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Habitat heterogeneity and dispersal limitation are widely considered to be the two major mechanisms in determining tree 
species distributions. However, few studies have quantified the relative importance of these two mechanisms at different life 
stages of trees. Moreover, rigorous quantification of the effects of dominant tree species in determining species distributions 
has seldom been explored. In the present study, we tested the hypothesis that the distribution of tree species is regulated by 
different mechanisms at different life history stages. In particular, we hypothesised that dispersal limitation regulates the 
distribution of trees at early life stages and that environmental factors control the distribution of trees as they grow, because 
of niche differentiation resulting from environmental filtering. To test this, trees in 400-m2 quadrats in a 20-ha plot in 
Xishuangbanna, southwest China were grouped into four classes on the basis of the diameter at breast height (DBH) that 
roughly represent different stages in the life history of trees. A neighbourhood index was computed to represent a neutral 
spatial autocorrelation effect. We used both biotic (dominant species) and abiotic (topography and soil) predictor variables 
to model the distribution of each target species while controlling for spatial autocorrelation within each of the DBH 
classes. To determine which factors played the largest role in regulating target species distribution, the simulated anneal-
ing method was used in model selection based on Akaike information criterion (AIC) values. The results showed that the 
relative importance of neutral and niche processes in regulating species distribution varied across life stages. The neutral 
neighbourhood index played the most important role in determining the distributions of small trees (1 cm  DBH   
10 cm), and dominant species, as biotic environmental predictor variables, were the next most important regulators for 
trees of this size. Environmental predictor variables played the most important role in determining the distributions of large 
trees (10 cm  DBH). This finding builds on previous research into the relative importance of neutral and niche processes 
in determining species distributions regardless of life stages or DBH classes.

Over the past century, numerous theories, including the 
Janzen–Connell hypothesis (Janzen 1970, Connell 1978), 
niche assembly theories (Hutchinson 1957, Wright 2002) 
and unified neutral theory (Hubbell 2001), have been pro-
posed to explain species coexistence. Niche theory, and more 
specifically niche-assembly theory, has been proposed as  
a major mechanism for the coexistence of tree species  
(Silvertown et al. 1999). The core concept of niche theory 
stems from Darwin’s theory of evolution by natural selec-
tion, in which species are predicted to be closely associated 
with particular environmental conditions (Losos and Ricklefs 
2009). Niche theory itself can be traced back to half a cen-
tury ago, when Hutchinson (1957) proposed that each spe-
cies has its own niche. Niche-assembly theory has motivated 
numerous studies to model and test the effects of habitat on 
the spatial and temporal distributions of species. These stud-
ies have contributed greatly to our understanding of species 
coexistence in various ecosystems, including tropical (trees: 

John et al. 2007, palms: Tuomisto et al. 2003), subtropical 
(evergreen forest plants: Legendre et al. 2009, Wang et al. 
2009), temperate (understory ferns: Gilbert and Lechowicz 
2004) and savanna ecosystems (tree-grass mixtures: Sankaran 
et al. 2004).

Habitat variations are also important factors in the regu-
lation of species distributions, and species can vary in their 
responses to environmental factors (Gilbert and Lechowicz 
2004, Legendre et al. 2009, Tuomisto et al. 2003). For exam-
ple, some species may be positively correlated with particular 
explanatory variables whereas others respond negatively. To 
understand the habitat associations of individual species, 
precise field-oriented studies are typically required (Clark et al. 
1998). For example, Levine and HilleRisLambers (2009) 
conducted an experiment on serpentine annual plants to test 
the stabilising effects of niche differences. However, this type 
of experiment may not be suitable for study species that have 
long life spans, such as trees.
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Although various methods have been developed for study-
ing species–habitat relationships, few of them incorporated 
the effect of spatial autocorrelations in species distribution 
analysis before Legendre and Fortin (1989). Legendre (1993) 
suggested that spatial autocorrelation should be treated prop-
erly in the analysis of spatial processes. The spatial autocor-
relation in tree species distribution is primarily caused by 
environmental factors and community processes (Legendre 
1993). Of the community processes, dispersal limitation has 
been proposed as the most important mechanism for the 
maintenance of species diversity (Hubbell et al. 1999,  
Hubbell 2001). Recently, many empirical and theoretical 
studies have provided strong support for these hypotheses 
(Shen et al. 2009, Chen et al. 2010).

