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1 Introduction

Aggregation is a fundamental process in decision making and in any other discipline where the
fusion of different pieces of information is of vital interest. Consider, for example, some process
of comparing different objects which is based on some of their characteristic properties, where we
are interested in an overall comparison of objects.

For instance, think of flexible (fuzzy) querying systems. Such systems are usually designed not
just to give results that match a query exactly, but to give a list of possible answers ranked by their
closeness to the query—which is particularly beneficial if no record in the database matches the
query in an exact wayl[([1]). The closeness of a single value of a record to the respective value in
the query is usually measured using a fuzzy equivalence relation, that is, a reflexive, symmetric,
and T-transitive fuzzy relation. Recently, a generalization has been propased ([2]) which also
allows flexible interpretation of ordinal queries (such as “at least” and “at most”) by using fuzzy
orderings ([8]). In any case, if a query consists of at least two expressions that are to be interpreted
vaguely, it is necessary to combine the degrees of matching with respect to the different fields in
order to obtain an overall degree of matching. Assume that we have a @uery., ¢, ), where

eachq; € X; is a value referring to théth field of the query. Given a data recof, .. ., z,)

such thatr; € X; foralli = 1,...,n, the overall degree of matching is computed as

R((ql, cesqn), (21, ,$n)) = A(Rl(ql,xl), e ,Rn(qn,xn)),

where everyR; is aT'-transitive binary fuzzy relation oX; which measures the degree to which
the valuer; matches the query valug.

Itis natural to require thaR is fuzzy relation on the Cartesian product of &}l and, therefore, the

range ofA should be the unit interval, i.eA : [0, 1]" — [0, 1]. Furthermore, it is desirable that

if a data record matches one of the criteria of the query better than a second one, then the overall
degree of matching for the first should be higher or at least the same as the overall degree of
matching for second one. Clearly, if some data record matches all criteria, ig(all ¢;) = 1,

then the overall degree of matching should also be 1. On the other hand, if a data record fulfills
none of the criteria to any level, i.e. @l;(x;, ¢;) = 0, then the overall degree should vanish to 0.
Aggregation operators are functions which guarantee all these properties ([4, 5, 6, 7]).

Moreover, it would be desirable that, if all relatiods on X; are T-transitive, alsoR is still
T-transitive in order to have a clear interpretation of the aggregated fuzzy refatitinis, there-
fore, necessary to investigate which aggregation operators are able to guaranfeendiatains
T-transitivity.

It turns out that the preservation@ftransitivity in aggregating fuzzy relations is closely related to

the domination of an aggregation operator over the corresponding tfiofitherefore, a concept

of domination for aggregation operators will be introduced and the relationship to the preservation
of T-transitivity will be proved. Some construction methods for dominating aggregation opera-
tors will be proposed as well as a characterization of aggregation operators dominating the four
basic t-norms (minimum t-norrfiyg, product t-nornilp, Lukasiewicz t-norniy,, and the drastic
product?p).
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2 Basic Definitions and Preliminaries

2.1 Aggregation operators and t-norms

Definition 1. A function

A 0,1 —[0,1]

neN
is called araggregation operatoif it fulfills the following properties ([5/7]):

(AO1) A(zy,...,zn) < A(y1,...,yn) Whenever; <y, foralli e {1,...,n}
(AO2) A(z)=azforallz € [0,1]

(AO3) A(0,...,0)=0andA(1,...,1) =1

Each aggregation operatdr can be represented by a fam{l ,,))»en of n-ary operations, i.e.
functionsA ) : [0,1]" — [0, 1] given by

A(n)(xl, cee 71'71) = A(.I'l, ce ,xn).

In that case,A(;) = idj, and, forn > 2, eachA(, is non-decreasing and satisfies
Ay(0,...,0) =0andA,(1,...,1) = 1. Usually, the aggregation operatarand the corre-
sponding family(A ,,))nen Of n-ary operations are identified with each other.

Note that, forn > 2, n-ary operationsA,, : [0, 1] — [0, 1] which fulfill properties(AO1) and
(AQO3) are referred to asi-ary aggregation operators.

Unless explicitly mentioned otherwise, we will restrict ourselves to aggregation operators acting
on the unit interval (according to Definitigry 1). With only simple and obvious modifications,
aggregation operators can be defined to act on any closed infesvak, b] C [—oo, oo]. While

(AO1) and(AO2) basically remain the same, or%O3) has to be modified accordingly:

(AO3) A(a,...,a) =aandA(b,...,b)=b

Consequently, we will speak of aggregation operator acting oh.

Definition 2. Consider some aggregation operator |J [0, 1]™ — [0, 1].
neN

() A is calledsymmetricif
Vn € N,Vay, ...z, € 0,1] : A(w1, .. 20) = A(Za(1)s - - 5 Ta(n))
for all permutationgy = («(1),...,a(n)) of {1,...,n}.
(i) A is calledassociativaf

Vn,m € N,Vay, ..., T, Y1, .-, Ym € [0,1] :
A(xlw-'uxnvyla”'vym) :A(A('rlavxn)aA(yh?ym))
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(iii) An elemente € [0, 1] is called a neutral element & if

Yn € N,Vzq,...,x, € [0,1]if z; = e for somei € {1,...,n} then
A(l‘lw "7‘Tn) = A(‘Tla" : ,$i,1,$i+1,...,l’n).

Triangular norms were originally introduced in the context of probabilistic metric spaces ([8, 9,
10]). A triangular norm (t-norm for short) is a binary operatidh on the unit interval which

is commutative, associative, non-decreasing in each component, and has 1 as a neutral element.
In fact, triangular norms are nothing else than binary, associative, and symmetric aggregation
operators with 1 as neutral element.

Example 3. The following are the four basic t-norms:

Minimum t-norm:  Tyg(x,y) = min(x, y),
Product t-norm: Tp(z,y) =z -y,
tukasiewicz t-norm: 7y,(x, y) = max(z +y — 1,0),

: 2

Drastic product:  Tp(z,y) = {O , i (x’y)_ €011,
min(z,y) otherwise

Observe that, for a given aggregation operatothe operatord ,,) andA,,,) need not be related
in general, ifn # m. However, if A is an associative aggregation operatorfor 3, all n-ary
operatorsA ) can be derived from the binary operaty,). Therefore, in the case of associative
aggregation operators, the distinction betwégn and A itself is often omitted. This justifies to
speak about t-norms as general aggregation operators, although only the binary operations have
been defined.

