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Abstract

In this paper we consider the effect of edge contraction on the domination
number and total domination number of a graph. We define the (total)
domination contraction number of a graph as the minimum number of
edges that must be contracted in order to decrease the (total) domination
number. We show both of this two numbers are at most three for any
graph. In view of this result, we classify graphs by their (total) domination
contraction numbers and characterize these classes of graphs.
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1 Introduction

In the domination area, edge addition and deletion have attracted much
attention. Much research has been done on the changes of domination-type
parameters resulting from edge addition and deletion. Besides addition
and deletion the most fundamental operations on the edges of a graph
are subdivision and contraction. However, it appears that subdivision and
contraction have not received much attention in the domination area until
recently. Some people investigated the effect of edge subdivision on the
domination number and total domination number, two most fundamental
ones among the domination-type parameters that have been studied.
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The domination subdivision number sdγ(G) of a graph is the minimum
number of edges that must be subdivided (where an edge can be subdivided
at most once) in order to increase the domination number. Arumugam
and Paulraj Joseph [1] first defined this number, showed that sdγ(T ) 6 3
for any tree T on at least three vertices, and conjectured that this up-
per bound holds for every graph with at least three vertices. However, in
2001, Haynes et al. [5] gave a counterexample to the above conjecture by
showing that sdγ(G) = 4 for the Cartesian product G = Kt × Kt where
t > 4. Later Swaminathan and Sumathi [9] constructed a graph G with
sdγ(G) = 5. General bounds for domination subdivision number can be
found in [2, 3, 4]. A parallel conception is the total domination subdivi-
sion number sdγt

(G). In 2003, Haynes et al. [6] introduced this number
and established some upper bounds in terms of vertex degree. They also
presented several sufficient conditions which imply that sdγt

(G) 6 3, and
showed that sdγt

(T ) 6 3 for any tree T . A constructive characterization
of trees T with sdγt

(T ) = 3 was given in [8]. However, for general graphs,
this number can be arbitrarily large (see [7]).

Motivated by recent researches focusing on subdivision, we consider
the edge contraction and introduce similar conceptions, namely the dom-
ination and total domination contraction numbers. For a graph G with
(total) domination number at least (three) two, we define the (total) dom-
ination contraction number (ctγt

(G)) ctγ(G) as the minimum number of
edges which must be contracted in order to decrease the (total) domina-
tion number. If the (total) domination number is (two) one, then we define
(ctγt

(G))ctγ(G) = 0 for convenience.
The relevance of (total) domination contraction number can be illus-

trated as follows. In a facility location problem, one target is to find in
the corresponding graph G a minimum (total) dominating set where to
locate valuable facilities. If we want to reduce the cost on these facilities,
we must decrease the (total) domination number. To this aim, we need to
make some changes on edges of G, that is, to add or contract some edges.
The former increases the number of edges and hence requires extra cost,
while the latter does not (in fact, it decreases the number of edges, by
Proposition2.1). Therefore edge contraction may be a better choice than
edge addition. Next, one wants to know at least how many edges must be
contracted in order to decrease the (total) domination number. We answer
this question by showing that ctγ(G) 6 3 and ctγt

(G) 6 3 hold for every
graph G. This result also provides an interesting comparison with that on
sdγ(G) and sdγt

(G). Furthermore, according to these two upper bounds of
ctγ(G) and ctγt

(G), we give classifications of graphs and characterize them,
respectively.

Before we enter the next section, we would like to give some terminology
and notation. By the definitions, contraction numbers of a graph are equal
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to the minimum value of the contraction numbers of all components of the
graph. Therefore we only consider the connected graph G = (V, E) with
vertex-set V = V (G) and edge-set E = E(G). For a vertex v ∈ V (G), let
N(v) and N [v] = N(v) ∪ {v} be the open and closed neighborhoods of v,
respectively. We use d(x, y) to denote the distance between two vertices x
and y. Denote by G/e the graph obtained from G by contracting an edge e.
Since edge contraction is a commutative operation, i.e., (G/e)/f = (G/f)/e
for any two edges e and f , we can use G/E′ to denote the resulting graph
of contracting all edges in E′ ⊆ E(G) one by one from G. For terminology
and notation on graph theory not given here, the reader is referred to [10].

