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Abstract. The possibility of controlling and directing a complex system’s

behavior at will is rooted in its interconnectivity and can lead to significant

advances in disparate fields, ranging from nationwide energy saving to therapies

that involve multiple targets. In this work, we address complex network

controllability from the perspective of the minimum dominating set (MDS). Our

theoretical calculations, simulations using artificially generated networks as well

as real-world network analyses show that the more heterogeneous a network

degree distribution is, the easier it is to control the entire system. We demonstrate

that relatively few nodes are needed to control the entire network if the power-

law degree exponent is smaller than 2, whereas many nodes are required if it is

larger than 2.
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1. Introduction

Momentous advances in information technology are rapidly changing the world and immensely

expanding human interconnectedness on a global scale [1]. The components of complex

systems, from cells and organs such as the brain to the Internet, WiFi communications and

economic systems, are wired together in networks [2, 3]. Empirical data and analytical models

have shown that connection patterns in many real networks converge to similar architectures,

exhibiting a heterogeneous degree distribution characterized by a power law with a handful of

highly connected nodes [4–7]. Specific network connectivity has a considerable effect not only

on system behavior [8] but also on how the system’s entire dynamics can be directed at will.

Both techno-social and natural systems must be controlled or regulated to achieve optimal

performance. However, because of the formidable size of real systems, a detailed complexity

analysis of control dynamics in networks is impractical in most cases or limited to canonical

linear time-invariant approximations at best [9]. Although recent works have addressed network

controllability [9–16], general answers to the key questions regarding the factors that have a high

impact on the controllability of techno-social and natural systems are still lacking. For example,

how does the underlying network structure in socio-technical systems influence the minimum

number of infected computers, smart phones or individuals necessary to damage the entire

system? How does the topology of gene regulatory networks or human protein interactions

influence treatment strategies necessary to determine the minimum number of possible drugs

to regulate the whole network? To address these questions, here we focus on the problem of

controlling a network by considering a model of reduced complexity, where a minimum set of

New Journal of Physics 14 (2012) 073005 (http://www.njp.org/)

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

http://www.njp.org/


3

possible nodes dominates the whole system. For the purposes of control design, we investigate

the dependence of the size of the minimum dominating set (MDS) of nodes on topological

features of real networks, such as a variable scaling exponent that correlates to a different decay

steepness of the degree distribution and the connectivity of high-degree nodes. The concept of

MDS has been applied to the design and/or control of various kinds of discrete systems, which

include mobile ad hoc networks (MANET) [17–20], transportation routing [21] and computer

communication networks [21, 22].

In this work, we compute the MDS in real networks and in computer-generated networks

with a variety of topologies. Our extensive analysis of real data and computer simulations

together with mathematically developed tools provides new insights into control and network

regulation as well as the development of new control techniques. Firstly, our theoretical findings

suggest that scale-free networks with small scaling exponent values (γ < 2), where high-degree

nodes are present, require relatively few nodes to be controlled. Conversely, networks with

large-degree exponent values (γ > 2) or faster exponential decay, where hubs are weakly

connected or almost absent, require more nodes to be fully regulated. The existence of the

critical scaling exponent, predicted by our theoretical analysis, indicates a structural boundary

below which the system could be more easily controlled by a significantly reduced set of nodes.

Secondly, the MDS size also depends on the average degree of all nodes in the network.

This fact also permeates into other network features, including clustering degree, diameter,

centrality and shortest path length, uncovering multiple new ways to significantly increase

or decrease controllability, based exclusively on topological design. In sharp contrast to a

recent work on controllability that uses maximum matching [9], our analysis demonstrates

that the MDS tends to target highly connected nodes, whereas the previous study suggested

that driver nodes tend to avoid high-degree nodes. Although Müller and Schuppert [10]

recently suggested that iPS cells can be controlled by a few driver nodes, they did not show

general results or consider structural properties of networks. In contrast, our conclusions

are supported by database analysis, computer simulations and analytical predictions. Taken

together, these findings provide new leads in complex network control design, ranging from

better energy-distribution networks planning and optimal mobile phone tower deployment to

controlling a complex disease by simultaneously disrupting multiple targets in distant network

pathways.

2. Simulation analysis

2.1. Computation of the minimum dominating set (MDS)

A set S ⊆V of nodes in a graph G = (V, E) is a dominating set if every node v ∈ V is either an

element of S or adjacent to an element of S [21] (see figure 1). Since the domination problem

is a classical NP-complete decision problem in computational complexity theory [21], it is

not plausible that there exists a polynomial time algorithm that finds a smallest dominating

set for arbitrary graphs. Here, we reduce this problem to the computation of a binary integer

programming problem. Binary integer programming is the problem of finding a binary vector x

that minimizes a linear function f (x) subject to linear constraints. Each node i is assigned to a

binary integer variable xi that takes the value 1 or 0. A node i that belongs to the dominating set

will take the value xi = 1. To compute the MDS, we consider the minimization of the following
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Figure 1. Two network topologies consisting of the same number of nodes

N = 24 and edges E = 26. (a) A random network with average degree 〈k〉 =

2.16, average clustering degree C = 0, diameter d = 12, network centrality

NC = 0.040 and average path length l = 4.33. (b) A scale-free network with

〈k〉 = 2.16, C = 0.206, d = 6, NC = 0.229 and l = 3.36. In each network, each

green node is adjacent to at least one red node. This situation indicates that

the green node is dominated or controlled by the red node. The impact of the

network structure on the size of the MDS is illustrated by the small number of

red nodes displayed in the scale-free network, less than half of those from the

random network.

linear function:

f (x) = x1 + x2 + · · · + xn =

n
∑

i=1

xi (1)

subject to the constraints

xi +
∑

j∈∂i

x j > 1, (2)

where ∂i indicates the neighbors of node i and n is the total number of nodes in the network.

