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Abstract—We develop a new graph-theoretic approach for pairwise data clustering

which is motivated by the analogies between the intuitive concept of a cluster and

that of a dominant set of vertices, a notion introduced here which generalizes that of

a maximal complete subgraph to edge-weighted graphs. We establish a

correspondence between dominant sets and the extrema of a quadratic form over

the standard simplex, thereby allowing the use of straightforward and easily

implementable continuous optimization techniques from evolutionary game theory.

Numerical examples on various point-set and image segmentation problems

confirm the potential of the proposed approach.
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1 INTRODUCTION

PAIRWISE or proximity-based, data clustering techniques are
gaining increasing popularity over traditional central grouping
techniques, which are centered around the notion of “feature” (see,
e.g., [7], [19], [20], [4]). In many real-world applications, in fact, a
feasible feature-based description of objects might be difficult to
obtain or inefficient for learning purposes while, on the other hand,
it is often possible to obtain a measure of the (dis)similarity
between objects. This is the case, for example, when features
consist of both continuous and categorical variables or when the
objects to be classified are represented in terms of graphs or
structural representations.

A classical approach to pairwise clustering uses concepts and
algorithms from graph theory [8], [2]. Indeed, it is natural to map the
data to be clustered to the nodes of a weighted graph (the so-called
similarity graph), with edge weights representing similarity rela-
tions. These methods are of significant interest since they cast
clustering as pure graph-theoretic problems for which a solid theory
and powerful algorithms have been developed. As pointed out in [2],
these methods can produce highly intricate clusters, but they rarely
optimize an easily specified global cost function. Graph-theoretic
algorithms basically consist of searching for certain combinatorial
structures in the similarity graph, such as a minimum spanning tree
[23] or a minimum cut [22] and, among these methods, a well-known
approach (the “complete-link” algorithm [8]) reduces to a search for
a complete subgraph, namely, a clique.1 Indeed, some authors [1],
[18] argue that the maximal clique is the strictest definition of a
cluster. Unfortunately, while the minimum spanning tree and the
minimum cut (with variations thereof) are notions that are explicitly
defined on edge-weighted graphs, the concept of a maximal clique is
defined on unweighted graphs, and it is not clear how to generalize it
to the edge-weighted case. As a consequence, maximal-clique-based
clustering algorithms typically work on unweighted graphs derived
from the similarity graph by means of some threshold operation [8],

[1], [6]. Although such threshold operations can be used to generate a
hierarchy of clusters displayed to a user in the form of a dendogram
[8], in tasks involving a large number of data items, such as image
segmentation, this approach is infeasible. It is therefore of consider-
able interest to extend the notion of a maximal clique to edge-
weighted graphs, and this is precisely what we do in this work,
which appeared in a preliminary form in [13].

Motivated by the previous arguments, we propose a new
approach for pairwise data clustering which is centered around a
novel graph-theoretic concept (that of a dominant set) arising from
the study of a continuous formulation of the maximum clique
problem originally due to Motzkin and Straus [11]. Ours is a
nontrivial generalization of the notion of a maximal clique in the
context of edge-weighted graphs since, in the unweighted case,
dominant sets turn out to be equivalent to (strictly) maximal
cliques. Formal properties, intuition, and empirical findings make
dominant sets reasonable candidates for a new formal definition of
a cluster in the context of edge-weighted graphs. A nice feature of
our approach is that it naturally provides a principled measure of a
cluster’s cohesiveness as well as a measure of a vertex participation
to each group.

We establish an exact correspondence between dominant sets
and local extrema of a (continuous) quadratic form over the standard
simplex. Interestingly, well-known spectral approaches lead to
similar (though intrinsically different) quadratic optimization
problems [19], [17], [20]. Computationally, this allows us to find
dominant sets (clusters) using straightforward continuous optimi-
zation techniques known as replicator dynamics, a class of dynamical
systems arising in evolutionary game theory [21]. Such systems can
be coded in a few lines of any high-level programming language,
can easily be implemented in a parallel network of locally
interacting computational units, and offer the advantage of
biological plausibility. Numerical examples on both point data sets
as well as image segmentation problems confirm the effectiveness of
the proposed approach.

