]
[RTM3 not cloned]

TEV [Tobacco etch virus]
PPV [Plum pox virus]
LMV [Lettuce mosaic
virus]

Potyvirus CP
CP
CP

7–9

Solanum chilense
Tomato

Ty-1
Ty-3

RDR
[Tol.]

TYLCV [Tomato yellow
leaf curl virus]

Begomovirus No 30, 166,
167

Solanum hirsutum
Tomato

Tm-1 TIM-barrel-like
domain protein
[ER]
[Replication]

ToMV [Tomato mosaic
virus]

Tobamovirus Replicase
Helicase-
domain

169–174

1, Cooley et al., 2000; 2, Ren et al., 2000; 3, Takahashi et al., 2001; 4, Takahashi et al., 2002; 5, Takahashi et al., 2004; 6, Sekine et al., 2006; 7, Chisholm et al., 2000;

8, Whitham et al., 2000; 9, Decroocq et al., 2009; 17, Provvidenti and Hampton, 1992; 18, Ma et al., 2010; 25, Moury and Verdin, 2012; 30, Grube et al., 2000; 31,

Tomita et al., 2008; 32, Tomita et al., 2011; 33, Matsumoto et al., 2008; 34, Sawada et al., 2004; 43, De La Cruz et al., 1997; 44, Holmes, 1937; 45, Berzal-Herranz

et al., 1995; 50, Anagnostou et al., 2000; 65, Hayes et al., 2004; 66, Hajimorad and Hill, 2001; 67, Hajimorad et al., 2005a; 68, Wen et al., 2013; 69, Eggenberger

et al., 2008; 105, Whitham et al., 1994; 106, Erickson et al., 1999; 107, Baker et al., 1995; 108, Dinesh-Kumar et al., 1995; 109, Dinesh-Kumar et al., 2000; 110,

Padgett and Beachy, 1993; 111, Padgett et al., 1997; 127, Vallejos et al., 2006; 128, Ariyarathne et al., 1999; 129, Collmer et al., 2000; 130, Kelly et al., 1995; 131,

Kyle et al., 1986; 132, Fisher and Kyle, 1994; 133, Fisher and Kyle, 1996; 134, Zhou et al., 2007; 135, Garrido-Ramirez et al., 2000; 136, Seo et al., 2004; 137, Seo

et al., 2007; 138, Wang et al., 1999; 139, Gururani et al., 2012; 156, Seo et al., 2006; 158, Yang et al., 2003; 159, Rai, 2006; 160, Harper et al., 2010; 166, Hanson

et al., 2000; 167, Verlaan et al., 2013; 169, Ishibashi et al., 2007; 170, Ishibashi et al., 2012; 171, Pelham, 1966; 172, Yamafuji et al., 1991; 173, Meshi et al., 1988;

174, Kato et al., 2013; 179, Finlay, 1953; 180, Holmes, 1948; 181, Brommonschenkel et al., 2000; 182, Hallwass et al., 2014; 183, Hoffmann et al., 2001; 188, Hall,

1980; 189, Meshi et al., 1989; 190, Weber et al., 1993; 191, Lanfermeijer et al., 2003; 192, Lanfermeijer et al., 2005; 193, Tanksley et al., 1998; 195, Cockerham,

1970; 198, Solomon-Blackburn and Barker, 2001b; 199, Solomon-Blackburn and Barker, 2001a; 230, Bendahmane et al., 1995; 231, Bendahmane et al., 1999; 232,

Bendahmane et al., 2000; 233, Baures et al., 2008; 234, Querci et al., 1995; 237, Vidal et al., 2002; 238, Zvereva and Pooggin, 2012; 256, Maiti et al., 2012; 257, Pal

et al., 1991; 258, Bijaisoradat and Kuhn, 1985; 287, Yamaji et al., 2012; 288, Brotman et al., 2013.

potentially can act as elicitor of resistance (Meshi et al., 1989;
Ishibashi et al., 2012; Moury and Verdin, 2012). Interestingly, for a
majority of cases the ability to induce the resistance, as monitored
by visual HR, could be uncoupled from the endogenous function
of the viral protein but exceptions exist.

