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DOMINATION BY PRODUCT MEASURES1

BY T. M. LIGGETT,1 R. H. SCHONMANN1 AND A. M. STACEY

University of California, Los Angeles

� 4We consider families of 0, 1 -valued random variables indexed by the
vertices of countable graphs with bounded degree. First we show that if
these random variables satisfy the property that conditioned on what
happens outside of the neighborhood of each given site, the probability of
seeing a 1 at this site is at least a value p which is large enough, then this
random field dominates a product measure with positive density. More-
over the density of this dominated product measure can be made arbitrar-
ily close to 1, provided that p is close enough to 1. Next we address the
issue of obtaining the critical value of p, defined as the threshold above
which the domination by positive-density product measures is assured.
For the graphs which have as vertices the integers and edges connecting
vertices which are separated by no more than k units, this critical value is

k Ž .k� 1shown to be 1 � k � k � 1 , and a discontinuous transition is shown
to occur. Similar critical values of p are found for other classes of

� 4�probability measures on 0, 1 . For the class of k-dependent measures the
k Ž .k� 1critical value is again 1 � k � k � 1 , with a discontinuous transition.

For the class of two-block factors the critical value is shown to be 1�2 and
a continuous transition is shown to take place in this case. Thus both the
critical value and the nature of the transition are different in the two-block
factor and 1-dependent cases.

0. Introduction. The investigation reported in this paper started with a
Ž . dquestion deriving from the following: let X be a collection of randoms s� �

variables which take values 0 and 1 and which satisfy the following condition:
for each s � �d, the conditional probability that X � 1 given any informa-s

Ž .tion about the values of the X for indices u which are at a l , say distanceu �

larger than k from s is bounded below by p. Then is it the case that if p is
Ž . dvery close to 1, this random field X can be guaranteed to be stochasti-s s� �

Žcally above in the usual sense of the existence of a coupling which puts no
.mass on one side of the diagonal; see Section 1 for a precise definition a

translation invariant product random field with a density � which is also
Žlarge in the sense that � can be taken arbitrarily close to 1, provided that p

.is close enough to 1 ?
ŽThis question is answered in the affirmative in Section 1 of this paper see

.Corollary 1.4, which is stated and proven in a more general setting and we
Ž .explain why this is of use. For future reference we will denote by CC d, k, p

Ž . dthe class of random fields X which have the property defined in thes s� �
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previous paragraph. In a typical abuse of language, we will sometimes say
Ž .that a random field is in CC d, k, p and sometimes say that its law is in this

Ž .class. A very important subclass of CC d, k, p is that of k-dependent random
Ž . dfields whose marginals are at least p. We recall that X is said to be as s� �

k-dependent random field if, for each pair, A, B � �d such that all indices in
A are at a distance greater than k from all indices in B, the families of

Ž . Ž .random variables X and X are independent of each other.s s� A s s� B
The question raised in the first paragraph of the Introduction comes up

Ž .frequently in connection with block rescaling arguments, which are quite
useful in the study of percolation processes, statistical mechanics models and
interacting particle systems. A typical setup is as follows. One starts with an

Ž . dunderlying random field V in which the random variables V may takei i� � i
values in a very general set. The lattice �d is then covered with cubic blocks

� 4d � 4of the form � � 1, . . . , AN � Ns, where A, N � 1, 2, . . . are fixed and ss
d Ž � druns over � . We are using the standard definition S � x � y � � : y � x

4 d d .� S for S � � and x � � . Each one of these blocks is regarded as a site of
a ‘‘rescaled’’ lattice, which can also be identified with �d. Note that unless
A � 1, each block overlaps a few neighboring ones, with this number depend-
ing on A, but not on N. One declares each block � to be in one of twos
possible states, depending on the realization of the underlying random field
Ž .V restricted to i � � . The block is said to be ‘‘good’’ in one of these twoi s

Ž . dcases and ‘‘bad’’ otherwise. A random field X is then introduced withs s� �

X being the indicator of the event that the block � is good. In thes s
applications that we have in mind, this is done in such a way that A is kept

Ž . dfixed, while N can be varied, and the random field X can be shown tos s� �

Ž .be in CC d, k, p for some finite k which depends only on A and with p as
close to 1 as desired, provided N is large enough. The fact that the probabil-
ity of each block’s being good can be made large depends on specific knowl-

Ž .edge about the random field V and the definition of the good event, but ifi
Ž .this random field has a product law, it is clear that X will have a finites

range of dependence, which depends on A but not on N. For more general
Ž .underlying random fields V , as for instance Gibbs measures, one usuallyi

Ž .does not obtain a rescaled random field X which has a finite range ofs
dependence, but one can sometimes specify a worst case scenario for what

Ž .happens with V when i lies outside of the fixed block � , and in this fashioni s
Ž . Ž .establish that X � CC d, k, p . When applying this sort of rescaling argu-s

ment one wants to argue that the bad blocks are rare enough so that certain
estimates can be carried out.

For many purposes one can easily obtain the desired estimate directly for
Ž .random fields in CC d, k, p , without the need for any comparison with

�product measures a typical example can be found, for instance, in Section
Ž .11a of Durrett 1988 , with the relevant computation appearing in Section 5a,

�in the last paragraph starting on page 86 . On the other hand, this is not
always the case, and in a significant number of papers special techniques and
constructions were introduced to deal with rescaled random fields which were
not themselves product measures. Of special relevance is the recent sequence
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Ž . Ž .of papers: Pisztora 1996 , Antal and Pisztora 1996 , Penrose and Pisztora
Ž .1996 , in which ingenious techniques are used. These papers prompted our
investigation, and the techniques introduced there were a source of inspira-
tion for our approach in Section 1. Another example of the usefulness of our

Ž .result can be found by looking at Section 2 in Andjel 1993 . There a special
argument was used to couple site and bond percolation processes, in such a
way that results about bond percolation with large density could be extended
to site percolation with large density. Our general result can replace this
particular construction: starting with a site percolation process one declares
each bond to be occupied if its endpoints are both occupied. The resulting
bond percolation process, while not independent, has nevertheless a finite
range of dependence and a density which approaches 1 as the density of the
underlying site percolation process approaches 1. Therefore we know that
this bond percolation process dominates an independent bond percolation
process which also has a large density, and this is enough for the purposes in

Ž .Andjel 1993 , as well as other similar applications, in which one wants to
import results from bond to site percolation under a large density condition.
ŽOf course, a similar argument allows one to go in the opposite direction and
extend to bond percolation results proven for site percolation with large

. Ž .density. Finally, in Schonmann 1994 , the lack of an answer at the time to
Žthe question that we are discussing caused the author and hence also the

.readers of the paper a great deal of extra work in proving Theorem 7. The
solution found there involved checking that a long proof of a general shape

Ž .theorem, provided in Section 11c of Durrett 1988 can be adapted to cases in
which a finite-range-of-dependence condition replaces independence. The
comparison provided here eliminates this need altogether. Since rescaling is a
standard technique, we believe that the result we are discussing will continue
to be a relevant tool.