To solve this integer linear programming (ILP) problem, we have used an algorithm that

uses a LP-based classic branch and bound method to determine the optimal solution (BintProg),

allowing us to find solutions for moderate sizes of graphs with up to a few tens of thousands

of nodes. The algorithm searches for an optimal solution to the binary integer programming

problem by solving a series of LP-relaxation problems, in which the binary integer constraints

on the variables are substituted by the weaker constraint 0 6 x 6 1 [23, 24]. The BintProg

algorithm is available in the computer libraries of the Optimization ToolBox of MatLab version

R2010a.

2.2. Computational experiments on the MDS size in scale-free networks

To analyze in detail the dependence of the scaling exponent and mean degree on the MDS size,

we generated a variety of scale-free networks using computer simulations. The configuration

model [7, 25, 26] has often been used for network simulations; however, this model generates

graphs that are neither simple nor connected. We then used an algorithm that generates random

simple connected graphs with a prescribed degree sequence [27]. For each configuration of a

New Journal of Physics 14 (2012) 073005 (http://www.njp.org/)
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Figure 2. Computer simulations of the MDS size as a function of the scaling

exponent in simulated networks with different average degrees 〈k〉. Scale-free

networks with N = 10 000 nodes are generated as shown in section 2.2. The

error bars (s.e.m.) are shown in the figure.

given γ and average degree 〈k〉, ten networks of 10 000 nodes were constructed. The results of

the MDS were averaged over all realizations. Then, the s.e.m. were computed and are shown

in the figures. We first plot the MDS size as a function of the degree exponent, keeping fixed

the average degree 〈k〉. Figure 2 shows that, for a given average degree value, the MDS size

increases as γ increases. However, we also observe that the MDS decreases as the average

degree increases for values of γ above 2. Conversely, for γ < 2, the MDS increases as the

average degree increases. It is worth noting that γ = 1.7 is a crossing point of curves for various

〈k〉. However, this crossing point does not have any meaning. The results shown in figure 2 along

with the mathematical analysis provided in section 3 suggest that a few individuals could in

principle control a network characterized by both a small scaling exponent and average degree,

providing a simple control design principle for large networks.

These results are complemented by figure 3, where we plot the fraction of nodes in the

MDS as a function of the average degree, keeping the scaling exponent fixed. The MDS

generally decreases as the average degree increases. For values of γ above 2, the MDS

decreases as the average degree increases. Conversely, when γ < 2, the MDS slightly increases

or becomes constant as the average degree increases. Moreover, the jump size in the number

of dominating nodes between γ = 1.5 and γ = 2 is considerably large, suggesting a drastic

change in the network’s dominance phenomena when the scaling exponent takes values near

γ = 2, which is in agreement with the tendency observed in figure 2.

2.3. Phase diagram highlighting optimal dominating configurations

The previous results suggest that the network structure significantly limits the number of

individuals that could control the entire system, thus requiring a phase diagram to uniquely
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Figure 3. Computer simulations of the MDS size as a function of the average

degree of all nodes in simulated networks with different scaling exponents γ .

Scale-free networks are generated as shown in section 2.2 with N = 10 000

nodes. Error bars (s.e.m.) are shown in the figure.

characterize the optimal configurations available to the system. To clearly visualize the impact

of the network structure on the number of dominating nodes, we plot a phase diagram to help

illustrate the properties of scale-free networks by showing various values of γ and average

degree (figure 4). The MDS size is shown using a gradient of colors as indicated in the colorbar

legend. The plot highlights optimal configurations for scale-free networks that minimize the

number of individuals necessary for dominating the whole system (dark blue regions for γ < 2).

Conversely, networks with higher γ values (or showing decays faster than a power law) and

small average degrees are more difficult to dominate, thus requiring more nodes.

3. Theoretical analysis

3.1. Mathematical analysis of the MDS size in scale-free networks

We analyze the size of the MDSs for scale-free graphs. Although rather precise results are

known for the Barabási–Albert networks with exponent γ = 3 [28], scale-free trees [29] and

general graphs [30], the dependence of the size of the MDSs on the power-law scaling exponent

γ remains unknown.

Let G(V, E) be an undirected random graph with node set V and edge set E such that

the degree distribution follows a power-law k−γ . We let n = |V |. In this section, we show the

following:

• if γ > 2, the size of the MDS is 2(n),

• if γ < 2, the expected size of the MDS is o(n).
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Figure 4. Phase diagram showing optimal dominating configurations. The MDS

size is indicated using a gradient of colors as shown in the colorbar legend. The

plot highlights optimal configurations for scale-free networks that minimize the

number of individuals necessary to dominate the whole system (see dark blue

regions below γ = 2).