2.2 Transitivity and preservation of transitivity

We have already mentioned that binary fuzzy relati®hon the subspaceX; can be used for

the comparison of two objects on the subspaces’ level. For details on fuzzy relations, especially
fuzzy equivalence relations ([11,112,/ 13] 14, 15]) and fuzzy orderings ([3, 111, 16,/17, 18]) and their
properties, we refer to the relevant literature. We only recall the definitidiwénsitivity, since

we are interested in its preservation during the aggregation process.

Definition 4. Consider a binary fuzzy relatioR on some univers& and an arbitrary t-norr’.
R is calledT-transitiveif and only if, for all z, y, = € X the following property holds:

T(R(z,y), R(y, 2)) < R(z, z)

Definition 5. An aggregation operatoA preservesl-transitivity if, for all n € N and for
all binary T-transitive fuzzy relations?; on X; with i € {1,...,n}, the aggregated relation
R = A(R,,...,R,) onthe Cartesian product of a\i;, i.e.

R(A, B) == R((ab e ,an), (bl, e ,bn)) == A(Rl(al,bl), e ,Rn(an,bn)),

n
is alsoT-transitive, that means, forall, B, C € [] X,
=1

T(R(A,B),R(B,C)) < R(A,C).
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Without loss of generality, we will restrict our considerations in the sequel to fuzzy relations on
the same univers&; = X.

2.3 Domination

Similar to t-norms, the concept of domination has been introduced in the framework of proba-
bilistic metric spaces|([19, 20]) when constructing the Cartesian products of such spaces. In the
framework of t-norms, domination is also needed when constructing fuzzy equivalence relations
and fuzzy orderings(([14, 15, 17,118]). We will now extend the concept of domination for the
framework of aggregation operators.

Definition 6. Consider ann-ary aggregation operatok ,,) and anm-ary aggregation opera-
tor B(,,). We say thatA,) dominatesB,,y (A, > By if, for all x;; € [0,1] with
ie{l,...,m}andj € {1,...,n}, the following property holds:

B(m) (A(n) (IL‘Ll, c ,ﬂj‘lm), e 7A(n) (l’mJ, e IL‘m’n)) (1)
< A(n) (B(m) (56171, ceey l‘m71), N 7B(m) (l‘l,na cee 7xm,n>)-

Note that if eithern or m or both are equal to 1, because of the boundary cond{#@®R),
A ) > By, is trivially fulfilled for any two aggregation operators, B.

Definition 7. Let A andB be aggregation operators. We say tAatdominatesB (A > B), if
A,y dominatesB,, for all n,m € N.

Note that, if two aggregation operators and B are both acting on some closed interval
I = [a,b] C [—o0, 0], then the property of domination can be easily adapted by requiring that
the Ineq.[(1) must hold for all arguments; from the intervall and for alln, m € N.

Further on, we will denote the class of all aggregation operaosdhich dominate an aggregation
operatorB by
D ={A| A> B}.

Since t-norms are special kinds of associative aggregation operators, the following proposition
will be helpful for considering the domination of an aggregation operator over a t-fiorm

Proposition 8. Let A, B be two aggregation operators. Then the following holds:

() If B is associative and\,,) > By for all n € N, thenA > B.

(ii) If A is associative and\ (5) > By, for all m € N, thenA > B.

Proof. Consider two aggregation operaté¥sB. Further, letB be associative and ;) > By,
for all n € N. Consider arbitrary,, m € N and arbitraryz; ; € [0,1] withi € {1,...,m} and
j € {1,...,n}. Note that for better readability we introduce the notation,) = (zi1,...,%in)
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foralli € {1,...,m}. Then we get

B(A(xlyl, L)y AlZma, .. ,azmm))
= B(A(IL )y (acm ))
ZB(B(A(OEL) A(22.)), A73.), - ATm,.))
<B(AB(z1,1,22,1), - - -, B(@1,n, 720)), A(23,), ..., A(Tm,.))
= B(B[A( (x1,1,22 1), oo Bz, 220)), Alxs1, ..., T3n)], - ,A(a:m_))
< B(A[B(B 11,221),231)s- -, B(B(X1n,T20), T34)], - - (:Um))
:B(A(B(xl 1,221,231)s -« B(T1,0, T2,0, T3n)), - ,A(:nm ))
<B(AB(z1,1,..., m_1)71),...,B(x17n,... (m=1),n))s A(Tm )
gA(B(azl Loy Tm1), - B($1,n,-.-,$m,n))-

It can be shown analogously that,Af is associative ané ;) > B,y forallm € N, A > B
holds, i.e.A,,) > By, for arbitraryn € N. O

Consequently, if two aggregation operatéxsand B are both associative, as it would be in the
case of two t-norms, it is sufficient to show th&t,) > B, for proving thatA >> B.

We summarize a few well-known, basic results on domination in the framework of t-narms ([7,
14)):

(i) For any t-normT’, it holds thatT" itself andTy; dominateT .
(i) Furthermore, for any two t-norm®;, 15, 77 > Ty impliesT; > T, and, therefore, we
know thatTp > T ifand only if T' = Tp andT > Ty if and only if T = Ty

Note thatTyr dominates not only all t-norms, but also any aggregation opefattvecause of its
monotonicity property

A (min(z1,y1),...,min(z,, y)) < min(A(zy,...,25), AY1, .-, Yn))-

Further note, that the property of selfdomination of an aggregation operatorAi.g> A, is
nothing else than the property of bisymmetry in the sense of Adzél ([21]), i.e. farall€ N
and allz; ; € [0,1] with: € {1,...,m} andj € {1,...,n}

Ay (A (11, @1n), - Ay (@15 - Tinyn)
A( )( (m )({ELl,...,.’L’m’l),...,A(m)(iL‘l’n,...,J}m’n)).

3 T-Transitivity and Domination

Standard aggregation of fuzzy equivalence relations (fuzzy orderings) preservifigrinesitivity
is done either by means 6f itself or Ty, but in fact, any t-normi” dominatingT’ can be ap-
plied, i.e., if Ry, Ry are twoT-transitive binary relations on a univerdeand7 > T, then also
T(Ry, Ry) is T-transitive ([14[ 17, 18]).
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As already mentioned above, in several applications, other types of aggregation processes pre-
servingT'-transitivity are required((]2]). Especially the introduction of different weights (degrees

of importance) for input fuzzy equivalences (orderings) cannot be properly done by aggregation
with t-norms, because of the commutativity. Therefore, we are investigating aggregation operators
preserving thd-transitivity of the aggregated fuzzy relations. The following theorem generalizes
the result known for triangular norms ([14]).