Given two vertices u and v in G, we say u dominates v if v ∈ N [u].
A subset D ⊆ V (G) is called a dominating set if its vertices dominate
all vertices of G. The domination number of G, denoted by γ(G), is the
minimum cardinality of all dominating sets. We call a dominating set
consisting of γ(G) vertices a γ-set for short. A total dominating set T of G
is a dominating set whose induced subgraph has no isolated vertex, namely,
every vertex of G has a neighbor in T . The total domination number γt

and γt-set of G are defined similarly to γ(G) and γ-set. It is easy to see
that γt is well-defined for any nontrivial connected graph.

The rest of the paper is organized as follows. In Section 2 we give some
preliminaries. In Section 3 we show ctγ(G) 6 3, classify graphs according
to ctγ(G), and then characterize these classes. In Section 4 we do the same
thing for ctγt

(G).

2 Preliminaries

In this section we give preparations for proving the main results in Section
3 and Section 4.

Proposition 2.1 If E′ ⊆ E(G), then |V (G/E′)| = |V (G)| − |E′| and
|E(G/E′)| 6 |E(G)| − |E′|.

Proof. Note that contracting an edge decreases the number of vertices
by one and the number of edges by at least one. The results follows by
induction on |E′|.

Lemma 2.2 Let G be a connected graph.
1) If D is a γ-set of G and x, y are two vertices in D, then ctγ(G) 6

d(x, y).
2) If T is a γt-set of G and x, y, z are three vertices in D such that x, y

are adjacent in G, then ctγt
(G) 6 min{d(x, z), d(y, z)}.
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Proof. 1) Let P be a shortest path between x and y and consider G′ =
G/E(P ). We show γ(G′) < γ(G), which implies that ctγ(G) 6 |E(P )| =
d(x, y).

Suppose that D is a γ-set of G and v is the contracted vertex in G′.
Let D′ = (D \ V (P )) ∪ {v}. We will show that D′ is a dominating set of
G′. To this aim, consider u ∈ V (G′).

If u ∈ N [v], then u is dominated by the contracted vertex v in G′.
If u /∈ N [v], then u is also a vertex of G and so D contains a vertex w

which dominates u in G. It is clear that w /∈ V (P )(otherwise u ∈ N [v]).
It follows that w ∈ D′, and w dominates u in G′ by the definition of
contraction.

Therefore D′ is a dominating set of G′ and γ(G′) 6 |D′| = |D| − 1 =
γ(G) − 1.

2) Suppose that T is a γt-set of G and x, y, z ∈ D satisfying xy ∈
E(G). Assume d(x, z) > d(y, z), without loss of generality. Let P be a
shortest path between y and z. Then P does not contain x (otherwise
d(x, z) < d(y, z)). We will show that γt(G/E(P )) < γt(G), which implies
ctγt

(G) 6 |E(P )| = d(y, z) = min{d(x, z), d(y, z)}.
Denote the contracted vertex in G/E(P ) by v and let T ′ = (T \V (P ))∪

{v}. In order to prove T ′ is a total dominating set of G, we need only to
consider each vertex u /∈ N [x]∪N [v], since x and v are two adjacent vertex
in T ′. Note that u is also a vertex of G. Then there exists a vertex w ∈ T
such that uw ∈ E(G). It is clear that w /∈ V (P ) (otherwise w ∈ N [v]).
Hence w ∈ T ′ and uw ∈ E(G/E(P )) by the definition of contraction.
Therefore T ′ is a total dominating set of G/E(P )), which implies that
γt(G) 6 |T ′| = |T | − 1 = γt(G) − 1.