2 GRAPH-THEORETIC DEFINITION OF A CLUSTER

We represent the data to be clustered as an undirected edge-
weighted (similarity) graph with no self-loops G ¼ ðV ;E;wÞ,
where V ¼ f1; . . . ; ng is the vertex set, E � V � V is the edge set,
and w : E ! IR�þ is the (positive) weight function. Vertices in G
correspond to data points, edges represent neighborhood relation-
ships, and edge-weights reflect similarity between pairs of linked
vertices. As is customary, we represent the graph G with the
corresponding weighted adjacency (or similarity) matrix, which is
the n� n symmetric matrix A ¼ ðaijÞ, where aij ¼ wði; jÞ if
ði; jÞ 2 E, and aij ¼ 0 otherwise. Clearly, since there are no self-
loops, all the elements on the main diagonal of A are zero.

A common informal definition states that “a cluster is a set of
entities which are alike, and entities from different clusters are not
alike” [8, p. 1]. Hence, a cluster should satisfy two fundamental
conditions: 1) it should have high internal homogeneity and 2) there
should be high inhomogeneity between the entities in the cluster
and those outside. When the entities are represented as an edge-
weighted graph, these two conditions amount to saying that the
weights on the edges within a cluster should be large, and those on
the edges connecting the cluster nodes to the external ones should be
small. Clearly, it is not at all obvious what “large” and “small”
precisely mean.

To give our formal definition of a cluster, we start with the
intuitive idea that the assignment of the edge-weights induces, in
some way to be described, an assignment of weights on the
vertices. This perspective gives us a chance to analyze the
assignment of the edge-weights in a fruitful way. Let S � V be a
nonempty subset of vertices and i 2 S. The (average) weighted degree
of i with regard to S is defined as:

awdegSðiÞ ¼
1

jSj
X
j2S

aij : ð1Þ
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1. Recall that a subset of vertices of a graph is said to be a clique if all its
nodes are mutually adjacent; a maximal clique is one which is not contained
in any larger clique, whereas a maximum clique is one having largest
cardinality.

0162-8828/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society



Observe that awdegfigðiÞ ¼ 0 for any i 2 V . Moreover, if j =2 S, we
define:

�Sði; jÞ ¼ aij � awdegSðiÞ : ð2Þ

Note that �figði; jÞ ¼ aij, for all i; j 2 V with i 6¼ j. Intuitively,
�Sði; jÞ measures the relative similarity between nodes j and i,
with respect to the average similarity between node i and its
neighbors in S. Note that �Sði; jÞ can be either positive or negative.

We are now in a position to formalize the notion of “induction”
of node-weights, which is captured by the following recursive
definition:

Definition 1. Let S � V be a nonempty subset of vertices and i 2 S. The
weight of i with regard to S is

wSðiÞ ¼
1; if Sj j ¼ 1P
j2Snfig

�Snfigðj; iÞwSnfigðjÞ; otherwise:

(
ð3Þ

Moreover, the total weight of S is defined to be: WðSÞ ¼
P

i2S wSðiÞ.

Note that wfi;jgðiÞ ¼ wfi;jgðjÞ ¼ aij, for all i; j 2 V ði 6¼ jÞ. Also,
observe that wSðiÞ is calculated simply as a function of the weights
on the edges of the subgraph induced by S. For example, in Fig. 1a,
we have: wf1;2;3gð3Þ ¼ �f1;2gð1; 3Þwf1;2gð1Þþ�f1;2gð2; 3Þwf1;2gð2Þ ¼ 18.
Similarly, we obtain wf1;2;3gð1Þ ¼ 10 and wf1;2;3gð2Þ ¼ 16, which
yield Wðf1; 2; 3gÞ ¼ 44.

Intuitively, wSðiÞ gives us a measure of the overall (relative)
similarity between vertex i and the vertices ofS n figwith respect to
the overall similarity among the vertices in S n fig. For example, for
the graph in Fig. 1b, we have wf1;2;3;4gð1Þ < 0, while for that in Fig. 1c
we have wf1;2;3;4gð1Þ > 0. This can be explained by considering that
in Fig. 1b, vertex 1 is loosely coupled with the remaining vertices,
which on their own form a tightly coupled group, whereas in Fig. 1c,
exactly the opposite is true. Further, referring again to the graph in
Fig. 1a, observe that the edges incident to vertex 1 are the lightest
ones, the heaviest ones are incident to vertex 3, and those incident to
2 are the lightest as well as the heaviest ones. This induces a sort of
natural ranking among the vertices of the graph, which is indeed
captured by the notions introduced above: In fact, we have
wf1;2;3gð1Þ < wf1;2;3gð2Þ < wf1;2;3gð3Þ.

