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ABSTRACT 

Some problems of stochastic allocation and scheduling have the 
property that there is a single strategy which minimizes the expected 
value of the cos ts incurred up to every fi ni te time hori zon. We 
present a sufficient condition for this to occur in the case where 
the problem can be modelled by a Markov decision process with costs 
depending only on the state of the process. The condition is used 
to establish the nature of the optimal strategies for problems of 
customer assignment, dynamic memory allocation, optimal gambling, 
maintenance and scheduling~ 

1. DOMINANT STRATEGIES 

The aim in many stochastic allocation and scheduling problems 
is to attain a desired state at the least possible cost. In job 
scheduling problems one may want to minimize the expected value of 
the makespan or flowtirne. In a reliability problem one may want to 
minimize the expected repair costs. Some problems of this type have 
the special property that there exists a single strategy which not 
only minimizes the expected cost of reaching the desired state, but 
also minimizes the expected value of the cost incurred at e~ery time. 
A strategy with this property shall be called expectation dominant 
( ED ). A s t rat egy wi 11 be calI e d s t 0 chas ti c d 0 minant (S D) iff0 r alI 
times t it minimizes in distribution the cost incurred at time t. 
Weeks and Wingler [14J have argued that stochastic dominance is the 
property most desired in a scheduling strategy. 

To give an example of a problem in which the optimal strategy 
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is stochastic dominant we shall describe the problem of assigning 
customers to parallel servers which has been discussed by Winston 
[16J. Identical jobs with exponentially distributed processing 
requirements arrive at a service facility in a Poisson stream. As 
each job arri ves it must be assigned to one of a number of identical 
servers which operate in parallel. Each server serves jobs in its 
queue in a first come first served order. No jockeying amongst the 
queues is allowed. We have shown [11] that the strategy of assigning 
each arrival to the shortest queue minimizes the expected average 
1-Iai ti ng time of the fi rs t k jobs to a rri ve. In fact the optimal 
strategy is SD since it minimizes for all times t the distribution 
of the number of jobs in the system at time t. Before proceeding vii th 
a proof of this and other results, we present a general method for 
investigating expectation and stochastic dominant strategies. 

2. A SUFFICIENT CONDITION FOR DOMINANCE 

We will conduct most of our analysis in the setting of a 
continuous time Markov decision process on a finite state space 
(i=l, ... ,N). Suppose that the cost of residence in state i is ci 
per uni t time. Starting from state i the rate of transi tion to state 
j is given by Qij, where Q is an NxN matrix in the set of feasible 
matrices Q. The set Q is bounded, closed and convex wi th the property 
that when a collection of 1st to Nth rows from different matrices 
in Q is assembled together then this is itself a matrix in Q. An ED 
strategy was defined as one which minimizes for all t the expected 
cost incurred at time t. It corresponds to a choice QEQ minimizing 
every component of Vet) where, 

V(o) = c, and 

If the states have been indexed from greatest to least costly 
(Cl >C2>···>CN), then a SD strategy must minimize for all t and k 
(1<k~N) the probability that the process is in a state less than k 
at time t. Thus a SD strategy is one which is simul taneously ED for 
(N-l) cost vectors c(k) (k=l, ... ,N-l) of the form 

= 1, j=l, ... ,k,
Cj ()k = 0, j=k+1, ... ,N. 

Stochastic scheduling and allocation problems may be studied in 
ei ther discrete or continuous time formulations. The continuous 
time formulation is often simpler for the reason that only one event 
(such as a completion of a job) can occur at any instant of time. 
Any convenience which is lost in setting the problem in continuous 
rather than discrete time can be recovered by treating the Markov 
process as a jumping process in which the residence times between 
jumps do not depend on the current state. We choose a 8, with e> 
max{-Qii: lq~N, QEQ}, and let IT={P: P=(Q+8r)/e, QEQ}. Starting 
from state i the original Markov decision process is realized by 
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waiting a time which is exponentially distributed with parameter e, 
choosing a matrix pEn, and then jumping to state j with probability 
Pij' This process does not rule out the possibility of jumEs from 
a state to itself. The strategy whose transition matrix is Q is ED 
for the continuous time Narkov decision process if and only if P is 
the transi tion matrix of an ED strategy for the discrete time Harkov 
decision process wi th the same cost vector and set of feasible 
transition matrices n. The truth of this statement may be verified 
by considering the equation 

YI·(t) = (1-e- et )c' + ft LP· ·Y·(t-s)ee-eS ds.1 0 j IJ J 

This construction, which Keilson [5J calls uniformizing, has been 
discussed in number of papers, including [7J and [9J. 