Abiotic factors such as soil properties, topographic fac-
tors and gap openness are widely considered to be impor-
tant factors in the regulation of species distributions 
(Hubbell et al. 1999, Harms et al. 2001, John et al. 2007). 
At mesoscales (≈ 1–100 km2), abiotic factors have been 
verified to be important in regulating species distributions 
(Clark et al. 1998, 1999), but at the local scale (0–1 km2), 
more studies are still required. In addition, biotic factors 
such as neighbourhood effects are also important in deter-
mining species distributions (Hubbell 2001, Uriarte et al. 
2004, Canham and Uriarte 2006). Traditionally, ecologists 
have tended to use all of the surrounding neighbour trees 
to analyse the performance of a target species (Uriarte et al. 
2004). The dominant species have rarely been considered 
separately as predictor variables in quantifying the distribu-
tions of target tree species.

Another issue that is often ignored in species–habitat 
studies is that conspecific trees may not respond to the 
same explanatory variables consistently across life stages. 
So far, few studies have taken individual tree size into 
consideration in the analysis of species spatial distribu-
tion (Comita et al. 2007, Lai et al. 2009). Many stud-
ies have assumed that all trees respond similarly to the 
environment regardless of life stage. Using the entire  
population of a species regardless of the size classes of 
trees may obscure our understanding of species–habitat 
relationships.

Previous studies have shown that the contribution  
of demographic niches to species distribution is limited 
(Condit et al. 2006), and trees are more clumped than 
would be predicted by a random distribution (Condit et al. 
2000). We hypothesise that neutral processes play a greater 
role than niche processes in determining trees distributions, 
especially at early life stages but that the relative impor-
tance of neutral processes is reduced and species–habitat 
association is enhanced throughout tree growth because of 
the effects of environmental filtering (Norden et al. 2009). 
Because the dominant species are the most abundant and 
widely distributed and have the largest total basal area in the 
community, they might play an important role in determin-
ing the distributions of trees. In this study, we integrated 
dominant species, edaphic factors and topographic factors 
into a regression model to fit the spatial distribution of tree 
species while controlling for a spatial autocorrelation effect 
along multiple life stages in a seasonal rain forest in south-
west China.

Methods

Study area

The study was conducted in a 20-ha tropical seasonal rain for-
est plot in Xishuangbanna, southwest China (21°37′08″N, 
101°35′07″E). This region is located on the northern edge 
of the Asian tropical rain forests and is identified as a part 
of the Indo–Burma biodiversity hotspot in the list of the 25  
top priorities in global biodiversity conservation (Myers et al. 
2000). The elevation of the plot ranges from 708.2 m to 
869.1 m (Fig. 1). Three perennial streams traverse the plot 
and merge together at the southeastern corner. The area is 
dominated by warm, wet air masses from the Indian Ocean 
in the summer and by continental air masses from sub- 
tropical regions in the winter, resulting in the alternation 
between rainy (May to October) and dry (November to 
April) seasons. The soil is derived from both igneous and 
sedimentary rocks (Cao et al. 2006).

Data collection

The 20-ha plot was divided into 500 quadrats of 400 m2 each. 
All trees with diameter at breast height (DBH)  1 cm were 
tagged, identified and mapped. All branches with DBH   
1 cm were also tagged and measured for multi-stemmed  
trees (trees with more than one stem).

We further divided each 400-m2 quadrat into 16 sub-
quadrats of 25 m2 each. If 70% or more of the total area of 
a sub-quadrat consisted of open canopy and the average tree 
height was under 10 m, the sub-quadrat was classified as a 
‘gap’. A gap openness value between 0 and 16 was assigned to 
each 400-m2 quadrat based on the number of sub-quadrats 
within that quadrat that were classified as gaps.

Soil was sampled using a regular grid of 30  30 m 
throughout the 20-ha plot. Each of the 252 nodes in this 
grid was used as a ‘base point’. Together with each base 

Figure 1. Topographic map of the 20-ha study plot.
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point, two additional sampling points were located at ran-
dom combinations of 2 and 5 m, 2 and 15 m or 5 and 15 
m along a random compass bearing away from the associ-
ated base point. At each sample point, 500 g of topsoil was 
collected from a depth between 0 and 10 cm. A total of 
756 soil samples were taken. Fresh soil samples were placed  
into pre-labelled plastic bags and shipped to the Biogeochem-
istry Laboratory at the Xishuangbanna Tropical Botanical  
Garden. In the laboratory, the pH values of the soil samples 
were measured as immediately as possible using a potenti-
ometer in fresh soil after water extraction (soil/water  1/2.5 
weight/volume). The soil samples were then air-dried, 
smashed, sieved using 1-mm and 0.15-mm mesh and stored 
in plastic bags for later additional analysis (Liu et al. 1996).