The following definition represents our formalization of the
concept of a cluster in an edge-weighted graph.

Definition 2. A nonempty subset of vertices S � V such that WðT Þ > 0
for any nonempty T � S, is said to be dominant if:

1. wSðiÞ > 0, for all i 2 S,
2. wS[figðiÞ < 0, for all i =2 S.

The two conditions of the above definition correspond to the two
main properties of a cluster: the first regards internal homogeneity,
whereas the second regards external inhomogeneity. The condition
WðT Þ > 0 for any nonempty T � S is a technicality explained in
some detail in [12].

To illustrate, in the graph of Fig. 1d, the subset of vertices f1; 2; 3g
is dominant, and this may be explained by observing that the edge
weights “internal” to that set (60, 70, and 90) are larger than those
between internal and external vertices (which are between 5 and 25).

As the example suggests, the main property of a dominant set is that
the overall similarity among internal nodes is higher than that
between external and internal nodes, and this fact is the motivation
of considering a dominant set as a cluster of nodes. Note that, by
their own definition, dominant sets are expected to capture highly
compact structures. Indeed, it is simple to show that our definition
of a dominant set is equivalent to that of a (strictly) maximal clique
when applied to unweighted graphs [12]. This means that we have
the same concept in the limit of uniform similarity of all objects. This
is a further motivation to consider dominant sets as clusters since
maximal cliques are a classic formalization of the notion of a cluster
[1], [6], [8], [18].

Before concluding this section, we provide a useful characteriza-
tion of the notions introduced above in terms of determinants. To
this end, we need some new notations. IfS � V , we denote byAS the
submatrix ofA formed by the rows and the columns indexed by the
elements of S. Additionally, we define the matrix BS as:

BS ¼ 0 eT

e AS

� �
;

where e is a vector of appropriate length consisting of unit entries,
and “T” denotes transposition. Assuming S ¼ fi1; . . . ; img with
i1 < � � � < im, the matrix jBS is defined to be:

jBS ¼
0 eT

e A1
S � � � Aj�1

S 0 Ajþ1
S � � � Am

S

� �
;

where Ai
S denotes the ith column of AS .

Lemma 1. Let S ¼ fi1; . . . ; img � V be a nonempty subset of vertices
and, without loss of generality, assume i1 < � � � < im. Then, we have:

wSðihÞ ¼ ð�1Þm det hBS

� �
; ð4Þ

for any ih 2 S. Moreover,

WðSÞ ¼ ð�1Þm detðBSÞ: ð5Þ

Proof. Proceeds by induction and exploits elementary properties of
the determinant (see [12], for details). tu
An alternative, useful way of computing the wSðiÞs (when

jSj > 1) is given by the formula:

wSðiÞ ¼
X

j2Snfig
ðaij � ahjÞwSnfigðjÞ; ð6Þ

where h is an arbitrary element of S n fig (it can be shown [12] that
the sum in (6) does not depend upon the choice of h).

3 FROM DOMINANT SETS TO LOCAL OPTIMA

Consider a similarity graph G ¼ ðV ;E;wÞ with n vertices, and its
weighted adjacency matrix A. A common way to represent a
cluster of vertices (see, e.g., [19], [17], [20]) is to associate a (real-
valued) n-dimensional vector to it, where its components express
the participation of nodes in the cluster: If a component has a small
value, then the corresponding node is weakly associated with the
cluster, whereas if it has a large value, the node is strongly

168 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 1, JANUARY 2007
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associated with the cluster. Components corresponding to nodes

not participating in the cluster are zero.
As pointed out before, a good cluster is one where elements that

are strongly associated with it also have large values connecting

one another in the similarity matrix. Hence, a natural way of

defining the cohesiveness of a cluster is given by the following

quadratic form:

fðxÞ ¼ xTAx ð7Þ

and this allows us to formulate the (pairwise) clustering problem

as the problem of finding a vector x that maximizes f . However,

note that the objective function is useless without some normal-

ization of the components of x and, thus, we impose to it simplex

(or probability) constraints. This yields the following standard

quadratic program, which is a generalization of the so-called

Motzkin-Straus program [11]:

maximize fðxÞ
subject to x 2 �;