While the function of a viral protein is not a selective cri-
terium to act as Avr-determinant, the “Zig-zag-model” by Jones
and Dangl (2006) (Figure 1) implies that ETI (R gene medi-
ated resistance) is a response to ETS and governed by effectors,
i.e., molecules that act as virulence factors and contribute to
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(enhance) pathogen fitness. It is obvious that in case of RNAi
as a PTI response against viruses, viral Avr proteins containing
RSS activity contribute to virus fitness as a result of PTI sup-
pression and thereby initiating ETS. On the other hand, some
viral Avr proteins lack RSS activity which would indicate that
effectors not necessarily would have to suppress PTI (RNAi) to
contribute to virulence, as observed with several bacterial effec-
tors. Unless, instead of RNAi, another innate immune response is
being counteracted that is triggered via the activation of different
intracellular PAMP receptors (e.g., in analogy to animal TLRs, see
below).

MODEL OF R GENE RECOGNITION
Although the mode of action of resistance genes still remains a
matter of debate, models have been proposed for the triggering
of the largest and most studied group of the NB-LRR type of
dominant R genes. One of the most commonly accepted mod-
els is the “guard hypothesis” (Van Der Biezen and Jones, 1998;
Jones and Dangl, 2006). In this model the resistance gene product
guards a certain host protein, the “guardee,” and perceives alter-
ations of this protein upon interaction with the Avr determinant
to subsequently initiate a resistance response. It is possible that
multiple R genes guard the same guardee, possibly vice versa as
well, which thereby broadens the resistance spectrum of (a lim-
ited number of) R genes to a wide range of various pathogens;
e.g., Rx1 and GPa2 both interact with the same guardee RanGAP2
(Tameling and Baulcombe, 2007; Moffett, 2009). Unfortunately,
this model does not explain how resistance breaking virus iso-
lates maintain their virulence. For this reason, alternative models
have been postulated. According to the “decoy model” (Van Der
Hoorn and Kamoun, 2008), a (proteinaceous) decoy evolved to
act as a molecular sensor to only detect a pathogen without having
any other role in the household machinery of the host. The “bait
and switch model” and the similar “mousetrap model” have been
more recently postulated and proposes that the R gene product in
an “OFF” state forms a complex together with the guardee/decoy
protein, that upon interaction of the Avr protein with the com-
plex leads to a conformational switch (“ON”) and activates a
downstream signaling pathway leading to resistance (Collier and
Moffett, 2009; Lukasik and Takken, 2009). Recent studies on the
resistance gene Rx from potato against PVX have shown that
indeed intramolecular interactions keep the R gene product in
an inactive state, while interaction of the effector protein releases
these interactions and thereby activating the resistance down-
stream (Bendahmane et al., 2002; Moffett et al., 2002; Lukasik and
Takken, 2009; Slootweg et al., 2013).

The downstream mechanism after resistance induction still
remains unclear. However, one described case of the R gene from
tobacco, the N gene, has revealed some of the downstream ways
of controlling virus replication and obtaining resistance. The
N gene encodes a TIR-NB-LRR protein and confers resistance
against TMV and, upon transient co-expression with the p50 elic-
itor (helicase), an HR is induced in N. tabacum, a response that
does not occur in N. benthamiana. Bhattacharjee et al. (2009)
employed this observation in a series of experiments to dissect
and assign downstream signaling of defense responses, related to
the R gene. The studies indicated that the N gene based antiviral

response leads to a translational arrest of viral transcripts by a
process that involves Argonaute 4 (AGO4). As a result, synthesis
of viral proteins is inhibited, ultimately preventing virus accu-
mulation and spread. Whether this mechanism is generic to all
R genes against plant-viruses remains to be investigated.

