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ABSTRACT 

We consider and we study a general concept of domination for controlled and observed distributed systems. We give 
characterization results and the main properties of this notion for controlled systems, with respect to an output operator. 
We also examine the case of actuators and sensors. Various other situations are considered and applications are given. 
Then, we extend this study by comparing observed systems with respect to a control operator. Finally, we study the 
relationship between the notion of domination and the compensation one, in the exact and weak cases. 
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1. Introduction 

This work concerns the systems analysis and more pre-
cisely a general concept of domination. This notion con-
sists to study the possibility of comparison or classifica-
tion of systems. It was introduced firstly in [1] for con-
trolled and observed lumped systems and then in [2] for a 
class of distributed parameter systems. The developed 
approach concerns separately the input and output op-
erators. Various results are given and illustrated by ap-
plications and examples. A duality between the two cases 
is established. An extension of [2] to the regional case is 
given in [3]. The regional aspect of this problem is moti-
vated by the fact that a system may dominates another 
one in a region  , but not on the whole geometrical 
support  of the system. 

Let us note that in the case of the dual notions of ob-
servability and controllability, the literature is very rich. 
However, the purpose is different and generally, the main 
problem is how to reconstruct the state of the considered 
system or to reach a desired state, i.e. to study if a system 
is (or not) observable or controllable. 

In this paper, we consider and we study a more general 
domination problem in the case of a class of controlled 
and observed systems [4-6]. The developed approach 
depends on the different parameters of the considered 
systems, such their dynamics, their input and output op-
erators. Indeed, we consider without loss of generality, a 

class of linear distributed systems as follows 

     
0

t ; 0

(0)

z t Az t Bu t T

z z

   





          (1) 

A  generates a strongly continuous semi-group  where 

  
0t

S t


 on the state Z . ,   ,B U Z(s.c.s.g.) 

 2 0, ; ;u L T U  Z  and U  are respectively the state 
and the control spaces, assumed to be Hilbert spaces. The 
system (1) is augmented with the following output equa-
tion 

   y t Cz t                 (2) 

with ,C Z Y Y,  is the observation space, a 
Hilbert space. The operator A  is the dynamics of the 
system, the operators  and  are respectively the 
input and output operators. The state  of the system at 
time  is given by 

B C
z

t

    0 tz t S t z H u 

   
0

d
t

t

            (3) 

where 

u S t s Bu s s H          (4) 

and the observation by 

    0 ty t CS t z CH u             (5) 

The first problem consists to study a possible com-
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 1S  dominates S  ,2  (or the pair 1 1 Aparison of controlled systems as system (1), with respect 
to an output operator . We give the main properties 
and characterization results. The case of sensors and ac-
tuators is also examined. Illustrative examples and ap-
plications are presented and various other situations are 
examined. 

C

B

 1 1 ; 0t t T 

 2 ; 0 t T 

1,2i  i

Then, an analogous study concerning the domination 
of observed systems, with respect to an input operator 

, is given. Finally, we study the relationship between 
the notion of domination and the compensation problem 
[7,8]. 

2. Domination for Controlled Systems 

2.1. Problem Statement and Definitions 

We consider the following linear distributed systems 

 
   1 1 1

1
1 1,0(0)

z t A z t B u
S

z z Z

 


 


     (6) 

 
   
 

2 2 2 2

2
2 2,00

z t A z t B u t
S

z z Z

 


 


   (7) 

where, for ; A  is a linear operator generating a  

s.c.s.g.  on the state space   
0i t

S t


Z .  ,i iB U Z

 0, ; iT U U
 S

 ,C Z Y

 iS T

  ,0i i iT z H u 

 
   d

i i

i i

U Z

T s B u s s



T

  ,0i i i

, 
2

iu L

 ; i  is a control space. The systems 

1  and 2  are respectively augmented with the 
output equations 
S

      for 1,2;i i iE y t Cz t i   

The state of  at the final time  is given by 

 i iz T S            (8) 

where 
2

0

: 0, ;
T

i i

H L T

u S 
          (9) 

The corresponding observation at time  is given by 

 i iy T CS T z CH u

 S

2

         (10) 

The purpose is to study a possible comparison of sys-
tems  and  2  (or the input operators 1B  and 

 if 
 1S

B 1 2A A C) with respect to the output operator . 
It is based on the dynamics 1A  and 2A , the control 

operators 1 , 2  and the observation operator . 
Without loss of generality, one can assume that 1,0

B B C
z   

2,0 . We introduce hereafter the corresponding no-
tion of domination. 

