Domination numbers of cardinal products $P_{6} \times P_{n}$

Antoaneta Klobučar*

Abstract

Here we determine the domination numbers of the cardinal product of path graphs $P_{6} \times P_{n}$. For $P_{7} \times P_{n}$ and $P_{8} \times P_{n}$ we give some bounds.

Key words: graph, dominating set, cardinal product
AMS subject classifications: 05 C 38
Received October 10, 1998
Accepted October 1, 1999

1. Terminology and introduction

For a graph G a subset D of the vertex-set of G is called a dominating set if every vertex x not in D, is adjacent to at least one vertex of D . The domination number $\gamma(G)$ is the cardinality of the smallest dominating set.

For any graph G we denote by $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ the vertex-set and the edge-set of G, respectively. The cardinal product $G \times H$ of two graphs G and H is a graph with $V(G \times H)=V(G) \times V(H)$ and $\left\{\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right\} \in E(G \times H)$ if and only if $\left\{g_{1}, g_{2}\right\} \in E(G)$ and $\left\{h_{1}, h_{2}\right\} \in E(H)$.
(This product is also known as the Kronecker product, cross product, direct product or tensor product.)

The problem of determining the domination numbers of graphs first occurs in the paper of de Jaenisch [3]. He wanted to find the minimal number of queens on a chessboard, such that every square is either occupied by a queen or can be reached by a queen with a single move.

A variety of applications of domination theory can be discussed: the problem of keeping all points in a network under surveillance by a set of radar stations [1], or application of domination to communications in a network, where a dominating set represents a set of cities, which acting as transmitting stations can transmit messages to every city in the network [16]. Some other applications are listed in [2] and [11].

Starting in the eighties domination numbers of cartesian products were intensively investigated (see e.g. [4], [5], [6], [8], [9], [12]). In the meantime, some papers on domination numbers of cardinal products of graphs were also published. We refer the interested reader to [7], [10], [11], [13], [14], [15].

In [14] the domination numbers of $P_{2} \times P_{n}, P_{3} \times P_{n}, P_{4} \times P_{n}$ and $P_{5} \times P_{n}$ are determined. Here are the minimal dominating sets for these cases:

[^0]

Figure 1.
For completeness we first recall the following (obvious) result:
Proposition 1. If P_{n} is the path of order n, then

$$
\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil .
$$

To fix the terminology for the proofs of our results we need some more definitions.
Observation 1 Let $1, \ldots, k$ and $1, \ldots, n$ be the vertices of P_{k} and P_{n}, respectively. Then the vertices of $P_{k} \times P_{n}$ are denoted by (i, j) where $i=1, \ldots, k$ and $j=1, \ldots, n$.

Definition 1. The cardinal product $P_{k} \times P_{n}, k, n \geq 3$, consists of two components. The component containing the vertex $(1,1)$ is denoted by C_{1}, and the other component by C_{2}.

Remark 1. If both, k and n are odd, these components are not isomorphic. If at least one of these two numbers is even, the components are isomorphic.

Definition 2. For a fixed $m, 1 \leq m \leq n$, the set $\left(P_{k}\right)_{m}:=P_{k} \times m$ is called a column of $P_{k} \times P_{n}$; the set ${ }_{r}\left(P_{n}\right):=r \times P_{n}$ is called a row of $P_{k} \times P_{n} . P_{k} \times P_{n}$ always consists of two components. A column (row) of one of those components then only consists of those vertices which are contained in the respective component. Any set $B=\left\{\left(P_{k}\right)_{m},\left(P_{k}\right)_{m+1}, \ldots,\left(P_{k}\right)_{m+l}, \mid l \geq 0, m \geq 1, m+l \leq n\right\}$, of consecutive columns is called a block of size $k \times(l+1)$ of $P_{k} \times P_{n}$. If another block B^{\prime} ends with the column $\left(P_{k}\right)_{m-1}$ or begins with the column $\left(P_{k}\right)_{m+l+1}$, then we say that B^{\prime} is adjacent to B. A block B is called internal, if it is adjacent to two other blocks. It is called external, if it is adjacent only to one block.