Having obtained domination from below by product measures when the p
defined above is large, it became natural, for its own sake, to ask whether for

Ž . dsmaller values of p one can still assure that every random field X �s s� �

Ž .CC d, k, p is dominated from below by a product measure with some positive
density. Interestingly enough, it is not hard to provide an example which
shows that even for translation invariant 1-dependent Bernoulli random
fields on �, if p � 1�2 there may be no product measure with positive density

Ž .below it: let U be a family of i.i.d. random variables which are uniforms s � �

� �on 0, 1 and set

0.0 X � 1 .Ž . s �U �U 4s s�1

Ž .Then P X � 1 � 1�2, and more generally,1

1
P X � 1 � 1 	 s 	 n � P U 	 U 	 ��� 	 U � .Ž . Ž .s 1 2 n�1 n � 1 !Ž .

Ž .Since this quantity decays faster than any exponential, X cannots s� �

dominate a product random field with positive density.
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Ž .This suggests the problem of finding the critical value p � p d, k , de-c c
fined as the infimum of the values of p which are large enough to guarantee
the existence of a product measure with positive density below the law of

Ž . Ž .devery random field X � CC d, k, p . It turns out that in the one-dimen-s s� �

sional case we were able to compute the value of this critical point as being
k Ž .Žk�1.1 � k � k � 1 ; for instance, when k � 1, p � 3�4. Moreover, if wec

Ž . dmodify the question, by replacing the condition on the random field Xs s� �

with the stronger condition that it be a k-dependent random field, this value
for the critical point in the d � 1 case remains unchanged.

k Ž .Žk�1.The proof that the value 1 � k � k � 1 is an upper bound for pc
results from the estimates in Section 1. For the proof that this value is also a
lower bound for p we construct in Section 2 examples of random fields inc
Ž .CC 1, k, p which are not dominated from below by any product measure with

positive density. This is done for p taking an increasing sequence of values
k Ž .Žk�1.p , with p � 1 � k � k � 1 as n � �. For each n we can find an n

� 4�1, . . . , n4probability distribution on 0, 1 which gives no mass to the configura-
tion with all variables equal to 1, while the properties of being k-dependent
and having density bounded below by p are satisfied. Such a distributionn

� 4�can then trivially be extended to a distribution on 0, 1 in the form of a
product random field of density p outside of this interval. The impossibilityn
that any product measure with positive density dominates this one from
below is clear.

Of course, one then naturally asks whether the absence of translation
invariance of these examples is of fundamental relevance. In other words,
would the value of p be modified if we restricted ourselves to translationc

Ž . dinvariant random fields X ? We only have some partial answers to thiss s� �

question. First of all, the answer may depend on whether in addition to
Ž . Ž .translation invariance we require X to be in CC 1, k, p or to be k-depen-s

dent and have density p. In the former case, the answer is that p isc
unchanged, and this can be easily seen by using the result described in the
previous paragraph. For each n, one constructs a measure which is k-depen-
dent and has period n, by simply repeating indefinitely the basic building

Ž .block of length n alluded to in the previous paragraph in an independent
fashion. By then mixing n shifts of this measure, a translation invariant
random field is produced, which is no longer k-dependent, but still belongs to
Ž .CC 1, k, p and again clearly cannot be dominated from below by any productn

measure with positive density.
Ž .We have not succeeded in finding the value of p when X is assumed toc s

be k-dependent and translation invariant. Nevertheless for a natural sub-
class of this with k � 1, we did find that p � 1�2, in contrast with the valuec
3�4 mentioned earlier. This subclass is that of two-block factors, which are
defined as follows. A measure � is said to be a two-block factor if there is a
� 4 Ž . � �20, 1 -valued measurable function f x, y on 0, 1 so that the process

0.1 X � f U , UŽ . Ž .s s s�1
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has distribution � when the U ’s are i.i.d. random variables which ares
� �uniform on 0, 1 . Two-block factors are natural, since most 1-dependent

� 4�translation invariant measures on 0, 1 which arise in applications are
actually of this kind. In fact, for many years it was not known whether there
were any others. The first proof of the existence of stationary, 1-dependent
random processes which are not two-block factors was given by Aaronson,

Ž .Gilat, Keane and de Valk 1989 .
Ž .The example 0.0 shows the easy half of our claim that for two-block

factors p � 1�2, and the other half is shown in Section 3. It is interesting toc
note that not only the value of p is different from that in the otherc
one-dimensional cases discussed earlier, but also the nature of the transition
is different. In the earlier cases, it turns out that for

Ž .k�1kp � p � 1 � k � k � 1Ž .c

Ž .we can assure domination of X from below by a product measure withs
Ž . Žpositive density ‘‘discontinuous transition’’ . In contrast, in the case of trans-
.lation invariant two-block factors, we have a ‘‘continuous transition,’’ in that

Ž .for p above but close to 1�2, X can only be assured to be dominated froms
Žbelow by product measures with small densities more precisely, the supre-

.mum of such densities is a function of p which vanishes as p � 1�2 � .
There is one other case where we can say what the value of the critical

point is, and which may be worth mentioning. Here the class is those
� 4�probability measures on 0, 1 which are 1-dependent, have density at least

Ž .p at each site, and are positively correlated in the sense of Liggett 1985 ,
Chapter II, Definition 2.11. Measures which arise from a rescaling argument
do often have this positive correlations property. A slight generalization of
Proposition 3.4 can be used to show that for every p � 0 all of these measures
are dominated from below by a product measure with positive density. In
other words, the critical value of p is 0 in this case.

We finish this introduction by stating a theorem which summarizes the
Žmain results discussed above. As pointed out, some of these results will be

.presented in greater generality in the paper.

THEOREM 0.0.

Ž .i For each d and k, when p is large enough, the random fields in
Ž .CC d, k, p are dominated from below by the product random field with density

�, where � is a positive constant depending on d, k and p. One can make the
density of these product random fields become arbitrarily close to 1 by taking
p large enough.

Ž .In the case d � 1, the critical value of p beyond which the result stated in i
holds, is

k k

p d , k � 1 � .Ž .c Ž .k�1k � 1Ž .
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The transition is discontinuous, in the sense that all the random fields in
Ž .CC 1, k, p are dominated from below by product random fields with positivec

Ž .2density � � k� k � 1 .
Ž . Ž .ii All these results remain true if the class of random fields CC d, k, p is

replaced by the class of k-dependent fields.
Ž .iii All two-block factors with density p are dominated from below by

product measures with positive density if and only if p is above the critical
value

1FFp � .c 2

In this case, the transition is continuous in the sense that for arbitrary � � 0
one can find a two-block factor with density p � 1�2 which is not dominated
from below by the product random field with density � .

Ž . Ž .In parts i and ii of this theorem, we have identified two types of critical
behavior in a class of measures. It is natural to ask whether for other classes,
one might have a different behavior, or perhaps rule out other possibilities. In
some cases we are indeed able to reduce the possibilities. For instance, for the

Ž .class CC d, k, p in an arbitrary dimension d and with an arbitrary value of
Ž .k, either all the random fields in CC d, k, p are dominated from below by ac

Ž .common product random field with positive density, as in part i of Theorem
Ž .0.0, or else, for arbitrary � � 0, one can find a random field in � CC d, k, pp� pc

which is not dominated from below by the product random field with density
Ž .� , as in part iii of Theorem 0.0. To prove this, it is enough to observe that if

Ž . Ž . Ž � .d dX � CC d, k, p and the random field X is defined by settings s� � s s� �
� Ž . dX � X 
 Y , where Y is a product random field with density 	 , whichs s s s s� �

Ž . Ž � . Ž Ž ..dis independent of X , then X � CC d, k, p � 	 1 � p . An analogouss s s� �

Ž .remark can be made for the class TT p , discussed in Section 3.
On the other hand, one can artificially, but easily, introduce classes of

� �measures indexed by a parameter p � 0, 1 , for which the transition could be
� � � �different from the two alternatives above. Given a function 
 : 0, 1 � 0, 1

Ž .let AA p be the class of random fields which are dominated from below by


Ž . Ž .the product random field with density 
 p . By choosing 
 p � 0 for p 	 pc
Ž .and 
 p � a � 0 for p � p , for some 0 � p � 1, we would obviously violatec c

both alternatives above.