We shall now investigate conditions under which a matrix P is 
ED for the discrete time jumping chain. To be minimizing, P must 
satisfy 

(p_p)pnc ~ 0, for all n and pEn. 

Let R be a matrix whose rows consist of all possible rows of (p-p) 
with pEn. 

Lemma 1. P is ED if and only if there exist sequences of 
matrices {J-ln }, {An}, {Bn }, (n=0,1,2, ... ) such that 

~ 0, 
AnHn , An ~O, and 
BnHn , Bn~O. 

Proof. The sufficiency of the conditions follows immediately 
from 

The necessi ty comes from considering the cone Kn whose generators are 
(c,Pc, ••• ,pnc }. Because Kn is a convex polyhedral cone it may be 
written as {x: Hnx~O}. Now if is is ED then Hnx~O implies Rx~O. 
Thus {x: Rx~O} is contained in {x: Hnx~O}. v!hen one cone is 
~ontained in_another we can wri te R=AnHnJor some An ~O. Since Hnx >0 
Implies Hn+1P~0 we must also have Hn+1P=BnHn for some Bn~O. 

Al though this condition is not directly helpful, it does 
Suggest that we may easily be able to establish the optimali ty of an 
SD strategy if the sequence Hn can be replaced by a single 
fini te-dimensional matrix H. Certainly the existence of such a 
matrix is a sufficient condition, and it is this that we shall use 
in the rest of the paper to show that strategies are ED or SD. 
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Lemma 2. P is ED if there exist matrices H, A~O and B~O such 
that 

Hc ~ 0,
 
R AH, and
 
HP BH.
 

3. PROCESSES WHICH PARTIALLY ORDER THE STATES 

J-le t e i bethe i t h row 0 f the N x N iden t i ty rna t r i x ~ Wh e nth e row s 
of (p-p) are proportional to rows of _the form (e j-ei) the problem may 
be particularly simple to analyse. P defines a partial order on the 
states. We say that i is better than j (and denote this by iij) if 
there is a row of (p-p) proportional to (ej-ei). We also have iii. 
It is natural to consider the matrix H whose rows include 

ej-ei iff iij, and there is no k with iik and kij, and 
ei iff there is no jti such that iij. 

From lemma 2 we deduce that P is ED if there exists a B ~O wi th HP= BH 0 

This happens if for iij the ith row of P may be obtained from the 
j th row of P by operations on row j which shift probabili ty from one 
state to 'others which are better in the partial order. The following 
lemma gives a condition guaranteeing that this shifting is possible 
(the proof is straightforward). 

Lemma 3. P is ED if for all states iij and states k, 

C l' ~ C J", and L P, h ~ L P"h
ki-h l kih J • 

There is a dual sufficient condition in which (1) is replaced 
by 

C l' ~ c J', and L 13, h ~ L 13 'h 
h+k l hi-k J .. 

When the states can be totally ordered with 1+2,2+3, ••• , then both 
condi tions are equivalent to the statement that for i<j and all k we 
must have 

P is then called a monotone matrix. Some properties of monotone 
matrices are discussed by Keilson and Kester [5J. 

Example 1. Assignment of Customers to Parallel Servers 

We consider the problem of customer assignment that was 
described at the start of the paper.. Suppose that there are m 
servers, and tha t each has a large bu t fini te wai ting room. Le t x (i) 
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be a vector whose kth component is equal to the number of jobs in 
the k th longes t queue of s ta te -'-. We pa rtially order the states 0 f 
the system, writing i+j if 

The condition of lemma 3 simply says that for all k and i +j the 
probabiU ty of a transi tion to a state in the partial ordering which 
is as bad as k must be no more starting from i than from j. This is 
obvious from the nature of the shortest queue strategy and the 
partial order defined by (4). If we let ci be equal to 1 or °as the 
number of jobs in the system in state i is or is not greater than k, 
then i+j implies ci (Cj, and thus assignment to the shortest queue 
minimizes for all k and t the probability that there are more than 
k jobs in the system at time t. 