This result means that a phase transition occurs at γ = 2. Here we note that f (n) is 2(g(n))

if it is both O(g(n)) and �(g(n)), that is, f (n) is 2(g(n)) if k1 g(n)6 f (n)6 k2 g(n) holds

for sufficiently large n where k1 and k2 are some positive constants. Moreover, f (n) is o(g(n))

if, for every ǫ > 0, | f (n)|6 |g(n)| ǫ holds for sufficiently large n.

3.1.1. The case of γ > 2. We assume that the degree distribution follows αk−γ with a cutoff

at k = n, where γ > 2. From

αn

∫ n

1

k−γ dk =
αn

γ − 1

(

1 − n−γ +1
)

= n, (3)

we have α ≈ γ − 1.

For S ⊆ V , C(S) denotes the set of edges between S and V − S (i.e. C(S) = {{u, v} | u ∈

S and v ∈ V − S}). The following property is well known [28, 30]:

if |S| + |C(S)| < n, S is not a dominating set.

Let S be the set of nodes whose degree is greater than or equal to K . Here we assume

without loss of generality that |S| < n/2 holds, because otherwise S is already large (i.e.

|S|> n/2). It is to be noted that S is chosen so that the total degree (i.e. the number of edges

incident on S) is maximized among the sets with the same cardinality.

We estimate the size of C(S) as follows:

|C(S)| < αn

∫ n

K

k · k−γ dk ≈ n(γ − 1)

∫ n

K

k−γ +1 dk

= n

(

γ − 1

γ − 2

) (

1

K γ−2
−

1

nγ−2

)

< n

(

γ − 1

γ − 2

)

1

K γ−2
. (4)
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A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

http://www.njp.org/


8

If S is a dominating set, the last term should be greater than n − |S| > n/2. Therefore, the

following inequality should be satisfied:

n

(

γ − 1

γ − 2

)

1

K γ−2
> n/2. (5)

By solving this inequality, we have

K <

[

2

(

γ − 1

γ − 2

)]1/(γ−2)

. (6)

Then, the size of S is estimated as

|S| ≈ αn

∫ n

K

k−γ dk ≈ n

(

1

K γ−1
−

1

nγ−1

)

≈ n
1

K γ−1

>

[

2

(

γ − 1

γ − 2

)]−
γ−1
γ−2

n. (7)

From this inequality and the fact that V is a trivial dominating set, we can see that the size of

the MDS is 2(n) (for fixed γ ) and the coefficient increases as γ increases.

3.1.2. The case of γ < 2. We only consider the case of γ > 1 because there exist very few

networks with γ 6 1. We assume as above that the degree distribution follows equation (3),

where 1 < γ < 2.

We use a well-known result on the coupon collector problem [31], which states that we

can collect all n kinds of coupons with probability greater than 1 − (1/n) if we randomly

draw 2n ln n coupons. We associate coupons with nodes in V − S. Since we assume that edges

in G(V, E) are randomly selected under a power-law degree distribution, we can see that if

|C(S)| > 2n ln n holds, S is expected to be a dominating set.

As in the case of γ > 2, we let S be the set of nodes whose degree is greater than or equal

to K . Furthermore, we let K = βn. Then, to be shown later, the size S is o(n). We can estimate

|C(S)| as follows:

|C(S)| ≈ n(γ − 1)

∫ n

K

k k−γ dk = n

(

γ − 1

2 − γ

)

[

n2−γ − K 2−γ
]

= n

(

γ − 1

2 − γ

)

[

(1 − β2−γ )n2−γ
]

=

(

γ − 1

2 − γ

)

(

1 − β2−γ
)

n3−γ . (8)

Since we assumed γ < 2, the last term is greater than cn ln n for any constant c if n is sufficiently

large. Therefore, S is expected to be a dominating set.

The size of S is estimated by

|S| ≈ αn

∫ n

K

k−γ dk ≈ n(γ − 1)

∫ n

K

k−γ dk

= n
(

K 1−γ − n1−γ
)

=

(

(

1

β

)γ−1

− 1

)

n2−γ . (9)
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Since we assumed 1 < γ < 2, the last term is o(n), which means that the size of S is very small.

It should be noted that this bound is not tight because n2−γ increases as γ decreases, whereas,

as suggested by simulation results shown in section 2.2, the size of the MDS should decrease as

γ decreases.

3.1.3. Dependence on the average degree. We have not considered the average degree 〈k〉 so

far. Here, we consider the dependence of the size of MDS on 〈k〉 for the case of γ > 2, in a

similar way as in section 3.1.1. Since 〈k〉 cannot be a constant (i.e. 〈k〉 depends on n) if γ < 2,

we do not consider the case of γ < 2 here.

Suppose that the frequency of nodes of degree βk follows a power law P(k) ∝ k−γ .4 As in

equation (3), we have

αn

∫ (n/β)

1

k−γ dk =
αn

γ − 1

(

1 − (n/β)−γ +1
)

= n (10)

and α ≈ γ − 1.

Since the average degree is c ≡ 〈k〉, we have

αn

∫ n/β

1

βk · k−γ dk ≈
γ − 1

γ − 2
βn = cn, (11)

from which β ≈
γ−2

γ−1
c follows. As in equation (4), we have

|C(S)| < αn

∫ n/β

K

βk · k−γ dk ≈ cn(γ − 2)

∫ n/β

K

k−γ +1 dk

= cn

(

1

K γ−2
−

1

(n/β)γ−2

)

< cn
1

K γ−2
. (12)

Since the last term should be greater than n/2, K < (2c)
1

γ−2 should hold. Therefore, the lower

bound of the size of the MDS is estimated as

αn

∫ n/β

K

k−γ dk ≈ (2〈k〉)
−

γ−1
γ−2 n. (13)

This result suggests that the size of the MDS tends to decrease as the average degree increases.