1. Domination by product measures under weak independence
Ž .conditions. Suppose that we have a countable possibly finite set of sites,

� 4SS, and a state space � � 0, 1 , with the product topology and the corre-
sponding Borel �-algebra, BB. We begin with the definition of stochastic
domination. Given  ,  � �, we define the usual partial order by saying1 2
that  	  if1 2

� s � S  s 	  s .Ž . Ž .1 2
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Given a function f : � � �, we say that f is increasing if
 	  � f  	 f  .Ž . Ž .1 2 1 2

Now, given two Borel probability measures on �, � and � , we shall say that
� stochastically dominates ��and write � � �� if, for any continuous
increasing function f ,

f d� � f d� .H H
This is a very strong condition which amounts to saying that in every

possible way, � puts more mass on bigger elements of � than � does. See, for
Ž .example, Liggett 1985 , Chapter II, Section 2, for further details. One can, of

course, define stochastic domination for more general partially ordered state
spaces, but we will only be interested in the case we have just described.

It is easy to show by a simple limiting argument that, in order to prove
� � � , it is sufficient to verify that this inequality holds for the finite-dimen-

�sional distributions of � and � . The following is also well known see Liggett
Ž . �1985 , Chapter II, Theorem 2.4 .

LEMMA 1.0. Let S be a countable set. Then � � � if and only if there are
Ž . Ž .two random fields, X and Y , defined on the same probabilitys s� S s s� S

space such that, for each s � S, X � Y almost surely and such that the joints s
Ž . Ž .laws of X and of Y are � and � , respectively.s s� S s s� S

S ŽGiven 0 	 p 	 1 and a set of sites S, we let � or simply � when therep p

. Ž�is no danger of confusion be the measure in which, for each site s � S, � :p
Ž . 4. s � 1 � p and each of the sites behaves independently, so � is ap

product measure.
Ž .Where convenient, we will work with random variables X whoses s� S

joint law is �, rather than directly with � itself. Suppose we know that
Ž . Ž .� X � 1 � p for all s. If the family X is independent then it is easy tos s

Žconclude that � stochastically dominates � it follows from Lemma 1.1,p
.which is a more general result , but if we have no independence information

Žthen we cannot draw any such conclusion except in the trivial cases p � 0
.and p � 1 . In this paper we examine some conditions, weaker than full

independence, under which we can conclude than � dominates some nontriv-
ial product measure.

Ž .Let G � S, E be a graph with vertex set S and edge set E. We say that
two subsets of S, S and S , are mutually independent if S  S � � and1 2 1 2
there is no edge joining any vertex in S to a vertex in S .1 2

Ž .A collection of random variables X , is said to have dependence graphs s� S
ŽG if, whenever S and S are mutually independent, the �-algebras � X :1 2 s

. Ž .s � S and � X : s � S are independent. We shall be concerned with the1 s 2
� 4case in which the X are 0, 1 -valued with joint law �; in this case we shalls

Ž .say that � has dependence graph G whenever the family X does. Givens s� S
Ž .a graph G, we shall use G p to denote the class of Borel probability
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� 4S Ž�measures � on 0, 1 with dependence graph G and which satisfy � �:
Ž . 4.� s � 1 � p for all s � S.
If G is the usual graph with vertex set �, in which vertex n is joined by

Ž .edges to n � 1 and n � 1, then G p is just the class of 1-dependent
� 4�measures on 0, 1 in which the probability of a 1 at any vertex is at least p.

By adding edges we can obtain the class of k-dependent measures for any
k � �, and this easily generalizes to higher dimensions with a given neigh-
borhood of dependence.

We define

� G p � sup � : � � � � � � G pŽ . Ž .� 4�

and a critical value

pG � inf p : � G p � 0 .� 4Ž .c

Ž . GIt is not hard to see that provided G has at least one edge p � 1�2.c
Indeed, let s and s be two of the vertices of G between which there is an1 2

Ž .edge. Let X be a random field such that with probability 1�2 the events s� S
� 4 � 4X � 0, X � 1 happens, with probability 1�2 the event X � 1, X � 0s s s s1 2 1 2

Ž .happens, and the random variables X have a product law withs s� S ��s , s 41 2

Ž .density 1�2 and are independent of X . Clearly this random field iss s� �s , s 41 2

Ž .in G 1�2 , but does not dominate any product measure with positive density,
� 4since the probability of the event X � X � 1 is 0. This example is as s1 2

prototype of the construction that will be developed in Section 2, in order to
obtain much finer lower bounds on the critical point pG for some specialc
graphs.

It does not seem a priori obvious that pG � 1, for any graphs with infinitec
components. We shall prove in this section that pG � 1 if G has boundedc
degree and obtain upper bounds on pG which, as we shall see in Section 2,c
are tight in certain cases. It will also be a consequence of our results that

GŽ .lim � p � 1 if G has bounded degree.p�1

In order to obtain results in a somewhat more general context, we intro-
W Ž . Ž .duce a broader class of measures, G p W for ‘‘weak’’ in which the

dependence conditions are relaxed but in which we preserve properties we
W Ž .will need in this section. We say that � � G p if � is a Borel probability

� 4Smeasure on 0, 1 and

�1.0 � X � X : st �� E � p a.s.� 4Ž . Ž .Ž .s t

Ž .for any vertex s � S. Here again, X have joint law �. As usual, an edges s� S
Ž .joining vertices s and t is abbreviated st. Statement 1.0 asserts that if one

conditions on information about the states of the vertices other than those
which are neighbors of s, then the probability that s is in state 1 is still at
least p.

This condition can be reformulated in terms of elementary conditional
probabilities as follows. For any n � � and any choice of distinct s, s , . . . , s1 n
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� 4� S with ss �� E for each i, and for any choice of � , . . . � � 0, 1 ,i 1 n

�1.1 � X � 1 X � � , . . . , X � � � p ,Ž . Ž .s s 1 s n1 n

whenever the event on which we condition has positive probability.
The following notation will be used:

� G p � sup � : � � � � � � GW pŽ . Ž .� 4W �

and

pG � inf p : � G p � 0 .Ž .� 4W , c W

GŽ . GŽ . G GNote that � p 	 � p and p � p . We will show that if G hasW W , c c
GŽ . Gbounded degree, then lim � p � 1, so that in particular p � 1.p�1 W W , c

Before we actually prove anything of substance, we recall a rather simple
lemma which will enable later proofs to go more smoothly. This lemma can be
proved by a reasonably standard use of the coupling technique. However, the
details, which involve a step-by-step construction, are a little involved, so we
omit the proof. Results of this kind are, however, well known. See, for

�Ž . �example, Russo 1982 , Lemma 1 for a proof of a more general result. Note
W Ž .that the condition on � is a weaker version of the condition that � � G p

Ž .where G � S, � .

Ž .LEMMA 1.1. Suppose that X is a family of random variables, in-s s� S
dexed by a countable set S, with joint law, �. Suppose S can be totally ordered
in such a way that, given any finite subset of S, s � s � ��� � s � s , and1 2 j j�1

� 4 Ž .any choice of � , . . . , � � 0, 1 , then, whenever � X � � , . . . , X � � � 0,1 j s 1 s j1 j

�� X � 1 X � � , . . . , X � � � � .Ž .s s 1 s jj� 1 1 j

Then � � � S.�

We are now in a position to present the main results of this section. We
start with a proposition which leads up to the main general theorem of this
section, Theorem 1.3.

Ž .PROPOSITION 1.2. Let G � S, E be a graph with maximum degree at
W Ž .most � � 1. Let 0 � p � 1, q � 1 � p and suppose � � G p . Suppose there

Ž .exist � , r � 0, 1 with
��11.2 1 � � 1 � r � q ,Ž . Ž . Ž .