ð8Þ

where

� ¼ fx 2 IRn : x � 0 and eTx ¼ 1g

is the standard simplex of lRn. Thus, within this continuous

formulation, a maximally cohesive cluster corresponds to a (local)

solution of program (8). It is the purpose of this section to show

that this notion of a cluster is intimately related to dominant sets,

and that the two notions are indeed two sides of the same coin.
Given a vector x 2 �, the support of x is defined as the set of

indices corresponding to its nonzero components, that is,

�ðxÞ ¼ fi 2 V : xi 6¼ 0g. A point x 2 � satisfies the Karush-Kuhn-

Tucker (KKT) conditions for problem (8), i.e., the first-order

necessary conditions for local optimality [9], if there exist nþ 1 real

constants (Lagrange multipliers) �1; . . . ; �n and �, with �i � 0 for

all i ¼ 1 . . .n, such that:

ðAxÞi � �þ �i ¼ 0 ð9Þ

for all i ¼ 1 . . .n, and
Pn

i¼1 xi�i ¼ 0.
Note that, since both xi and �i are nonnegative for all i ¼ 1 . . .n,

the latter condition is equivalent to saying that i 2 �ðxÞ implies

�i ¼ 0. Hence, the KKT conditions can be rewritten as:

ðAxÞi
¼ �; if i 2 �ðxÞ
� �; otherwise

�
ð10Þ

for some real constant � (indeed, it is immediate to see that

� ¼ xTAx). A point x 2 � satisfying (10) will be called a KKT point

throughout.
With the notations introduced at the end of the previous

section, note that the KKT equality conditions in (10) amount to

saying that there exists a real number � such that:

B�ð�; xi1 ; . . . ; xim Þ
T ¼ ð1; 0; . . . ; 0ÞT; ð11Þ

where � ¼ �ðxÞ ¼ fi1; . . . ; img with i1 < � � � < im.

Definition 3. We say that a nonempty subset of vertices S admits

weighted characteristic vector xS 2 � if it has nonnull total weight

WðSÞ, in which case, we set:

xSi ¼
wSðiÞ
WðSÞ ; if i 2 S
0; otherwise:

�
ð12Þ

Note that, by definition, dominant sets always admit a weighted

characteristic vector.
The next two results establish useful connections between KKT

points of program (8) and weighted characteristic vectors.

Lemma 2. Let � ¼ �ðxÞ be the support of a vector x 2 � which admits

weighted characteristic vector x�. Then, x satisfies the KKT equality

conditions in (10) if and only if x ¼ x�. Moreover, in this case, we have:

w�[fjgðjÞ
Wð�Þ ¼ ðAxÞj � ðAxÞi ¼ ��j ð13Þ

for all i 2 � and j =2 �, where the �js are the (nonnegative) Lagrange
multipliers of program (8).

Proof. Note that conditions (11), which are equivalent to the KKT
equality conditions in (10), can be regarded as a system of linear
equations in the unknowns � and xis (i 2 �). From Lemma 1,
the system has a unique solution since det B�ð Þ 6¼ 0. Hence,
supposing � ¼ fi1; . . . ; img and, without loss of generality,
i1 < . . . < im, from Cramer’s rule and Lemma 1, we have:

xih ¼
det hB�

� �
detðB�Þ

¼ ð�1Þmw�ðihÞ
ð�1ÞmWð�Þ ¼

w�ðihÞ
Wð�Þ

for any 1 � h � m. Therefore, x ¼ x�.
The fact that ðAxÞj � ðAxÞi ¼ ��j, for i 2 � and j =2 �,

follows immediately from (9). Finally, using (6), we obtain:

w�[fjgðjÞ
Wð�Þ ¼

P
h2�ðajh � aihÞw�ðhÞ

Wð�Þ
¼
X
h2�

ajhx
�
h �

X
h2�

aihx
�
h

¼ ðAx�Þj � ðAx�Þi;

which concludes the proof since x ¼ x�. tu

Proposition 1. Let x 2 � be a vector whose support � ¼ �ðxÞ has
positive total weight Wð�Þ and, hence, admitting weighted character-
istic vector x�. Then, x is a KKT point for (8) if and only if the
following conditions hold:

1. x ¼ x�,
2. w�[fjgðjÞ � 0, for all j =2 �.