Soil bulk density was measured using the corer method, 
soil organic matter was measured in soil oxidised with 
H2SO4–K2Cr2O7, and carbon content was estimated by 
volume. The micro-Kjeldahl method was used to evaluate 
total nitrogen (N) using a mixture of H2SO4 and K2SO4– 
CuSO4–Se catalyst, and an automatic steam distilling unit 
was used to determine the soil N content in the solution. 
Micro-diffusion was used to determine the available N in 
the soil.

The soil was digested in HNO3–HClO4 solution, and the 
total phosphorus (P) and potassium (K) were determined 
using an inductively coupled plasma atomic emission spec-
trometer. Extractable P was released from the soil in a solution 
containing 0.03 mol l21 NH4F and 0.025 mol l21 HCl and 
estimated colorimetrically. Exchangeable K was extracted in 
a neutral 1-mol l21 CH3COONH4 solution, and the total K 
in the extract was determined using an inductively coupled 
plasma atomic emission spectrometer. Table 1 presents the 
basic statistics for the soil measurements described here.

Gamma regression analysis

Tree species distributions are commonly described according 
to the numbers of individuals of a target species in quadrats 
of a certain area (Harms et al. 2001). Other measures, how-
ever, may provide additional insight into the mechanisms 
regulating tree species distributions (Morlon et al. 2009). 
The lattice basal area, which reflects tree size and biomass 
accumulation of the target species within each quadrat, was 
used as the response variable in this study. Correspondingly, 
a gamma regression model was used for regression analysis 
of the data (Dobson 1990). The gamma regression model 
is a special case of the generalised linear model in which the 

error term follows a gamma distribution. We chose to use 
this approach to model the total basal area because this vari-
able is not normally distributed and thus not suitable for 
multiple regression analysis. The flexibility of the gamma 
regression is more appropriate for modelling the total basal 
area. To relate the response variable to the various explana-
tory variables in the gamma regression, we used a commonly 
used inverse link function.

The basal area of each target species in each 400-m2 quad-
rat was summed to obtain a vector. To avoid a zero-inflated 
effect and thus meet the positive data requirement of the 
gamma regression, we further removed all zero data and used 
the final vector as the response variable. Gamma regression 
models were calculated only for those tree species that were 
present in at least 30 quadrats and had at least one individual 
with DBH  1 cm in each quadrat. Rare species generated 
unstable models.

The purpose of grouping trees into different DBH classes 
was to categorise trees on the basis of life stage. For a tree 
with multiple stems, we computed the basal area of each 
stem. We then summed all the basal areas to obtain a total 
basal area for the tree. We then assigned a DBH to the multi-
stemmed tree using the equation:

multi-stemmed DBH 2
total basal area of all stems

 
π

	 (1)

Following this transformation, we treated multi-stemmed 
trees as single-stemmed trees of the same total basal area.  
We then grouped all trees into five DBH classes following 
He et al. (1997):

class 1  1 to  5 cm DBH,
class 2  5 to  10 cm DBH,
class 3  10 to  25 cm DBH, and
class 4  DBH  25 cm;

We further defined class 0  DBH  1 cm, which encom-
passes the previous four classes.

After grouping, there were 191, 147, 61, 57 and 22 tree 
species in classes 0 to 4, respectively (Supplementary mate-
rial Appendix 1, Table A1).

To explain the spatial distributions of the tree species, 
we used three groups of explanatory variables. Each variable 
was centred and divided by its standard deviation, and a 
value of 4 was then added to each variable in order to trans-
form all the explanatory variables into positive numbers. 
The first group of variables included soil properties. Using 
the original soil data, an ordinary kriging was performed to 
generate a sub-quadrat grid map of 10  10 m for each soil 
variable (Cressie 1993). The values of the soil variables for 
each 400-m2 quadrat were calculated as the mean of the val-
ues at each of the nine nodes of the 10  10 m sub-quadrats 
within that quadrat, as soil data were originally sampled at 
a scale of 30  30 m. This was performed using the geoR 
package in the R statistical language (R Development Core 
Team 2009).

The topographic variables and the presence or absence of 
gaps comprised the second group of explanatory variables. 
The topographic variables included the mean elevation, 
mean convexity, mean aspect and mean slope in each quad-
rat (Legendre et al. 2009).