1.3 1 � � � ��1 � q.Ž . Ž .
Ž . Ž . Ž .Let X have joint law �, let Y be a family independent of X ands s� S s s

with joint law � and, for each s � S, let Z � X Y . Let s , s , . . . s � S ber s s s 0 1 j
distinct, and suppose that s is adjacent in G to at most � � 1 of the vertices0

� 4s , . . . , s . Then, for any choice of � , . . . , � � 0, 1 , we have1 j 1 j

�1.4 � X � 1 Z � � , . . . , Z � � � �Ž . Ž .s s 1 s j0 1 j
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or equivalently,

�1.5 � Z � 1 Z � � , . . . , Z � � � � r .Ž . Ž .s s 1 s j0 1 j

PROOF. Note that the equivalence of the two statements is clear from the
Ž .independence of the family Y and the fact r � 0. Take G, �, p, � and rs

satisfying the conditions of the theorem. For ease of notation let us write Xi

for X and likewise for Z . We prove the claim by induction on j.s ii

Ž .If j � 0 then the l.h.s. of 1.4 is simply the probability that X � 1. We0
W Ž . Ž .know, from the fact that � � G p , that this is at least p. Since 1.3

Ž .implies that p � � , 1.4 holds in this case.
Ž .Now suppose that we have j � 1 and we know that 1.4 holds for smaller

values. Fix a choice of s , s , . . . , s and � ��� � . Then we split s , . . . , s into0 1 j 1 j 1 j
three classes:

� 4N � s : 1 	 i 	 j, s s � E and � � 0 ,0 i 0 i i

� 4N � s : 1 	 i 	 j, s s � E and � � 1 ,1 i 0 i i

M � s : 1 	 i 	 j and s s �� E .� 4i 0 i

The condition that Z � 1 is the same as the condition that both X � 1s s
Ž .and Y � 1, so we can rewrite the probability in 1.4 ass

�� X � 1 � s � N , Z � 0 , � s � N , X � 1 and Y � 1 ,Ž . Ž .Ž 0 0 s 1 s s

�s � M , Z � � .Ž . .i i i

Ž .By the independence of the Y family, we can simplify a little to gives

�� X � 1 � s � N , Z � 0 , � s � N , X � 1 , � s � M , Z � � .Ž . Ž . Ž .Ž .0 0 s 1 s i i i

We will actually work with the conditional probability that X � 0 which can0
be written out as

� X � 0, � s � N , Z � 0 , � s � N , X � 1 , � s � M , Z � �Ž . Ž . Ž .Ž .0 0 s 1 s i i i
.

� � s � N , Z � 0 , � s � N , X � 1 , � s � M , Z � �Ž . Ž . Ž .Ž .0 s 1 s i i i

By enlarging the event in the numerator and shrinking the event in the
denominator, we see that this is at most

� X � 0, � s � M , Z � �Ž .Ž .0 i i i
.

� � s � N , Y � 0 , � s � N , X � 1 , � s � M , Z � �Ž . Ž . Ž .Ž .0 s 1 s i i i

Ž .By dividing both numerator and denominator by � � s � M, Z � � , thisi i i
becomes

�� X � 0 � s � M , Z � �Ž .Ž .0 i i i
1.6 .Ž .

�� � s � N , Y � 0 , � s � N , X � 1 � s � M , Z � �Ž . Ž . Ž .Ž .0 s 1 s i i i

W Ž .Since M contains no neighbors of s and � � G p , the numerator is at0
most q. The denominator is equal to

� �N0 �1 � r � � s � N , X � 1 � s � M , Z � � .Ž . Ž .1 s i i i
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We shall use the induction hypothesis to bound this conditional probability
� 4from below. By relabeling if necessary, let N � s , . . . , s . Then1 1 k

�� � s � N , X � 1 � s � M , Z � �Ž .1 s i i i

�� � X � 1 � s � M , Z � �Ž .1 i i i1.7Ž .
���� � X � 1 � s � M , Z � � , X � ��� � X � 1 .Ž .Ž .k i i i 1 k�1

ŽNow, since G has maximum degree �, each of the neighbors of s in0
.particular, each of the elements of N has at most � � 1 neighbors in1

M � N , since this set does not include s . Hence, applying the induction1 0
� �Ž . Ž .hypothesis, each of the N � k terms in the product on the r.h.s. of 1.7 is1

Žat least � . In this step, we have used the fact that the Y are independent ofs
. Ž .each other and of the X ’s. Hence the denominator in 1.6 is at least

Ž . � N0 � � N1 � Ž .1 � r � . So 1.6 , which is an upper bound for the conditional probabil-
ŽŽ . � N0 � � N1 �. � � � �ity that X � 0, is bounded above by q� 1 � r � . Since N � N is0 0 1

Ž . Ž .at most � � 1, the inequalities 1.2 and 1.3 imply that this upper bound is
at most 1 � � and so the conditional probability that X � 1 is indeed at0
least � which completes the proof of the proposition.

We now combine Proposition 1.2 and Lemma 1.1 to give some conditions
W Ž .which ensure that a measure in G p dominates a nontrivial product

measure.

Ž .THEOREM 1.3. Let G � S, E be a graph with a countable vertex set in
which every vertex has degree at most � � 1, and in which every finite
connected component of G contains a vertex of degree strictly less than �. Let

� � Ž . Ž .p, � , r � 0, 1 , q � 1 � p, and suppose inequalities 1.2 and 1.3 are satis-
W Ž . Ž .��1 �fied. Let � � G p . Then � � � . In particular, if q 	 � � 1 �� , then� r

� � � where�

q1��
1��

� � 1 � 1 � q � � 1 .Ž .Ž .Ž .Ž .��1 ��ž /� � 1Ž .

PROOF. We may assume that p, � and r are strictly between 0 and 1,
since in the other cases the theorem is trivial. The theorem is also rather easy

Ž .in the case � � 1 when, in fact, G cannot have any edges , although the
argument below does also work for this case; note that we interpret 00 as 1.

Ž . Ž . Ž .Now let X , Y and Z be as in Proposition 1.2, and let the joint law ofs s s
Ž .Z be � . It is clear from Lemma 1.0 that � � � . We will show that �s

Žsatisfies the conditions of Lemma 1.1, with � � � r. This will imply due to
.Lemma 1.1 that � � � , which will complete the proof of the first part of the� r

theorem.
Let F be any finite subset of S with, say, k vertices. The condition on G

ensures that every finite subgraph of G contains a vertex of degree at most
� � 1. We label the vertices of F recursively as follows: having chosen

Ž .vertices u , . . . , u for some 0 	 i � k , pick u to be one of the vertices of1 i i�1
� � 4�degree at most � � 1 in the induced subgraph G F � u . . . u . Having1 i



T. M. LIGGETT, R. H. SCHONMANN AND A. M. STACEY82

labeled all the vertices of F, we order them in reverse, u � u � ��� � u .1 2 k
This ordering is designed to ensure that each vertex of F is adjacent to at
most � � 1 of its predecessors.

Ž .Now, with this ordering on F, the random variables Z satisfy thes s� F
condition of Lemma 1.1 with � � � r ; this follows immediately by applying
Ž . F1.5 of Proposition 1.2. So Lemma 1.1 implies that, if � is the measure

� 4F F Finduced by � on 0, 1 , then � � � . This is true for any finite subset F of� r
S, and hence � � � S .� r

ŽTo establish the final part of the conclusion in the case when q 	 � �
.��1 �1 �� , let

q1��
1��

� � 1 � and r � 1 � q � � 1 .Ž .Ž .Ž .Ž .��1 ��ž /� � 1Ž .
Ž .Ž .��1 Ž . ŽThen 1 � � 1 � r � q, so 1.2 holds. The condition that q 	 � �

.��1 �1 �� gives
Ž .��1 ��

� � 1Ž .
1��q 	 ,

�

which implies by a simple substitution that

1 1
� � 1 � and r � .