Proof. Vector x satisfies the KKT conditions (10) if and only if
x ¼ x� (cf. Lemma 2) and ðAxÞj � ðAxÞi for any j =2 � and i 2 �,
but from (13) the latter condition amounts to saying that
w�[fjgðjÞ � 0, since Wð�Þ > 0. tu
The following theorem, which is the main result of this section,

establishes an interesting connection between dominant sets and
local solutions of program (8).

Theorem 1. If S is a dominant subset of vertices, then its weighted
characteristic vector xS is a strict local solution of program (8).

Conversely, if x� is a strict local solution of program (8)
then its support � ¼ �ðx�Þ is a dominant set, provided that
w�[figðiÞ 6¼ 0 for all i =2 �.

Proof. First, we note that the well-known bordered Hessian test from
nonlinear programming [9] can be reformulated in the following
way (see [12] for details): Given a subset ofmverticesQ � V ,AQ is
negative definite in the subspace fy 2 lRm :

Pm
i¼1 yi ¼ 0g if and

only if WðT Þ > 0 for any nonempty subset T � Q.
Now, let S be a dominant set. Then, from Proposition 1, it

follows that xS is a KKT point for (8). Moreover, by Lemma 2,
we have that the jth nonnegative Lagrange multiplier �j (j =2 S)
is positive if and only if wS[fjgðjÞ < 0. Therefore, the second-
order sufficient conditions for local optimality [9], together with
the bordered Hessian test, imply that xS is a strict local solution
for program (8).

Conversely, suppose that x� is a strict local solution of (8), and
let � ¼ �ðx�Þ be its support. After some algebra, it follows that
the submatrix A� is negative definite in the subspace fy 2 lRm :Pm

i¼1 yi ¼ 0g, where m ¼ j�j. Hence, from the bordered Hessian
test, we have WðT Þ > 0 for any nonempty subset T � �.
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Moreover, we have wSðiÞ > 0 for all i 2 S. This follows directly
from Lemma 2 (in fact, x� is a KKT point) and the definition of
weighted characteristic vector. Finally, Proposition 1 states that
x� ¼ x� and w�[fjgðjÞ � 0, for all j =2 �. Therefore, the fact that � is
dominant follows trivially from the hypotheses. tu
The condition that w�[figðiÞ 6¼ 0 for all i =2 � is a technicality due

to the presence of “spurious” solutions in (8), namely, solutions
whose support does not admit a weighted characteristic vector.
However, this corresponds to a nongeneric situation and, thus, in
the following, we shall ignore it.

By virtue of Theorem 1, dominant sets are in correspondence
with (strict local) solutions of the quadratic program shown in (8).
This is interesting because, recently, other quadratic programming
formulations have been proposed for clustering and segmentation,
though motivated by the different idea of finding cuts in a
similarity graph [20] or computing eigenvalues and eigenvectors of
the weighted adjacency matrix [17], [19]. In particular, note that we
use the same objective function as Sarkar and Boyer [19] (see also
[17]), which provides a measure of the cohesiveness of a cluster.
However, we differ from them in the feasible region, namely, we
look for solutions in the standard simplex, whereas they consider
the sphere. This is important as the components of the weighted
characteristic vectors give us a measure of the participation of the
corresponding vertices in the cluster. Hence, in contrast to Sarkar
and Boyer’s approach, we automatically avoid the nuisance of
dealing with negative components, which are meaningless. Note
also that no exact combinatorial interpretation is offered for Sarkar
and Boyer’s “eigenclusters.”

The quadratic program we have considered in this section was
first analyzed by Motzkin and Straus [11] limited to the case of
unweighted graphs, where the matrix A in (8) is a standard 0/1
adjacency matrix. In this case, it turns out that there exists a
correspondence between local/global solutions of the program
and maximal/maximum cliques of the (unweighted) graph [5],
[16]. Since, in unweighted graphs, dominant sets turn out to be
equivalent to (strictly) maximal cliques [12], Theorem 1 can be
considered as a step toward generalizing the Motzkin-Straus
theorem to edge-weighted graphs (see [5] for a generalization
involving vertex-weighted graphs).