Table 1. Basic statistics calculated for 756 soil measurements from 
the study plot.

Soil explanatory variables SD Mean

Organic matter (g kg21) 5.30 18.4
Total N (g kg21) 0.40 1.83
Ammonium N (mg kg21) 41.2 180
Total P (g kg21) 0.10 0.34
Extractable P (mg kg21) 6.27 4.89
Total K (g kg21) 3.46 11.2
Exchangeable K (mg kg21) 89.8 181
pH 0.64 4.91
Soil bulk density (g cm23) 0.12 1.13



4

suitable for assessing the relative importance of the explana-
tory variables. The p-values associated with these coefficients 
reflect the relationship between the response variable and 
each explanatory variable, and these p-values do not differ 
in magnitude across species and thus are suitable for PCA. 
The p-values were transformed by log(1/p) to generate the 
p-value matrix for the PCA. A value of 0 was assigned to any 
explanatory variable that was removed by the model selec-
tion procedure. Five transformed p-value matrices were then 
constructed, one for each of the five DBH classes. Using the  
scores of each of the explanatory variables on the first two 
principal component axes, we drew biplots to indicate  
the relative importance of each explanatory variable based on 
the length of each associated vector.

To demonstrate the relative importance of each of  
the three groups of explanatory variables in explaining  
the distribution of tree species, we plotted Venn diagrams 
based on the number of tree species that responded to  
each of the seven combinations of the three groups of 
explanatory variables in the most parsimonious models  
for each of the five DBH classes. When the explanatory 
variables in a most parsimonious model matched one of the 
combinations, we added 1 to that combination. The proce-
dure was repeated for the most parsimonious models for all 
species, and the numbers of responses to each of the seven 
combinations of variable groups were shown in the Venn 
diagram.

Results

The neighbourhood index yielded the longest vectors in the 
PCA analyses for DBH classes 0 and 2 (Fig. 2a, 2c) and the 
third longest vector in the analysis for DBH class 1 (Fig. 2b). 
This indicates that the neighbourhood index is the most 
important factor in determining the distribution of small 
trees in the study plot. The lengths of the vectors representing 
the abiotic environmental factors gradually increased as the 
DBH of the trees increased (Fig. 2d, 2e). This was consistent 
with our prediction that the relative contributions of neutral 
and niche processes change across life stages. Of the abiotic 
environmental predictors, elevation yielded the longest vec-
tors in the PCA analyses for DBH classes 1, 2 and 3 and 
thus had the strongest effect on the distribution of trees in 
these classes. The edaphic variables only showed a significant 
impact on the distribution of large trees: the total and extract-
able N, P and K levels in the soil were negatively correlated 
with the distribution of the trees in DBH class 4 (Fig. 2e).

The five most dominant tree species together covered 
27.85% of the total basal area in the plot. Mezzettiopsis  
creaghii, with the fourth highest importance value (Supple-
mentary material Appendix 3, Table A3), had significant 
effects on the distributions of smaller trees: the vectors  
representing Mezzettiopsis creaghii were among the three 
longest in the PCA analyses for DBH classes 0, 1 and 2  
(Fig. 2a–c). Mezzettiopsis creaghii did not have as prominent 
an effect on the distributions of trees in DBH classes 3 and 
4 (Fig. 2d–e).

The median variance explained in the gamma regres-
sion models became higher as tree size increased: for classes 1 

The third group of explanatory variables consisted of the 
total basal areas of the five most dominant tree species in  
each quadrat (Castanopsis echidnocarpa, Garcinia cowa,  
Mezzettiopsis creaghii, Parashorea chinensis and Pittosporopsis 
kerrii). These five tree species were identified as the most 
dominant according to their relative importance values,  
calculated using the method described by Cao et al. (1996).

The neighbourhood index was calculated by averaging the 
total basal area of conspecifics of the target species in each of 
the adjacent neighbour cells. The definition of neighbour-
hood index used here is similar to that of Wang et al. (2009), 
but we used the total basal area per quadrat of a target species 
instead of stem counts. This neighbourhood index represents 
the spatial autocorrelation effect.

The gamma regression model was expressed as:

Y  Xb1  b2NI  e	 (2)

where Y is a response variable, in this case the quadrat-
based total basal area vector of a target tree species within 
a given DBH class, X is the explanatory variable matrix 
consisting of the five dominant neighbours and the edaphic 
and topographic variables, b1 and b2 represent the slopes 
associated with the explanatory variables in the original 
explanatory variable matrix X, NI is the isotropic second-
order spatial autoregressive factor and e is a random error 
term. For each quadrat, neighbours were defined as those 
quadrats with which the target quadrat shared a common 
edge or border.