Now we investigate the relationship between the (total) dominating sets
in the original graph and the (total) dominating sets in the contracted
graph.

Lemma 2.3 (Contraction Lemma) Let G be a connected graph.
1) If D is a dominating set of G and E is a subset of E(G[D]), then

G/E′ contains a dominating set D′ such that |D′| = |D| − |E′|.
2) If T is a total dominating set of G and E′ is a subset of E(G[T ])

such that G[T ]/E′ contains no isolated vertex, then G/E′ contains a total
dominating set T ′ such that |T ′| = |T | − |E′|.

Proof. 1) We will show that D′ = V (G[D]/E′) is a dominating set of
G/E′. Then |D′| = |D| − |E′| by Proposition 2.1.

Let S be the set of all contracted vertices in G/E′. Since E′ ⊆ E(G[D]),
then S ⊆ D′. Hence we need only to consider such vertex v that v /∈ N [s]
for any s ∈ S. In that case, v is also a vertex of G. Thus D contains a
vertex u ∈ D such that u = v or uv ∈ E(G). It is easy to observe that u is
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not incident with any edge of E′; otherwise u ∈ S, a contradiction to the
assumption that v /∈ N [s] for any s ∈ S. Therefore u lies in D′. If u = v
then we are done. Otherwise u remains adjacent to v in G/E′. Finally we
conclude that D′ is a dominating set of G/E′.

2) Since T is a dominating set of G, then by 1), T ′ is a dominating set
of G/E′ and |T ′| = |T |− |E′|. Moreover, T ′ is a total dominating set, since
G[T ′] = G[T ]/E′ contains no isolated vertex.

Lemma 2.4 (Expansion Lemma) Let G be a connected graph.
1) If E′ is a subset of E(G) and D′ is a dominating set of G′ = G/E′,

then G has a dominating set D such that G′[D′] is a spanning subgraph
of G[D]/F where F ⊆ E(G[D]) and |F | = |E′|. As a consequence, |D| =
|D′| + |E′| and |E(G[D])| > |E(G′[D′])| + |E′|.

2) If E′ is a subset of E(G) and T ′ is a total dominating set of G′ =
G/E′, then G has a total dominating set T such that G′[T ′] is a spanning
subgraph of G[T ]/F where F ⊆ E(G[T ]) and |F | = |E′|. As a consequence,
|T | = |T ′| + |E′| and |E(G[T ])| > |E(G′[T ′])| + |E′|.

Proof. 1) By induction on k = |E′|. First consider k = 1. Suppose that
E′ = {xy} and v is the contracted vertex in G′ = G/xy. We distinguish
two cases.

Case 1. v ∈ D′. Let D = (D′ \ {v}) ∪ {x, y}. Then G[D]/xy = G′[D′].
In order to show that D is a dominating set of G, we need only to consider
such vertex u that u /∈ N [x] ∪ N [y]. Since u is also a vertex of G/xy, then
D′ contains a vertex w which dominates u. It is easy to see w ∈ D since
w 6= v (otherwise u ∈ N [x] ∪N [y] ). If u = w then we are done. Otherwise
uw ∈ E(G′), which implies uw ∈ E(G). Thus D is a dominating set of G.

Case 2. v /∈ D′. Then D′ contains a vertex z such that vz ∈ E(G′).
Assume xz ∈ E(G), without loss of generality. Let D = D′ ∪ {x}. Then
G′[D′] is a spanning subgraph of G[D]/xz. To show that D is a dominating
set of G, we need only to consider each vertex u /∈ {x, y} of G. Since u
is also a vertex of G′, then there exists a vertex w ∈ D′ ⊆ D such that
u = w or uw ∈ E(G′). If u = w then we are done. Otherwise uw ∈ E(G′).
Since v /∈ D′, then w 6= v, which implies uw ∈ E(G). Therefore D is a
dominating set of G.