2. The domination number of $P_{6} \times P_{n}$

The domination number of the cardinal product $P_{6} \times P_{n}$ of paths P_{6} and P_{n} is given by the following theorem:

Theorem 1. For $n \geq 6$

$$
\gamma\left(P_{6} \times P_{n}\right)=2\left(n-\left\lfloor\frac{n}{5}\right\rfloor\right)
$$

Proof. Let $n \geq 6$. Recall that $P_{6} \times P_{n}$ has two isomorphic components C_{1} and C_{2}. So, it is sufficient to consider only one component $\left(C_{2}\right)$ (which does not contain (1,1)). We give a dominating set S of C_{2} as follows: Let $n \geq 5$. If $n=5 q$, then we can partition (split) the set of columns of $P_{6} \times P_{n}$ into q-by- 5 blocks $Q_{i}, i=1, \cdots, q$ and dominate each such block by a set isomorphic to set $P=$ $\{(1,2),(2,5),(4,3),(5,2)\}$. See Figure 2.

Figure 2.
If $n=5 q+l, 2 \leq l \leq 4$, then in addition to blocks $Q_{i} i=1, \ldots, q$ we dominate the last $6 \times l$ block $Q_{q+1}^{(l)}$ by a set isomorphic to $R_{l}(2 \leq l \leq 4)$. See Figure 3 .

Figure 3.
If $n=5 q+1$, then we dominate $Q_{i} i=1, \ldots, q-1$ by a copy of P, and $Q_{q} \cup Q_{q+1}^{(1)}$ by a copy of R_{1}.

Then

$$
\left|S \cap C_{2}\right|=4\left\lfloor\frac{n}{5}\right\rfloor+n \bmod 5
$$

The set S chosen in this way is dominating. In the sequel we prove the minimality of S i.e.

$$
\gamma\left(P_{6} \times P_{n}\right) \geq|S|
$$

We partition the vertex set of $\left(P_{6} \times P_{n}\right)$ into 6×5 blocks. If a block is external, we denote it by R. If it is internal, it is denoted by M. The whole proof is done for C_{2}. If n is not divisible by 5 , there exists one block $\left(R^{\prime}\right)$, which is not a 6×5 block. Let R^{\prime} be the last block (it contains the column $\left.\left(P_{6}\right)_{n}\right)$.

Lemma 1. $|D \cap R| \geq 4$, for every dominating set D.
Proof. Without loss of generality, we may assume that $R=\left\{\left(P_{6}\right)_{1}, \ldots,\left(P_{6}\right)_{5}\right\}$. Even if the column $\left(P_{6}\right)_{5}$ is dominated by vertices from the adjacent column, we need at least 4 vertices to dominate all vertices of the first four columns.

Lemma 2. $|D \cap M| \geq 3$, for every dominating set D.
Proof. Only the vertices in the first and the last column in M can be dominated by vertices from the adjacent block. To dominate the remaining 6×3 block we obviously need at least 3 vertices which must lie in M.

Lemma 3. Let $n \geq 15$. If $\left|D \cap B_{k}\right|=3$ for some internal 6×5 block B_{k}, then $\left|D \cap B_{k-1}\right| \geq 4$ and $\left|D \cap B_{k+1}\right| \geq 4$. But if $B_{k-1}\left(B_{k+1}\right)$ is external, then $\mid D \cap$ $B_{k-1} \mid \geq 5\left(\left|D \cap B_{k+1}\right| \geq 5\right)$.

