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Domination numbers of cardinal products P6 × Pn

Antoaneta Klobučar∗

Abstract. Here we determine the domination numbers of the
cardinal product of path graphs P6 × Pn. For P7 × Pn and P8 × Pn we
give some bounds.
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1. Terminology and introduction

For a graph G a subset D of the vertex-set of G is called a dominating set if every
vertex x not in D, is adjacent to at least one vertex of D. The domination number
γ(G) is the cardinality of the smallest dominating set.

For any graph G we denote by V(G) and E(G) the vertex-set and the edge-set
of G, respectively. The cardinal product G × H of two graphs G and H is a graph
with V (G × H) = V (G) × V (H) and {(g1, h1), (g2, h2)} ∈ E(G × H) if and only if
{g1, g2} ∈ E(G) and {h1, h2} ∈ E(H).

(This product is also known as the Kronecker product, cross product, direct
product or tensor product.)

The problem of determining the domination numbers of graphs first occurs in
the paper of de Jaenisch [3]. He wanted to find the minimal number of queens on a
chessboard, such that every square is either occupied by a queen or can be reached
by a queen with a single move.

A variety of applications of domination theory can be discussed: the problem
of keeping all points in a network under surveillance by a set of radar stations [1],
or application of domination to communications in a network, where a dominating
set represents a set of cities, which acting as transmitting stations can transmit
messages to every city in the network [16]. Some other applications are listed in [2]
and [11].

Starting in the eighties domination numbers of cartesian products were inten-
sively investigated (see e. g. [4], [5], [6], [8], [9], [12]). In the meantime, some papers
on domination numbers of cardinal products of graphs were also published. We
refer the interested reader to [7], [10], [11], [13], [14], [15].

In [14] the domination numbers of P2 × Pn, P3 × Pn, P4 × Pn and P5 × Pn are
determined. Here are the minimal dominating sets for these cases:
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Figure 1.

For completeness we first recall the following (obvious) result:

Proposition 1. If Pn is the path of order n, then

γ(Pn) = dn

3
e.

To fix the terminology for the proofs of our results we need some more definitions.

Observation 1 Let 1, ..., k and 1, ..., n be the vertices of Pk and Pn, respectively.
Then the vertices of Pk ×Pn are denoted by (i, j) where i = 1, ..., k and j = 1, ..., n.

Definition 1. The cardinal product Pk ×Pn, k, n ≥ 3, consists of two components.
The component containing the vertex (1,1) is denoted by C1, and the other compo-
nent by C2 .

Remark 1. If both, k and n are odd, these components are not isomorphic. If at
least one of these two numbers is even, the components are isomorphic.

Definition 2. For a fixed m, 1 ≤ m ≤ n, the set (Pk)m := Pk × m is called a
column of Pk × Pn; the set r(Pn) := r × Pn is called a row of Pk × Pn. Pk × Pn

always consists of two components. A column (row) of one of those components then
only consists of those vertices which are contained in the respective component. Any
set B = {(Pk)m, (Pk)m+1, ..., (Pk)m+l , |l ≥ 0, m ≥ 1, m + l ≤ n}, of consecutive
columns is called a block of size k × (l + 1) of Pk × Pn. If another block B

′
ends

with the column (Pk)m−1 or begins with the column (Pk)m+l+1 , then we say that B
′

is adjacent to B. A block B is called internal, if it is adjacent to two other blocks.
It is called external, if it is adjacent only to one block.

2. The domination number of P6 × Pn

The domination number of the cardinal product P6 × Pn of paths P6 and Pn is
given by the following theorem:
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Theorem 1. For n ≥ 6

γ(P6 × Pn) = 2(n − bn

5
c).

Proof. Let n ≥ 6. Recall that P6 × Pn has two isomorphic components C1

and C2. So, it is sufficient to consider only one component (C2) (which does not
contain (1,1)). We give a dominating set S of C2 as follows: Let n ≥ 5. If n = 5q,
then we can partition (split) the set of columns of P6 × Pn into q 6-by-5 blocks
Qi, i = 1, · · · , q and dominate each such block by a set isomorphic to set P =
{(1, 2), (2, 5), (4, 3), (5, 2)}. See Figure 2.

Figure 2.

If n = 5q + l, 2 ≤ l ≤ 4, then in addition to blocks Qi i = 1, ..., q we dominate
the last 6× l block Q

(l)
q+1 by a set isomorphic to Rl (2 ≤ l ≤ 4). See Figure 3.

Figure 3.