� �

� �These inequalities demonstrate that � , r � 0, 1 ; they also show that � �
Ž .1 � r and hence 1.3 holds too. Consequently, � � � with this choice of �� r

and r, which is precisely the final statement of the theorem. �

Let us comment that the condition of Lemma 1.1, although sufficient, is
S Ž .certainly not necessary for � to dominate � . Indeed, the family X , used� s

above, need not satisfy this condition, although, when ‘‘weakened,’’ we obtain
Ž . Ž .a family Z which does satisfy it. It is, however, true that the family Xs s

satisfies this condition in the case � � ��� � � � 1; in other words, given1 n
s � ��� � s � s1 j j�1,

�� X � 1 X � 1, . . . , X � 1 � � .Ž .s s sj�1 1 j

This follows from Proposition 1.2, but it is more natural to regard this fact as
Ž .a form of the local lemma of Erdos and Lovasz 1975 , and Proposition 1.2 can¨ ´

be regarded as an extension of that result. The use of induction in our proof of
Proposition 1.2 is very similar to its use in the proof of the local lemma.

�Ž . �Details of this result can also be found in Bollobas 1985 , pages 20�22 .´
Theorem 1.3 has the following corollary, which only requires a couple of

simple checks about the behavior of � as a function of q.

Ž .COROLLARY 1.4. Let G � S, E be a graph with a countable vertex set in
which every vertex has degree at most � � 1, and in which every finite
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connected component of G contains a vertex of degree strictly less than �. Then
��1

� � 1Ž .
G Glim � p � 1 and p 	 1 � .Ž .W W , c ��p�1

In particular,
��1

� � 1Ž .
G Glim � p � 1 and p 	 1 � .Ž . c ��p�1

The best possible choices of � and r are roots of certain polynomials which
are not quite the same as the values used in Corollary 1.4. However, it is easy
to see that we cannot improve on Corollary 1.4 simply by making a slightly

Ž .��1 �better choice. For if q � � � 1 �� , then there is no value of � which
Ž .satisfies 1.3 .

However, in one important case, we can improve on Theorem 1.3 and
Corollary 1.4. Let � be the graph with vertex set � in which two vertices, mk

� � Ž .and n, are joined by an edge if n � m 	 k. So � p consists of k-dependentk
W Ž .measures on subsets of � of density at least p, while � p is what we calledk

Ž .CC 1, k, p in the Introduction. The following theorem improves Theorem 1.3
Ž .in the case k � 2 it gives the same result if k � 0 or k � 1 .

� �THEOREM 1.5. Let p, � , r � 0, 1 , let k � 0 and let q � 1 � p. Suppose
that

k1.8 1 � � 1 � r � qŽ . Ž . Ž .
and
1.9 1 � � � k � q.Ž . Ž .

W Ž . k Ž .k�1If � � � p , then � � � . In particular, if q 	 k � k � 1 then � � �k � r �

where
q1�Žk�1.

Ž .1� k�1
� � 1 � 1 � qk .Ž .Ž .k �Žk�1.ž /k

OUTLINE OF PROOF. Theorem 1.5 is proved in a very similar way to
Ž .Proposition 1.2 and Theorem 1.3. We set up random variables Z ins s� �

Ž .exactly the same way as in Proposition 1.2. Instead of 1.4 , we use the
following as our induction hypothesis. Let s � ��� � s � �. Then for any1 j�1
choice of � , . . . , � ,1 j

�1.10 � X � 1 Z � � , . . . , Z � � � � .Ž . Ž .s s 1 s jj� 1 1 j

Ž .Note that this is a weaker hypothesis than 1.4 because it is one-sided; we
can only condition on information about sites to the left of the site of interest,
s .j�1

This weaker hypothesis can be proved by induction on j in almost exactly
the same way as in the proof of Proposition 1.2. The only place where a little
extra care is needed is when we relabel the vertices of N , s , . . . , s . In the1 1 k
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proof of Proposition 1.2 it did not matter how they were ordered. Here,
however, they must be arranged so that s � ��� � s . This ordering, to-1 k

Ž .gether with the fact that all the sites in M nonneighbors of s are lessj�1
Ž .than all the sites in N which are neighbors of s , ensures that each of1 j�1

Ž .the k-conditional probabilities appearing on the right-hand side of 1.7 can
be bounded using the induction hypothesis.

Ž . ŽHaving used induction to prove 1.10 , one applies Lemma 1.1 with,
.simply, the usual ordering on the elements of � to establish the equivalent of

the first part of Theorem 1.3. The remainder follows precisely as in Theorem
1.3. �

W Ž .We observe that the hypothesis � � � p in Theorem 1.5 can be weak-k
Ž .ened, by replacing 1.0 with a one-sided conditional expectation, much as the

induction hypothesis in Theorem 1.5 is weaker than that in Proposition 1.2.
We can use Theorem 1.5 to improve on Corollary 1.4 in the case of � .k

COROLLARY 1.6. For each value of k,

k k
� kp 	 1 � .k�1W , c k � 1Ž .

In particular, the critical value for k-dependent measures on subsets of �

satisfies also the same bound,

k k
� kp 	 1 � .c k�1k � 1Ž .

As we shall see in the next section, these last results are best possible.

2. k-dependent measures which do not dominate product mea-
sures. In this section we show how to construct measures, on a state space

� 4S Ž� Ž .� � 0, 1 , which satisfy certain independence conditions, have � �: � s �
4.1 fairly close to 1 which yet do not dominate any nontrivial product

measure. These examples provide a partial converse to the results of the
previous section, and they show that some of the inequalities given in that
section are best possible.

Ž .The principal ideas of this section are mostly due to Shearer 1985 , where
a similar question is addressed with a somewhat different motivation.

We shall start by considering a finite graph, and then deal with the
Ž .extension to the infinite case. Given a finite graph G � S, E , and 0 � p � 1,

� 4Swe will try to define a probability measure on � � 0, 1 in such a way that
Ž Ž . .G is a dependence graph for the events � s � 1 , so that each of theses� S

events has probability p, and such that the probability that all of these
events occur simultaneously is zero; the last property, needless to say, would
ensure that the measure we have defined does not dominate � for any�

positive value of �.
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Ž . �As in Shearer 1985 , we shall define a signed measure as follows for a
proof that this approach is best possible, a fact we shall not need, see Shearer
Ž .�1985 . Given a set Q � S, then, as usual, we say that Q is an independent
set if no edge joins two vertices of Q. If Q is independent, we wish to try to

Ž Ž . . �Q � Ž .define the probability that � s � Q, � s � 0 to be q where q � 1 � p ; if
Q is not independent, we proceed by defining this probability to be zero. All
the remaining probabilities can then be obtained by the use of the
inclusion�exclusion principle. These probabilities may turn out to be nega-
tive, although we will be able to get around that difficulty. In any case, they
will have the independence properties we require. More formally, given two
disjoint sets, Q, R � S, we define

� � � �T � Q �T �2.0 P Q, R � �1 q .Ž . Ž . Ž .Ýp
T : Q�T�Q�R
T independent

Ž .T � � is included in this sum if Q � �. Where there is no danger of
Ž . Ž .confusion, we shall write P Q, R for P Q,R . For any set Q � S, thep

Ž .quantity P Q, S � Q is the value that the inclusion�exclusion formula and
the other comments of the previous paragraph lead us to assign to

� � : � s � Q, � s � 0 and � s � S � Q, � s � 1 .� 4Ž . Ž .Ž . Ž .Ž .
ŽThe way in which these quantities are defined, via inclusion�exclusion or

.a direct double summation argument easily implies that for any disjoint sets
� Ž .Q and R, setting S � S � Q � R ,

P Q, R � P Q � Q� , R � S� � Q� ,Ž . Ž .Ž .Ý
� �Q �S

Ž .so the quantity P Q, R is the value our attempt assigns to

� � : � s � Q, � s � 0 and � s � R , � s � 1 .� 4Ž . Ž .Ž . Ž .Ž .
We continue to refer to this simply as an attempt to define probabilities since
some of these quantities may well be negative. We do note, however, that
Ž . Ž . �P �, � � 1 so the quantities P Q, S � Q do sum to 1 by a special case of

Ž .�the above expression for P � , � .
Before moving on to deal with the question of the signs of the quantities we

have defined, we observe that they have the required independence proper-
ties. We need only check that given pairwise disjoint vertex sets, Q , Q , R1 2 1
and R such that Q � R and Q � R are mutually independent, then2 1 1 2 2
Ž . Ž . Ž .P Q � Q , R � R � P Q , R P Q , R . This is straightforward.1 2 1 2 1 1 2 2

ŽIn order to have a genuine probability distribution, all quantities P Q,
. Ž . ŽS � Q must be nonnegative, and we would like P �, S � 0 so that the

.measure does not dominate any � . However, if some quantities are negative,�

then it is not difficult to obtain a measure with the required properties, by
increasing the value of p, as the following theorem states.