Theorem 9. Let|X| > 3 and letT be an arbitrary t-norm. An aggregation operatér preserves
theT-transitivity of fuzzy relations oX if and only ifA € Dry.

Proof. First we show that ifA dominatesT’, then it also preserves-transitivity. Therefore
we have to show thaR is T-transitive for some binary-transitive relations?; on X with
i€ {l,...n}and somen € N.

Consider arbitran, B, C € X™, then we get

T(R(A,B),R(B,C))
=T (A(Ri(a1,b1),...,Ru(an, b)), A(R1(b1,¢1),- - Ry(bn,cn)))
< A (T(Ri(ay,b1),Ri(b1,c1)), ..., T(Rn(an,bn), Rn(bp,cn)))
< A (Ri(a,c1),... Ry(an, cn)) = R(A,C).

On the other hand, we have to show that an aggregation opétatdrich preserveg-transitivity
also dominates the corresponding t-ndfimDue to Propositiop]8, it is sufficient to show that

T(A(ZEl, cee 73377,)7 A(yh ey yn)) S A(T(xlvyl)v s 7T(l‘n7yn))
holds for allz;, y; € [0,1] with ¢ € {1,...,n} and arbitraryn € N.

Since the univers& contains at least three elemenisb;, ¢;, there exists a binary fuzzy relation
R; on X, which isT-transitive and fulfills the following equations = R;(a;, b;), y; = R;(bi, ¢;)
andT'(z;,y;) = Ri(a;, c;) for somex;,y; € [0,1], e.g. consider the following binary fuzzy
relationR; on X defined by

(
= Ri(as, b)) = Ri(bi, a;) = s,
= Ri(bi, i) = Rilci, bi) = ui,
(
(

 Ri(ai,¢i) = Ri(ci, a:) = T, y5),
s Ri(z,y) = 0forall z # y and at least one argument frakn\ {a;, b;, ¢;}.

For proving theT-transitivity of R;, we have to show that the following inequality holds for all
x,y,z € X: B . B
T(Ri(z,y), Ri(y, 2)) < Ri(z, 2).

If at least one of the arguments is from \ {a;, b;, ¢;} the inequality is trivially fulfilled. For
arguments:, y, z € {a;, b;, ¢;} we get the following situations proving thietransitivity of R;
T(Ri(ai, bi), Bi(bi, i) = Tws, yi) = Ri(ai, ci),

T(R;(bi, ci), Ri(ciy ai)) = T(yi, T(xi, y;)) < min(azy, ;) < 2 = Ri(by, az),
T(Ry(ciy a:), Ri(ai, b)) = T(T(wi, ), @) < min(zq, y;) < yi = Rilcs, by).
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Consequently, for arbitrary;, y; € [0, 1], we can find & -transitive binary fuzzy relatio®; on X
which fulfills x; = R;(a;, b;), vi = Ri(b;, ¢i), andT (x;,y;) = R;(a;, ¢;). Therefore, we conclude

T(A($1, ces ), Alyr, .., yn))
=T (A(Ri(a1,b1), ..., Ru(an,bn)), A(Ri(b1,c1), ..., Ru(bns n)))
=T(R(A,B),R(B,C)) < R(A,C) = A(Ri(a1,c1), - .., Ru(an, cn))
= A(T(xl, y1),- .- T(wn, yn))a

showing the domination oA overT. O

4 Construction of Dominating Aggregation Operators

We have shown the close relationship between the preservatibrtrahsitivity and the domina-

tion of the involved aggregation operatAroverT. Therefore, we are interested in the character-
ization of the clas® with respect to some t-norffi but also in construction and transformation
methods for such dominating aggregation operators. Clearly, some of the following results are not
only restricted to the domination of an aggregation operAtaver some fixed t-norrif’, but are

also valid with respect to any fixed aggregation operator

4.1 Combination of dominating aggregation operators

Proposition 10. Consider an aggregation operatdx and the corresponding class of dominating
aggregation operator® 5 . Then the following properties hold:

(i) Forany A, B, C € D; whereA ) is idempotent, als® = A(B, C) € Dy, with
D(x1,...,2n) = AB(21,...,2,),C(x1,...,20))-
(i) Forany A,B,C € Dy, alsoD®) = A(B,C) € D; forall k € {1,...,n — 1} with
D® (..., x,) = AB(z1,...,21), C@pp1, - .- Tn)).

Note that the idempotency &k (;), i.e. A(z,z) = = for all z € [0,1], ensures thaD is an
aggregation operator fuffillind(x) = z. However, the idempotency ok, can be omitted,
whenever we puD ;) = id|g ;) by convention and appl» = A(B, C) for n > 2.

Proof. Consider somé\, B, C € Dy, arbitraryzy 1,...,zn,, € [0, 1] for somen, m € N. Once
again, we introduce for better readability the following notations:

L (QTZ’) = (:Ei,la ce 7$i,n) foralli e {1, c. ,m},
] (:L'_’j) = (.%'Lj, . ,a:m’j) for aII] S {1, . ,TL},

w (2,77) = (@ig,...,xy) foralli e {1,...,m}andk,l € {1,...,n} withk < 1.

Then the following holds:
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() DeDy,ie.D>A:

(i) D™ € D; forallk € {1,...,n—1},i.e.D® > A

A(D({L‘Ll, ey ZL‘Ln), ce ,D(k) (xm,la cee 7$m,n))

= A(A(B(x, 1) C(z, ) - AB(z,, 77, Ce,, 7))

< A(AB(z;17), - B2, 10), AC(z, grrgym): - C&,, gryn))
< AB(A(e.0), .., Ale.1)), CA(2,i1)), - - Ale.n)))
=D®(A(z.1),...,A(z.,))

=D®(A(11, .. Tma)s - s A1y s )

Remark 11. Note that for the cases wheke= 1 andk = n — 1 we have

DW(zy, ... xn) = Alxy, Clag, ..., x0)),
D V(zy, .. an) = AB(21, ..., Tp1),Tn)

and therefore the inductive extensioris ([5])

A(ext) (171, ey :L’n) = A(g) (1’1, A(g)(. .. ,A(Q) (l'n—b xn) < ))v
Aoty (15, T0)

I
>

@) (s A (A (1, 72),73) . .., T)

of a binary aggregation operatdr, also dominate the corresponding aggregation operatdfr
A(g) > A.