It is also seen that the constant factor ( (2〈k〉)
−

γ−1
γ−2 ) rapidly decreases as γ approaches 2. This

analytical prediction is in agreement with the tendency observed in computer simulations and

empirical data analysis to be shown later (figures 3 and 9, respectively).

3.2. The relation between the MDS and structural controllability

Hereafter we show a link between the MDS and structural controllability. We begin with the

following theorem:

Theorem 1. Suppose that every edge in a network is bi-directional and every node in the MDS

can control all of its outgoing links separately. Then, the network is structurally controllable by

selecting the nodes in the MDS as the driver nodes.

4 This β is different from that in section 3.1.2.
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Figure 5. Illustration of the proof of theorem 1. (a) The original network and

MDS, where the MDS is denoted by double circles. (b) Transformed network.

(c) Constructed bipartite network where bold lines correspond to maximum

matching.

Proof. From a given network G(V, E) and MDS S, we first construct a directed network as

follows (see figure 5). For each node v ∈ S, we split this node into k nodes v1, v2, . . . , vk where

k is the degree of v and create a directed edge from each vi to a node adjacent to v so that the

out-degree of each vi is 1. For each pair of nodes (u, v) such that u, v 6∈ S and {u, v} ∈ E , we

create directed edges (u, v) and (v, u). Let G ′(V ′, E ′) denote the resulting network (see also

figure 5(b)).

We next construct a bipartite graph from G ′(V ′, E ′) as follows (see also figure 5(c)). For

each node v ∈ V ′, we create two nodes vL and vR. For each edge (u, v) ∈ E ′, we create an edge

between uL and vR.

Since S is a dominating set, there exists a matching M satisfying:

• for each node v 6∈ S, vR appears in M ,

• for each node v ∈ S, none of vR
i appear in M .

Furthermore, we can see that M is maximum because no vR
i with v ∈ S has an edge in the

bipartite graph. Therefore, by selecting {vi |v ∈ S} as the set of driver nodes, the theorem follows

from theorem 2 in [9]. ⊓⊔

This result not only links our approach with that from Liu et al but also shows that our

findings can be applied to directed networks. Although we have considered undirected networks,

the theoretical results shown in this work also hold for directed networks if networks exhibit a

power-law for the out-degree distribution, because we are only considering outgoing edges in

the theoretical analysis.

4. Results on real-world networks

4.1. Datasets

We have collected 16 networks to investigate the size of the MDS. In particular, we focus

on how MDS size correlates with topological features, such as the scaling exponent in

New Journal of Physics 14 (2012) 073005 (http://www.njp.org/)

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

http://www.njp.org/


11

Table 1. The main topological features of the analyzed networks. From left to

right, GCC is the giant connected component size, mD fraction of dominating

nodes, 〈k〉 average degree, l average shortest path, d diameter, C average

clustering degree and NC the network centrality.

Name Nodes GCC mD 〈k〉 l d C NC

PPI C. elegans 2 651 2 386 0.182 3.20 4.80 14 0.022 0.077

PPI D. melanogaster 7 498 7 351 0.199 6.14 4.40 12 0.012 0.023

PPI E. coli 1 865 1 447 0.229 8.12 3.81 12 0.109 0.109

PPI H. sapiens 1 607 805 0.239 2.92 6.53 19 0.107 0.042

PPI M. musculus 599 50 0.220 2.20 4.42 9 0.060 0.208

PPI S. cerevisiae 4 963 4 902 0.179 7.03 4.14 11 0.097 0.056

TRN S. cerevisiae 688 662 0.126 3.20 5.20 15 0.049 0.103

TRN E. coli 418 328 0.176 2.78 4.83 13 0.110 0.213

US airports 500 500 0.102 11.92 2.99 7 0.617 0.268

Word adjacency (Japanese) 2 704 2 698 0.109 5.92 3.07 8 0.220 0.267

Word adjacency (Spanish) 12 642 11 558 0.067 7.44 2.91 10 0.376 0.258

Collaboration (ca-HepTh) 9 877 8 638 0.205 5.74 5.94 18 0.482 0.007

Collaboration (ca-GrQc) 5 242 4 158 0.186 6.45 6.04 17 0.557 0.018

Wiki-Vote 7 115 7 066 0.154 28.5 3.24 7 0.141 0.140

Electronic circuit S420 252 252 0.260 3.167 5.806 13 0.056 0.044

Electronic circuit S208 122 122 0.250 3.098 4.928 11 0.059 0.058

power-law degree distributions and their average degree. The networks are representative of

datasets used in complex network analysis corresponding to the major fields of biological and

socio-technical systems. The list of the networks as well as the main topological features are

shown in table 1. The network centrality NC (or degree centralization) measures the extent to

which certain nodes are far more central than others. Networks whose topologies resemble a

perfect star have a centralization close to 1, whereas decentralized networks are characterized

by a centralization close to 0 [32].

4.1.1. Socio-technical networks. The collected networks include eight datasets from disparate

fields, ranging from US airline routes, word adjacency in texts, Wikipedia administrator vote to

collaboration networks in two fields of expertise and two types of electronic circuit designs.