More recently, two independent studies were published
that showed that the translation of R genes is tightly con-
trolled through the activity of miRNAs. One study showed the
miR482/2118 superfamily negatively controlled the translation
of NB-LRR proteins by targeting its P-loop motif (Shivaprasad
et al., 2012), while Li et al. (2012) showed that other miRNA
families controlled the translation of NB-LRR proteins as well,
with the TIR-NB-LRR protein N as example. During the on-
going “arms race” between virus and host, viruses counter-defend
against PTI/antiviral RNAi by their RSS proteins, some of which
exhibit strong affinity to bind small (si- and mi-)RNAs. As a con-
sequence such RSS proteins may suppress the miRNA induced
silencing of R genes, and lead to enhanced expression of the R
genes and induction of ETI. Considering that high expression lev-
els of R genes lead to auto-immunity (Xia et al., 2013), viral RSS
proteins with affinity to sRNAs thus may play a major role in the
induction of HR. However, viral RSS are clearly not the only cri-
terium as observed by the virus-specific activation of R genes and
final HR, which indicates that a more complex interplay between
viral effectors and R gene products is (additionally) required.

DOWNSTREAM DEFENSE RESPONSES
Dominant R genes trigger a hypersensitive response (HR) or
an extreme response (ER) in case the reaction occurs in a sin-
gle cell. Both involve a programmed cell death (PCD) response
that rapidly kills infected cells and prevents systemic spread of
the (virus) pathogen. An induced HR is quite characteristic and
involves the activation and expression of SA, jasmonic acid (JA),
nitride oxide (NO), ethylene, reactive oxygen species (ROS),
and Ca2+, and expression of Pathogenesis Related (PR)-genes.
While each component has a specificity toward certain pathogens,
only SA, ROS, and Ca2+ seem to be effective against viruses
(Loebenstein, 2009; Carr et al., 2010).

In the past, an HR was considered to be part of the resistance
response, however, recent insights into R protein downstream
signaling indicate that programmed cell death (HR) and resis-
tance are distinct physiological pathways (Bendahmane et al.,
1999; Bai et al., 2012). One of the best examples in support of
this comes from studies on Rx-based resistance against PVX. The
Rx gene product is a CC-NB-LRR protein from potato that is
triggered by the PVX structural CP protein. The Rx protein local-
izes in the cytoplasm while shuttling to and from the nucleus
thereby triggering resistance (Slootweg et al., 2010). Although
an HR is monitored, this response can be knocked out without
affecting Rx-mediated resistance against PVX (Bendahmane et al.,
1999). Another example is the N-gene mediated resistance against
TMV as described above in section Model of R Gene Recognition
(Bhattacharjee et al., 2009). Similar observations have been made
by others (Cole et al., 2001; Cawly et al., 2005; Genger et al.,
2008; Bulgarelli et al., 2010; Bai et al., 2012) and indicate that
the actual resistance response is different from an HR, although
both mostly are triggered and may act in concert to clear viral
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invasions. Whether both are triggered by a pathogens’ Avr deter-
minant or whether HR is sequentially triggered following the R
gene response is not clear.

While several interacting proteins have been identified that
control R protein activity in the absence of pathogens (e.g., RAR1,
SGT1, WRKY1, TPR1, Hsp90), more recently it has been found
that there are also proteins that modulate the strength of defense
responses (RanGAP, EDS1-PAD4) (Lu et al., 2003; Wiermer et al.,
2005; Sacco et al., 2009). The benefit for the plant in a modu-
lated fine-tuning of the ETI response to specific pathogens lies
in improved effector sensing and minimizing the fitness costs
involved with certain defense responses (free radical production,
defense protein synthesis, cell death) (Padmanabhan and Dinesh-
Kumar, 2010). While R gene mediated defense is taking place
locally at the site of entry, it is also able to induce defense sig-
naling responses in distally located tissues, known as systemic
acquired resistance (SAR) (Vlot et al., 2008). For both the N
gene in tobacco and Rx1 in potato, SAR has been demonstrated
(Delaney et al., 1994; Liu et al., 2010) and in both cases this
response is mediated by the SA-dependent pathway as a mobile
signal. SAR also prevents infection by other pathogens in the host
by activating PR genes in the systemic tissue, which are used as
a hallmark of SAR and were shown to have antimicrobial activ-
ity, although a direct inhibition on virus replication has not been
shown (Durrant and Dong, 2004; Loebenstein, 2009; Carr et al.,
2010).