Further note, that Propositi¢ph 8 (i) is an immediate consequence of Rémjark 11 since, in the case
of associative aggregation operators, the inductive extensions coincide. Therefore, it is sufficient
to show thatA ;) > T|,), if A is an associative aggregation operator.

Propositior{ ID has shown how new dominating aggregation operators can be constructed from
already known dominating aggregation operators. In case of continuous Archimedean t-norms,
other construction methods based on their additive generators can be formulated.
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4.2 Generated and weighted t-norms

Aggregation operators preservifigtransitivity, wherel is some continuous Archimedean t-norm
with additive generatoyf, are closely related to pseudo-metric-preserving transformations ([22,
23)).

Definition 12. A function F : (R*)" — R* is apseudo-metric-preservinfgnction if it fulfills
the following properties:

() F(0,,...,0) =0,

(i) for any family of pseudo-metricg; : X; x X; — R* and anyz;,y;,2; € X;, with
1=1,...,n,

F(dy(z1,21),...,dp(zn, 2n))
< F(dl(mla yl)a ce 7dn(xmyn)) + F(dl(yla Zl)a cee 7dn(yn7 Zn))

A sufficient condition for a function to be pseudo-metric-preserving can be adapted from results
for metric-preserving functions ([22, 23,124]): If a functiéh: (R+)" — RT is non-decreasing
and subadditive, fulfilling?’(0, ..., 0) = 0, then it is pseudo-metric-preserving.

Definition 13. A function F' : [0,¢]" — [0, ¢] is subadditiveon [0, ¢], if the following inequality
holds for allz;, y; € [0, ] with ; + y; € [0, c]:

F(xl'i_ylv7xn+yn)§F(l‘177xn)+F(y177yn)

An aggregation operatdd : |J,, oy [0,¢]" — [0,] acting on|0, ¢] is subadditive if all n-ary
operationdH ,,) : [0, c]" — [0, c] are subadditive of, c].

Before turning to aggregation operators dominating a continuous, Archimedean tfhona
recall that a functiory : [0, 1] — [0, co] is an additive generator of such a t-noffif and only if
f is continuous, strictly decreasing, fulfilling(1) = 0, and for allz, y € [0, 1] :

T(z,y) = £~ (min(£(0), f(z) + f(y))).
Then we also have that(z1, ..., z,) = f~(min(f(0), X1, f(z)))-

Theorem 14. Consider some continuous, Archimedean t-ndrnwith an additive generator
f:[0,1] = [0,00], f(0) = ¢, and letA : | J,,cy[0, 1]" — [0, 1] be an aggregation operator. Then
A € Dy if and only if there exists a subadditive aggregation operdfor | J,,.y [0,¢c]" — [0,¢] ,
such that for alln € N and for allz; € [0, 1] withi € {1,...,n}

Proof. Let A € Dy, i.e., for alln € N and for allz;,y; € [0,1],7 € {1,...,n}, the following
inequality holds

T(A('rlﬁ te 7‘7371)’ A(yh cee 7yn)> < A((T(l’l’ yl)? cr T(mm yn))
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and can be rewritten by
f~H (minfe, f(A(z1,. o 20)) + FAWL - 90)]) <
<A(fH(minle, f(z1) + fy1)])s -, 7 (minfe, f(@n) + fya)])- 3)

Consider somen € N. Note that, for arbitraryu;,v; € [0,c] with u; + v; € [0,¢] and
i € {1,...,n}, there exist unique;,y; € [0, 1] such thatu; = f(z;) andv; = f(y;) for all
i € {1,...,n}. Moreover, applying’ two both sides of Ineq[ [3), we get

minfe, f(A(z1, ..., 2n)) + (AW y))] 2 FAGF T wr +v1), s f7H (un +vn)))
DefineH,, : [0,c]" — [0, c] by

H(n)(uh ceyUn) = f(A(fil(ul)v s 7f71(un)))7 (4)

thenH,, is a non-decreasing mapping fulfilling

H(,)(0,...,0) = f(A(1,...,1)) = f(1) =0,
H,(c,...,c) = f(A(0,...,0)) = f(0) = c,
H, (w1 +v1,. . up +vp) < minfe, Hpyy(ut, .o un) + Hepy(v1, .00 0p)]
< Hpy(u, -5 un) + Hepy (v, -0 0n),

i.e., for arbitraryn, H, is ann-ary aggregation operator, which is subadditive [0yr| and
satisfies for alk; € [0,1) andi € {1,...,n}

H(n)(f(x1)> B f(gcn)) = f(A(xh R xn))
Define an aggregation operafir: ( J,,.\ [0, /" — [0, ] acting on[0, ¢] by
H(l‘l, ce ,.rn) = H(n)(l‘l, ce ,$n),

for all n» € N and withH ,,) defined by Equatiorj [4), théH is a subadditive aggregation operator
acting on[0, ¢] and fulfilling Equation|[(R).
On the other hand, for a given subadditive aggregation opekhta(J,,.\ [0, c]" — [0, ¢, define
A Upey : [0,1]" — [0,1] by
A1, ymn) = FTHHE(f (1), f@n))-

Evidently, A is an aggregation operator. Due to the subadditivitHofthe domination inequal-
ity (B) holds for allz;, y; € [0, 1] such thatf (z;) + f(y;) < cwithi € {1,...,n}. In general, we

can introduce for any given;, y; € [0,1] and for alli € {1,...,n} the valuez; defined by
=1 if f(2i) + fyi) < e,
' f~Y(c— f(z;)) otherwise

Itis easy to see that > y; foralli € {1,...,n} and therefore we get
T(A(z1, ...y 2n), Aly1, .-y yn)) < T(A(x1,...,20), A(21,. .., 2n))
S A—(T(J:la Zl)? o ,T(QEn, Zn)) - A(T(l‘l, yl) CIEaE JT(‘TTmyTL))a

where the first inequality is a consequence of the monotonicities ahd A and the second
inequality follows from the subadditivity of the aggregation oper&foproving thatA € Dy. [
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One of the main purposes for investigating aggregation operators dominating t-norms was the
request for introducing weights into the aggregation process. Hence, considering continuous
Archimedean t-norms, we have to find subadditive aggregation operators, which provide this pos-
sibility.

Example 15. Consider some some weights, . . ., p,, € [0,00], n > 2, and some € [0, 1], then
H,) [0, c]" — [0, ] given by

H(n) (xla s 7$n> - min(c, szwz)
i=1

is ann-ary, subadditive aggregation operator [onc|, fulfilling Hy,(c,...,c) = ¢, whenever
c < ec- Z?lei. This means, with conventiofh - co = 0, if ¢ = oo, the sum must fulfill
S pi > 0and ife < oo, thenalsoy " | p; > 1.