The US airline network corresponds to the 500 busiest commercial airports in the United

States. A link is placed between two airports if a flight was scheduled between them. The

data correspond to the US commercial flights operated during 2002 [33]. The word adjacency

networks of a text in Spanish and Japanese languages and the networks for two designs

of electronic circuits S208 and S420 were downloaded from Uri Alon’s website5 [34]. The

collaboration networks in two fields of expertise and the Wikipedia network were downloaded

from the Stanford large network dataset collection website6. The HEP-TH (High Energy

Physics-Theory) collaboration network was built using the e-print arXiv and contains scientific

collaboration between authors. For example, a paper co-authored by three researchers will lead

5 http://www.weizmann.ac.il/mcb/UriAlon/
6 http://snap.stanford.edu/data/
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to a complete graph of degree k = 3. Similarly, a collaboration network corresponding to the

GR-QC (General Relativity and Quantum Cosmology) was considered. Both datasets cover

papers in the period from January 1993 to April 2003 (124 months). These two networks were

first reported in [35]. The Wikipedia vote represents an example of an online social network. An

online vote process decides who are the users to be promoted to Wikipedia administrators. This

network has the highest density among the analyzed networks with 103 689 edges, which leads

to a high average degree (see table 1). We used an undirected representation of the network

where two users i and j are connected by an edge if user i voted on user j or vice versa (see

footnote 7) [36].

4.1.2. Biological networks. We have analyzed eight datasets corresponding to biological

networks. First, we have used the database of interacting proteins7 to construct the

protein–protein interacting networks for six model organisms, including H. sapiens, C. elegans,

S. cerevisiae, D. melanogaster, E. coli and M. musculus organisms. Protein interactions are

essential for many biological functions. In these networks, the nodes represent proteins and two

nodes are connected if an interaction exists between them. Interactions often take place when

two proteins bind together in order to perform a specific cellular function. On the other hand,

we have also considered the transcription interactions in the bacteria E. coli and in the yeast

S. cerevisiae. Transcriptional regulatory networks play a crucial role in controlling the gene

expression programs of thousands of genes in a cell. The datasets were obtained from [34] (see

footnote 5).

4.1.3. Fit of power-law distributions using real-world data. The above set of networks was

fitted to power-law distributions to determine the degree exponent γ . First, we computed the

GCC of each network. The number of nodes in each GCC is shown in table 1. We then used

each GCC network to fit the power-law distribution. By following [37, 38], let x represent a

sequence of observations of some variable whose distribution we wish to fit as a power law.

There must be some lower bound to the power-law behavior. This value is denoted as xmin.

Therefore, given a set containing n observations xi > xmin and provided that γ > 1, it can be

shown that the continuous distribution with the corresponding normalizing constant is

P(x) =
γ − 1

xmin

[

x

xmin

]−γ

. (14)

Then, the probability that the data are drawn from a distribution that follows the power law

for x > xmin reads as

p(x |γ ) =

n
∏

i=1

γ − 1

xmin

(

xi

xmin

)−γ

. (15)

This expression is also called the likelihood of the data given the model. Then, the maximum

likelihood estimate (after maximization of the likelihood) for the scaling exponent reads as

γ = 1 + n

[

n
∑

i=1

ln
xi

xmin

]−1

. (16)

7 http://dip.doe-mbi.ucla.edu/dip
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However, a more accurate expression for the computation of the scaling exponent when

using discrete distributions (such as degree distributions) can be considered. We write the power-

law distribution over an integer variable as

P(x) =
x−γ

ζ(γ, xmin)
, (17)

where ζ(γ, xmin) is the Hurwitz zeta function. Following a similar derivation, the likelihood

function can be written and the scaling exponent solved numerically. For moderate values of

xmin & 6, however, we can still write the scaling exponent as

γ = 1 + n

[

n
∑

i=1

ln
xi

xmin − 1

2

]−1

. (18)

The fitting procedure is as follows [38]8. The maximum likelihood, as described

above, estimates the scaling parameter γ for each possible value of xmin. Then, the

Kolmogorov–Smirnov goodness-of-fit statistic KS is computed. This is done by computing the

maximum distance between the cumulative distribution function (CDF) of the data and the fitted

model:

KS = max
x>xmin

|S(x) − Pcum(x)|, (19)

where S(x) is the CDF of the data for the observations with value at least xmin, and Pcum is the

CDF for the power-law distribution that best fits the data. The estimate of xmin is determined as

the value that gives the minimum value KS over all values of xmin. The results for the scaling

exponent γ are shown in figure 8, together with the standard errors on γ , which are derived

from the width of the likelihood maximum [38].

4.2. The MDS targets high-degree nodes in real networks

In figure 6, we plot the average degree of MDS nodes 〈kD〉 as a function of the average degree

〈k〉 of each network in table 1. The results show that 〈kD〉 is significantly higher than the average

degree of the network 〈k〉, suggesting that MDS tends to hit high-degree nodes in real systems.

This finding is also supported by analyzing the top 5% highly connected nodes, shown in

figure 7. In all cases except two, the fraction of the top 5% high-degree nodes included in

the dominating set is above about 50% and exceeds 80% in several cases. The lowest fractions

correspond to a type of electronic circuit network whose degree distribution decays faster than

a power law and the Wiki-Vote network. Moreover, by classifying the networks into two types,

the results indicate that cellular networks tend to target a much larger fraction of hubs than

socio-technical networks.