A straightforward way to find (local) solutions of the program
shown in (8) is given by the so-called replicator dynamics, a class of
continuous and discrete-time dynamical systems arising in evolu-
tionary game theory [21] which are also intimately related to
relaxation labeling processes. In our simulations, we used the
following model:

xiðtþ 1Þ ¼ xiðtÞ
ðAxÞi

xðtÞTAxðtÞ
ð14Þ

for i ¼ 1 . . .n, which corresponds to the discrete-time version of
first-order replicator equations (see, e.g., [21]). It is readily seen that
the simplex � is invariant under these dynamics, which means that
every trajectory starting in � will remain in � for all future times.

Moreover, it can be proven that, since A is symmetric, the objective
function fðxÞ ¼ xTAx is strictly increasing along any nonconstant
trajectory of (14), and its asymptotically stable points are in one-to-
one correspondence to strict local solutions of (8) [21]. These, in turn,
correspond to dominant sets for the similarity matrix A.

4 NUMERICAL EXAMPLES

A simple, yet effective strategy to obtain a hard partition of the input
data into coherent groups, is as follows: 1) Find a dominant set (i.e., a
cluster), 2) remove the vertices in the cluster from the similarity
graph, and 3) reiterate on the remaining vertices. Thus, the
algorithm iteratively peels off clusters (dominant sets) and, at each
iteration, it determines one by finding a local solution of the
quadratic program shown in (8). Clearly, as we proceed, the graphs
wherein dominant sets are looked for become smaller and smaller,
and this makes the algorithm particularly efficient. In principle, we
should keep peeling off clusters until all data have been covered, but
in applications involving large and noisy data sets, such as, for
example, image segmentation, this makes little sense. In these cases,
a better strategy is to stop the algorithm prematurely when most of
the data points have been classified and then assign the unprocessed
ones to the “nearest” cluster according to some distance criterion.
Typically, these unassigned items are few noisy and peripheral
points that cannot be naturally grouped into the major clusters.

In order to understand the behavior of this peeling strategy and to
evaluate its robustness against perturbations of the similarity
values, we conducted the following experiment on the two-
Gaussian data set shown in Fig. 2a. Each point in the original set
was randomly perturbed by adding a normally distributed noise,
with increasing values of the standard deviation �. For each value of
�, 100 different data sets were constructed, on each of which we ran
our peeling clustering technique. For the sake of comparison, we
also ran on the same dataK-means [8], Normalized Cut (NCut) [20],
and DBSCAN [10]. Fig. 2 shows the classification accuracy of the
four algorithms as a function of noise. As can be seen,K-means and
our peeling strategy exhibit essentially the same robust behavior,
whereas NCut and DBSCAN turn out to be more sensitive to noise.

In many computer vision problems, one would like to extract
structure from cluttered background. This is the case, for example,
with figure/ground separation and perceptual grouping. In such
cases, standard algorithms such as K-means or graph partitioning
techniques are not expected to work well, due to their insisting on
partitioning all the input data and, hence, the unstructured clutter
points too, into coherent groups. Our approach, on the contrary,
appears to be particularly suited for such applications since it
allows one to extract as many clusters as desired, while leaving the
remaining points (namely, the clutter) ungrouped.

To illustrate this point, consider the data set shown in Fig. 3a,
containing a dense central cluster of random points (the “figure”),
surrounded by equally distributed clutter points (the “back-
ground”). As expected, on these data, both K-means and NCut
failed as they both split the central group in two pieces, whereas our
peeling algorithm, as well as DBSCAN, produced accurate results.
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Fig. 2. Evaluating the robustness of the peeling strategy against random perturbations. (a) Original 1,000-point data set obtained from a mixture of two Gaussian

distributions. (b), (c), (d), and (e) Classification accuracy obtained with (b) K-means, (c) NCut, (d) DBSCAN, and (e) dominant sets, as a function of noise.



In order to study the robustness of the approach against random
noise in the background, we let the level of clutter vary, starting from
100 to 1,000 points. Note that DBSCAN automatically distinguishes
between noise (i.e., ground) and nonnoise (i.e., figure) points,
whereas, for K-means and NCut, the decision as to label a given
group as figure and the other as ground was taken using a simple
majority rule (using the ground truth). As for our approach, we
simply declared figure the (first) dominant set found and back-
ground the remaining points. For each noise level, we calculated the
precision of the four algorithms, as the percentage of true figure
points among the number of points classified as figure. Fig. 3 shows
the behavior of the precision curves as a function of noise for the four
algorithms. As it turns out, ours substantially outperforms both
K-means and NCut, and performs slightly better than DBSCAN.