If n = 5q+1, then we dominate Qi i = 1, ..., q−1 by a copy of P , and Qq ∪Q
(1)
q+1

by a copy of R1.
Then

|S ∩ C2| = 4bn

5
c + n mod 5.

The set S chosen in this way is dominating. In the sequel we prove the minimality
of S i.e.

γ(P6 × Pn) ≥ |S|.

We partition the vertex set of (P6 ×Pn) into 6× 5 blocks. If a block is external,
we denote it by R. If it is internal, it is denoted by M . The whole proof is done
for C2. If n is not divisible by 5, there exists one block (R′), which is not a 6 × 5
block. Let R′ be the last block (it contains the column (P6)n).
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Lemma 1. |D ∩ R| ≥ 4, for every dominating set D.

Proof. Without loss of generality, we may assume that R = {(P6)1, ..., (P6)5}.
Even if the column (P6)5 is dominated by vertices from the adjacent column, we
need at least 4 vertices to dominate all vertices of the first four columns. 2

Lemma 2. |D ∩ M | ≥ 3, for every dominating set D.

Proof. Only the vertices in the first and the last column in M can be dominated
by vertices from the adjacent block. To dominate the remaining 6 × 3 block we
obviously need at least 3 vertices which must lie in M . 2

Lemma 3. Let n ≥ 15. If |D ∩ Bk| = 3 for some internal 6 × 5 block Bk, then
|D ∩ Bk−1| ≥ 4 and |D ∩ Bk+1| ≥ 4. But if Bk−1 (Bk+1) is external, then |D ∩
Bk−1| ≥ 5 (|D ∩Bk+1| ≥ 5).

Proof. Let Bk ={(P6)j, (P6)j+1, ..., (P6)j+4}, j = 5(k−1)+1, k = 2, ..., bn
5 c−1.

Without loss of generality, let (P6)j consists of the vertices (1,j),(3,j),(5,j). To
dominate all the vertices of Bk we need at least 5 vertices which are either contained
in Bk, or in adjacent blocks. There are three possibilities to dominate all vertices
of the columns (P6)j+1, (P6)j+2, (P6)j+3 by three vertices:
1) (2,j+1),(2,j+3),(5,j+2) ∈ D
2) (2,j+1),(3,j+4),(5,j+2) ∈ D
3) (3,j),(2,j+3),(5,j+2) ∈ D

Case 1. The vertices (5,j) and (5,j+4) are not dominated by the three vertices
in 1). The vertex (5,j) must be dominated by vertices of Bk−1 and (5,j+4) by
vertices of Bk+1. Without loss of generality, we consider only the case when (5,j)
is dominated from Bk−1. (See Figure 4.)

Figure 4.

To dominate (5,j) we need at least 1 vertex from (P6)j−1. If we have only 1
dominating vertex in (P6)j−1, two vertices in this column are not dominated. To
dominate them, we need at least one vertex of (P6)j−2. These 2 vertices dominate
at most the column (P6)j−1 and two vertices from (P6)j−2 and (P6)j−3. If Bk−1 is
internal, we can dominate at most the column (P6)j−5 by vertices of Bk−2. Then
still 3 vertices in (P6)j−4 and 1 vertex of (P6)j−3 and 1 vertex of (P6)j−2 are
undominated. To dominate them, we need at least 2 vertices. So, |D ∩ Bk−1| ≥ 4.
If Bk−1 is external, all vertices in (P6)j−5, (P6)j−4 and one vertex from (P6)j−3
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and (P6)j−2 must be dominated by vertices of Bk−1. To dominate these vertices
we need at least 3 vertices. Then |D ∩ Bk−1| ≥ 5. The assertion about Bk+1 can
be proved analogously.

Case 2. The assertion about Bk−1 can be shown as above.
So, we only have to consider Bk+1. To dominate the vertices (1,j+4) and (5,j+4)

we need at least 2 vertices from (P6)j+5. These vertices together with (3,j+4)
dominate at most the columns (P6)j+5 and (P6)j+6. Even if all vertices of (P6)j+9

are dominated by vertices of Bk+2, we need at least two more vertices of Bk+1 to
dominate (P6)j+7 and (P6)j+8. If Bk+1 is external, we need at least three more
vertices of Bk+1. Hence, our assertion also holds in this case.

Case 3. As Case 2, only the roles of Bk−1 and Bk+1 are interchangeable. 2

Lemma 4. Let n ≥ 20. If |D ∩ Bk| = 3 and |D ∩ Bk−1| = 4, then there exists at
least one block Bi, i ∈ {1, ..., k − 2}, such that |D ∩ Bi| ≥ 5. For all blocks Bj ,
i < j ≤ k − 1, |D ∩ Bj | ≥ 4 holds.