If we combine such an aggregation operator with an additive generator of a continuous Archimedean
t-norm by applying the construction method as proposed in Thelorem 14 we can introduce weights
into the aggregation process without losifigransitivity.

Corollary 16. Consider a continuous Archimedean t-norfh with additive generatorf,
f(0) = ¢, and a weighting vectolp = (p1,...,pn), n > 2, with weightsp; € [0, o] ful-
filling ¢ < c¢- 37", pi. Further, letA,) : [0,1]" — [0,1] be ann-ary aggregation operator
defined by Eq(Z) from the aggregation operatd ,,) introduced in ExampIEJrS. Then theary
aggregation operator can be rewritten by

Ay (@1, mn) = 7 (min(£0), ) pi- f(2:))) 5)
=1

and it dominates the t-norf, i.e. A,y > T.

Remark 17.

(i) The n-ary aggregation operator defined by Equat[dn (5) is also called weighted tdigrm
([6. 7).

(i) Note that, for any strict t-nornT’, it holds, that not onl)ﬂ“? > T, butalsol’ > T;. In
case of some nilpotent t-norifiit is clear, thatl'; > T', butT >> T+ only if all weights

2 ¢ ]07 1['

Example 18. The strongest subadditive aggregation operator acting0od is given by
H:U,cy[0,d" — [0,c] with

0 Ifulzzun:(),
c otherwise

H(uy,...,up) = {

Then, for any additive generatgr: [0, 1] — [0, oo] with f(0) = ¢, we have

flA(z1,...,2p)) = H(f(ﬂsl),,f(acn)),
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forall z; € [0,1] withi € {1,...,n} and some: € N, if and only if

A ) 1 far=...=2,=1,
T1,...,Tp) = .
! " 0 otherwise

i.e. A = A, is the weakest aggregation. Observe tAgt dominates all t-norms, but not all
aggregation operators, e 4., does not dominate the arithmetic mean.

4.3 Isomorphic t-norms

Another interesting aspect is the relationship or invariance of domination with respect to trans-
formations — transformation of the dominating aggregation operator as well as of the dominated
aggregation operator or of both of them. These transformations will be necessary when thinking
about ordinal sums of t-norms and about isomorphic t-norms. First, we recall the transformation
of an aggregation operators and the property of invariance.

Consider an aggregation operatr: | J,,cy [a,b]" — [a,b] on[a,b] and a monotone bijection
¢ : [c,d] — [a,D]. The operator,, : |,y [c,d]" — [c, d] defined by

Ap(@1,. s a) = o7 (A(p(21), - p(20)))
is an aggregation operator ¢nd|, which is isomorphic to\.

Definition 19. An aggregation operatadk : | J,,.y[0, 1]" — [0, 1] is calledinvariant with respect

to a monotone bijective transformatign: [0, 1] — [0,1] if A = A . An aggregation operatax

is calledinvariantif it is invariant with respect to all monotone bijective transformations[([5, 25,
26]).

It is trivial to see that, ifA > B and A (resp. B) is an invariant aggregation operator, then
A, > B (resp.A > B,) for all monotone, bijective transformatiogs: [0, 1] — [0, 1].

The following proposition summarizes the results for transformations of both involved aggregation
operators.

Proposition 20. Consider two aggregation operatoss andB on [a, b].

() A> BifandonlyifA, > B, for all non-decreasing bijections : [c,d] — [a, }].

(i) A> BifandonlyifB, > A for all non-increasing bijection® : [c, d] — [a, b] .

Proof. First we show that ifA > B then A, > B, for all non-decreasing bijections
¢ : [e,d] — [a,b] . Therefore, consider some arbitrary non-decreasing bijegtiofx, d| — [a, b],
somen,m € N and somex; ; € [c,d] withi € {1,...,m} andj € {1,...,n}. Once again, we
will use the notation$z; ) = (xi1,...,zi,) foralli € {1,...,m}and(z. ;) = (z1,5,...,Tm )
forall j € {1,...,n}, note that parentheség are used for indicating arguments of aggregation
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operators.
B, [Aw[xm, e Tipl, o ApTm, ,l‘mnH
= o (Ble(Aylzr),- .., o(Ag[zm,])])
= o (Be(e (Alp(zr))), - (e (Alp(zm,))])
= '(B[Alp(21,)), - ... Alp(zm.)]])
< ¢ YA Blp(z.1)), ..., Blo(z.n)]])
=0 (Alp(e ' Blp(.1)]); - - - (e (Blo(z.a))))])
= ¢ (Alp(Bylz.1]), - ., o(Bylz.s])])
=A, [B¢[m1,1, o], BolTin, . ,xm’n]]

If A, > B, then also (A,), > (B,)y, for all non-decreasing bijections
¥ : [a,b] — [e,d], also especially fop~ : [a, b] — [c, d], and therefore

(Ay), 1 = A>B=(B,)

@71.

The property for non-increasing bijections can be shown analogously. O

Since we are especially interested in aggregation operators dominating someTneewecall
some basic properties of t-norms and their transformations. If we consider some fFnamnah
demand a functioff}, defined by

Tcp(xla cee 73771) = 9071 (T(So(x1)7 sy SO(‘TTL)))

also to be a t-norm, thep : [0,1] — [0, 1] has to be a strictly increasing bijection. Then the
t-normsT andT, are calledsomorphict-norms ([7]). As a direct consequence of Proposifioh 20
we can formulate the following corollary.

Corollary 21. Consider some aggregation operatdrand some t-norri’. ThenA € Dy if and

only if A, € Dr, for all strictly increasing bijections> : [0, 1] — [0, 1].

Note that the only t-norms invariant with respect to all strictly increasing bijections are the mini-
mum t-normTys and the drastic produdip.

Corollary 22. Consider some t-norrfi’ and some aggregation operatéx € Dp. If A is an
invariant aggregation operator, then it dominates all isomorphic t-nofipsi.e. A € Dr,, .

As already mentioned, transformations and scaling of t-norms are important in constructing new
t-norms from a family of given t-norms. Aggregation operators dominating such t-norms will be
investigated in the next section.