0z

 1S S  ,



Definition 1. We say that 
1)  dominates 2  (or the pair 1 1  A B


 do- 

minates 2 2 ,A B ) exactly on  0, ,T

  

 with respect to 
the operator , if C

2 1Im CHIm CH  

2) B  do- 
minates  2 , 2B ) weakly on A 0,T

C

 

, with respect to the 
operator , if 

 2 1Im ImCH CH  

In this situation, we note respectively 

   
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2 2 1 1
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, ,
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C

C

A B A B

A B A B





C
C

1

 

Let us give following properties and remarks : 
1) Obviously, the exact domination with respect to an 

output operator , implies the weak one with respect to 
. The converse is not true, this is shown in [2] for 

A 2A C I and  ). 
2) If the system S

   

1  is controllable exactly (respec-
tively weakly), or equivalently 

 1 1Im respectively ImH Z H Z   

 then 1S  dominates exactly (respectively weakly) any 
system  S C2

3) In the case where 1 2

, with respect to any output operator . 
A A , 1  dominates  S 2S

B

2B

2 1 2 1respectively .
C C

B B B B   
 



 

 
exactly (respectively weakly), we say simply that 1  
dominates  exactly (respectively weakly). Then, we 
note 

 

Hence, one can consider a single system with two in-
puts as follows 

       
 

1 1 2 2

0

; 0

0

z t Az t B u t B u t t T
S

z z Z

    


 


(11) 

augmented with an output equation 

     E y t Cz t

B
,B ,C

 

In this case, the domination of control operators 1  
and 2  with respect to the observation operator  is 
similar. The definitions and results remain practically the 
same. 

4) The exact or weak domination of systems (or op-
erators) is a transitive and reflexive relation, but it is not 
antisymmetric. Thus, for example in the case where 

1 2A A , for any non-zero operator  and 1 0B  0  , 
we have1      1 1Im ImCH B CH B

1B B
1 1 , even if 

1  for 1 .  
5) Concerning the relationship with the notion of 

remediability [7,8], we consider without loss of general-
ity, a class of linear distributed systems described by the 
following state equation 

 1 1

1 H B 1 denotes the operator H  corresponding to 1B , i.e. defined 

by      1 1 1 1 1 10
d .

T

H B u S T s B u s s   
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 

 
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 2 2
2 1

2 2 1 10, : 0, :
. .

where  is a known or unknown distur-
bance. The system (12) is augmented with the following 
output equation 

 y t Cz t

z T

0z Hu Rd  

   dT s d s s 



                (13) 

The state  of the system at time  is given by 

   z T S T  

where 

0

T
Rd S  

If the system (12), augmented with (13), is exactly 
(respectively weakly) remediable on 0,T , or equiva-

lently    Im CR Im  CH  (respectively Im CR    

 Im CH ), then  dominates any operator  ex-  1 2

actly (respectively weakly) with respect to the operator 
. 

B B

C
6) For  and 1 2C I A A

C

 S

, one retrieve the particu-
lar notion of domination as in [2]. 

We give hereafter characterization results concerning 
the exact and weak domination. 

2.2. Characterizations 

The following result gives a characterization of the exact 
domination with respect to the output operator . 

Proposition 2. The following properties are equivalent 
1) The system 1  dominates exactly  2S

C
2 0, ;u L T 1u

 with 
respect to the operator . 

2) For any 2 , there exists U2   
 such that  10, ;L T U

CH

2

2 2 0CH u

0

1 1u               (14) 

3) There exists   Y such that for any   , we 
have 

L T U L T U
B S T C B S T C         

,

(15) 

Proof. 
The equivalence between i) and ii) derives from the 

definition. 
The equivalence between ii) and iii) is a consequence 

of the fact that if Z  are Banach spaces; X Y  and 
 ,P X Z  and  , ,ZQ Y  then 

   Im ImP Q

0

 

if and only if, there exists  
z Z

 such that for any 
 , we have 

X Y
P z Q z     






 ,   and X Y Zwhere   are respectively the dual 
spaces of X ,  and Y Z . 

Concerning the weak case, we have the following 
characterization result. 