Example 2. Dynamic Memory Allocation 

Benes [lJ proves a number results for problems of stochastic 
memory allocation. In one simple example he describes a Unear 
computer memory having room for exactly three units of program. 
Computer jobs, which require just one or two contiguous units of 
memory, arrive according to Poisson processes of rates ~l and ~2' 

The execution times of the programs in memory are exponentially 
distributed with parameters ~l and ~2' If a program arrives to find 
insufficient contiguous room in the memory, then the computer 
crashes. \{e let (--) denote the state in which there is one program 
of each of the lengths in the memory. In an obvious fashion, we can 
write the states of the system as 

1=( ) 2=(- ) 3=( - ) 4=( -)
 
5=(- -) 6=(-- ) 7=(--) 8=(---) 9=(crashed).
 

A decision must be made as to where to allocate a program of length 
1 when it arrives to find that the system is in states 1 or 2. The 
following transitions are then possible. 

2=(- 5= (- -)
 
1 = ( ) ~ or and 2=(- ) ~ or
 

3 = ( - ) 6=(-- )
 

We can use lemma 3 to show that in each case the first choice is the 
one which minimizes the probability that the system crashes by time 
to The acorrect partial order is 1+2, 2-1-3, 2+5, 3+6, 5t6, 6+8, 4+7, 
7+9, 8+9. It is easy to write down a transition matrix P and verify 
lemma 3 \-'ith c=(O, ... ,O,l). Thus the probability of a blockage 
occurring by time t is minimized by the indicated strategy. A similar 
analysis can be carried out when the memory is 4 cells long. However, 
we have computed the optimal strategies for some examples wi th longer 
memories and found that the optimal strategy is not generally 3D. 
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The optimality of the strategies in examples 1 and 2 may also 
be established using simple arguments based on realizations of the 
sample paths.. Sample path arguments also show that the optimal 
strategies remain 3D when the arrival processes are general rather 
than Poissono This seems to be a general feature of 3D strategies. 
If a strategy is 3D optimal for a problem in which there are Poisson 
arrivals then it is 3D optimal for arbitrary arrivalso 

4" APPLICATIONS OF THE SUFFICIENT CONDITION 

We consider some examples in which ED strategies exist but 
neither lemma 3 nor sample path arguments are sufficient to prove 
their optimality. In these cases we work with lemma 2 directly. We 
try a H consisting of all rows of R (all rows of p-p) and any other 
rows which are in some way obvious from the nature of the problem. 
We then test to see whether we can write Hc~O and HP=BH for some 
nonnegati ve B. If not 9 then we construct a new H whose rows are those 
of the old Hand HPo The process is continued until we have an H 
satisfying Hc~O and HP=BH. In practice, we have found that every 
problem wi th an ED optimal strategy has a fini te-dimensional H 
satisfying the condi tions of lemma 2. Although we have not been able 
to show that this must necessarily happen, we do have the following 
result. 

Lemma 4. If P defines an ED optimal strategy and all the 
eigenvalues of P are real, then there exists a finite dimensional H 
satisfying the conditions of lemma 2. 

Proof. The proof is not particularly illuminating and will be 
given in outline onlyo Al though the proof can be adapted to include 
the cases in which eigenvalues are not simple or some have equal 
modulus, we suppose for simplicity that I All )090) IANI. We can then 
write 

pn = ~ A{(ZiY{), 
1 

where Yi and zi are the left and right eigenvectors of P corresponding 
to the eigenvalue Ai (Yi denotes the transpose of Yi). Consider a 
r01'l of R, say r'.. Since r' pnc ~ ° for all n, we deduce that Ai)O for 
'the least i such that (r' zi) (yi c) *0.. We repea t this analysis for all 
rows 0 f RandIe t 1= {i: i i s the 1eas tinde x for whi ch (r' Z i ) (yi c ) *0, 
r' some row of R}.. Let G be a matrix consisting of all rows of the 
form l 

j 
.L ~i(r'zi)yi,
1=1 

where r' is a row of R, 1 ~ j ~ N, ~i = 1 for i EI, and ~i = ±1 for i ~I .. 
We can now check that 
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Gx;>O implies GPx;>O,
 
Gpnc>O for all n> some nO, and
 
Gx>O implies Rpnx>O for all n" some nl.
 

Let n2=nO+nl. We now take H to consist of all the rows appearing 
in the matrices R,RP, •.. ,Rpn 2,Gpn O and check that this H satisfies 
the conditions of lemma 2. 

Note that, Ii has real eigenvalues if it is similar to a symmetric 
matrix [6J. This happens if P is the transition matrix of a time 
reversible Markov chain or if it can be represented as the limit of 
transition matrices of time reversible chains. 