4.4 Ordinal sums

Definition 23. Let (T, )acr be a family of t-norms and l€fa,,, e, [)ocr be a family of non-empty,
pairwise disjoint open subintervals [, 1]. Then the following functiorl” : [0,1]> — [0,1] is a
t-norm ([7]):

T(ZE y) — Ta*(xa y) = Qq + (ea - aa) . T<7ei_—aaaa y ﬁ) if (.’L',y) & [G,a’ ea]Q ,
’ min(z,y) otherwise
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The t-normT is called theordinal sumof thesummandsa,, e, T,), « € I, and we shall write
T = (<aa7 €a; Ta>)a6]-

Corresponding to t-norms, aggregation operators can also be constructed from several aggregation
operators acting on non-overlapping domains. We will use the lower ordinal sum of aggregation
operators ([5, 27]). Observe that this ordinal sum was originally proposed only for finitely many
summands, however, we generalize this concept to an arbitrary (countable) number of summands.

Definition 24. Consider a family of aggregation operators

(Ai : LJ\; [&uei]n - [ai,ei] )ie{l,...,k}

acting on non-overlapping domaifig, e;| withi € {1,...,k} and
0§&1<€1§a2<62§...§€k§1.
The aggregation operatax(*) defined by ([5])

0 if u<aq,
A(w)(xl, ceeyTp) = Ai(min(;rl, €i),-..,min(x,, ei)) if a; <u< a1,
1 if u=1.
with « = min(z1, ..., z,) is called thdower ordinal sum(of aggregation operatoi;) and it is

the weakest aggregation operator that coincides Witlat inputs froma;, e;].

If (An)acr is afamily of aggregation operators all acting[onl] and(]aq, e« [)acr @ (countable)
family of non-empty, pairwise disjoint open subintervals@fl], then the lower ordinal sum of
this family A™) = ((aq, e, As))acs can be constructed in the following way:

sup{AZ(min(xl,ea), ... ,min(xn,ea)) | ao <u} ifu<l,
A(“’)(xl, ceyTp) = o€l
1 otherwise,
with sup® = 0 andu = min(z1,...,2,). A} denotes the aggregation operatox, scaled for
acting on[a,, e4] by
" T —a Tn —Q
Aoe(-rlw“?xn):aa+(ea_aa)'Aa( ! aa-“a a)

€a — Qq €a — Qq

Proposition 25. Let (T,,).cs be a family of t-norms,A, ).<; a family of aggregation operators,
and (Jaq, ea|)aecr @ family of non-empty, pairwise disjoint open subinterval$oot]. If for all
a e l: A, € Dr,,thenthe lower ordinal SumM ™) = ((aq, e, Aa))acs dominates the ordinal
sumT = ({aq, €as To))act, 1.€. A®) € Dy

Proof. We have to show that for ali € N and for allz;, y; € [0,1],7 € {1,...,n} the following
inequality holds:

T(A(w) (1’1, o ,Cl','n), A(w) (y17 B 7yn)) < A(w) (T(xlv yl)v o 7T('T’rl7 yn)) (6)

Consider arbitraryz;,y; € [0,1] with i,57 € {1,...,n} for somen € N and let

v = min{x;,y; | i € {1,...,n}} be the smallest of these arguments, i.e. there exists some
j € {1,...,n} such thatu = z; or u = y;. Without loss of generality, we will suppose that

u = x; for the rest of the proof. 1. = 1 then Inequality[(B) is trivially fulfilled. Therefore, we
have to consider the following two cases:



4 Construction of Dominating Aggregation Operators 15

Case 1. There exists some: € [ such thatu € [aq,eq], .8, x; € [aq,eq], and thus also
T(xj,y;) € [aa, e[ Thereforel'(x;,y;) > a, for allarguments;;, y; withi € {1,...,n}
and we see from the constructionAf) that, with

oy = min(z;, eo) andy; = min(y;, e,) foralli € {1,...,n},
the following equality is fulfilled
A (T(z1,11), -, T (@, yn)) = AW (T(2,91), ..., T(2h, k) € [aaseal -
On the other hand, applying () to arguments:; andy;, we get
AW (o xy) = AW (@, 2 € [an, ea] @and A (g1 yn) > ag.

If min{y; | i€ {1,...,n}} <e,then

A (1, ) = AW (YLl € [aasea] -

SinceA, > T,, we obtain in that case

=
>

w)(azl, cey X)), A(w)(yl, . ,yn))

= T(A(w)(xll, ceh), A(w)(yll, cel y;))
< AT (), T (s, y))

= A (T(21,11), ., Ty yn) ).

If min{y; | i€ {1,...,n}} > eq, thenA® (y;, ... y,) > e, and therefore

T(A(w)(g;l, ey X)), A(w)(yl, cee yn))
= A(w)(CCL ey Tn) = A(w)(xll’ o ,x%)
= AT ), .. T, yn))
< A (T(z1,1), -, T (2, yn))-

Case 2. If u ¢ | [an,eq], we know that
acl

AW (@1, ) = supfea | ea < 25} = v.
ael

Sincey; > vforalli € {1,...,n} and, thereforeA™) (y1,...,y,) > v, we obtain
TAD (@1, 2n), AWy, .. yn)) = v.

On the other hand, the fact tha{x;,y;) = =; andT'(x;,y;) > xj foralli € {1,...,n}
ensuring that\ ) (T (z1,11) ..., T (2, yn)) = v.
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Note that not all dominating aggregation operators are lower ordinal sums of dominating ag-
gregation operators, e.g. the aggregation operAtgrintroduced in Examplg 18 dominates all
t-normsT’, but is not a lower ordinal sum constructed by means of some indek @etfact it

is the empty lower ordinal sum). The following example also shows that weighted t-norms as
proposed by Calvo and Mesiar ([6]) dominate the original t-norm but are no lower ordinal sums
as proposed here. As a consequence we can conclud(a(&laaéa, DTQ>) C Dr, whenever

T= ((aom €a, Toz)ocEI-

Let (Jaq, ea])acr be a family of non-empty, pairwise disjoint open subinterval$Oof| and let
to : [aq,eq] — [0,00] be continuous, strictly decreasing mappings fulfillinge,) = 0. Then
(and only then) the following functiof : [0, 1]2 — [0, 1] is a continuous t-norm(([6]):

Tle.y) = {t;l(min(ta(()),ta(x) +ta(y) If (2,9) € [das eal

min(z, x) otherwise

acl

The corresponding weighted t-norffy; in the sense of Calvo and Mesidr|([6]) is defined by
T?(l‘la . 7$n) = {toél(min(ta(aa)v Z?:l i - ta(min(xiv ea)))) if u € [aa? 60![’

min(z; | p; > 0) otherwise

with v = min(z; | p; > 0) and some weighting vectgs = (p1,...,pn) # (0,...,0) such that,
if a, = 0 for somea € I and the corresponding, (a.,) is finite, then) " p; > 1.