Now consider k > 2 and let D′ be a dominating set of G′ = G/E′. By
the induction hypothesis, the result holds for E′′ = E′ \ {e} where e ∈ E′.
Note that G/E′ = (G/e)/E′′. Then G′′ = G/e has a dominating set D′′

such that

G′[D′] is a spanning subgraph of G′′[D′′]/F ′′, |F ′′| = |E′′|. (1)
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Applying the result of k = 1 to G′′ = G/e we have that G has a dominating
set D such that

G′′[D′′] is a spanning subgraph of G[D]/F ′, |F ′| = 1. (2)

Combining (1) and (2) yields that G has a dominating set D such that
G′[D′] is a spanning subgraph of (G[D]/F ′)/F ′′ = G[D]/F where F =
F ′ ∪ F ′′. It is easy to see that F ′′ ⊆ E(G′′[D′′]) \ E(G′[D′]) and F ′ ⊆
E(G[D])\E(G′′[D′′]), which implies that |F | = |F ′′|+|F ′| = |E′′|+1 = |E′|.
It follows from Proposition 2.1 that

|D| = |V (G[D])| = |V (G[D]/F )| + |F | = |V (G′[D′])| + |E′|
= |D′| + E′|

and
|E(G[D])| > |E(G[D]/F )| + |F | > |E(G′[D′])| + |E′|.

2) Let T ′ be a total dominating set of G′ = G/E′. Then T ′ is a domi-
nating set. By 1), G has a dominating set T such that G′[T ′] is a spanning
subgraph of G[T ]/F where F ⊆ E(G[T ]) and |F | = |E′|. If G[T ] has an
isolated vertex, then this vertex remains isolated in G[T ]/F . Hence G′[T ′]
contains an isolated vertex, since G′[T ′] is a spanning subgraph of G[T ]/F .
That contracts the hypothesis that T ′ is a total dominating set of G′.

Corollary 2.5 Let G be a connected graph.
1) If ctγ(G) = k > 1, then there exists a set E′ ⊆ E(G) such that

|E′| = k and γ(G/E′) = γ(G) − 1.
2) If ctγt

(G) = k > 1, then there exists a set E′ ⊆ E(G) such that
|E′| = k and γt(G/E′) = γt(G) − 1.

Proof. 1) First we show that contracting an edge e may decrease γ(G) by
at most one. Suppose to the contrary that γ(G/e) 6 γ(G) − 2. It follows
from the Expanding Lemma that G has a dominating set consisting of at
most γ(G) − 1 vertices. That is a contradiction.

Now by the definition of ctγ(G), there exists a set E′ ⊆ E(G) such
that |E′| = ctγ(G) and γ(G/E′) < γ(G). Let e ∈ E′ and E′′ = E′ \ {e}.
Then γ(G/E′′) = γ(G); otherwise ctγ(G) 6 |E′′| < |E′| = ctγ(G), a
contradiction. It follows that

γ(G/E′) = γ((G/E′′)/e) > γ(G/E′′) − 1 = γ(G) − 1.

2) The proof is similar to that of 1).

We conclude this section with a remark on the Contraction Lemma
and Expansion Lemma. Both of them are essential to proving our main
results. The proofs in Section 3 and Section 4 mainly use the results of
cases |E′| = 1, 2 of these two lemmas. Nevertheless, we present general
cases for integrality.
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3 Domination Contraction Number

In this section we consider domination contraction number of a graph. Let
us begin with some simple examples.

Proposition 3.1 For a path Pn and a cycle Cn on n vertices, γ(Pn) =
γ(Cn) = ⌈n

3
⌉.

Proposition 3.2 For a path Pn and a cycle Cn on n > 4 vertices, ctγ(Pn) =
ctγ(Cn) = i, where n = 3k + i, 1 6 i 6 3.

Theorem 3.3 For a connected graph G, ctγ(G) 6 3.