Proposition 3. 
The system  S 2S

C
1  dominates   weakly, with re-

spect to , if and only if 

   1 1 2 2ker . ker .B S C B S C           

 

      (16) 

Proof. 
Derives from the definition and the fact that 

 2 1Im ImCH CH  1ker CH

  is equivalent to 

 ker .CH


2

C

 
It is well known that the choice of the input operator 

play an important role in the controllability of a system 
[4-6,9-11]. Here also, the domination for controlled sys-
tems, with respect to an output operator , depends on 
the dynamics iA  and particularly on the choice of the 
control operators i . However, even if 1 2B B B B 

 ,
 

(with the same actuator), the pair 1A B  may domi-
nates  ,2A B . This is illustrated in the the following 
example. 

Example 4. We consider the system described by the 
one dimension equation 
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2

2
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Hence, if 
0ng    Equation (17) becomes  0 1 ,n 
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consequently, the pair  2A B
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 dominates the pair 

1A B  exactly, and hence weakly. 
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Hence, the pair A B  dominates the pair  2 ,A B

 2Z L 

 
exactly (and weakly). 

In the next section, we examine the case of a finite 
number of actuators, and then the case where the obser-
vation is given by sensors. 

2.3. Case of Actuators and Sensors 

This section is focused on the notions of actuators and 
sensors [4,8,10], i.e. on input and output operators. In 
what follows, we assume that  and, without 
loss of generality, we consider the analytic case where 

1A  and 2A  generate respectively the s.c.s.g.   1 0t
S t


  2S t

 
and  defined by 
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 , 1, , ; 1j r nnj nwhere  
1

 is a complete orthonor-
mal basis of eigenfunctions of A , associated to the real 
eigenvalues   1

 1 2 3n n
 such that      nr

n

;  is 
the multiplicity of  . 

 , 1, , ; 1j s n nj n   is a complete orthonormal ba-
sis of eigenfunctions of 2A , associated to the real ei-
genvalues   1 2 31n n

 such that      n; s  is 
the multiplicity of n . 

2.3.1. Case of Actuators 
 S p1  is excited by  zone actuators In the case where 

 1,i i i p
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 
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i i
i
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              (20) 

   2
1, , 0, ;
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 1,i i i q
D h

 2
qU IR

   2
1

q

i i
i

B v t h v t


 

, we have  and 


            (22) 

  2
1, , 0, ;

tr q
qv v v L T IR  ,  2

ih L  ,  with 

 i iD supp h    and 

 2 1, , , ,
tr

qB z h z h z  

C
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As it will be seen in the next section, this leads to 
characterization results depending on  and the corre-
sponding controllability matrix, and then on the ob-
servability one in the case where the observation is given 
by a finite number of sensors. First, let us show the fol-
lowing preliminary result. 

Proposition 5. We have 
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1

ker .

, , ker
n

nj n
j r

B S C

Y n C M  

  

 

 
    /

 

 

and 

 
    

2 2

1

ker .

/ , , ker
n

nj n
j s

B S C

Y n C Q  

  

 

 
    

 

where nM  and n  are the corresponding controllabil-
ity matrices defined by 

Q
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 
1 ;1 n

nj
i p j r   

,n iM g   

and 

 
1 ;1 n

nj
i q j s


   

,n iQ h  

Proof. We have 

 1 1
1 1

e ,
n

n

r
t

nj
n j

B S t C C 


   

  1

,i nj

i p

g 
 

 
 
 

  1 1 .B S C  

    

Therefore,  if and only if ker 

 1, , , 0nt
nj i nj

n j

C g i p t  
 1 1

e , , 0;
nr




         

By analyticity, this is equivalent to 

 1, 1, ,i p  

 er , 1n nM n 

1

, , 0;
nr

nj i nj
j

C g n  



    

or 

   1 1 0 kB S t C v        

where 

   
1,

,
n

n nj
j r

  





v C  

The proof of the second equality of the proposition is 
similar. 

The following result deriving from proposition 2, 
gives characterizations of exact and weak domination in 
the case of actuators. 