FUNCTIONAL AND STRUCTURAL HOMOLOGY OF PLANT-
AND ANIMAL-SENSORS OF INNATE IMMUNITY
Viruses are pathogens to many different organisms and, irrespec-
tive of the host species they infect, often share similarities in
genome organization and functions of encoded proteins. A good
example of this is exemplified by viruses from the Bunyaviridae
family where all members infect animals with the exception of
those from the Tospovirus genus that, besides infecting their thrips
vector, are plant pathogenic and are postulated to have evolved
from a common ancestor. Likewise, as a result of co-evolution
driven by host-pathogen interactions, plants and animals show
some similarities in their innate immune sensory systems. While
in plants the aforementioned R genes are important in mount-
ing an ETI response, in animals two major classes are distin-
guished that (partially) share similarity to these R genes, however
both function as PRRs in the PTI response. The first major
class present the “nucleotide-binding domain and leucine-rich
repeat”-proteins (NLRs) and the second class is that of Toll like
receptors (TLRs), which are all found to function as PRRs in the
PTI response. Both are immune receptors aimed at detecting “for-
eign” structures and activating downstream defense responses.
The family of NLRs share the most homology, as evidenced when
looking at R genes from plants and NACHT-LRR encoding genes
from the animal kingdom (NAIP–CIITA–HET-E–TP1 domain)
(Leipe et al., 2004; Takken et al., 2006; Maekawa et al., 2011b).
They both contain a nucleotide binding domain and a LRR
(Maekawa et al., 2011b) (Figure 2). Additionally, plant R pro-
teins also share homology at their N-termini with animal TLRs,
membrane-bound immune receptors that function as sensors in
pathogen recognition across membranes.

FIGURE 2 | Comparison between the structure of plant and animal

NLRs. (A) The structure of “Nucleotide binding and leucine rich repeat
proteins” (NLRs) from the animal and plant kingdom share highest
homology, as all proteins belonging to this class have a C-terminal leucine
rich repeat (LRR), a central nucleotide binding domain and a varying
N-terminal domain (modified from Maekawa et al., 2011b). Animal TLRs
also contain an (extracellular) LRR domain and possess a TIR-domain, they
do however, lack a nucleotide binding domain. CC, Coiled-coil; TIR,
Toll-interleukin receptor; CARD, Caspase-activation and recruitment domain;
PYR, Pyrin domain; BIR, Baculovirus inhibitor-of-apoptosis repeats; NB-ARC,
Nucleotide binding and Apaf1-R protein-CED4 domain; NACHT, NAIP – CIITA
- HET-E - TP1 domain. (B) A model of NB-LRR R protein recognizing a
specific Avr protein through a guardee or decoy host protein. Upon
interaction with the Avr protein the R protein conformationally changes and
the ADP can be exchanged for ATP, leading to a second conformational
change triggering downstream resistance (Modified from Lukasik and
Takken, 2009). Whether the R protein returns to its resting state is not
known yet. G/D, Guardee/Decoy.