Proof. Let D be a γ-set of G. If |D| = 1 then ctγ(G) = 0 by the definition.
Assume |D| > 2 below. Choose two vertices x, y in D such that d(x, y) is
as small as possible. We claim that d(x, y) 6 3, which implies ctγ(G) 6 3
by Lemma 2.2.

Suppose to the contrary that d(x, y) = k > 4. Let P = xv1v2 . . . vk−1y
be a shortest path between x and y. Then neither x nor y can dominate v2

since P is a shortest path. Thus there exists a vertex z in D \ {x, y} such
that v2 ∈ N [z]. It follows that

d(x, z) 6 d(x, v2) + d(v2, z) 6 2 + 1 = 3,

a contradiction to the choice of x, y.

Next we determine when a graph has domination contraction number
0, 1, 2 or 3.

Lemma 3.4 For a connected graph G, ctγ(G) = 0 if and only if G admits
a star as its spanning tree.

Proof. It is clear that γ(G) = 1 if and only if G has a vertex joined to all
other vertices in G, i.e. G admits a star as its spanning tree.

Lemma 3.5 For a connected graph G, ctγ(G) = 1 if and only if there
exists a γ-set D which is not independent.

Proof. If D is a γ-set which is not independent, then there exist two
adjacent vertices x, y in D. By Lemma 2.2, ctγ(G) 6 d(x, y) = 1. Clearly
ctγ(G) 6= 0, since γ(G) = |D| > 2. Hence ctγ(G) = 1.

Conversely, assume ctγ(G) = 1. Then there exists an edge xy such that
γ(G/xy) = γ(G) − 1. Let D′ be a γ-set of G′ = G/xy. By the Expansion
Lemma, G has a dominating set D such that |D| = |D′|+1 and |E(G[D])| >

|E(G′[D′])|+ 1 > 1. Then D is a γ-set of G since |D′| = γ(G′) = γ(G)− 1,
and D is not independent.
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By Lemma 3.5, a connected graph G has ctγ(G) 6= 1 if and only if
every γ-set of G is independent. As a consequence, γ(G) = i(G), where
i(G) is the independent domination number of G, defined as the minimum
cardinality of all maximal independent sets in G. However, we can not
conclude from γ(G) = i(G) that ctγ(G) 6= 1. (See P4.)

We go forward to characterize graphs with contraction domination num-
ber 2. For convenience, we call a dominating set D of G with |D| = γ(G)+1
a (γ + 1)-set.

Lemma 3.6 Let G be a connected graph. Then ctγ(G) = 2 if and only
every γ-set of G is independent and there exists a (γ + 1)-set D such that
G[D] contains at least two edges.

Proof. Suppose that every γ-set of G is independent. Let D be a (γ+1)-set
such that G[D] contains at least two edges. Then ctγ(G) > 2, By Lemma
3.4 and Lemma 3.5. Let E′ ⊆ E(G[D]) with |E′| = 2. It follows from
the Contraction Lemma that G/E′ contains a dominating set D′ such that
|D′| = |D| − |E′| = γ(G) + 1 − 2 = γ(G) − 1. Thus ctγ(G) 6 2.

Conversely, assume ctγ(G) = 2. Then every γ-set of G is independent,
and there exists E′ ⊆ E(G) with |E′| = 2 such that γ(G/E′) = γ(G) − 1.
Let D′ be a γ-set of G′ = G/E′. By the Expansion Lemma, G has a
dominating set D such that |D| = |D′| + |E′| = γ(G′) + 2 = γ(G) + 1 and
|E(G[D])| > |E(G′[D′])| + |E′| > 2.

In view of Theorem 3.3, all graphs can be classified into four categories
according to their domination contraction numbers. We can obtain char-
acterizations of them from Lemma 3.4, 3.5 and 3.6. Denoted by C i

γ the
graphs with domination contraction number i for i = 0, 1, 2, 3. Also denote
by Pj

γ the set of all connected graphs satisfying Property j below. If A

is a family of connected graphs, then A means the family of all connected
graphs not in A .