Furthermore, we have also investigated whether the tendency observed in figure 7 is also

present in computer simulated networks. The fraction of the top 5% high-degree nodes within

the MDS was analyzed in synthetic scale-free networks with different size, from N = 100, 500,

1000, 5000 and 10 000 nodes. The degree exponent was set as γ = 2.5 and with a fixed average

degree 〈k〉 = 3. The results show that for small network sizes of N = 100, 500 and 1000, all the

top 5% high-degree nodes are included in the MDS. For larger networks (N = 5000 and 10 000)

the fraction of 5% nodes within the MDS is 97.6 and 97.8%, respectively. For real biological

8 http://tuvalu.santafe.edu/aaronc/powerlaws
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Figure 6. Average degree of the nodes in MDS 〈kD〉 compared with the average

degree 〈k〉 of all nodes in each real network shown in table 1.

networks this fraction represents 80%. Although the MDS in large synthetic networks tends to

target more high-degree nodes than real-world networks of similar size, we also observe that

some of the small real networks, such as electronic circuit S208 and PPI M. musculus, also

show larger fractions of high-degree nodes within the MDS. A reason for the small discrepancy

between the synthetic and real networks may be that the real-world networks have a richer local

structure, which includes clustering and degree correlations. These kinds of local patterns may

have an influence on the selection of MDS.

4.3. The dependence of the scaling exponent and average degree on the MDS in real networks

To investigate in more detail the topology behind the MDS selection of high-degree nodes in

real-world networks, we plot the MDS size as a function of each network’s scaling exponent

γ . A small degree exponent correlates with hubs with higher degrees. In contrast, high-degree

exponents exhibit weaker connected hubs, which tend to vanish when the decay is exponential

or faster than a power law. The results in figure 8 indicate that MDS size tends to decrease

as γ decreases and only reaches higher values as γ increases. This highlights the role of the

scaling exponent in scale-free systems, suggesting that networks with a small scaling exponent

could be more easily controlled by a smaller set of nodes. These results agree well with the

predictions of the theoretical analysis shown in section 3. Network dominance in the average

degree is also investigated by plotting MDS size as a function of the average degree observed in

real networks. Figure 9 shows that networks with higher average degrees tend to have smaller

MDSs. In table 1, we show the main network features of the analyzed networks. There, we

can see that the Wiki network has a extraordinarily high average degree, much higher than the

values observed for networks of a similar size. We consider this network as an exceptional case

with values (〈k〉, mD(%))= (28.3, 15.4). We also remark here that a strict comparison of the

results shown in figures 8 and 9 with those from computer simulations shown in figures 2 and 3
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Figure 7. The bars in blue show the fraction of the top 5% high-degree nodes

included in the dominating set. Red bars show the fraction of the top 5% high-

degree nodes not included in the dominating set. In all cases except two, the

fraction of the top 5% high-degree nodes included in the dominating set is

above about 50% and exceeds 80% in several cases. The classification of the

real networks into two types indicates that the MDS in cellular networks tends

to target on average a larger fraction of hubs than socio-technical networks. We

note that in the socio-technical networks we have included electronic circuits

with decay faster than a power law.

should be made with great care. As shown in figure 4, MDS strongly depends on both γ and 〈k〉

parameters. Figure 3 also shows that the dependence on γ is strong. In real networks, we do not

have enough statistics to classify networks with specific values of average degree and scaling

exponent. Therefore, the results shown in figures 8 and 9 contain networks with various values

of 〈k〉 and γ , which explains the dispersion of the data when compared with figures 2 and 3,

respectively.

4.4. Dependence on more complex network metrics

In figure 10, we plot MDS size as a function of the average shortest path, diameter, average

clustering degree and network centrality. The result shows a positive correlation between the

MDS size and the average shortest path and the diameter. In contrast, the MDS size is anti-

correlated with the average clustering degree and network centrality. It seems that, although

both correlations are not strong because as discussed before the networks also do not have the

same 〈k〉 or γ values, there is some tendency to have a smaller dominating set when both the

path length and the diameter of the network decrease. Moreover, when the network centrality

and clustering degree increase, the size of the dominating set also decreases.

New Journal of Physics 14 (2012) 073005 (http://www.njp.org/)

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

http://www.njp.org/


16

1 1.5 2 2.5 3 3.5 4
γ

5

10

15

20

25

30

m
D

 (
%

)

D. melanogaster
S. cerevisiae

US Airports

E. coli

Words Adjacency Spanish

M. musculus

H. sapiens

Transcriptional E. coli

C. elegans

Transcriptional Yeast

Circuits (No- SF faster decay)

wiki

Coll. HepTh

Coll. Relativity

Words Adjacency Japanese

Figure 8. MDS size as a function of the scaling exponent γ of each real network.

Electronic circuits exhibit a decay faster than a power-law. Error bars are derived

from the width of the likelihood maximum [38].
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network centrality (d) (r = −0.686). The correlation coefficient is indicated in

parentheses.