Parameters of the gamma regression models were esti-
mated using maximum likelihood with an inverse link 
function. Because not all of the explanatory variables were 
important in structuring the distribution of each species 
of tree, we constructed more parsimonious models using 
simulated annealing on the set of explanatory variables  
(Kirkpatrick et al. 1983). This optimisation approach deter-
mines the best model by applying mutations to the model 
(i.e. adding, removing or changing a variable). A ‘better’ 
model is selected if it has a lower Akaike information crite-
rion (AIC, Akaike 1974) value than the one selected previ-
ously. If the model does not yield a lower AIC value than 
the previous one, a probability function is used to evaluate 
whether the model should be kept. In the analyses, we used 
the probability function used by Kirkpatrick et al. (1983), 
which is based on an acceptance parameter that defines how 
often a ‘bad’ model will be accepted. For all of the model 
selection procedures, we used a parameter of mutation 
acceptance equal to 200, a start time equal to 10 and an 
annealing temperature equal to 0.5 (Supplementary mate-
rial Appendix 2, R language code A2). This approach was 
used because it does not require normal distribution of the 
variables.

To assess the relative importance of each of the expla
natory variables in determining species distributions, a principal 
component analysis (PCA) was conducted on a transformed 
matrix of the p-values generated by the gamma regression 
models. Following model fitting and model selection, each 
selected explanatory variable was assigned a coefficient  
and a corresponding p-value. Because the magnitudes of 
the coefficients can vary greatly across species, they are not 
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Figure 2. The variance explained by the most parsimonious gamma models of all species in each of 5 classes: (a) class 0 (DBH  1 cm), (b) 
class 1 (1 cm  DBH  5 cm), (c) class 2 (5 cm  DBH  10 cm), (d) class 3 (10 cm  DBH  25 cm) and (e) class 4 (DBH  25 cm).

Figure 3. Boxplot with 95% confidence intervals indicating  
the distributions of the variance explained in each species by the  
most parsimonious gamma regression models for each of the  
5 DBH classes. A to E on the x-axis denote class 0 (DBH  1 cm), 
class 1 (1 cm  DBH  5 cm), class 2 (5 cm  DBH  10 cm), 
class 3 (10 cm  DBH  25 cm) and class 4 (DBH  25 cm), 
respectively.

to 4, the explained variances were 0.21, 0.22, 0.29 and 0.49, 
respectively (Fig. 3). The median explained variance for class 
0 was 0.36. The median variance explained in the gamma 
regression model for class 4 was significantly higher than 
for classes 1 and 2 (Kruskal–Wallis rank-sum test, Supple-
mentary material Appendix 4, Table A4). Except for class 0, 
the amount of variation explained in the gamma regression 
models became smaller with increasing total basal area of a 
tree species (Fig. 4).

The numbers of tree species responding to each of the  
seven combinations of the three groups of explanatory  
variables varied greatly across DBH classes (Fig. 5). The 
combination of all of the variables explained the most 
responses in each of the five DBH classes, but this pattern 
was less pronounced in the larger DBH classes, suggesting 
that most of the factors that affect the distribution of trees 
exert this effect when trees are at younger life stages. The 
results of the Kruskal–Wallis rank sum test on the seven 
parts of each of the five Venn diagrams showed that the 
numbers in the central portions were significantly greater 
than the numbers in each of the other six portions. There 
was no difference among these six other numbers. This 
result indicates that the joint effects of the three groups of 
factors predominate in regulating most of the tree species 
distributions throughout all life stages.
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Figure 4. Principal component analysis ordinations of the explanatory variables for each of the five tree size classes: (a) class 0 (DBH   
1 cm), (b) class 1 (1 cm  DBH  5 cm), (c) class 2 (5 cm  DBH  10 cm), (d) class 3 (10 cm  DBH  25 cm) and (e) class 4 
(DBH  25 cm). Matrices of the transformed p-values from the gamma regression models were used to compute the ordinations. Scores 
on the first two ordination axes were plotted for the following explanatory variables: AN (available nitrogen), AS (aspect), CA (Castanopsis 
echidnocarpa), CO (convexity), EK (exchangeable potassium), EL (elevation), EP (extractable phosphorus), GA (Garcinia cowa), GP (gap), 
ME (Mezzettiopsis creaghii), NI (neighbourhood index), OM (organic matter), PA (Parashorea chinensis), pH (soil pH), PI (Pittosporopsis 
kerrii), TK (total potassium), TN (total nitrogen), TP (total phosphorus), SB (soil bulk density) and SL (slope).