Proof. Let $B_{k}=\left\{\left(P_{6}\right)_{j},\left(P_{6}\right)_{j+1}, \ldots,\left(P_{6}\right)_{j+4}\right\}, j=5(k-1)+1, k=2, \ldots,\left\lfloor\frac{n}{5}\right\rfloor-1$. Without loss of generality, let $\left(P_{6}\right)_{j}$ consists of the vertices $(1, \mathbf{j}),(3, \mathbf{j}),(5, \mathbf{j})$. To dominate all the vertices of B_{k} we need at least 5 vertices which are either contained in B_{k}, or in adjacent blocks. There are three possibilities to dominate all vertices of the columns $\left(P_{6}\right)_{j+1},\left(P_{6}\right)_{j+2},\left(P_{6}\right)_{j+3}$ by three vertices:

1) $(2, j+1),(2, j+3),(5, j+2) \in D$
2) $(2, j+1),(3, j+4),(5, j+2) \in D$
3) $(3, \mathrm{j}),(2, \mathrm{j}+3),(5, \mathrm{j}+2) \in D$

Case 1. The vertices $(5, \mathrm{j})$ and $(5, \mathrm{j}+4)$ are not dominated by the three vertices in 1). The vertex $(5, \mathrm{j})$ must be dominated by vertices of B_{k-1} and $(5, \mathrm{j}+4)$ by vertices of B_{k+1}. Without loss of generality, we consider only the case when $(5, \mathrm{j})$ is dominated from B_{k-1}. (See Figure 4.)

Figure 4.
To dominate $(5, \mathrm{j})$ we need at least 1 vertex from $\left(P_{6}\right)_{j-1}$. If we have only 1 dominating vertex in $\left(P_{6}\right)_{j-1}$, two vertices in this column are not dominated. To dominate them, we need at least one vertex of $\left(P_{6}\right)_{j-2}$. These 2 vertices dominate at most the column $\left(P_{6}\right)_{j-1}$ and two vertices from $\left(P_{6}\right)_{j-2}$ and $\left(P_{6}\right)_{j-3}$. If B_{k-1} is internal, we can dominate at most the column $\left(P_{6}\right)_{j-5}$ by vertices of B_{k-2}. Then still 3 vertices in $\left(P_{6}\right)_{j-4}$ and 1 vertex of $\left(P_{6}\right)_{j-3}$ and 1 vertex of $\left(P_{6}\right)_{j-2}$ are undominated. To dominate them, we need at least 2 vertices. So, $\left|D \cap B_{k-1}\right| \geq 4$. If B_{k-1} is external, all vertices in $\left(P_{6}\right)_{j-5},\left(P_{6}\right)_{j-4}$ and one vertex from $\left(P_{6}\right)_{j-3}$
and $\left(P_{6}\right)_{j-2}$ must be dominated by vertices of B_{k-1}. To dominate these vertices we need at least 3 vertices. Then $\left|D \cap B_{k-1}\right| \geq 5$. The assertion about B_{k+1} can be proved analogously.

Case 2. The assertion about B_{k-1} can be shown as above.
So, we only have to consider B_{k+1}. To dominate the vertices $(1, \mathrm{j}+4)$ and $(5, \mathrm{j}+4)$ we need at least 2 vertices from $\left(P_{6}\right)_{j+5}$. These vertices together with $(3, \mathrm{j}+4)$ dominate at most the columns $\left(P_{6}\right)_{j+5}$ and $\left(P_{6}\right)_{j+6}$. Even if all vertices of $\left(P_{6}\right)_{j+9}$ are dominated by vertices of B_{k+2}, we need at least two more vertices of B_{k+1} to dominate $\left(P_{6}\right)_{j+7}$ and $\left(P_{6}\right)_{j+8}$. If B_{k+1} is external, we need at least three more vertices of B_{k+1}. Hence, our assertion also holds in this case.

Case 3. As Case 2, only the roles of B_{k-1} and B_{k+1} are interchangeable.
Lemma 4. Let $n \geq 20$. If $\left|D \cap B_{k}\right|=3$ and $\left|D \cap B_{k-1}\right|=4$, then there exists at least one block $B_{i}, i \in\{1, \ldots, k-2\}$, such that $\left|D \cap B_{i}\right| \geq 5$. For all blocks B_{j}, $i<j \leq k-1,\left|D \cap B_{j}\right| \geq 4$ holds.

Proof. If $\left|D \cap B_{k}\right|=3$ and $\left|D \cap B_{k-1}\right|=4$, then it follows from the proof of Lemma 3. that at least one vertex of B_{k-1} is not dominated by vertices of $B_{k-1} \cup B_{k}$. By the same arguments as above we can conclude that B_{k-2} contains at least four vertices of D, etc. If $i=1$, the block B_{i} must contain at least five vertices of D.