4.5. Degree distribution of nodes within the MDS

As shown in section 4.2, the MDS tends to target high-degree nodes in real networks. In

particular, the fraction of the top 5% hubs within MDS is relatively high. However, this

observation does not mean that all the nodes within a dominating set are highly connected

nodes. Note that we are just focusing on the top 5% hubs in the previous analysis. In order

to shed light on this issue, we investigate what the degree distribution of nodes within MDS

looks like. The analysis shown in figures 11 and 12 indicates that the MDS is not only the upper

part of the high-degree nodes. A broad distribution of heterogeneous degree nodes is visible in

most of the real-world networks. It is worth noting that in some networks, the distribution also

resembles a power-law functional form.

4.6. Relationship between assortativity and the MDS

In figure 7, we showed that cellular networks tend to target a larger number of hubs than

social networks. On the other hand, degree correlations between nodes of similar degree have

been identified in real-world networks. In social networks, highly connected nodes tend to be

connected with other high-degree nodes. This tendency is referred to as assortative mixing,

or assortativity. In contrast, technological and biological networks usually show disassortative

mixing, or dissortativity, as high-degree nodes tend to connect to low-degree nodes. We have

computed the assortativity of the analyzed networks. In figures 13 and 14, we show that
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Figure 11. Degree distribution of nodes in biological networks within the MDS.

Vertical axis: frequency of nodes with degree k. Horizontal axis: node with

degree k.

our biological networks are dissortative and social networks, such as research collaborations,

display clear assortative behavior. Based on figure 7, we could then conclude at first glance

that assortative networks tend to have a lower fraction of high-degree nodes within the MDS.

However, we should be careful since there are exceptions. The Wiki-Vote network, for example,

tends to target a small number of hubs and its assortativity behavior is not clear. Electronic

circuits do not have a definite degree correlation pattern. The words adjacency network could

be classified as a social network; however, the analysis shows clear dissortative behavior. To
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Figure 12. Degree distribution of nodes in socio-technical networks within the

MDS. Vertical axis: frequency of nodes with degree k. Horizontal axis: node

with degree k.

sum up, although our study does not show strong evidence for a correlation between MDS and

dissortative/assortative behavior, further specific studies on this issue are encouraged.

4.7. Dependence of the MDS size on the system size

Here we investigate whether there is a characteristic scaling between the size of the MDS

and the system size. From a theoretical viewpoint, for γ > 2.0 the MDS size should scale as

O(n). Figure 15 shows a similar dependence for computer-simulated networks with γ = 2.5 and
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Figure 13. Average degree of neighbors of a node with degree k for biological

networks.

γ = 3.5. For γ < 2, as n increases, the MDS size should decrease. Although the simulated data

show this tendency to some extent, it is not completely clear from figure 15 for the cases γ = 1.5

and 1.75. Note that we have only provided a non-tight upper bound of the size of MDS for the

case of γ < 2. A more detailed theoretical analysis of the case γ < 2 is left for future work.
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Figure 14. Average degree of neighbors of a node with degree k for socio-

technical networks.

5. Discussion and conclusion

Although topological features have been extensively studied over the last decade, the dynamic

and control aspects of complex networks have not followed the same pace of development. We

have provided a set of tools that facilitate designing networks with increased controllability.

We find that not all the real networks with fat-tailed degree distributions lead to similar
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Figure 15. Computer simulations of the MDS size as a function of the network

size. Each line indicates a synthetic network constructed with a specific degree

exponent γ as shown in the legend and with average degree 〈k〉 = 3.
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Figure 16. Comparison between the model proposed by Liu et al [9] and our

approach. The network is structurally controllable by selecting an MDS because

each dominated node has its own control signal.

MDS sizes. Our findings highlight a specific configuration of scale-free networks based on a

scaling exponent γ < 2 that leads to a significant reduction of MDS size. Therefore, a few key

individuals or devices could in principle dominate a very large network. In sharp contrast to a

previous study on network control based on the maximum matching problem [9], we find that

the degree of heterogeneity and denseness facilitates network control. However, our results do

not contradict the recent results of Liu et al [9]. As in figure 16, they assumed that only driver

node values can be directly controlled through external signals. Conversely, the MDS approach

assumes that each driver node can control its links individually. Therefore, a node with degree k

is treated as if it were a set of k nodes. This assumption is reasonable for artificial networks, such

as the Internet and power grids, where each node is sufficiently smart to control individual links

separately, although this assumption may remain unclear for biological networks. Therefore,

our findings complement the results of Liu et al.
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A recent study by Müller and Schuppert [10] has suggested that a few inputs could

reprogram biological networks, giving iPS cells as an example. Although their work shows that

network control techniques could also make an impact on synthetic molecular biology, their

study is entirely empirical and does not present general results. Moreover, the analysis does

not include network features. In contrast, we have provided here an extensive data analysis and

computer simulations that demonstrate correlations between network structures and MDS size,

in agreement with the theoretical predictions.

Our approach has demonstrated that the more homogeneous a network, the larger the

fraction of individuals required for dominating the entire system. The theoretical analysis and

computational experiments unveiled a critical value of the scaling exponent γ = 2 below which

scale-free networks show drastically different behavior for control purposes. More complex net-

work metrics, such as clustering degree, network centrality, average shortest path and diameter,

also correlating with MDS size, provide new tools for addressing network control design.