Discussion

Mechanisms regulating species distributions  
across life stages

Our study revealed that dispersal limitation, represented  
as a neighbourhood index, has the largest effect on the distri-
bution of trees across life stages whereas environmental fac-
tors mainly affect the distribution of large trees. For example, 
Mezzettiopsis creaghii, the fourth most dominant tree species, 
was significantly correlated with its own neighbourhood 
index in all five size classes. However, the relative roles of neu-
tral and niche processes in determining species distributions 
are still controversial. Gilbert and Lechowicz (2004) reported 
that niche-structuring predominantly determines species dis-
tributions in a temperate forest understory. Tuomisto et al. 
(2003) showed that although both environmental factors and 
dispersal limitation jointly contribute to floristic differences 
in western Amazonian forests, environmental factors are more 
important than dispersal limitation. Legendre et al. (2009) 
suggested that environmental factors and neutral processes 
performed equally in partitioning the beta diversity of tree 
species in a 24-ha subtropical forest plot in Gutian, China.  

In a tropical forest in Panama, recruitment limitation has 
been reported as the predominant factor controlling tree spe-
cies diversity (Hubbell et al. 1999). He et al. (1997) suggested 
that the relative contribution of any factor to explaining spe-
cies coexistence could change over time and space. The results 
of our study suggest that both neutral and niche process are 
important in determining tree species distribution but that 
these processes play different roles at different life stages  
of the trees. Neutral processes are more important in regu-
lating the distribution of smaller trees, and niche processes 
become dominant in shaping the distribution of larger trees.

Most tropical rain forest tree species tend to display aggre-
gated distributions (Condit et al. 2000). In a similar study 
by Wang et al. (2009), few negative associations between tree 
species distributions and neighbourhood index were found 
in a subtropical forest. In the plot studied here, dispersal 
limitation, indicated by the neighbourhood index, showed 
similar numbers of positive and negative effects (Supple-
mentary material Appendix 5, Table A5). According to the  
Janzen and Connell hypothesis (Connell 1978, Janzen 1970), 
density-dependent effects cause conspecific individuals to 
escape from maternal trees, and this provides a theoretical 
explanation for the negative effect of neighbourhood index. 
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Figure 5. Venn diagrams displaying the number of species responding to each of the seven combinations of the three groups of explanatory 
variables, according to the most parsimonious gamma regression models, for each tree size class: (a) class 0 (DBH  1 cm), (b) class 1  
(1 cm  DBH  5 cm), (c) class 2 (5 cm  DBH  10 cm), (d) class 3 (10 cm  DBH  25 cm), (e) class 4 (DBH  25 cm). Explanatory 
variables are represented as follows: Group 1 represents soil parameters, Group 2 represents topography and gap and Group 3 represents 
dominant neighbours and neighbourhood index.

Stoll and Newbery (2005) also found strongly negative 
neighbourhood effects on larger trees of the genus Shorea in 
Sabah, Malaysia.

It is widely accepted that topographic and edaphic factors 
affect species distributions in both subtropical and tropical 
forests (John et al. 2007). In the present study, environmen-
tal predictors differed greatly in explaining the distributions 
of large trees, and edaphic factors contributed very little 
to explaining species distributions for DBH classes 0 to 2. 
However, the edaphic factors did explain a large proportion 
of the variation in the distributions of larger trees. Topogra-
phy is generally correlated with many environmental factors, 
such as water regime (Daws et al. 2002) and the physical 
and chemical properties of the soil (Bourgeron 1983). In our 
study, elevation showed a strong effect on the distribution of 
trees in most DBH classes.

Our results suggest that failing to classify trees into mul-
tiple life stages may lead to a biased interpretation of the 
mechanisms contributing to tree distributions. We found 
different results for trees at different stages of life history. At 
early stages, when trees are small, their distribution is largely 
determined by dispersal limitation. This result is consistent 
with the finding that the distribution of seedlings is mainly 
affected by seed dispersal and the presence of heterospecific 
neighbours (Comita and Hubbell 2009). Thus, we assume 

that the habitat preferences of many tree species are consis-
tent across the sapling and juvenile stages. However, as the 
habitat associations of most tree species becoming stronger 
as trees reach the mature stage (Lai et al. 2009), the habitat 
preferences of tree species change at mature stage. Our results 
do indicate that environmental predictors affecting species 
distributions shifting across life stages (Fig. 4). Thus, envi-
ronmental predictors do have filtering effects on species dis-
tributions, as Norden et al. (2009) suggested. Consequently, 
analysing species distributions based on the assumption that 
all individuals of a target species respond similarly across life 
stages may obscure the true process by which species distri-
bution patterns are generated.