Example 3. Optimal Gambling 

Ross [8J considers a problem of choosing the optimal stake in 
an advantageous gamble. He supposes that a gambler who has an amount 
of money £i can gamble any portion of that money in a bet. He wins 
an amount equal to his stake with probability p (p)O.5) and loses 
his stake wi th probabili ty q = (1-p). The gambler wants to chose the 
si ze of hi s bets (whi ch mus t be integral) so as to maximi ze the 
probability of eventually increasing his capital to £(N-1). Ross 
shows that the gambler achieves this by always making the minimum bet 
of £1, and that this strategy minimizes for all t the probabili ty that 
he is ruined by time t. We show how this may be proved using lemma 
2. 

The problem is analyzed in discrete time. Let state i be the 
state in which the gambler has £(i-1 ). States 1 and are absorbing, 
and P is the transition matrix when bets of 1 are made at each turn. 
Let I be the NxN identi ty matrix and let J be a NxN matrix wi th l' s 
above the diagonal and 0' s elsewhere. Let G= (qI-pJ). It is simple 
to check that GP=CC for some C)0. Letting F= (I-J) we can also check 
that FGP=DFG for some D)O. Rows of R are positive linear 
combinations of rows of FC, so we take H as all rows of G and FG. 
Then R=AH some A)O, HP=BH some B)O, and Hc)O for c=(1,0, ... ,0). 
Thus the strategy of betting the minimum amount minimizes the 
probability of being ruined by time t. 

Example 4. Repair of the Series System 

Derman, Lieberman and Ross [3J, Katehatis [4J, Smith [10J and 
Weber [12J have considered the problem of optimally maintaining a 
series system of n components with a single repairman. When 
functioning, component i fails with constant hazard rate ~i' vfuen 
failed, component i takes a time to repair which is exponentially 
distributed wi th parameter;\i. The repairman desires to allocate his 
repair effort to maximize the probability that all component are 
functioning at time t. He may allocate his repair effort amongst the 
failed components in any way he likes, and he may stop the repair of 
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one component in order to begin repair of anothere Smi th showed that 
amongst strategies which repair the components according to a fixed 
precedence list order the least failure rate strategy of always 
repairing the component with the least value of ~i is optimal. He 
conjectured that the strategy should be optimal in the class of all 
strategies_ Derman and others proved this for the case when all the 
Ai are equal, and Weber and Kateha~is proved it more generally. 

We can establish the result using the sufficient condition of 
lemma 2 _ Suppose ~ 1 < • G e <Iln. Suppose the s ta tes of the sys tern are 
indexed by ex (1 ~ a ~ N) _ Let L( a) be the set of components whj ch are 
functioning in the exth state_ Let Ea be a row vector of N components 
having 1 in the ex th posi tion and 0 in other posi tions. For i, j ~L( a) 
define the row vectors 

S (i) a = Iv (Ea - Ea i ), and 
T(ij)a = Sti)a - S(j)a, 

where ai is the index of the state in which the functioning components 
are L(a)+{i}. Similarly, we shall let ah denote the state in which 
the functioning components are L(a)-{h}. If i is the component of 
least Il amongst those which are failed, k is the component of next 
largest 119 and i<j then, 

S ( i ) eX {Q+ ( Il-; + Ai + L Ilh ) I} = Ai S ( k ) a i + L ~ h S ( i ) a h • 
~ hEL hEL 

T(ij)a{Q+(~j+Ai+h~Lllh)I} (~j-lli)S(i) + AiT(kj)ai 

+ L lJ-hT(ij)ah­
hEL 

If component k1=i<j is the one of least ~ amongst those that are failed 
then, 

S(i)a{Q+(~-;+~+ L ~h)I} = AkS(i)ak + L ~hS(i)exh. 
~ hEL hEL 

T( i j ) ex {Q+ ( Il j +~+h ~ L!lh ) I} = (!l j - !l i ) S ( i) + Ak T( i j ) ak 

+ L IlhT(ij)aho
hEL 

The matrix H which is appropriate for lemma 2 consists of all rows 
of the form S(i)a and T(ij)a, for all ex with (i<j)~L(a). The matrix 
R has rows which are positive linear combinations of the rows T(ij)a. 
The statements above and (Ilj-I-li) ~O are sufficient for ther~ to exist 
a 8 (equa 1 tothe sum 0 fall the A' s and !l' s) s u ch t hat H( Q+ 81) = 8E,H 
for some nonnegative matrix B. Taking c as a vector which is equal 
to 1 in all components except the one corresponding to the state in 
which all components are functioning, we deduce that the least 
fa i 1u r era t erepair s t rat e gy rna x i rn i ze s for all t the proba biIi t y t hat 
the all components are f~~t~2P~l}E_a~_tiI1'l&_~ - - - - - ­
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Example 5. Job Scheduling 