Proof. If |D ∩ Bk| = 3 and |D ∩ Bk−1| = 4, then it follows from the proof of
Lemma 3. that at least one vertex of Bk−1 is not dominated by vertices of Bk−1∪Bk.
By the same arguments as above we can conclude that Bk−2 contains at least four
vertices of D, etc. If i = 1, the block Bi must contain at least five vertices of D. 2

Lemma 5. Let n ≥ 15. If |D ∩ Bk| = 5 for some internal 6 × 5 block Bk, then
|D∩Bk−1| ≥ 3 and |D∩Bk+1| ≥ 3. If Bk−1 (Bk+1) is external, then |D∩Bk−1| ≥ 4
(|D ∩ Bk+1| ≥ 4).

Proof. Only the vertices in the first and the last column of a 6×5 block can be
dominated by vertices from adjacent blocks. To dominate the vertices of the three
remaining columns we need at least three vertices which are contained in this block.

The assertion about external blocks also follows immediately since in this case
at most the vertices of one column can be dominated by vertices of an adjacent
block. 2

Case 1. n ≡ 0 (mod5)

Lemma 6. Let n ≥ 15. If |D ∩ Bk| = 3 holds for any internal 6 × 5 block Bk, D
is not minimal.

Proof. Similarly as in Lemma4, it can be shown that there exists at least one
6 × 5 block Bj such that |D ∩ Bj | ≥ 5 holds, where k < j. For all Bm k < m < j
there holds |D ∩ Bk| ≥ 4.

Let n ≥ 15, and let D be any dominating set. |D∩Bk| ≥ 3 holds for each block
Bk, 1 ≤ k ≤ n

5 , by Lemma2.. Assume that there are s 6 × 5 blocks each of which
contains only three vertices of D. By Lemma1. these blocks are internal. From
Lemma 4., there are at least s+1 6×5 blocks which contain at least five vertices of
D. Let Bij , 1 ≤ j ≤ 2s + 1, denote these blocks which contain either three or five
vertices. Then B=∪2s+1

j=1 Bij contains at least 8s + 5 vertices of D. By the above
description of S, the set B contains at most 8s + 4 vertices of S. Hence D is not
minimal. 2

For n ≥ 15, the result follows from Lemma6. For n=10, the statement follows
from Lemma1. and for n = 5 the result is obvious.
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Case 2. n ≡ 1 (mod5)
We partition the graph P6 ×Pn into bn

5 c 6× 5 blocks and one block R′ = (P6)n

of size 6 × 1. By Bm we denote the 6 × 5 block adjacent to R′.

Lemma 7. If D ∩ R′ = ∅, then |D ∩ (Bm ∪ R′)| ≥ 5 for any dominating set D.

Proof. Bm∪R′ = {(P6)n−5, ..., (P6)n}. Even if the column (P6)n−5 is dominated
by vertices of the adjacent block, we need at least 5 vertices to dominate all vertices
of the last five columns. 2

Let D be any dominating set. We now assume that Lemma7. holds and that
there are s blocks Bji , 1 ≤ s, ji ≤ m− 1, containing only three vertices of D. Then
Lemma 4. implies that there are s blocks Bki , ki 6= m, which contain at least 5
vertices of D. Then again |D| ≥ |S|.

If there is no block Bi with |Bi ∩ D| ≥ 3, then Lemma9 implies that |D| ≥ |S|.
If R′ contains at least one vertex and each 6×5 block contains at least 4 vertices,

then our result clearly holds again.
If R′ contains at least one vertex and there is at least one internal 6 × 5 block

containing only 3 vertices, then our result is an immediate consequence of Lemma4
again.

For n = 6, the statement follows from the proof of Lemma7.. Let n = 11. From
Lemma 7. it follows |D∩ (Bm ∪R′)| ≥ 5. From Lemma1. it follows |D∩Bm−1| ≥ 4.
Then |D| ≥ 9 = |S|.

Case 3. n ≡ 2 (mod5)
We partition the graph P6 × Pn into bn

5
c 6 × 5 blocks and one block R′ =

{(P6)n−1, (P6)n} of size 6 × 2.

Lemma 8. For every dominating set D, |D ∩ R′| ≥ 2.

Proof. By vertices from the adjacent block, we can only dominate vertices of
(P6)n−1. 2

Lemma 9. If |D ∩ R′| ≥ 3, then D is not minimal.