Property 1 G admits a star as its spanning tree.

Property 2 G has a γ-set which is not independent.

Property 3 G has a (γ + 1)-set D such that G[D] contains at least two
edges.

Theorem 3.7 C 0

γ = P1

γ , C 1

γ = P2

γ , C 2

γ = P2
γ ∩P3

γ , and C 3

γ = P1
γ ∩P3

γ .

Proof. C 0

γ = P1

γ , C 1

γ = P2

γ and C 2

γ = P2
γ ∩P3

γ follow immediately from

Lemma 3.4, 3.5 and 3.6. We need only to prove C
3

γ = P1
γ ∩ P3

γ .
First we show P2

γ ⊆ P3

γ . Suppose that G ∈ P2

γ , i.e., G has a γ-set
D such that G[D] contains an edge xy. Then V (G) \ D 6= ∅. (Otherwise
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D \ {x} is a dominating set smaller than D.) Hence we can choose a vertex
z outside D. Clearly, z has a neighbor in D. Thus D′ = D ∪ {z} is a
(γ + 1)-set and |E(G[D′])| > |E(G[D])| + 1 > 2. Therefore G ∈ P3

γ .
Now we can compute that

C3 = C 0
γ ∪ C 1

γ ∪ C 2
γ = P1

γ ∩ P2
γ ∩ P2

γ ∩ P3
γ

= P1
γ ∩ P2

γ ∩ (P2

γ ∪ P3
γ)

= (P1
γ ∩ P2

γ ∩ P
2

γ) ∪ (P1
γ ∩ P2

γ ∩ P3
γ)

= P1
γ ∩ P3

γ

since P3
γ ⊆ P2

γ .

4 Total Domination Contraction Number

First we compute ctγ(G) for paths and cycles.

Proposition 4.1 [8] For the path Pn and cycle Cn on n > 3 vertices,

γt(Cn) = γt(Pn) =

{

n/2 if n ≡ 0 (mod 4);
⌊n/2⌋+ 1 otherwise.

Proposition 4.2 For the path Pn and cycle Cn on n > 5 vertices,

ctγt
(Cn) = ctγt

(Pn) =







1 if n ≡ 1, 2 (mod 4);
2 if n ≡ 3 (mod 4);
3 if n ≡ 0 (mod 4).

Next we show ctγt
(G) 6 3 for any graph G.

Theorem 4.3 For any nontrivial connected graph G, ctγt
(G) 6 3.

Proof. Let T be a γt-set of G. If |T | = 2 then ctγt
(G) = 0. Assume

|T | > 3 below. We need only to show that there exist three vertices x, y, z
in T such that d(x, y) = 1, d(x, z) > d(y, z) and d(y, z) 6 3. Then it follows
from Lemma 2.2 that ctγt

(G) 6 d(y, z) 6 3.
Since G[T ] contains no isolated vertex, we can choose a vertex x and its

neighbor y such that x, y ∈ T . Since |T | > 3, then there exists a vertex z in
V (G) \ (N(x)∪N(y)). Assume d(x, z) > d(y, z), without loss of generality.
Let P = yuv . . . z be a shortest path between y and z. Then x is not in
P . (Otherwise d(x, z) < d(y, z).) If d(y, z) 6 3, then we are done. Assume
d(y, z) > 4 below.

Clearly, v /∈ N(y). If v ∈ N(x) then d(x, z) < d(y, z), which contradicts
the assumption. Thus v /∈ N(x). Then T must contain a vertex z′ such that
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z 6= x, z 6= y and v ∈ N(z′). It follows that d(y, z′) 6 d(y, v) + d(v, z′) =
2 + 1 = 3.