A number of authors have proved that the longest expected 
processing time order strategy (LEPT) minimizes the expected value 
of the makespan when n jobs with exponentially distributed 
processing requirements are to be frocessed on m identical parallel 
machines (see [2J and [15J). In 13J we have shown that LEPT is 
stochastic dominant in that it minimizes the makespan in 
distribution. We shall indicate how the proof can be accomplished 
using lemma 2. Suppose the failure rates are A1 < ••• < An. We use the 
same notation as in example 4 and define S(i)a and T(ij)a as before. 
Suppose L(a) is the set of jobs which are not yet completed in the 
a t h s tat e • 1e t K( a) bethe set 0 f m jobs 0 fIe a s t ha za rd rat e am 0 ngs t 
those which are uncompleted. For i,jEK(a), k~K(a) and kEKCai ) we 
also define 

Let H be a matrix whose rows are all the rows of S(i)a, T(ij)a with 
i<j, and U(ijk)a with i<jEK(a). All rows of Rand RP are positive 
linear combinations of the rows of H. The S(i)a rows state that it 
is better to start from a state in which a given job is already 
complete rather than in a state which differs by that job being 
uncomplete. With (IAi)P=Q+(IAi)I we find 

S( i ) aP I AhS( i ) ah + I AhS( i ) a + Ai S(k ) ai for i EK ,
hEK h~K 

S(i)aP I AhS(i)ah + I AhS(i)a + AiS(k)a for i~K,
hEK h~K 

T(ij)aP = I AhT(ij)ah + I AhT(ij)a + AiT(kj)ai
hEK h~K 

+ AjT(ik)aj for i,jEK, 

T(ij)aP L AhT(ij)ah + I AhT(il)a + AiT(kj)ai
hEK h~K ~ (8 ) 
+ Aj T(i j ) a i EK, for j ~K, 

I AhT(ij)ah + L AhT(ij)a + AiT(ij)a
hEK h~K (9) 
+ AjT(ij)a for i,j~K, and 

I AhU(ijk)ah + L AhU(ijk)a + AiU(ijk)a
hEK h~K (10) 
+ ( Aj - Ai) S ( i k) a j + AkU( i j R) ak · 

In each of (5)-(10) the sums on the right hand side should be read 
to exclude any of the indices i, j, k which appear as arguments on the 
left hand side. In (10) R is a job such that R~K(ak) and REL(aik ). 
If there is no such R then the las t term of (1 0) is replaced by 
Ak{AjS(i)ak-AiS(j)ak}o These equations establish HP=BH for some 
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B)O, and the result follows by taking c as a vector which is ° in 
the component corresponding to all jobs complete and 1 in all other 
components .. 

5. CONCLUDING REf.1ARKS 

The examples of the previous sections have shown that lemma 2 
may be useful in establishing the optimality of a dominant strategy 
for a stochastic allocation or scheduling problem.. In fact~ for 
every problem vlhi ch we knovl to have an expecta ti on dominan t stra tegy 
the optimality of that strategy can be established by this method .. 
Winston f s problem [17] of customer assignment to heterogeneous 
servers is another example where the method is useful. 

Example 5 illustrates that it can sometimes be quite difficult 
to construct the aPfropriate matrix H. Indeed the H required to prove 
the results of [13 is even more complicated, though the difficulty 
is one of nota ti on and not methodology.. At the beginni ng of secti on 
4 we described a method of building the appropriate matrix H from rows 
of of R,R~,R~2, ...... , along with rows which were somehow obvious from 
the nature of the problem .. In fact y the obvious rows were simply ones 
which stated that a transition was preferred or not preferred to 
remaining in the current state. It would be interesting to know 
whether the constructive approach will always succeed, or whether 
there is a problem wi th a dominant optimal strategy whose optimali ty 
cannot be established by this method. One might also consider 
whether other sufficient conditions, perhaps more easily verified 1 

would ensure that a strategy were s-expectation dominant .. 
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