Proof. By Lemma2 we have |D ∩ Bm| ≥ 3 where m = bn
5 c. By Lemma3 and

Lemma 4 we again know that there are at least s blocks which contain at least 5
vertices of D if there are s blocks which contain only three vertices of D. Hence
|D| > |S| if |D ∩ R′| ≥ 3. 2

Let D be any dominating set. By the same methods as for n ≡ 0, 1 (mod5) it
can be seen that |D| ≥ |S| also holds for n ≡ 2 (mod5).

Case 4. n ≡ 3 (mod5)
We partition P6 × Pn into 6 × 5 blocks and one block R′ = {(P6)n−2, (P6)n−3,

(P6)n−3}.

Lemma 10. For every dominating set D, |D ∩ R′| ≥ 2.

Proof. At most the first column of R′ can be dominated by vertices from the
previous block. To dominate the vertices of the last two columns we need at least
two vertices. 2

Lemma 11. If |D ∩ R′| = 2, then |D ∩ Bm| ≥ 4 where m = bn
5 c.
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Proof. R′ is a 6 × 3 block. To dominate all vertices of such a block we need at
least 3 vertices. If |D ∩ R′| = 2, then the vertices (2,n-1), (5,n) must be contained
in D if m is odd. If m is even, then (2,n), (5,n-1) must be in D. Here we only
consider the case when m is odd, the other case can be done similarly.

The vertices (2,n-1) and (5,n) dominate all vertices of R′ with the exception of
(5,n-2). To dominate it, we need at least 1 vertex from (P6)n−3. If we have only
one dominating vertex in (P6)n−3, then two vertices in (P6)n−3 are not dominated.
To dominate them, we need at least one vertex from (P6)n−4. These 2 vertices can
only dominate (P6)n−3, (P6)n−4 and two vertices on (P6)n−5. By vertices not in
Bm we can dominate only the first column in Bm, i.e. (P6)n−7. Then (P6)n−6 and
one vertex in (P6)n−5 remain undominated. To dominate them, we need at least 2
vertices. So, |D ∩ Bm| ≥ 4. 2

Remark 2. If |D ∩ Bm| = 4, we have the same case as in Lemma4.. At least
one vertex on Bm is not dominated and then there exists at least one block Bi

i ∈ {1, ..., m − 1} such that |D ∩ Bi| ≥ 5, and for all blocks Bj i < j ≤ m − 1
|D ∩ Bj | = 4 holds. (See Figure 5.)

Figure 5.

Lemma 12. If |D ∩ R′| ≥ 4, then D is not minimal.

Proof. If |D ∩ R′| ≥ 4, these 4 (or more) vertices can at most dominate all
vertices on R′ and the column (P6)n−3 on the 6 × 5 block Bm where m = bn

5 c. Of
course it may happen that |Bm ∩ D| = 3 holds, but Lemma4 again implies that
there are at least s blocks containing at least 5 vertices of D if there are s blocks
containing only three vertices of D. Hence |D| ≥ 4m + 4 > |S|. 2

By the same methods as for n ≡ 0, 1, from Lemmas 3, 11 and 12 it follows that
|D| ≥ |S| holds for any dominating set D.

Case 5. n ≡ 4 (mod5)
We partition the graph P6 × Pn into bn

5
c 6 × 5 blocks and one block R′ =

{(P6)n−3, (P6)n−2, (P6)n−1, (P6)n}.

Lemma 13. For every dominating set D |D ∩R′| ≥ 3.

Proof. At most the first column in R′ can be dominated by vertices from the
adjacent block. To dominate the remaining 6 × 3 block, we clearly need at least 3
dominating vertices which are contained in R′. 2
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Lemma 14. If |D ∩ R′| = 3, then |D ∩ Bm| ≥ 4, where m = bn
5 c.

Proof. Here we only consider the case when m is odd, and the case when m is
even can be done similarly. If m is odd, in C2 in the column (P6)n there are vertices
(2,n),(4,n) and (6,n). There are three possibilities in case |D ∩ R′| = 3.
1) (1,n-1),(3,n-1),(5,n-1) are in D. They dominate (P6)n, (P6)n−1 and (P6)n−2.
2) (1,n-3),(2,n),(5,n-1) are in D. They dominate on R′ the columns (P6)n, (P6)n−1,
(P6)n−2 and vertex (1,n-3) on R′, and on Bm vertex (2,n-4).
3) (3,n-3),(2,n),(5,n-1) are in D. They dominate on R′ the columns (P6)n,(P6)n−1

(P6)n−2 and the vertex (3,n-3), and on Bm they dominate the vertices (2,n-4),
(4,n-4).