Proposition 6. 
1) 1

,C
S S

0
 dominates  2  exactly with respect to the 

operator  if and only if there exists    such that 
for any Y  , we have 

 

 

2

2

0, ;

1 0, ;

q1 1 1

1 1

e , ,

e , ,

n
n

n
n

p

s
t

nj i nj
n j i q

r
t

nj i nj
n j

C h

C g





  

  




   




 



 

 
  



 

 

L T

i p L T


 










 

2)  1

C
S S

Y
 dominates  2  weakly with respect to the 

operator , if and only if for any   , we have 

 
 

1

1

, ,

, ,

n
nj

j r

nj

n C

n C

 

 

 

 

 

 
  





ker

ker
n

n

n
j s

M

Q
 

 
 

1

 

Let us note that if 2A A
B

S S
C

, the domination concerns 
the operators 1  and 2 , and then the corresponding 
actuators. This leads to the following definition. 

B

Definition 7. If 1  dominates  2  exactly (res- 
pectively weakly) with respect to the operator , we say 

that 



, g
1i i i p 

 dominate 
1

 exactly (res- 
pectively weakly) with respect to . 

  ,i i i q
D h

 
C

m 1,i i i m
E f

In the usual case, the observation is given by sensors. 
This is examined in following section. 

2.3.2. Case of Sensors 
Now, if the output is given by  sensors   

, 
we have 

1,

,

m

m

z f

Cz

z f

 
   
 
 

 

1

for
m

m
i i

i

C f  



  

 

and 

 

We have the following proposition. 
Proposition 8. 1S  S dominates 2  weakly with re- 

spect to the sensors  1,i i i m
E f

 
, if and only if 

   
1 1

ker kertr tr
n n n n

n n

M G Q R
 

 
G R

       (24) 

where n  and n  are the corresponding observability 
matrices defined by 

 
1 ;1

,
n

n i nj
i m j r

G f 
   

  

and 

 
1 ;1

,
n

n i nj
i m j s

R f 
   

  

Proof. S S1  dominates  2  weakly with respect to 
the sensors  1,i i i m

E f


, if and only if, for any 


 1
m

k k m
 

 
  , 

 
1 1

, , ker
n

m

k k nj n
i j r

n f M 

  

    
 
  

implies that 

 
1 1

, , ker
n

m

k k nj n
i j s

n f Q 

  

    
 


m 

 

or equivalently, for any , 

   1, ker 1, kern n n nn M G n Q G                

we then have the result. 
Let us give the following remarks. 
1) If 1 2A A , we have , for .  n n

2) One actuator may dominates  actuators 
G R 1n 

p  1p 
C

1p q

, 
with respect to an output operator  (sensors). 

3) In the case of one actuator and one sensor, i.e. for 
 1, and m   we have 

 
 

1

1

, , , , ,

, , , ,

n

n

n n nr

n n ns

M g g

Q h h

 

 








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tion. and 

 
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1 1, ,

, ,
n n

n n

ns

f f

f f

 

 

 
 
 
 
 
 

 ,tr tr
n n

nr

G R

 
 
  
 
 
 

 

Then 

1

1

n

n

r
tr

n n
j

s
tr

n n
j

M G g

Q R h













, ,

, ,

nj nj

nj nj

f

f

 

 

 
 
 
 
 
 

 

          (25) 

       

 
   

,
, 0,

,0 0

, 0 0,

z x t
z x t g x u t T

t
S z x

z t T


      

  


 (26) 

4) In the case of a finite number of sensors, the exact 
and weak domination are equivalent. 

3. Application to Diffusion Systems 

To illustrate previous results and other specific situations, 
we consider without loss of generality, a class of diffu-
sion systems described by the following parabolic equa-  

where   is a bounded subset of  with a sufficiently 
regular boundary 

nR
    2Z L ;  and Az z   

for      2 1
0 .z D A H H     S  is augmented 

with the output equation 

      , 0E y t Cz t t T  

 S

         (27) 

We examine respectively, hereafter the case of one and 
two space dimension. 

3.1. One Dimension Case 

In this section, we consider the systems 1  and S2  
described by the following one dimension equations, 
with  0,a  1 2A A and   

 

. 
 