A third experiment was done on the 1,000-point data set shown
in Fig. 4a, which has become a standard benchmark for pairwise
clustering techniques. The main feature of this data set is that it
contains two structurally different (noisy) clusters, one being
compact, and the other having an elongated structure. Here,
K-means produces totally wrong results, as shown in Fig. 4b. A
direct application of our algorithm to the similarity matrix whose
entries are taken to be inversely proportional to the Euclidean
distances would yield an oversegmentation of the external ring
(the central disc being separated correctly). Indeed, this is not
surprising due to the intrinsic feature of dominant sets of capturing
compact groups. To avoid this phenomenon, we used the path-
based (dis)similarity measure recently proposed by Fischer and
Buhmann in [3], which stresses connectedness of data points via
mediating elements. The results obtained are shown in Fig. 4e and
are similar to those produced by NCut and DBSCAN: All three
algorithms were able to separate correctly the data into two classes.

As for the computational time, we remark that in the three series
of experiments all algorithms (exceptK-means which was by far the
fastest) typically took a few seconds to converge, with our algorithm
being two to three time faster than both NCut and DBSCAN.

Finally, we apply our clustering framework to the image
segmentation problem. The image to be segmented is represented
as an edge-weighted undirected graph, where vertices correspond
to individual pixels and the edge-weights reflect the “similarity”
between pairs of vertices. In our experiments, the similarity between
pixels i and j was measured by wði; jÞ ¼ expð�kFðiÞ � FðjÞk2

2=�
2Þ,

where � is a positive real number which affects the decreasing rate of
w, and FðiÞ is defined as the intensity value at node i, normalized to
a real number in the interval [0, 1], for segmenting brightness
images, and as FðiÞ ¼ ½v; vs sinðhÞ; vs cosðhÞ	ðiÞ, where h, s, and v are
the HSV values of pixel i, for color segmentation.

For the sake of comparison, we also ran NCut on the same
images.2 The results presented here were obtained after a careful
tuning of its parameters. To get cleaner segmentations for both
algorithms, connected components whose area was around
0.1 percent of that of the whole image were incorporated into
larger adjacent regions using a straightforward spatial proximity
criterion. We remark that only 2-3 percent of the pixels in the
whole images were involved in this operation, which means that
the overall quality of the segmentations cannot be credited to this
postprocessing. Fig. 5 shows the results obtained with our
segmentation algorithm and NCut on various natural brightness
and color images (typical image size is 90� 120 pixels). On
average, our algorithm (and NCut too) took only a few seconds to
return a segmentation on a machine equipped with a 2 GHz Intel
Pentium IV. As can be seen, the dominant-set segmentations are
substantially cleaner than those obtained with NCut, which
typically tends to produce oversegmented results.

5 CONCLUSIONS

We have introduced the notion of a dominant set of vertices in an
edge-weighted graph and have shown how this concept can be
relevant in pairwise data clustering. We have established a
connection between the (combinatorial) problem of finding
dominant sets and (continuous) quadratic programming, and this
allows the use of straightforward dynamics from evolutionary
game theory to determine them. Experimentally, we have demon-
strated the potential of our approach on various point-set and
image segmentation examples. Extensions of the approach
presented here involving hierarchical data partitioning and out-
of-sample extensions of dominant-set clusters can be found in [14],
[15], respectively. We are currently working toward providing a
massive experimental evaluation of our approach on (high-
resolution) image and spatio-temporal video segmentation.
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Fig. 3. An example of separating structure from background clutter. (a) Original 400-point data set (100 points for the central, dense group, and 300 for the background).

(b), (c), (d), and (e) Precision curves obtained with (b) K-means, (c) NCut, (d) DBSCAN, and (e) dominant sets, as a function of clutter.

Fig. 4. A clustering example with structurally different groups. (a) Original 1,000-point data set. (b), (c), (d), and (e) Results obtained with (b) K-mean, (c) NCut,

(d) DBSCAN, and (e) dominant sets.

2. We used Shi’s implementation, which can be downloaded from:
http://www.hid.ri.cmu.edu/Hid/software_ncutPublic.html.
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Fig. 5. Image segmentation results. Top row: Original images (from left to right: three brightness and two color images). Middle row: Segmentations obtained with

dominant sets. Bottom row: Segmentations obtained with NCut.