Example 26. Consider the t-norri” = ({0, 5, 7p)), i.

. 2
T(z,y) = {2xy if (z,y) € [O, %] ,

min(z,y) otherwise

We know that the geometric me&#(z, y) = /2~y = Tp,
construct

) dominateslp. Therefore we can

11
272

= the lower ordinal sumA () = ((0, 1, G)) with

if(z,y) = (1,1),
\/mln ) - min(y, 3) otherwise
= and the weighted t-nori; = T(é,é) by
min(z, y) if (x,y)E]%,l]Q,
T2 1y 1 ;
2:2) \/mln z,1) - min(y,1) otherwise

Both aggregation operatorsA{®) as well asly—dominate the t-norni’. Note that they coin-
cide in any values except for argumetitsy) € } } \ {(1,1)}.
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5 Domination of Basic t-Norms

Finally we will discuss the classes of aggregation operators dominating one of the basic t-norms
as introduced in Examp|g 3.

5.1 Domination of the minimum t-norm

As already observed;; dominates any t-norfi’ and any aggregation operatdr, but no t-norm
T, exceptTy; itself, dominatesi;. The class of all aggregation operators dominafiRg is
described in the following proposition.

Proposition 27. For anyn € N, the class of alh-ary aggregation operatord ,,) dominating the
strongest t-nornTy is given by

IDI(I:LIL = {mln]: ‘ F = (flv"' 7fn)7
fi :10,1] — [0, 1], non-decreasingwith
fil)y=1foralli e {1,...,n},
fi(0) =0foratleastone € {1,...,n}},
whereming(zy, ..., x,) = min(fi(z1),..., fu(zn)).

Proof. If A(n) > T, we know that

A(n)(l’l, ce ,ZL’n) < min (A(n)(:vl, 1,. cey 1), .. ,A(n)(l, ey 1,£Cn))
< A(n)(fEl, .. .,l‘n),

where the first inequality holds due to the monotonicityAqf,) and the second one due to domi-
nation. Consequently,

A(n)(xl, .. .,xn) = min (A(n)(xl, 1, ey 1), . ,A(n)(l, ey l,xn))
Define functionsf; : [0,1] — [0,1] foralli € {1,...,n} by
fz(acl) = A(n)<17 ey 1,.%'2‘, 1... y 1)

SinceA,,)(1,...,1) = TandA,(0,...,0) = 0, we know thatf;(1) = 1 foralli € {1,...,n}
and f;(0) = 0 for at least oné € {1,...,n}. The monotonicity ofA ,,) assures that alf; are
non-decreasing and therefoAg,,) = minz, whereF = (f1,..., fa)-

On the other side, iA(,,) = ming, we can deduce from the non-decreasingness ¢f dfiat

Tnvi (A (21,5 2n), Apy (Y- Yn))
= min (min]:(xl, ooy @y), ming(yr, . . ,yn))
=min(f1(21), f1(¥1), -+ fu(@n), fn(yn))
< min(fi(min(z1,y1)), ..., fo(min(z,, y,)))
= A(n)(TM(xla Y1), In(Tn, Yn)),

concluding thatA ,,) > Tm. O
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Evidently,A,,) € Dr(rﬁ)n is symmetric if and only if

Apy(z1,. . n) = f(min(a:l, R :z:n))
for some non-decreasing functign [0, 1] — [0, 1] fulfilling f(0) = 0andf(1) = 1.

Example 28. As already observed in Example|18, the weakest aggregation opéatdomi-
nates all t-normsI’. Since this aggregation operator is symmetric, it can be described by
Ay(z1, ..., 2p) = f(min(zy,...,2y)) with f: [0,1] — [0,1] given by

f(x):{1 if 2 =1,

0 otherwise

Remark 29. Any aggregation operatoA dominating7Zys is also dominated by, i.e. for
arbitraryn, m € N and for allz; ; € [0,1] withi € {1,...,n} andj € {1,...,m} the following
equality holds

A(min(a:m, e X))y, min(Xy, 1, . ,xm’n))
= min (A(zlyl, e Zmd), e AT, ,l’mm)).

Consequently, for any necessity measures| ([28] 29, 86¢), . .., Nec, on some measurable
space(X, A), alsoNec = A(Necy,...,Nec,) is a necessity measure. Note that only operators
A € Dp, fulfill this property. By duality, a similar result for the aggregation of possibility
measures|[([28, 29, 30]) can be obtained.

5.2 Domination of the drastic product
Oppositely to the case @y, the weakest t-norrip : [0, 1] — [0, 1], i.e.

0 if (x,y) € 0,1,
min(z,y) otherwise

TD(xa y) = {
is dominated by any t-norrt. This can also be seen from the characterization of all aggregation
operators dominatin@p as given in the next proposition.

Proposition 30. Consider an arbitraryn < N and an n-ary aggregation operator
Ay @ [0,1]" — [0,1]. ThenA(, > Tp if and only if there exists a non-empty subset
I = {ki,....,kn} C {l,....,n},k1 < ... < kn, and a non-decreasing mapping
B :[0,1]™ — [0, 1] satisfying the following conditions

() B(0,...,0) =0,

(i) B(ui,...,um)=1lifandonly ifu; = ... =u,, =1,

suchthatA(z1,...,z,) = B(zg,, ..., Tk, )-
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Proof. We have to show that the inequality

TD (A(n)(wla e 7$N)7 A(n)(yla e 7yn)) S A(n) (TD(whyla s 7TD(xn7yn)) (7)

holds for allz;,y; € [0,1], € {1,...,n}, if and only if A, can be described by a non-
decreasing mapping as introduced above.

To see the sufficiency, it is enough to observe that forally; € [0,1] withi € {1,...,n} the
expression
Tp (A(n)($17 s ,l‘n), A(n)(y17 cee 7yn)) = TD(B($k1> s 7ka)7 B(y/ﬁa s 7ykm))

is positive only if either(xy,,...,zx,,) = (1,...,1) of (Yky,---,Yk,,) = (1,...,1). Without
loss of generality, we suppose tha,, , ...,z ) = (1,...,1).
As a consequenc@p (zx,, yk;) = yk, forall j € {1,...,m} and therefore
A(n)(TD(xhyl)a ce 7TD(xna yn)) = B(ykp cee 7yk‘m)
— TD(A(n)(J:lu “e axn)a A(?/b ce. )yn))v
i.e. A > Tp.