 

 

       

     
   

2
1 1

12

1

, ,
in 0, 0,

, 0 in 0,

,0 0 in 0,

z x t z x t
g

1 1

1

0,

x u t a T
x

t z a t T

a

 
  


 



 

 

t
S z

z x









                        (28) 

 

         

   
   

2
2 2

22

2

2

, ,
in 0, 0,

, 0 in 0,

,0 0 in 0,

z x t z x t
h x u t a T

x
S z z a t T

z x a

 
  

  
 


 2 2 0,
t
t


                        (29) 

 
A  

 n n
 

 admits a complete orthonormal system of 
eigenfunctions  associated to the eigenvalues 

2 2

2

π
n

n

a
     with 

2 π
sinn

n x
x  



.
a a 

 
 

Each system iS

 ,D fequation corresponding to a sensor , 

       2, ; 0i i i L D
E y t f z t t T         (30)   

 , gAccording to proposition 8,   dominates , h  
with respect to the sensor  , f , if and only if,  is augmented with the output  

 

, , , 0 , , , 0n n n nn g f n h f                 

,m n
 1S
 ,

                      (31) 

 
Let  such that  We suppose that 

 and   are respectively excited by the actuators 

 .m n
2S

n  and , i.e.  , .m ng   and mh  . 
Then 

  , g  dominates  , h  with respect to the sensor 
 , n  and 

  , h  dominates  , g  with respect to the sensor 
   , .m

B B
Let us also note that in the one dimension case, any 

operators 1  and 2  are comparable. this is not al-
ways possible in the two-dimension case which will be 
examined in the next section. 

3.2. Two Dimension Case 

   Now, we consider the case where 0,1 0,1    and  
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the systems described by the following equations 
 

 

          

   
 

1
1 1 1 2

1 1

1

, ,
, , , ,

, , 0 in 0,

, ,0 0 in

z x y t
z x y t g x y u t g x y u t

t
S z x y t T

z x y


      

  


  2 in 0,T

 

 

 

          

   
 

2
2 1 1 2

2 2

2

, ,
, , , ,

, , 0 in 0,

, ,0 0 in

z x y t
z x y t h x y v t h x y v t

t
S z x y t T

z x y


      

  


  2 in 0,T

 

 

Here, we have  2Z L   and 
2 2

z z
Az z

x y


 
 

 

 

, 

for    2 1
0 .H z D A  H  A  admits a comple-  

te orthonormal system of eigenfunctions  , ,m n m n
   

associated to the eigenvalues  , ,m n m n
 

2

 defined by 

 2 2 πm n

  
,

, , 2sin

m n

m n   π sin πx y m










 1S  2S

x n y

  
         (32) 

 and  are respectively augmented with the 
output equations 

              2 2
1 2

, 0,
L D

T1 1 1 1 2 1, , ,
L D

E y t f z t f z t  

and 

              2 2
1 2

, 0,
L D

T

2 2 2 2200 14 2 10 10   
200

2 2 1 2 2 2, , ,
L D

E y t f z t f z t  

Let us first note that: , then 
 is a double eigenvalue, corresponding to the ei-

genfunctions 10,10  and 2,14 .  
By the same, , then 2 2 2250 15 5 13   29 250  is 

also a double eigenvalue, corresponding to the eigen-
functions 5,15  and 9,13.  

The examples given hereafter show the following 
situations : 
 An actuator may dominates another one with respect 

to a sensor. 
 None of the systems does not dominates the other. 

Example 9. In the case where 1 1 , 0g g0,10 2 
5,150,h h

,  

1 2   f, 1 10,10 2,14 , and 2f   we have 

      0tr
n nQ G 

1 1

kern n
n n 
 ker trM G 0,1 and  (33) 

where  0,1  denotes the y-axis. Therefore  2  
dominates 

S
 1S

.C

1 1 , 0g g

 with respect to the corresponding out-

put operator  
On the other hand, for 0,10 2  1 0,h,   

2 5,15h 1 5,15 2 9,13, ,f f  and    we have 

   

   
1

1

ker 0

and ker 1,0

tr
n n

n

tr
n n

n

M G

Q G











 
         (34) 

where 1,0  S denotes the x-axis. Then 1  domi-
nates  2S

C

1 10, , 0g g

 with respect to the corresponding output 
operator .  

Example 10. Now, for 10 2  1 0,h,   

2 2,14h  , 1 10,10f   and 2 2,14 ,f   we have 

   

   
1

1

ker 0,1

and ker 1,0

tr
n n

n

tr
n n

n

M G

Q G

















1B 2B

          (35) 

Then none of the operators  and  does not do- 
minates the other. 