The effects of dominant species on species 
distributions

Our gamma regression model of tree species distributions 
indicated that the dominant tree species were important 
in regulating species distributions. This result is consistent 
with the finding that forest composition is highly deter-
ministic (Yu et al. 1998) and that the dominant species 
play important roles in shaping community composition. 
Comita and Hubbell (2009) found that dominant tree spe-
cies play an important role in shaping the distributions of 
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ical tree species. – Science 288: 1414–1418.

Condit, R. et al. 2006. The importance of demographic niches to 
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Cottenie, K. 2005. Integrating environmental and spatial pro
cesses in ecological community dynamics. – Ecol. Lett. 8: 
1175–1182.

Cressie, N. A. C. 1993. Statistics for spatial data, revised edition. 
– Wiley.
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Soil 238: 79–90.

Dobson, A. J. 1990. An introduction to generalized linear models. 
– Chapman and Hall.

Eviner, V. 2004. Plant traits that influence ecosystem processes vary 
independently among species. – Ecology 85: 2215–2229.

Gilbert, B. and Lechowicz, M. J. 2004. Neutrality, niches, and 
dispersal in a temperate forest understory. – Proc. Natl Acad. 
Sci. USA 101: 7651–7656.

Harms, K. E. et al. 2001. Habitat associations of trees and  
shrubs in a 50-ha neotropical forest plot. – J. Ecol. 89:  
947–959.

He, F. L. et al. 1997. Distribution patterns of tree species in a 
Malaysian tropical rain forest. – J. Veg. Sci. 8: 105–114.

Hubbell, S. P. 2001. The unified neutral theory of biodiversity and 
biogeography. – Princeton Univ. Press.

Hubbell, S. et al. 1999. Light-gap disturbances, recruitment limita-
tion, and tree diversity in a neotropical forest. – Science 283: 
554–557.

Hutchinson, G. E. 1957. Concluding remarks. – Cold Spring  
Harbor Symp. Quant. Biol. 22: 415–427.

Janzen, D. H. 1970. Herbivores and the number of tree species in 
tropical forests. – Am. Nat. 104: 501–528.

John, R. et al. 2007. Soil nutrients influence spatial distributions 
of tropical tree species. – Proc. Natl Acad. Sci. USA 104: 
864–869.

Kirkpatrick, S. et al. 1983. Optimization by simulated annealing. 
– Science 220: 671–680.

Lai, J. S. et al. 2009. Species–habitat associations change in a  
subtropical forest of China. – J. Veg. Sci. 20: 415–423.

Legendre, P. 1993. Spatial autocorrelation: trouble or new  
paradigm? – Ecology 74: 1659–1673.

non-dominant tree species across life stages and that cross-
species neighbourhood effects have a prominent influence 
on seedling survival. Our results extended the effects of 
inter-species interactions to established trees (DBH  1 cm). 
One possible explanation for the effect of dominant tree 
species on the distributions of other tree species is that 
dominant species have the ability to restructure multiple 
aspects of their surrounding environment, including light 
availability, soil textures and temperature (Eviner 2004). A 
recent study further hypothesised that plants alter compe-
tition by modifying the bioavailability of nutrients in the 
rhizosphere (Raynaud et al. 2007). Moreover, although 
dominant species often compete with other species, 
they may also facilitate the establishment of other non- 
dominant species (Supplementary material Appendix 6, 
Table A6). The species herd hypothesis (Wills 1996) pro-
vides one possible explanation for the cooperation between 
dominant and non-dominant tree species. This hypothesis  
states that an increasing density of heterospecific tree  
species can slow the rate or reduce the chance that natural 
predators, pathogens or viruses will encounter their host 
species. We conclude that it is important to pay more 
attention to the influence of dominant neighbours on species 
distributions.

Conclusions

The results of our study support the concept that neutral and 
niche processes jointly affect species distributions (Cottenie 
2005, Leibold and McPeek 2006). We further develop this 
concept by showing that the relative importance of each of 
the two processes varies across life stages. This implies that 
if species are not analysed at multiple life stages, a biased 
conclusion may be reached regarding the mechanisms 
maintaining species coexistence. The negative impact of the 
neighbour index on species distributions that we observed 
in some cases provides empirical support to the Janzen and 
Connell hypothesis. Our results also present a quantitative 
perspective on how dominant species can regulate species 
distributions.