Ž .THEOREM 2.0. Let G � S, E be a finite graph and let 0 � p � 1. Sup-0
Ž . Žpose that for some possibly empty independent set of vertices, Q, P Q,p0
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. Ž .S � Q 	 0. Then there exists p � p such that P �, S � 0 and, for all Q,1 0 p1
Ž . Ž .P Q, S � Q � 0. R � P S � R, R is then a probability distribution on thep p1 1

subsets of S, and it has dependence graph G.

PROOF. To begin, note that if Q is not an independent set of vertices then
Ž .it is always the case that P Q, S � Q � 0 for any value of p.p

Ž . �Q �If Q is independent then, as p � 1 i.e., as q � 0 , the positive term q
Ž . Ž .dominates the other terms in 2.0 , so for p sufficiently close to 1, P Q, S � Qp

is strictly positive. Therefore, if we set

p � sup p � 1: � Q independent, with P Q, S � Q 	 0 ,Ž .� 41 p

then p � 1. The conditions of the theorem imply that p � p . The fact that,1 1 0
Ž .for each Q, P Q, S � Q is a continuous function of p, implies that, for somep

Ž . Žindependent Q, P Q, S � Q � 0, and also implies that, for all Q, P Q, S �p p1 1

.Q � 0. This last fact, together with the remarks preceding Theorem 2.0 tells
Ž .us that R � P S � R, R defines a genuine probability distribution on sub-p1

sets of S, and that this distribution has independence graph G. It just
Ž .remains to show that P �, S � 0; in other words, there is zero probabilityp1

of a 1 at every site in S simultaneously.
Ž .We know that for some independent set Q, P Q, S � Q � 0. Let W be thep1

set of vertices in S � Q which have some neighbor in Q. Let X be those
vertices neither in Q nor W. So S is a disjoint union, S � Q � W � X. Now,
the fact that we cannot have zeros at neighboring sites implies that if all the
vertices in Q have the value 0, then none of the vertices in W does. Also, X
behaves independently of Q. Hence

2.1 0 � P Q, S � Q � P Q, � P �, X � q �Q � P �, X ,Ž . Ž . Ž . Ž . Ž .p p p 1 p1 1 1 1

Ž . Ž .where, of course, q � 1 � p . Since p � 1, 2.1 implies that P �, X � 0.1 1 1 p1

� Ž . 4So under the distribution given by P , the event �: � x � X, � x � 1 hasp1

� Ž . 4zero probability. This event contains the event �: � x � S, � x � 1 , so this
Ž .latter event also has zero probability, that is, P �, S � 0, as required. �p1

Ž .To apply this theorem, we need to be able to evaluate quantities P Q, R
Ž .which, as Shearer 1985 remarks, is not always easy in practice. However,

Ž .this can be done efficiently for certain graphs. In Shearer 1985 , the neces-
sary calculations are carried out for certain trees, which essentially include

Ž .our first case 1-dependent measures on � . Of course, the graphs of greatest
Ž .interest to us are infinite. However, if G � S, E is an infinite graph and

0 � p � 1, then, for any disjoint finite subsets of vertices, Q, R � S, we can
Ž .still define the quantities P Q, R . We shall use the following variant ofp

Theorem 2.0.

Ž . Ž .THEOREM 2.1. Let G � S, E be a not necessarily finite graph and let
Ž .0 � p � 1. Suppose that for some finite set R � V, P �, R 	 0. Then, for0 p0

some p � p , there exists a probability distribution on the subsets of S which1 0
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� Ž . 4has dependence graph G, in which the events �: � v � 1 all have probabil-
ity p , and which does not stochastically dominate any nontrivial product1
measure.

� �PROOF. Apply Theorem 2.0 to the induced subgraph G R and then
extend to a distribution on all the subsets of S in which the vertices outside
R behave independently on R and of each other. �

Let us now consider the case of k-dependent measures on �. So the graph
under consideration is � , defined in Section 1: the vertex set is � and twok

� �vertices are joined by an edge if they differ by at most k. Let n be the set
� 41, . . . , n and let

� �a � P �, n .Ž .n p

It is easy to see that

a � 1, a � 1 � q , a � 1 � 2 q , . . . , a � 1 � k � 1 qŽ .- 1 2 k�1

and for n � k � 1,

a � a � qa .n n�1 n�1�k

The difference equation follows from an argument similar to that used to
Ž � �. Ž � �. Ž� 4 �complete the proof of Theorem 2.0: P �, n � P �, n � 1 � P n , n �

�. Ž � �. Ž� 4 . Ž � �.1 � P �, n � 1 � P n , � P �, n � 1 � k � a � qa .n�1 n�1�k
Now suppose that a � 0 for all n. Consider the ratio of consecutive terms,n

a �a . We can see that for n 	 k � 1, this ratio is decreasing. By induc-n n�1
tion, we show that, for all n, a �a � a �a . Suppose that this is truen n�1 n�1 n�2
for all values of n up to n for some n � k � 1. We have, using the above0 0
difference equation,

a a a an n �1�k n �1 n �k0 0 0 0� 1 � q and � 1 � q .
a a a an �1 n �1 n n0 0 0 0

By the induction hypothesis, together with the assumption that all the terms
are positive,

a a a an �1�k n �k n n �k0 0 0 0� � 1.
a a a an �1 n n �1 n �k�10 0 0 0

Hence a �a � a �a , completing the induction. So the ratios ofn �1 n n n �10 0 0 0

successive terms decrease to some limit, a �a � �, say.n n�1
Dividing the difference equation by a , we see that �k�1 � �k � q, so,n�1�k

for some 0 	 � � 1, we have q � �k � �k�1. This expression is maximized
Ž . k Ž .k�1when � � k� k � 1 , which gives q � k � k � 1 . If q is greater than this

value then our assumption that a , is positive for all n must be false. Thenn
applying Theorem 2.1 gives the following result.
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COROLLARY 2.2. Let k � 1. Then the critical value for domination from
below by product measures of k-dependent measures on � satisfies the follow-
ing inequality:

k k
� kp � 1 � .c k�1k � 1Ž .

Combining this with Corollary 1.6, we see that we know the precise value
of the critical value for k-dependent measures in one dimension is given by

k k
� kp � 1 � .c k�1k � 1Ž .

Furthermore, we see that there is a discontinuous transition. if

k k

p � 1 � k�1k � 1Ž .
� kŽ .than � p � 0, yet Theorem 1.5 implies that

k k k
� k� 1 � � .k�1 2ž /k � 1 k � 1Ž . Ž .