The NLRs of both plant and animal kingdom share homol-
ogy through the presence of the Leucine-rich repeats (LRR) in
these proteins. The most prevalent type of R proteins in plants
belong to the NB-LRR protein structural class, from which the
central nuclear binding domain (NBS) exhibits similarity to the
nucleotide binding domain in several metazoan apoptosis reg-
ulating proteins like Apaf-1 from mammals and CED-4 from
C. elegans. Due to the latter the NBS domain is also often referred
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to as NB-ARC domain (from Apaf1–R-protein–CED4) (Van Der
Biezen and Jones, 1998; Takken et al., 2006). The N-terminal
domain furthermore separates different classes of R genes; TIR-
NB-LRRs harbor a Toll/Interleukin-1 Receptor domain with sim-
ilarity to metazoan TLRs (Burch-Smith et al., 2007; Bernoux et al.,
2011; Maekawa et al., 2011b; Hao et al., 2013). CC-NB-LRRs
contain coiled coil domain forming the more irregular shaped
intertwined alpha-helices (Lupas, 1997). Parallel to the discov-
ery of many NB-LRR encoding R genes in plants in the recent
years, the search for homology to Apaf-1 and CED-4 resulted in
the recognition of the NACHT-LRR protein family in vertebrates
(Koonin and Aravind, 2000; Leipe et al., 2004). Animal NLRs acti-
vate caspase-1 leading to activation and release of the cytokine
interleukin-1 beta (Case, 2011), which subsequently induces local
and systemic immune reactions. Similar to plant NB-LRR pro-
teins, NLRs were found to act as higher-order active complexes,
e.g., NLRP1-3 and NLRC4 form a complex often termed the
inflammasome (Maekawa et al., 2011b).

TLRs represent the best studied family of PRRs in mammals
so far. They are transmembrane glycoprotein receptors with an
extracellular PAMP-binding domain consisting of multiple LRR
that fold into a “horseshoe” structure. Additionally, it possesses
intracellular signaling regions that have similarity to the intra-
cellular domain of the Interleukin-I receptor ((IL-1R), which
is referred to as Toll/IL-1R (TIR) domain that mediates down-
stream signaling upon activation of the receptor. TLRs initiate
signal cascades involving the activation of nuclear factor kappa
b (NF-κB), mitogen-activated protein kinase (MAPK), and inter-
feron regulatory factors (IRFs). This subsequently leads to a
concerted expression of interferons, cytokines, and chemokines.
Finally, inflammatory processes, cell cycle arrest, and cell death
are induced (Honda et al., 2005; Kaisho and Akira, 2006). In
humans, 10 TLRs have been identified of which TLR2, -3, -
4, -7, and -8 are involved in sensing structural components of
RNA viruses like double-stranded RNA, single-stranded RNA
and viral glycoproteins (Bowie and Unterholzner, 2008). While
most TLRs are involved in extracellular recognition of PAMPs,
TLR3, -7, and -8 are primarily restricted to intracellular compart-
ments (endoplasmic-reticulum (ER), endosomes etc.) where they
sense structural components of viral RNA. Besides TLRs cytoso-
lic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs;
RIG-I, MDA5, and LSP2) have been identified as sensors of RNA
viruses and are involved in the very early response of some RNA
viruses (Bowie and Unterholzner, 2008; Gerlier and Lyles, 2011;
Jensen and Thomsen, 2012).

Pathogen recognition in both animal and plant kingdoms
involves the LRR domain, which binds the ligand in its horse-
shoe shape, often followed by activation of a signaling cascade
through kinase phosphorylation. Structural similarities between
animal TLR/NLR and plant NB-LRR proteins point to a con-
vergent evolution of these defense-related pathways (Yue et al.,
2012). However innate immunity in animals and plants dif-
fers substantially in their downstream defense response, with
interleukin/interferon-activated inflammatory responses com-
bined with activating the adaptive immune system in mammalian
systems and a resistance response (as explained before) often seen
as a programmed cell death response in form of HR in plants.

OUTLOOK
Dominant resistance against plant viruses are of increasing inter-
est to breeders and scientists in the past years. More and more
is known about the molecular mechanisms behind R gene medi-
ated defense and the induction of the HR. However, the number
of well-studied examples is still very limited, and therefore makes
it difficult to extrapolate to other less studied R genes. In depth
studies on other R genes from different crops providing resistance
against different phytopathogens will have to show whether there
is common mechanism of defense shared between all R genes,
or whether specialization between different classes of R genes
occurs. Knowledge on mammalian innate immunity sensors and
their mode of action may provide interesting and cross polli-
nating views in this. The rapid generation of resistance breaking
virus isolates against dominant resistance genes already indicates
the importance for alternative resistance genes, to provide more
durable, and effective resistances.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fpls.2014.00307/
abstract
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