Acknowledgements – This research was supported by grants from the 
National Science and Technology Pillar Program (2008BAC39B02), 
the Q-CAS Biotechnology Fund (grant no. GJHZ1130) and the 
National Science Foundation of China (31061160188). We give 
our thanks to the Biogeochemistry Laboratory and the Xishuang-
banna Station for Tropical Rain Forest Ecosystem Studies of the 
Xishuangbanna Tropical Botanical Garden for the analyses of soil 
nutrient concentrations and assistance in the field. Our sincere 
appreciation is given to Lei-lei Shi, Carol C. Baskin, Jerry M. 
Baskin, Xiao Cheng, Bernard Rollet, Fangliang He, Douglas 
Schaefer and Sijun Meng for their comments on the paper. The 
manuscript was prepared during a visit by the authors to the Dept 
of Renewable Resources, Univ. of Alberta, Canada.

References

Akaike, H. 1974. A new look at the statistical identification model. 
– IEEE T. Automat. Contr. 19: 716–723.



9

Sankaran, M. et al. 2004. Tree-grass coexistence in savannas revis-
ited - insights from an examination of assumptions and mech-
anisms invoked in existing models. – Ecol. Lett. 7: 480–490.

Shen, G. C. et al. 2009. Species–area relationships explained by the 
joint effects of dispersal limitation and habitat heterogeneity. 
– Ecology 90: 3033–3041.

Silvertown, J. et al. 1999. Hydrologically defined niches reveal a 
basis for species richness in plant communities. – Nature 400: 
61–63.

Stoll, P. and Newbery, D. 2005. Evidence of species-specific neigh-
borhood effects in the Dipterocarpaceae of a Bornean rain 
forest. – Ecology 86: 3048–3062.

Tuomisto, H. et al. 2003. Dispersal, environment, and floristic vari-
ation of western Amazonian forests. – Science 299: 241–244.

Uriarte, M. et al. 2004. A neighborhood analysis of tree growth 
and survival in a hurricane-driven tropical forest. – Ecol. 
Monogr. 74: 591–614.

Wang, Z. et al. 2009. Species-topography association in a species-rich 
subtropical forest of China. – Basic Appl. Ecol. 10: 648–655.

Wills, C. 1996. Safety in diversity. – New Sci. 149: 38–42.
Wright, S. J. 2002. Plant diversity in tropical forests: a review of 

mechanisms of species coexistence. – Oecologia 130: 1–14.
Yu, D. W. et al. 1998. Can high tree species richness be explained 

by Hubbell’s null model? – Ecol. Lett. 1: 193–199.

Legendre, P. and Fortin, M. 1989. Spatial pattern and ecological 
analysis. – Plant Ecol. 80: 107–138.

Legendre, P. et al. 2009. Partitioning beta diversity in a subtropical 
broad-leaved forest of China. – Ecology 90: 663–674.

Leibold, M. A. and McPeek, M. A. 2006. Coexistence of the niche 
and neutral perspectives in community ecology. – Ecology 87: 
1399–1410.

Levine, J. M. and HilleRisLambers, J. 2009. The importance of 
niches for the maintenance of species diversity. – Nature 461: 
254–258.

Liu, G. S. et al. 1996. Soil physical and chemical analysis and descrip-
tion of soil profiles. – Standards Press of China, in Chinese.

Losos, J. B. and Ricklefs, R. E. 2009. Adaptation and diversifica-
tion on islands. – Nature 457: 830–836.

Morlon, H. et al. 2009. Taking species abundance distributions 
beyond individuals. – Ecol. Lett. 12: 488–501.

Myers, N. et al. 2000. Biodiversity hotspots for conservation  
priorities. – Nature 403: 853–858.

Norden, N. et al. 2009. Interspecific variation in seedling responses 
to seed limitation and habitat conditions for 14 Neotropical 
woody species. – J. Ecol. 97: 186–197.

Raynaud, X. et al. 2007. Plants may alter competition by modify-
ing nutrient bioavailability in rhizosphere: a modeling 
approach. – Am. Nat. 171: 44–58.

Supplementary material (available as Appendix O19831 at 
www.oikosoffice.lu.se/appendix). Appendix 1–6.