However, we do not know everything about the behavior of the function � � k.
In particular, we do not know the exact size of the discontinuous jump at p� k.c
The argument leading up to Corollary 2.2 does show that

k k k
� k� 1 � 	 ,k�1ž / k � 1Ž .k � 1Ž .

but this still leaves a substantial gap, especially for large k. Even when k � 1
Ž .so p � 3�4 our best bounds givec

1 3 1�1	 � 	 .Ž .4 4 2

It seems a reasonable conjecture that the upper bound given by the coun-
terexamples of this section is tight, whereas the lower bound is not best
possible because we lose information when we introduce the random vari-

Ž .ables Y in Proposition 1.2.s
Observe that it also follows from Corollaries 1.6 and 2.2 that

k k
� kp � 1 � ,k�1W , c k � 1Ž .

and yet
k k k

� k� 1 � � .W k�1 2ž /k � 1 k � 1Ž . Ž .
We also remark that the measures used to establish Corollary 2.2 are not

translation invariant. It is not difficult to use them to construct translation
Ž � �.invariant examples: given an n and a p so that P �, n � 0, we break up1 p1
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� into intervals of length n. We can easily define a measure in which the
blocks are mutually independent and in which there is zero probability that
all the sites in any given block have state 1. Taking the average of n shifts of
this measure, we obtain a translation invariant measure. However, this new

W Ž . Ž .measure is no longer k-dependent, although it is in � p � CC 1, k, p . It isk 1 1
rather surprising that, if we require the measure to be both translation
invariant and k-dependent, then examples are rather harder to come by. This
matter is discussed more fully in Section 3.

The calculations necessary to apply Theorem 2.1 to obtain higher-dimen-
sional analogues of Corollary 2.2 do not seem to be so straightforward. One
can obtain certain examples rather trivially by restricting to a subgraph
which is essentially one-dimensional. For example, consider the dependence
graph, G, with vertex set �2 and two vertices joined by an edge if their l�

distance is 1, so each vertex has eight neighbors. This graph contains a
subgraph which is isomorphic to the one-dimensional case k � 2: the graph

Ž . Ž .spanned by all vertices of the form n, n and n, n � 1 . So the examples
used in that case directly translate to this case and show that pG � 23�27 �c
1 � 22�33 � 0.8518 . . . . In contrast, Theorem 1.3 shows that pG 	 1 � 77�88

c
� 0.9509 . . . .

With a little more work, it is possible to do slightly less trivial calculations
which are not directly lifted from the one-dimensional case. For example,
consider the case of a dependence graph with vertex set again �2 and two
vertices joined by an edge if their l -distance is 1; we denote this graph1
simply �2 since it is the most usual graph with this vertex set. Let W be an
set of n vertices defined as follows:

W � i , 0 , i , 1 : 0 	 i � n� 4Ž . Ž .2 n

W � i , 0 , i , 1 : 0 	 i � n � n , 0 .� 4 � 4Ž . Ž . Ž .2 n�1

Using a similar approach to that employed in the one-dimensional case,
Ž .let a � P �, W . Then we see that for n � 1, a � a � qa andn p n 2 n�1 2 n 2 n�1

a � a � qa . With a little work, one can show that some of these2 n�2 2 n�1 2 n�1
2�' 'terms must be negative unless q 	 3 � 2 2 , showing that p � 2 2 � 2 �c

0.828.
Although ad hoc methods such as this can be used to obtain certain

numerical results on a case-by-case basis in higher dimensions, we do not
believe that these results are best possible, nor does it seem easy to obtain
good general results.

3. Domination by product measures of two-block factors. In the
previous two sections we showed, for instance, that p�1 � 3�4, and thec

�1Ž �1.corresponding transition is discontinuous in the sense that � p � 0. It isc
natural to try to evaluate the critical p and ask whether or not the transition

Ž .is continuous when � p is replaced by other natural classes of measures.1
For example, one could look at

TT p � � � � p : � is translation invariant .� 4Ž . Ž .1
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We have not been able to answer these questions in this case, but will make
some comments about this at the end of this section.

Another natural class of measures which could be considered in this
context is

FF p � � � TT p : � is a two-block factor .� 4Ž . Ž .
Ž .Recall that the definition of two-block factors is given by 0.1 , where we also

point out that it is known that FF is a proper subset of TT.
The main result of this section is given below. For its statement, we define

� FF p � sup � : � � � � � � FF p ,Ž . Ž .� 4�

and the critical value

pFF � inf p : � FF p � 0 .� 4Ž .c

1FFTHEOREM 3.0. For two-block factors, p � , and the transition is contin-c 2
1FFŽ .uous, in the sense that � � � 0.2

The proof of this result is broken down into a sequence of propositions. For
the first of them, define a two-block factor to be symmetric if one can take f

Ž .in the representation 0.1 to be a symmetric function of x and y.

1 Ž .PROPOSITION 3.1. If p � , then any measure in FF p dominates a sym-2
Ž .metric measure in FF 2 p � 1 .

Ž .PROOF. Take � � FF p , and let f be a function which represents it as in
Ž .0.1 . Define

g x , y � min f x , y , f y , x .� 4Ž . Ž . Ž .
Then g is symmetric, and satisfies

f x , y � g x , y � f x , y � f y , x � 1.Ž . Ž . Ž . Ž .
� 4Therefore, the distribution of the process X corresponding to f dominatesn

� 4the distribution of Y corresponding to g, andn

1 1 1 1
� Y � 1 � g x , y dx dy � f x , y � f y , x � 1 dx dyŽ . Ž . Ž . Ž .H H H Hn

0 0 0 0

� 2 p � 1. �

PROPOSITION 3.2. If � is a symmetric two-block factor, then there is a
� �random variable W satisfying W 	 1 so that

� � : � k � 1 � 1 	 k 	 n � �W n� 4Ž .Ž .
for all n � 1.

Ž .PROOF. Let f be the symmetric function which represents � as in 0.1 ,
and assume for the moment that for some integer N, f is constant on each

Ž Ž . � Ž Ž . �square of the form j�N, j � 1 �N � k�N, k � 1 �N . Define an operator
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� �on L 0, 1 by2

1
3.0 Au x � f x , y u y dy.Ž . Ž . Ž . Ž .H

0

Ž .This is a compact even finite-dimensional symmetric operator, so by the
spectral theorem, it can be represented in the form

Au � � � , u � ,Ž .Ý k k k
k

Ž .where the � ’s are the eigenvalues of A which are real and the � ’s are thek k
corresponding complete, orthonormal family of eigenfunctions:

3.1 A� � � � .Ž . k k k

Ž . Ž .Combining 3.0 and 3.1 and taking absolute values, we see that
1 1

� � � � � � � � � �� � x 	 f x , y � y dy 	 � y dy.Ž . Ž . Ž . Ž .H Hk k k k
0 0

� �Integrating this with respect to x gives � 	 1.k
Ž .Using 0.1 , write

n

� � : � k � 1 � 1 	 k 	 n � � X� 4Ž .Ž . Ł k
k�1

n

� � f U , UŽ .Ł k k�1
k�1

3.2Ž .

n
1 1

� ��� f x , x dx . . . dx .Ž .ŁH H k k�1 1 n�1
0 0 k�1

To evaluate the right-hand side of this expression, we will show by induction
that

n
1 1 n3.3 ��� f x , x dx . . . dx � � � , 1 � x .Ž . Ž . Ž .Ž .Ł ÝH H k k�1 2 n�1 j j j 1

0 0 k�1 j

For n � 1, the statement
1
f x , y dy � � � , 1 � xŽ . Ž .Ž .ÝH j j j

0 j

Ž .is a consequence of 3.0 and the representation of A1 which follows it. For
Ž . � Ž . �the induction step, write the left-hand side of 3.3 using 3.3 for n � 1 as

1 n�1 n�1f x , x � � , 1 � x dx � � � , 1 A� xŽ . Ž . Ž .Ž . Ž .Ý ÝH 1 2 j j j 2 2 j j j 1
0 j j