Lemma 5. Let $n \geq 15$. If $\left|D \cap B_{k}\right|=5$ for some internal 6×5 block B_{k}, then $\left|D \cap B_{k-1}\right| \geq 3$ and $\left|D \cap B_{k+1}\right| \geq 3$. If $B_{k-1}\left(B_{k+1}\right)$ is external, then $\left|D \cap B_{k-1}\right| \geq 4$ $\left(\left|D \cap B_{k+1}\right| \geq 4\right)$.

Proof. Only the vertices in the first and the last column of a 6×5 block can be dominated by vertices from adjacent blocks. To dominate the vertices of the three remaining columns we need at least three vertices which are contained in this block.

The assertion about external blocks also follows immediately since in this case at most the vertices of one column can be dominated by vertices of an adjacent block.

Case 1. $\mathrm{n} \equiv 0(\bmod 5)$
Lemma 6. Let $n \geq 15$. If $\left|D \cap B_{k}\right|=3$ holds for any internal 6×5 block B_{k}, D is not minimal.

Proof. Similarly as in Lemma 4, it can be shown that there exists at least one 6×5 block B_{j} such that $\left|D \cap B_{j}\right| \geq 5$ holds, where $k<j$. For all $B_{m} k<m<j$ there holds $\left|D \cap B_{k}\right| \geq 4$.

Let $n \geq 15$, and let D be any dominating set. $\left|D \cap B_{k}\right| \geq 3$ holds for each block $B_{k}, 1 \leq k \leq \frac{n}{5}$, by Lemma 2.. Assume that there are $s 6 \times 5$ blocks each of which contains only three vertices of D. By Lemma 1. these blocks are internal. From Lemma 4., there are at least $s+16 \times 5$ blocks which contain at least five vertices of D. Let $B_{i_{j}}, 1 \leq j \leq 2 s+1$, denote these blocks which contain either three or five vertices. Then $\mathbf{B}=\cup_{j=1}^{2 s+1} B_{i_{j}}$ contains at least $8 s+5$ vertices of D. By the above description of S, the set \mathbf{B} contains at most $8 s+4$ vertices of S. Hence D is not minimal.

For $n \geq 15$, the result follows from Lemma 6 . For $\mathrm{n}=10$, the statement follows from Lemma 1. and for $n=5$ the result is obvious.

Case 2. $\mathrm{n} \equiv 1(\bmod 5)$
We partition the graph $P_{6} \times P_{n}$ into $\left\lfloor\frac{n}{5}\right\rfloor 6 \times 5$ blocks and one block $R^{\prime}=\left(P_{6}\right)_{n}$ of size 6×1. By B_{m} we denote the 6×5 block adjacent to R^{\prime}.

Lemma 7. If $D \cap R^{\prime}=\emptyset$, then $\left|D \cap\left(B_{m} \cup R^{\prime}\right)\right| \geq 5$ for any dominating set D.
Proof. $B_{m} \cup R^{\prime}=\left\{\left(P_{6}\right)_{n-5}, \ldots,\left(P_{6}\right)_{n}\right\}$. Even if the column $\left(P_{6}\right)_{n-5}$ is dominated by vertices of the adjacent block, we need at least 5 vertices to dominate all vertices of the last five columns.

Let D be any dominating set. We now assume that Lemma 7. holds and that there are s blocks $B_{j_{i}}, 1 \leq s, j_{i} \leq m-1$, containing only three vertices of D. Then Lemma 4. implies that there are s blocks $B_{k_{i}}, k_{i} \neq m$, which contain at least 5 vertices of D. Then again $|D| \geq|S|$.

If there is no block B_{i} with $\left|B_{i} \cap D\right| \geq 3$, then Lemma 9 implies that $|D| \geq|S|$.
If R^{\prime} contains at least one vertex and each 6×5 block contains at least 4 vertices, then our result clearly holds again.

If R^{\prime} contains at least one vertex and there is at least one internal 6×5 block containing only 3 vertices, then our result is an immediate consequence of Lemma 4 again.