We will consider case 3), because most vertices are dominated.
In case 3) on R′ only the vertices (1,n-3) and (5,n-3) are not dominated. The

distance between them is 4. So, to dominate them, we need at least 2 vertices from
the column (P6)n−4 on Bm. These vertices dominate the column (P6)n−3 too. By
vertices not in Bm we can dominate at most the first column in Bm (if Bm is an
internal block). Then one 6 × 2 block remains undominated on Bm. To dominate
it, we need at least 2 vertices from Bm. So, |D ∩ Bm| ≥ 4. If Bm is external
|D ∩ Bm| ≥ 5. 2

Remark 3. If |D∩Bm| = 4, there also exists at least one block Bi i ∈ {1, ..., m−1}
such that |D ∩ Bi| ≥ 5, and for all blocks Bj i < j ≤ m − 1 |D ∩ Bj | = 4 holds.

Lemma 15. If |D ∩ R′| ≥ 5, then D is not minimal.

Proof. If |D ∩ R′| ≥ 5, these 5 (or more) vertices can at most dominate all
vertices in R′ and the column (P6)n−4 of the next block Bm, where m = bn

5 c. Of
course it may happen that |Bm ∩ D| = 3 holds, but Lemma4 again implies that
there are at least s blocks containing at least 5 vertices of D if there are s blocks
containing only three vertices of D. Hence |D| ≥ 4m + 5 > |S|. 2

From Lemmas 1,2,3,13,14 and 15, by the same arguments as for cases n ≡
0, 1 (mod 5), there holds |D| ≥ |S|. 2

3. The bounds for γ(P7 × Pn) and γ(P8 × Pn)

Proposition 2.

γ(P7 × Pn) ≤





2n, n ≥ 6 and n = 4
6, n = 2
7, n = 3
11, n = 5

Proof. For even n we have two isomorphic connectivity components. We con-
sider only component C1 (which contains (1,1)). A dominating set S′ of C1 is given
as follows

(2, 2 + 4m) for m = 0, 1, ..., dn− 1
4

e − 1

(3, 3 + 4m) for m = 0, 1, ..., dn− 2
4

e − 1
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(6, 2m) for m = 1, ...,
n

2
− 1 and (5, n− 1)

Then |S′| = n or on both components

|S| = 2n.

For odd n, n > 5 : The dominating set on the component C1 (S1) contains vertices

(2, 2 + 4m) for m = 0, 1, ..., dn− 1
4

e − 1

(3, 3 + 4m) for m = 0, 1, ..., dn− 2
4

e − 2

(6, 2m) for m = 1, ..., bn

2
c − 2 and (2, n − 1), (5, n− 2), (6, n− 1).

Then
|S1| = n − 1.

The dominating set S2 on the component C2 contains vertices

(2, 1 + 2m) for m = 0, 1, ...bn

2
c

(5, 2 + 4m) for m = 0, 1, ..., bn− 2
4

c

(6, 3 + 4m) for m = 0, 1, ..., bn− 3
4

c and (5, n− 1).

Then
|S2| = n + 1.

On both components |S| = |S1 ∪ S2| = 2n. Obviously, S is a dominating set. It
follows that γ(P7 × Pn) ≤ 2n.

Proposition 3.

γ(P8 × Pn) ≤
{

2n, n ≡ 0(mod4)
2(n + 1), otherwise

Proof. There are 2 isomorphic connectivity components. We will study only C1

and multiply the results by 2. We partition the graph (P8 × Pn) into 8 × 4 blocks.
A dominating set S1 of C1 is given as follows

(2, 2 + 4m), (3, 3 + 4m), (6, 2 + 4m), (7, 3 + 4m), m = 0, 1, ..., bn

4
c − 1.

S1 dominates all vertices if n is divisible by 4. If n = 4m + 1, then we add (2,n-1)
and (6,n-1) to S1, if n = 4m + 2, we add (2,n), (5,n-1) and (6,n), and if n = 4m +
3, we add (2,n-1), (3,n), (6,n-1), (7,n). Therefore, it holds:

γ(P8 × Pn) ≤ 2|S1| =
{

2n, n ≡ 0(mod 4)
2(n + 1), otherwise

2
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[10] P.K. Jha, S. Klavžar, Independance and matching in direct-product graphs,
Ars combinatoria 50(1998), 53–63.
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