� �n � , 1 � x .Ž .Ž .Ý j j j 1
j

Ž . Ž .This proves 3.3 . Now integrate 3.3 with respect to x to conclude that the1
Ž .expression in 3.2 is

2n� � , 1 .Ž .Ý j j
j
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But this is the nth moment of a random variable W with distribution
2

� W � � � � , 1 .Ž . Ž .j j

That these numbers define a genuine probability distribution follows from
Parseval’s relation:

2 2� �� , 1 � 1 � 1.Ž .Ý 2j
j

� � � �Since � 	 1 for each k, it follows that W 	 1.k
Now take f to be a general symmetric indicator function, and let f beN

symmetric indicator functions which satisfy
1 1

� �lim f x , y � f x , y dx dy � 0,Ž . Ž .H H N
N�� 0 0

Žand such that f is constant on each of the squares of the form j�N,N
Ž . � Ž Ž . �j � 1 �N � k�N, k � 1 �N . By the first part of the proof, there are
random variables W which satisfy the conclusion of the theorem for theN
measure � corresponding to the function f . Since the W ’s are uniformlyN N N
bounded, we can extract a weakly convergent subsequence of their distribu-
tions, and hence construct a W corresponding to the given f, since the
finite-dimensional � -probabilities converge. �N

PROPOSITION 3.3. In the context of Proposition 3.2, if the X ’s have jointn
distribution �, then
3.4 2Ž . �� X � 1 X � 1 � 1 	 k 	 n � �WŽ .n�1 k

for each n � 1, where W is the random variable appearing in that proposition.

Ž . 2 2 nPROOF. Define � to be the left-hand side of 3.4 . Since W and W aren
2 � Ž .increasing functions of W , they are positively correlated see Liggett 1985 ,

�page 65 ,
�W 2 n�2 � �W 2 n�W 2 .

Since
�W n�1

� � ,n n�W
this implies that

� � � �W 2 .2 n 2 n�1

The result follows from this, together with the fact that 0 	 � 	 1 for all n.n
�

PROPOSITION 3.4. Suppose that � is stationary and 1-dependent and that
� 4the corresponding process X has conditional probabilities satisfyingn

�� X � 1 X � 1 � 1 	 k 	 n � pŽ .n�1 k

for all n � 0. Then � � � for�

2'� � 1 � 1 � p .Ž .
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� 4 �PROOF. Let Y be a process with distribution � which is independent ofn p
� 4 � 4X , and put Z � X Y . Then Z is again 1-dependent and stationary, andn n n n n

� 4� dominates the distribution of Z . We will find an upper bound forn

3.5Ž . �� X � 0 Z � � � 1 	 j 	 nŽ .n�1 j j

� 4for any choice of � ’s in 0, 1 . If � � 1 for all j, then this conditionalj j

probability is at most q � 1 � p by hypothesis. So we can assume that at
least one of the � ’s is zero, and then choose the index j so that � � 0 andj j

Ž .� � 1 for j � i 	 n. Then the conditional probability 3.5 is bounded abovej
by

� Z � � � 1 	 i 	 n , i � j; X � 0Ž .i i n�1
.

� Z � � � 1 	 i 	 n , i � j; Y � 0Ž .i i j

Multiply and divide this fraction by

� Z � � � 1 	 i 	 n , i � j .Ž .i i

The result is the ratio of two conditional probabilities, which can be written
as

�� X � 0 Z � 1 � j � i 	 nŽ .n�1 i
.

� Y � 0Ž .j

�Ž .4In doing so, we have used the 1-dependence of the X , Y process inn n
� 4simplifying the numerator, and the fact that Y is independent of Z , i � jj i

in simplifying the denominator. The last fraction is bounded above by q�q�,
where q� � 1 � p�. Therefore, in all cases,

q
��� Z � 0 Z � � � 1 	 i 	 n 	 � q � q.Ž . �n�1 i i q

� ' 'Choosing q � q makes this bound equal to 2 q � q. By Lemma 1.1, it
� 4 Ž .follows that the distribution of Z and hence � dominates � , wheren �

2 2' ' '� � 1 � 2 q � q � 1 � q � 1 � 1 � p . �Ž . Ž .
Putting together the preceding propositions, we have the following result:

2
FF '� p � 1 � 4 p 1 � pŽ . Ž .ž /

Ž .for p � 1�2. To see this, take p � 1�2 and � � FF p . By Proposition 3.1,
� Ž �. � �there is a symmetric � � FF p with p � 2 p � 1 so that � � � . Applying

Propositions 3.2 and 3.3 to ��, and letting W be the random variable
Ž .appearing there, we have the conditional probabilities in 3.4 bounded below

2 Ž .2 Ž � .2by �W � �W � p . Now simply apply Proposition 3.4.
1FFŽ . Ž .Recalling the example in equation 0.0 we see now that � � 0, and2

hence the critical value is 1�2. Our next objective is to obtain an upper bound
FFŽ .for � p for p � 1�2 in order to show that the transition at 1�2 is
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Ž .continuous. Our construction is motivated by example 0.0 . This example is
the two-block factor with

f x , y � 1 .Ž . �Ž x , y . : x 	 y4

1FFŽ .Here is an extension of this observation, which implies that � � � 0:2

PROPOSITION 3.5.
N � 1 1

FF� 	 .ž /2 N N
for each integer N � 1.

Ž .PROOF. Let � be the distribution of the process given in 0.1 where

f x , y � 1 ,Ž . �Ž x , y . : � x N 	 	 � yN 	4

� 	and � is the greatest integer function. Then

� X � 1 � 1 	 k 	 n � � NU 	 NU 	 ��� 	 NU .Ž . � 	 � 	 � 	Ž .k 1 2 n�1

To evaluate the right-hand side, note that for any 0 	 j 	 j 	 ��� 	 j 	1 2 N�1
n � 1,

� NU � 0 � 0 � k 	 j , NU � 1 � j � k 	 j , . . . ,� 	 � 	Ž k 1 k 1 2

1
NU � N � 1 � j � k 	 n � 1 � ,� 	 .k N�1 n�1N

n � Nand the number of choices of such j , . . . , j is . Therefore,ž /1 N�1 n � 1

1 nN�1
n � N

� X � 1 � 1 	 k 	 n � 
Ž .k nn�1ž /n � 1 N !NN
as n � �, from which we conclude that � 	 1�N whenever � � � . Since�

N � 1
� X � 1 � ,Ž .1 2 N

the result follows. �

Ž .We conclude this section with some remarks about the class TT p . Since

FF p � TT p � � p ,Ž . Ž . Ž .1

it is an immediate consequence of the results of this paper that
1 3TT3.6 	 p 	 .Ž . c2 4

it would be interesting to know whether these inequalities are strict. Here is
an argument which suggests that the first is strict, though we have not been
able to carry out the details. Define

TT p � � � TT p : � � : � 0 � ��� � � n � 1 � 0 ,� 4� 4Ž . Ž . Ž . Ž .Ž .n

FF p � � � FF p : � � : � 0 � ��� � � n � 1 � 0 ,� 4� 4Ž . Ž . Ž . Ž .Ž .n

� � � �t � sup p � 0, 1 : TT p � � and f � sup p � 0, 1 : FF p � � .� 4 � 4Ž . Ž .n n n n
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Ž . Ž .It is clear that no measures in TT p or FF p can dominate a nontrivialn n
Ž .product measure. Aaronson, Gilat, Keane and de Valk 1989 proved the

following facts:
1 1 9 1f � t � , f � and t � � .1 1 2 24 3 25 3

It seems likely from this that

3.7 sup t � sup f .Ž . n n
n n

Since it is not hard to show that
n

f � ,n 2n � 2
Ž . Ž .if one could prove 3.7 it would follow that the first inequality in 3.6 is

strict.
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