Concerning necessity, suppoag,, > Tp, i.e. Inequality [(¥) is fulfilled for all;,y; € [0, 1]
with i, € {1,...,n}.

We have for alli € {1,...,n} that if x; € [0,1], then Tp(z;,z;) = 0 implying
Ay (z1,...,2,) < 1. Hence, ifA(vy,...,v,) = 1 for somev; € [0,1},4 € {1,...,n},
there exists necessarily some index.get {k € {1,...,n} | vy = 1} # 0. Moreover,

TD(A(n)(Ul, L. ,Un),A(n)(Ul, . ,vn)) =1< A(n)(TD(vhvl), - ,TD(Un, Un)), i.e.

A, o) = 1, wherez?) = { ! iel
’ 0 otherwise

If it holds for two subsetd, K C {1,...,n} that

we can conclude that

J K
TD(A(n)(Zé ),,z(‘])),A(n)(z{ ),,Z(K))) =1

S A(n) (TD(Z§J), Z%K)), e ,TD(Z J), Z(K))) = A(n) (Z%JmK), ey 27({]0[{)),

showing that alsa\ ) (2", ..., 2{"")) = 1. This fact ensures the existence of a unique,
minimal non-empty subsdtC {1,...,n}, for which

I
A(n) (Z§ ), ce ,Z([)) =1.

n

The monotonicity ofA ;) ensures that, for arbitrary; € [0,1],7 € {1,...,n}, the following
inequalities hold
’ xT; |fZ€I, " ZT; |fZ€I,
where x; = _ and x; = :
0 otherwise 1 otherwise
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Therefore, we know that

"

1" I " 1
A(n)(l’l, e ,a;n) = TD (A(n)(zg ), e ,Z,SI)),A(n)(.Tl, e ,xn))
< A(n) (TD(Zgl)a $/1/)7 s 7TD(ZT(LI)7‘T;;)) = A(n)(x/h B 7‘7:;1)7

concluding that the inequality signs of Ef} (8) can be replaced by equality signs, i.e.

/ " "

Ay (zy,. . my) = Az, .. 20) = Ala], ..., 2,). (9)
Now we define a mapping : [0, 1]™ — [0, 1] by

tj ifi:kj,

B(t1...,tm) = A (s1,--.,8n), Wheres; = X
(h ) ()(1 ) {0 otherwise

Then B is a non-decreasing mapping, fulfilling(0,...,0) = A;(0,...,0) = 0 and

B(1,...,1) = A(zy), . .,zr(f)) = 1 and due to the minimality of, B(¢1, ..., t,) < 1 whenever
(t1,...,tm) # (1,...,1). Moreover, it holds that

A(zy,...,xn) = B(zky, ..., Tk,,)

because of Eq[]9). O

Observe that mapping in the above proposition is am-ary aggregation operator whenever
m > 2. However, ifm = 1, i.e. I = {k}, thenB : [0,1] — [0, 1] is a non-decreasing mapping
with strict maximumB(1) = 1 andB(0) = 0 as well asA(z1, ..., z,) = B(zx) and is therefore
a distortion of thek-th projection.

Concerning t-norms, for any t-norffi, we haveT’(z1,...,z,) = 1 ifand only if ; = 1 for all
ie{l,...,n}andthusl = {1,...,n}. ThereforeB = T andT' € Dry,.

5.3 Domination of product t-norm and tukasiewicz t-norm

Each strict t-nornil” is isomorphic to the product t-norni_([7]) and, therefore, know-ledge about
aggregation operators dominating the product t-norm gives immediately knowledge about aggre-
gation operators dominating any strict t-nofmAnalogously, the characterization of aggregation
operators dominating the Lukasiewicz t-nofif) leads directly to aggregation operators domi-
nating some given nilpotent t-norm, since any nilpotent t-norm is isomorphic to the tukasiewicz
t-norm ([4]).

Though the classeBr, andDr; are completely characterized either by Theofém 9 or by Theo-
rem[14, there is no counterpart of Proposifiof 27 in these cases. However, it is possible to give
examples of members of these classes and, of course, apply Proppsjtion 10, Proposition 20 or
Theoreni 14 to obtain new members.

Example 31. For anyn > 2 and anyp = (p1,...,p,) With >, p; > 0 andp; € [0, o0}, the
functionH : [0, oo]" — [0, o] defined by

n
H(zy,...,2,) = szxz
i—1
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is ann-ary, subadditive aggregation operator acting@mnc]. Therefore, any:-ary aggregation
operator

n
A (21, ,mp) = H:cf”‘
i=1

dominates the product t-norffp. Particularly, if we consider a binary aggregation operatgy,
and letp, g € ]0,00[ with p + ¢ = 1, thenA,, , is a weighted geometric mean dominating the
product t-norm ([22, 23]).

However, observing that for all > 1, the function
H,, : [0,00) — [0,00] , Hx(2,y) = (¢ + )7,

is also a binary, subadditive aggregation operator acting,ar|, also any member of the Aczél-
Alsina family of t-norms ([7])(T4) \c (1o, is contained ifDz;, because of Theoren [14.

Example 32. Further, for anyn > 2 and anyp = (p1,...,pn) With >0 p; > 1 and
pi € [0, o0], the functionH : [0, 1]" — [0, 1] defined by

n
H(:Ul? EEER xn) = min(L sz : xl)
=1

is again am-ary, subadditive aggregation operator actingn|. Therefore, any.-ary aggrega-
tion operator

n n
A (21, 1) = max(O,Zpi cx;+1— sz)
i=1 i=1

dominates the tukasiewicz t-norif},. Particularly, if we just consider a binary operator and let
p,q € ]0,00[ with p + ¢ = 1, then anyA, , = pz + qy, i.e. any weighted mean dominatég
([22,123]).

Based orH) : [0,1]?> — [0,1], H)(z,y) = (2} + yk)i any Yager t-nornfyY dominatesT,,
wheneven\ > 1.

6 Summary

An aggregation operatok preserved -transitivity of fuzzy relations if and only if it dominates

the corresponding t-norfi (A € Dy). Several methods for constructing aggregation operators
within a certain clas® with A some t-norm or some aggregation operator have been mentioned.
An explicit description of Dy could be presented for the minimum t-noffy; and the drastic
productp.
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