For $n=6$, the statement follows from the proof of Lemma 7.. Let $n=11$. From Lemma 7. it follows $\left|D \cap\left(B_{m} \cup R^{\prime}\right)\right| \geq 5$. From Lemma 1. it follows $\left|D \cap B_{m-1}\right| \geq 4$. Then $|D| \geq 9=|S|$.

Case 3. $\mathrm{n} \equiv 2(\bmod 5)$
We partition the graph $P_{6} \times P_{n}$ into $\left\lfloor\frac{n}{5}\right\rfloor 6 \times 5$ blocks and one block $R^{\prime}=$ $\left\{\left(P_{6}\right)_{n-1},\left(P_{6}\right)_{n}\right\}$ of size 6×2.

Lemma 8. For every dominating set $D,\left|D \cap R^{\prime}\right| \geq 2$.
Proof. By vertices from the adjacent block, we can only dominate vertices of $\left(P_{6}\right)_{n-1}$.

Lemma 9. If $\left|D \cap R^{\prime}\right| \geq 3$, then D is not minimal.
Proof. By Lemma 2 we have $\left|D \cap B_{m}\right| \geq 3$ where $m=\left\lfloor\frac{n}{5}\right\rfloor$. By Lemma 3 and Lemma 4 we again know that there are at least s blocks which contain at least 5 vertices of D if there are s blocks which contain only three vertices of D. Hence $|D|>|S|$ if $\left|D \cap R^{\prime}\right| \geq 3$.

Let D be any dominating set. By the same methods as for $n \equiv 0,1$ ($\bmod 5)$ it can be seen that $|D| \geq|S|$ also holds for $n \equiv 2(\bmod 5)$.

Case 4. $n \equiv 3(\bmod 5)$
We partition $P_{6} \times P_{n}$ into 6×5 blocks and one block $R^{\prime}=\left\{\left(P_{6}\right)_{n-2},\left(P_{6}\right)_{n-3}\right.$, $\left.\left(P_{6}\right)_{n-3}\right\}$.

Lemma 10. For every dominating set $D,\left|D \cap R^{\prime}\right| \geq 2$.
Proof. At most the first column of R^{\prime} can be dominated by vertices from the previous block. To dominate the vertices of the last two columns we need at least two vertices.

Lemma 11. If $\left|D \cap R^{\prime}\right|=2$, then $\left|D \cap B_{m}\right| \geq 4$ where $m=\left\lfloor\frac{n}{5}\right\rfloor$.

Proof. R^{\prime} is a 6×3 block. To dominate all vertices of such a block we need at least 3 vertices. If $\left|D \cap R^{\prime}\right|=2$, then the vertices $(2, \mathrm{n}-1),(5, \mathrm{n})$ must be contained in D if m is odd. If m is even, then $(2, n),(5, \mathrm{n}-1)$ must be in D. Here we only consider the case when m is odd, the other case can be done similarly.

The vertices $(2, \mathrm{n}-1)$ and $(5, \mathrm{n})$ dominate all vertices of R^{\prime} with the exception of $(5, \mathrm{n}-2)$. To dominate it, we need at least 1 vertex from $\left(P_{6}\right)_{n-3}$. If we have only one dominating vertex in $\left(P_{6}\right)_{n-3}$, then two vertices in $\left(P_{6}\right)_{n-3}$ are not dominated. To dominate them, we need at least one vertex from $\left(P_{6}\right)_{n-4}$. These 2 vertices can only dominate $\left(P_{6}\right)_{n-3},\left(P_{6}\right)_{n-4}$ and two vertices on $\left(P_{6}\right)_{n-5}$. By vertices not in B_{m} we can dominate only the first column in B_{m}, i.e. $\left(P_{6}\right)_{n-7}$. Then $\left(P_{6}\right)_{n-6}$ and one vertex in $\left(P_{6}\right)_{n-5}$ remain undominated. To dominate them, we need at least 2 vertices. So, $\left|D \cap B_{m}\right| \geq 4$.