In summary, our results offer a new view of the large-scale network control problem

from the MDS perspective and provide simple control design tools and principles to address

controllability for complex networks. We envision that, in an increasingly smart e-society,

mobile and MANET networks [17], computer and cluster communication networks and sensor

and camera vigilance systems could provide optimal coverage and monitoring performance,

or control an entire network, using only a small fraction of devices as long as the network

connectivity is highly heterogeneous with γ < 2, dense, clustered and central, and exhibits

both a small average shortest path and diameter. Although the deployment of such smart

infrastructures is at an early stage, the possibility of predicting optimal device connectivity

in large-scale networks using inexpensive computer simulations and network science tools

suggests a promising start.

Acknowledgments

TA was partially supported by MEXT, Japan (grant-in-Aid no. 22650045) and JCN was partially

supported by MEXT, Japan (Grant-in-Aid no. 23700352).

References

[1] Vespignani A 2009 Predicting the behavior of techno-social systems Science 325 425–8

[2] Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A and White D R 2009 Economic

networks: the new challenges Science 325 422–5

[3] Barabási A-L, Gulbahce N and Loscalzo J 2011 Network medicine: a network-based approach to human

disease Nature Rev. Genet. 12 56–68

[4] Albert R and Barabási A-L 2002 Statistical mechanics of complex networks Rev. Mod. Phys. 74 47–97

[5] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and

WWW (Oxford: Oxford University Press)

[6] Kim J S, Goh K-I, Kahng B and Kim D 2007 Fractality and self-similarity in scale-free networks New J.

Phys. 9 177

[7] Newman M E J 2010 Networks: An Introduction (New York: Oxford University Press)

[8] Oh E, Lee D-S, Kahng B and Kim D 2007 Synchronization transition of heterogeneously coupled oscillators

on scale-free networks Phys. Rev. E 75 011104

[9] Liu Y-Y, Slotine J-J and Barabási A-L 2011 Controllability of complex networks Nature 473 167–73

[10] Müller F-J and Schuppert A 2011 Few inputs can reprogram biological networks Nature 478 E4

New Journal of Physics 14 (2012) 073005 (http://www.njp.org/)

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp

http://dx.doi.org/10.1126/science.1171990
http://www.ncbi.nlm.nih.gov/pubmed/19628858
http://dx.doi.org/10.1038/nrg2918
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1088/1367-2630/9/6/177
http://dx.doi.org/10.1103/PhysRevE.75.011104
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10543
http://www.njp.org/


24

[11] Meyn S 2008 Control Techniques for Complex Networks (New York: Cambridge University Press)

[12] Akutsu T, Hayashida M, Ching W-K and Ng M K 2007 Control of Boolean networks: hardness results and

algorithms for tree structured networks J. Theor. Biol. 244 670–9

[13] Lombardi A and Hornquist M 2007 Controllability analysis of networks Phys. Rev. E 75 56110

[14] Liu B, Chu T, Wang L and Xie G 2008 Controllability of a leader–follower dynamic network with switching

topology IEEE Trans. Autom. Control 53 1009–13

[15] Rahmani A, Ji M, Mesbahi M and Egerstedt M 2009 Controllability of multi-agent systems from a graph-

theoretic perspective SIAM J. Control Optim. 48 162–89

[16] Kim D-H and Motter A E 2009 Slave nodes and the controllability of metabolic networks New J. Phys.

11 113047

[17] Blum J, Ding M, Thaeler A and Cheng X 2004 Applications of connected dominating sets in wireless

networks Handbook of Combinatorial Optimization ed D-Z Du and P Pardalos (Dordrecht: Kluwer)

pp 329–69

[18] Alzoubi K, Wan P J and Frieder O 2002 Message-optimal connected dominating sets in mobile ad hoc

networks Proc. 3rd Int. Symp. on Mobile ad hoc Networks and Computing (New York: ACM) pp 157–64

[19] Stojmenovic I, Seddigh M and Zunic J 2002 Dominating sets and neighbor elimination-based broadcasting

algorithms in wireless networks IEEE Trans. Parallel Distrib. Syst. 13 14–25

[20] Cokuslu D, Erciyes K and Dagdeviren O 2006 A dominating set-based clustering algorithm for mobile ad hoc

networks Proc. Int. Conf. on Computational Science (Lecture Notes in Computer Science vol 3991) (Berlin:

Springer) pp 571–8

[21] Haynes T W, Hedetniemi S T and Slater P J 1998 Fundamentals of domination in graphs Pure Applied

Mathematics (New York: Chapman and Hall/CRC)

[22] Sampath A and Thampi S M 2011 An ACO algorithm for effective cluster head selection J. Adv. Inf. Technol.

2 50–6

[23] Wolsey L A 1998 Integer Programming (New York: Wiley)

[24] Nemhauser G L and Wolsey L A 1998 Integer and Combinatorial Optimization (New York: Wiley)

[25] Molloy M and Reed B 1995 A critical point for random graphs with a given degree sequence Random Struct.

Algorithms 6 161–79

[26] Newman M E J 2003 The structure and function of complex networks SIAM Rev. 45 167–203

[27] Viger F and Latapy M 2005 Efficient and simple generation of random simple connected graphs with

prescribed degree sequence Proc. COCOON’05 (Computing and Combinatorics Conf.) pp 1–15

[28] Cooper C, Klasing R and Zito M 2005 Lower bounds and algorithms for dominating sets in web graphs

Internet Math. 2 275–300

[29] Cooper C and Zito M 2009 An analysis of the size of the minimum dominating sets in random recursive trees,

using the Cockayne–Goodman–Hedetniemi algorithm Discrete Appl. Math. 157 2010–14
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