4. Domination of Output Operators 

In this section, we introduce and we study the notion of 
domination for observed systems (output operators) with 
respect to an input one. We consider first a dual problem 
where the control concerns the initial state, and then a 
general controlled system. 

4.1. A Dual Problem 

In this section, we examine a dual problem concerning 
the output operators and observed systems. We consider 
the system 

   
  0

; 0

0

z t Az t t T

z Bu

  






0z B

            (36) 

The initial state  depends on an input operator  
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and is of the form 0  We assume that  0 .z Bu A  is a 
linear operator with a domain  dense in D A Z , a 
separable Hilbert space, and generates a strongly con-
tinuous semi-group 

0t
 on the state  S t Z . B  

, 0   is a Hilbert space. The system 
 is augmented with the following output equations 

 ,U Z u U


 


S

;

; 0

U

1 1y t C z

2 2

t

 ; 0

t T              (37) 

 y t C z

 i i

t

0

t

; 0

T              (38) 

For ; the observations are given by 1,2i 

 y t C S

 . i

t B 

0.

u t T   

We have  iy K u , with 

 .i iK C S

 

B

i i



0

T

 

Its adjoint operator is defined by 

 dK y B  
; 1,i 

 
  0

( )

i i

i i

A z

z

Cz







 

S t

2

<t T

t

B 

B

C y

C

 iu t

t

<

 

Noting i i  ;  and considering 
the dual systems 

B 

 i i

z t

S z

y t











 

C

 

 
0

t

t

  ; 0i

 

and 

 
0

t

Bu

z

  1

 
 
0

z t

S z

y t










Im

 

; 0

t

2 Im

< t



<

i


i i

Az

C

T



 

we obtain the following characterization result. 
Proposition 11. K K   (respectively  

   2 Im 1Im K K 

 
z t

S








2S

  
  00

Az

z z

) if and only if, the controlled system  

 1S  dominates   exactly (respectively weakly). 
From this general result, one can deduce analogous 

results and similar properties to those given in previous 
sections. 

4.2. Domination of Output Operators 

We consider the following linear distributed system 

t B   ; 0u t t T
     (39) 

where A  generates a s.c.s.g.  on the state   S t 
0t

space Z ;  ,U Z

 i iC z t

 , ;Y i 

B

 y t

iC L Z

 and   is 
the control space and the system (S) is augmented with 
the output equations 

 ; ;T U U

.

1, 2;

iC
,T

2u L

;T

0,

1, 2,0  t

Y

i  

where    is an Hilbert space. 

The observation with respect to operator  at the final 
time  is given by 

    0i i iy T C S T z C Hu 

C 2

         (40) 

We introduce hereafter the appropriate notion of do- 
mination for the considered case. 

Definition 12. We say that 
1) 1  dominates C  exactly with respect to the sys-

tem (S) (or the pair  , B ) on   2Im C H   0, ,T  if A
 1Im C H

1C 2

. 
2)  dominates C  weakly with respect to the sys-  

tem (S) (or the pair  B ) on 0, ,T   if ,A 2Im C H 

 
  

1

Here also, we can deduce similar characterization re-
sults in the weak and exact cases. On the other hand, one 
can consider a natural question on a possible transitivity 
of such a domination. As it will be seen, this may be pos-
sible under convenient hypothesis. In order to examine 
this question, we consider without loss of generality, the 
linear distributed systems with the same dynamics 

Im C H . 

A  
 1 2A A A 

 

. 

     
 

1 1 1 1

1
1 1,0

; 0

0

z t Az t B u t t T
S

z z

   






 

     (41) 

     
 

2 2 2 2

2
2 2,0

; 0

0

z t Az t B u t t T
S

z z

   





    (42) 

A  generates a s.c.s.g.  on the state    
0t

S t


where 

 ,B U Z  2 2 ,B U Z 1uZ ; space 1 1 , ,    
 2 0, ;L T U 1 , 2 0, ;u L T U U 2


2 2 ; 1  and U  are two 

control spaces. The systems 1  and   are aug-
mented with the output equations 

S 2S

     1, ,1 1: ; 1, 2i i iE y t C z t i   

     2, ,2 2: ; 1, 2j j jE y t C z t j   

where ,C Z Y 1, 2i  Y

1C
T

i , for ;  is a Hilbert space. 
The observations with respect to operator  at the final 
time  are respectively given by 

   1,1 1 1,0 1 1 1y T C S T z C H u           (43) 

   2,1 1 2,0 1 2 2y T C S T z C H u 

2C

        (44) 

By the same, the observations with respect to operator 
 at time T  are given by 

   1,2 2 1,0 2 1 1y T C S T z C H u          (45) 

   2,2 2 2,0 2 2 2y T C S T z C H u 

1B 2B

       (46) 

We have the following result deriving from the defini-
tions. 