Remark 2. If $\left|D \cap B_{m}\right|=4$, we have the same case as in Lemma4.. At least one vertex on B_{m} is not dominated and then there exists at least one block B_{i} $i \in\{1, \ldots, m-1\}$ such that $\left|D \cap B_{i}\right| \geq 5$, and for all blocks $B_{j} i<j \leq m-1$ $\left|D \cap B_{j}\right|=4$ holds. (See Figure 5.)

Figure 5.
Lemma 12. If $\left|D \cap R^{\prime}\right| \geq 4$, then D is not minimal.
Proof. If $\left|D \cap R^{\prime}\right| \geq 4$, these 4 (or more) vertices can at most dominate all vertices on R^{\prime} and the column $\left(P_{6}\right)_{n-3}$ on the 6×5 block B_{m} where $m=\left\lfloor\frac{n}{5}\right\rfloor$. Of course it may happen that $\left|B_{m} \cap D\right|=3$ holds, but Lemma 4 again implies that there are at least s blocks containing at least 5 vertices of D if there are s blocks containing only three vertices of D. Hence $|D| \geq 4 m+4>|S|$.

By the same methods as for $n \equiv 0,1$, from Lemmas 3, 11 and 12 it follows that $|D| \geq|S|$ holds for any dominating set D.

Case 5. $\mathrm{n} \equiv 4(\bmod 5)$
We partition the graph $P_{6} \times P_{n}$ into $\left\lfloor\frac{n}{5}\right\rfloor 6 \times 5$ blocks and one block $R^{\prime}=$ $\left\{\left(P_{6}\right)_{n-3},\left(P_{6}\right)_{n-2},\left(P_{6}\right)_{n-1},\left(P_{6}\right)_{n}\right\}$.

Lemma 13. For every dominating set $D\left|D \cap R^{\prime}\right| \geq 3$.
Proof. At most the first column in R^{\prime} can be dominated by vertices from the adjacent block. To dominate the remaining 6×3 block, we clearly need at least 3 dominating vertices which are contained in R^{\prime}.

Lemma 14. If $\left|D \cap R^{\prime}\right|=3$, then $\left|D \cap B_{m}\right| \geq 4$, where $m=\left\lfloor\frac{n}{5}\right\rfloor$.
Proof. Here we only consider the case when m is odd, and the case when m is even can be done similarly. If m is odd, in C_{2} in the column $\left(P_{6}\right)_{n}$ there are vertices $(2, \mathrm{n}),(4, \mathrm{n})$ and $(6, \mathrm{n})$. There are three possibilities in case $\left|D \cap R^{\prime}\right|=3$.

1) $(1, \mathrm{n}-1),(3, \mathrm{n}-1),(5, \mathrm{n}-1)$ are in D. They dominate $\left(P_{6}\right)_{n},\left(P_{6}\right)_{n-1}$ and $\left(P_{6}\right)_{n-2}$.
2) $(1, \mathrm{n}-3),(2, \mathrm{n}),(5, \mathrm{n}-1)$ are in D. They dominate on R^{\prime} the columns $\left(P_{6}\right)_{n},\left(P_{6}\right)_{n-1}$, $\left(P_{6}\right)_{n-2}$ and vertex $(1, \mathrm{n}-3)$ on R^{\prime}, and on B_{m} vertex (2,n-4).
3) $(3, \mathrm{n}-3),(2, \mathrm{n}),(5, \mathrm{n}-1)$ are in D. They dominate on R^{\prime} the columns $\left(P_{6}\right)_{n},\left(P_{6}\right)_{n-1}$ $\left(P_{6}\right)_{n-2}$ and the vertex $(3, \mathrm{n}-3)$, and on B_{m} they dominate the vertices $(2, \mathrm{n}-4)$, (4,n-4).