Finally we characterize graphs with total domination contraction num-
bers equal to 0, 1, 2, 3. By the definition, ctγt

(G) = 0 if and only if
γt(G) = 2. Such G can be characterized as a graph containing a spanning
tree isomorphic to the double-star, which is the graph formed by joining
the center vertices of two stars.

Lemma 4.4 Let G be a connected graph. Then ctγt
(G) = 0 if and only if

G admits a double-star as its spanning tree.

Lemma 4.5 Let G be a connected graph. Then ctγt
(G) = 1 if and only if

there exists a γt-set T such that G[T ] contains a 3-path.

Proof. If G has a γt-set T such that G[T ] contains a 3-path P = xyz,
then G[T ]/xy contains no isolated vertex since z is adjacent to y. By the
Contraction Lemma, G/xy has a γt-set T ′ such that |T ′| = |T | − 1. It
follows that γt(G/xy) 6 |T ′| < γt(G) and ctγt

(G) 6 1. But ctγt
(G) > 1

since γt(G) = |T | > 3. Thus ctγt
(G) = 1.

Conversely, assume ctγt
(G) = 1. Then there exists an edge e of G such

that γt(G/e) = γt(G) − 1. Let T ′ be a γt-set of G′ = G/e. It follows
from the Expansion Lemma that G has a total dominating set T such that
G′[T ′] is a spanning subgraph of G[T ]/f for some f = uv ∈ E(G). Since
|T | = |T ′|+1 = γt(G), then T is a γt-set of G. Furthermore, the contracted
vertex corresponding to f has a neighbor, say w, in G′[T ′], since G′[T ′] has
no isolated vertex. Hence uvw is a 3-path in G[T ].

The contrapositive of Lemma 4.5 says that, for a nontrivial connected
graph G, ctγt

(G) 6= 1 if and only if G[T ] contains no 3-path for every γt-set
T of G. In other words, G[T ] is an induced 1-factor, since G[T ] contains no
isolated vertex. As a consequence, γt(G) = γpr(G), where γpr(G), called
the paired domination number, is the minimum cardinality of all paired
dominating sets of G. (A dominating set whose induced subgraph contains
a perfect matching is called a paired dominating set. The paired dominating
set of cardinality equal to γpr(G) is called a γpr-set. Clearly, γt(G) 6

γpr(G).) However, γt(G) = γpr(G) does not generally yields ctγt
(G) 6= 1.

(For example, see P6.)
Next we consider when ctγt

(G) = 2. Call a total dominating set of
cardinality γt(G)+1 a (γt +1)-set. Denote by 2H the disjoint union of two
copies of a graph H .

Lemma 4.6 Let G be a connected graph. Then ctγt
(G) = 2 if and only if

every γt-set of G is a γpr-set and there exists a (γt + 1)-set T such that
G[T ] contains a subgraph isomorphic to P4, K1,3 or 2P3.
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Proof. If every γt-set is a γpr-set, then ctγt
(G) 6= 1 by Lemma 4.5. Suppose

that G has a (γt + 1)-set T such that G[T ] contains a subgraph isomorphic
to P4, K1,3 or 2P3. Then |T | > 4, which implies ctγt

(G) 6= 0. We will show
ctγt

(G) 6 2. Then ctγt
(G) = 2 follows.

It is easy to choose two edges in P4, K1,3 or 2P3 such that no isolated
vertex appears after contracting these two edges. Let E′ be the set of these
two edges. Then G[T ]/E′ contains no isolated vertex. By the Contraction
Lemma, G/E′ has a total dominating set T ′ such that |T ′| = |T | − |E′| =
γt(G) + 1 − 2 = γt(G) − 1. Hence γt(G/E′) < γt(G) and so ctγt

(G) 6 2.
Conversely, Assume ctγt

(G) = 2. It follows from Lemma 4.5 that every
γt-set is a γpr-set. By Corollary 2.5, there exists a set E′ ⊆ E(G) such
that |E′| = 2 and γt(G/E′) = γt(G) − 1. Let T ′ be a γt-set of G′ = G/E′.
The Expansion Lemma yields that G has a total dominating set T such
that G′[T ′] is a spanning subgraph of G[T ]/F where F = {e, f} ⊆ E(G).
Then |T | = |T ′|+ |E′| = γt(G)− 1 +2 = γt(G)+ 1. To show G[T ] contains
P4, K1,3 or 2P3, we distinguish two cases.