Proposition 13. If the following conditions are satis- 
fied 

1)  dominates  exactly (respectively weakly) 
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      with respect to operator , 1

2) 1  dominates  exactly (respectively weakly) 
with respect to operator , 

C
C 2C

B
C 1C

B
B

C

 1 1 ,0t t T 

 2 2 ,0u t t T 

2

3) 2  dominates  exactly (respectively weakly) 
with respect to operator , 1

then 1  dominates 2  exactly (respectively weakly) 
with respect to operator . 

B

2

We examine hereafter, the relationship between the 
notions of domination and compensation. 

4.3. Domination and Compensation 

In this section, we study the relationship between the 
notions of domination and compensation [7,8]. We con-
sider without loss of generality, the following systems. 

 
   1 1 1

1
1 1,0

Az t d t B u

z z

  





 
 0

z t

 
0

z t

  (47) 

 
   

 
2 2 2

2
2 2,0

Az t d t B

z z

  



  (48) 

where A generates a s.c.s.g.   
t

S t
0
 on the state space 

Z ; ,  ,     ,U Z

2 2U 1d
1 1
 ;T

B 
2 0,

 2 2 ,B U Z 
2

2 0, ;d L T Z
 2

1 10, ; ,u L T U

 U 2u L ,  and ; 1 and U   

are two control spaces.  1  and   are respectively 
augmented with the output equations 

S 2S

   1 1 1 1y t C z t

   2 2

  

 2 2y t C z t

T

  

The states of these systems at the final time  are 
respectively given by 

   1 0z T S T z

   z T S T z

1 1 1H u Hd  

2 2 2H u Hd 

        (49) 

2 0 

i

 

where the operators H ; 1, 2i   and H

 
   

2

d

i i

i i i

H L T U Z

T s B u s s



   d
Z

T s d s s



 

    0 1 1 1

 are defined 
by 

0

: 0, ;
T

u S 
 2: 0, ;H L T Z

         (50) 

0

T
d S

            (51) 

The corresponding observations are given by 

1, fy T CS T z CH u CRd  

2 2 2

       (52) 

    02, fy T CS T z CH u CRd       (53) 

and . First let us recall the notion of compensa-
tion. 

Rf  Hf

Definition 14. The system  i  augmented with out- 

put equation i  (or i i

1) exactly remediable on 
) is 

0,T  if for any 
 2 0, ;id L T Z  2 0, ; iu L T U

0i i i iC H u Rd
, there exists i  such that 

 , or equivalently 

   Im Imi i iC R C H


            (54) 

0,T id if for any  2) weakly remediable on 
  and any   there exists  u L   2 0, ;L T Z 0, 2 0, ;i iT U

such that i i i iC H u Rd  

   

, or equivalently 

Im Imi i iC R C H             (55) 

Here, the question is not to examine if a system is (or 
not) remediable (for this one can see [7,8]), but to study 
the nature of the relation between the notions of domina-
tion and compensation, respectively in the exact and 
weak cases. We have the following result. 

Proposition 15. If the following conditions are verified 
   1) 1 1 

C C

1B

 is exactly (respectively weakly) reme-
diable. 

2) 2  dominates 1  exactly (respectively weakly) 
with respect to the operator . 

   2 1Im ImC R C R   (respectively 3) 2Im C R 

 
  

1

then 
Im C R ). 

   1 2   is exactly (respectively weakly) re- 
mediable. 

We have the similar result concerning the output 
domination and the remediability notion. 

Proposition 16. If the following conditions are satis- 
fied 

  1) 1 1 

B B
C

 is exactly (respectively weakly) reme-
diable. 

2) 2  dominates 1  exactly (respectively weakly) 
with respect to the operator . 1

then    2 1   is exactly (respectively weakly) re- 
mediable. 

Let us note that this section is a generalization of the 
previous one where  d t  has the form  B u t2 2 . The 
results can be applied easily to a diffusion system and to 
other systems and situations. 
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