We will consider case 3), because most vertices are dominated.
In case 3) on R^{\prime} only the vertices $(1, \mathrm{n}-3)$ and $(5, \mathrm{n}-3)$ are not dominated. The distance between them is 4 . So, to dominate them, we need at least 2 vertices from the column $\left(P_{6}\right)_{n-4}$ on B_{m}. These vertices dominate the column $\left(P_{6}\right)_{n-3}$ too. By vertices not in B_{m} we can dominate at most the first column in B_{m} (if B_{m} is an internal block). Then one 6×2 block remains undominated on B_{m}. To dominate it, we need at least 2 vertices from B_{m}. So, $\left|D \cap B_{m}\right| \geq 4$. If B_{m} is external $\left|D \cap B_{m}\right| \geq 5$.

Remark 3. If $\left|D \cap B_{m}\right|=4$, there also exists at least one block $B_{i} i \in\{1, \ldots, m-1\}$ such that $\left|D \cap B_{i}\right| \geq 5$, and for all blocks $B_{j} i<j \leq m-1\left|D \cap B_{j}\right|=4$ holds.

Lemma 15. If $\left|D \cap R^{\prime}\right| \geq 5$, then D is not minimal.
Proof. If $\left|D \cap R^{\prime}\right| \geq 5$, these 5 (or more) vertices can at most dominate all vertices in R^{\prime} and the column $\left(P_{6}\right)_{n-4}$ of the next block B_{m}, where $m=\left\lfloor\frac{n}{5}\right\rfloor$. Of course it may happen that $\left|B_{m} \cap D\right|=3$ holds, but Lemma 4 again implies that there are at least s blocks containing at least 5 vertices of D if there are s blocks containing only three vertices of D. Hence $|D| \geq 4 m+5>|S|$.

From Lemmas 1,2,3,13,14 and 15, by the same arguments as for cases $n \equiv$ $0,1(\bmod 5)$, there holds $|D| \geq|S|$.

3. The bounds for $\gamma\left(P_{7} \times P_{n}\right)$ and $\gamma\left(P_{8} \times P_{n}\right)$

Proposition 2.

$$
\gamma\left(P_{7} \times P_{n}\right) \leq\left\{\begin{array}{cl}
2 n, & n \geq 6 \quad \text { and } n=4 \\
6, & n=2 \\
7, & n=3 \\
11, & n=5
\end{array}\right.
$$

Proof. For even n we have two isomorphic connectivity components. We consider only component C_{1} (which contains (1,1)). A dominating set S^{\prime} of C_{1} is given as follows

$$
\begin{aligned}
& (2,2+4 m) \text { for } m=0,1, \ldots,\left\lceil\frac{n-1}{4}\right\rceil-1 \\
& (3,3+4 m) \text { for } m=0,1, \ldots,\left\lceil\frac{n-2}{4}\right\rceil-1
\end{aligned}
$$

$$
(6,2 m) \text { for } m=1, \ldots, \frac{n}{2}-1 \text { and }(5, n-1)
$$

Then $\left|S^{\prime}\right|=n$ or on both components

$$
|S|=2 n
$$

For odd $n, n>5$: The dominating set on the component $C_{1}\left(S_{1}\right)$ contains vertices

$$
\begin{gathered}
(2,2+4 m) \text { for } m=0,1, \ldots,\left\lceil\frac{n-1}{4}\right\rceil-1 \\
(3,3+4 m) \text { for } m=0,1, \ldots,\left\lceil\frac{n-2}{4}\right\rceil-2 \\
(6,2 m) \text { for } m=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-2 \text { and }(2, n-1),(5, n-2),(6, n-1) .
\end{gathered}
$$

Then

$$
\left|S_{1}\right|=n-1
$$

The dominating set S_{2} on the component C_{2} contains vertices

$$
\begin{gathered}
(2,1+2 m) \text { for } m=0,1, \ldots\left\lfloor\frac{n}{2}\right\rfloor \\
(5,2+4 m) \text { for } m=0,1, \ldots,\left\lfloor\frac{n-2}{4}\right\rfloor \\
(6,3+4 m) \text { for } m=0,1, \ldots,\left\lfloor\frac{n-3}{4}\right\rfloor \text { and }(5, n-1) .
\end{gathered}
$$

Then

$$
\left|S_{2}\right|=n+1
$$

On both components $|S|=\left|S_{1} \cup S_{2}\right|=2 n$. Obviously, S is a dominating set. It follows that $\gamma\left(P_{7} \times P_{n}\right) \leq 2 n$.