Case 1. e = xy, f = yz. The contracted vertex v in G′ must has a
neighbor u in G′[T ′], since T ′ is a total dominating set. Then u is adjacent
to one of x, y, z in G[T ]. If u is adjacent to x or z, then uxyz or uzyz is a
4-path. If u is adjacent to y, then G[{u, x, y, z}] contains a K1,3.

Case 2. e = ab and f = cd are not incident. Denote the neighbors of
the contracted vertices corresponding to e, f by u, v respectively. Similarly
to Case 1, we have that, if u = v then baucd is a 5-path, and if u 6= v then
uab and vcd are two disjoint 3-paths.

In view of Theorem 4.3, we can also classify graphs into four categories
according to their total domination contraction numbers. Characterizations
of these categories follows from Lemma 4.4, 4.5 and 4.6. Denoted by C i

γt

the graphs with total domination contraction number i for i = 0, 1, 2, 3.
Also denote by P

j
γt

the set of all connected graphs satisfying the j-th one

of the following properties. We would like to remark that A means the
family of all nontrivial connected graphs not in A whenever we consider
ctγt

(G).

Property 1’ G admits a double-star as its spanning tree.

Property 2’ G has a γt-set T such that G[T ] contains a 3-path.

Property 3’ G has a (γt + 1)-set T such that G[T ] contains P4, K1,3 or
2P3.

Theorem 4.7 C 0

γt
= P1

γt
, C 1

γt
= P2

γt
, C 2

γt
= P2

γt
∩ P3

γt
, and C 3

γt
=

P1
γt

∩ P3
γt

.

11



Proof. C 0

γt
= P1

γt
, C 1

γt
= P2

γt
and C 2

γt
= P2

γt
∩ P3

γt
follow immediately

from Lemma 3.4, 3.5 and 3.6. In order to show C 3

γt
= P1

γt
∩ P3

γt
, we first

prove P2

γt
⊆ P3

γt
. Suppose that G ∈ P2

γt
, i.e., G has a γt-set T such that

G[T ] contains a 3-path xyz. Then V (G) \ T 6= ∅. (Otherwise T \ {x} is a
dominating set smaller than T .) Hence we can choose a vertex u outside
T . Clearly, u has a neighbor, say v in T . Let T ′ = T ∪ {u}. Then T ′ is a
(γt + 1)−set.

If v ∈ {x, y, z}, then G[{x, y, z, u}] contains either a P4 or a K1,3.
If v /∈ {x, y, z}, then v has a neighbor w in G[T ]. If w ∈ {x, y, z} then

G[{x, y, z, v}] contains either a P4 or a K1,3. Otherwise, xyz and uvw are
two disjoint 3-paths.

Therefore G[T ′] contains one of P4, K1,3, 2P3 as its subgraph. That

proves P2
γt

⊆ P3
γt

. Then C 3
γt

= P1
γt

∩ P3
γt

follows from a computation
similar to what has appeared in the proof of Theorem 3.7.

5 Conclusion

The general bounds on the domination and total domination contraction
numbers present an interesting comparison with those on subdivision num-
bers. According to these bounds, graphs can be explicitly classified and
characterized, as what we have done in Section 3 and Section 4.

It still remains for us to focus on particular classes of graphs, such as
trees, and give constructive characterizations depending on their contrac-
tion numbers. It is also attractive to consider operations of graphs, such as
graph products. On the other hand, the relationship between contraction
numbers and subdivision numbers is worthy of further research.
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