Proposition 3.

$$
\gamma\left(P_{8} \times P_{n}\right) \leq\left\{\begin{array}{cl}
2 n, & n \equiv 0(\bmod 4) \\
2(n+1), & \text { otherwise }
\end{array}\right.
$$

Proof. There are 2 isomorphic connectivity components. We will study only C_{1} and multiply the results by 2 . We partition the graph $\left(P_{8} \times P_{n}\right)$ into 8×4 blocks. A dominating set S_{1} of C_{1} is given as follows

$$
(2,2+4 m),(3,3+4 m),(6,2+4 m),(7,3+4 m), m=0,1, \ldots,\left\lfloor\frac{n}{4}\right\rfloor-1
$$

S_{1} dominates all vertices if n is divisible by 4 . If $n=4 m+1$, then we add ($2, \mathrm{n}-1$) and $(6, \mathrm{n}-1)$ to S_{1}, if $\mathrm{n}=4 \mathrm{~m}+2$, we add $(2, \mathrm{n}),(5, \mathrm{n}-1)$ and $(6, \mathrm{n})$, and if $\mathrm{n}=4 \mathrm{~m}+$ 3 , we add $(2, n-1),(3, n),(6, n-1),(7, n)$. Therefore, it holds:

$$
\gamma\left(P_{8} \times P_{n}\right) \leq 2\left|S_{1}\right|=\left\{\begin{array}{cl}
2 n, & n \equiv 0(\bmod 4) \\
2(n+1), & \text { otherwise }
\end{array}\right.
$$

References

[1] C. Berge, Some theorems on coverings, Studia Sci. Math. Hungar. 5(1970), 303-315.
[2] E. J. Cockayne, S. T. Hedetniemi, Towards a theory of domination in graphs, Netwoks 7(1977), 247-261.
[3] C. F. De Jaenisch, Applications de l'Analyse Mathematique an Jenudes Echecs, Petrograd 1862.
[4] M. El-Zahar, C. M. Pareek, Domination number of products of graphs, Ars Combin. 31(1991), 223-227.
[5] R. J. Faudree, R. H. Schelp, The domination number for the product of graphs, Congr. Numer. 79(1990), 29-33.
[6] D. C. Fisher, The domination number of complete grid graphs, J. Graph Theory, to appear.
[7] S. Gravier, A. Khelladi, On the dominating number of cross product of graphs, Discrete Math. 145(1995),273-277.
[8] M. S. Jacobson, L. F. Kinch, On the domination number of products of graphs I, Ars Combin. 18(1983), 33-44.
[9] M. S. Jacobson, L. F. Kinch, On the domination number of the products of graphs II : Trees, J. Graph Theory 10(1986), 97-106.
[10] P. K. Jha, S. Klavžar, Independance and matching in direct-product graphs, Ars combinatoria 50(1998), 53-63.
[11] P. K. Jha, S. Klavžar, B. Zmazek, Isomorphic components of Kronecker product of bipartite graphs, Discuss. Math. Graph Theory 17(1997), 301-309.
[12] S. Klavžar, N. Seifter, Dominating Cartesian products of cycles, Discrete Appl. Math. 59(1995), 129-136.
[13] S. Klavžar, B. Zmazek, On a Vizing-like conjecture for direct product graphs, Discrete Math. 156(1996), 243-246.
[14] A. Klobučar, Domination numbers of cardinal products of graphs, Mathematica Slovaca, to appear.
[15] A. KlobučAr, N. Seifter, K-dominating sets of the cardinal products of paths, Ars Combinatoria, to appear.
[16] C. L. Liu, Introduction to Combionatorial Mathematics, McGraw-Hill, New York, 1968.
[17] V. G. Vizing, The cartesian product of graphs, Vychisl. Sistemy 9 (1963), 3043.

[^0]: *Faculty of Economics, University of Osijek, Gajev $\operatorname{trg} 7$, HR-31 000 Osijek, Croatia, e-mail: aneta@oliver.efos.hr

