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Domination of multilinear singular integrals
by positive sparse forms

Amalia Culiuc, Francesco Di Plinio and Yumeng Ou

Abstract

We establish a uniform domination of the family of trilinear multiplier forms with singularity over
a one-dimensional subspace by positive sparse forms involving Lp-averages. This class includes
the adjoint forms to the bilinear Hilbert transforms. Our result strengthens the Lp-boundedness
proved by Muscalu, Tao and Thiele, and entails as a corollary a novel rich multilinear weighted
theory. A particular case of this theory is the Lq(v1)× Lq(v2)-boundedness of the bilinear Hilbert
transform when the weight vj belong to the class A q+1

2
∩RH2. Our proof relies on a stopping

time construction based on newly developed localized outer-Lp embedding theorems for the
wave packet transform. In an Appendix, we show how our domination principle can be applied
to recover the vector-valued bounds for the bilinear Hilbert transforms recently proved by Benea
and Muscalu.

1. Introduction and main results

The Lp-boundedness theory of Calderón-Zygmund operators, whose prototype is the Hilbert
transform, plays a central role in harmonic analysis and in its applications to elliptic partial
differential equations, geometric measure theory and related fields.

A recent remarkable discovery is that the action of a singular integral operator T on a function
f can be dominated in a pointwise sense by the averages of f over a sparse, i.e. essentially
disjoint, collection of cubes in Rn. This control is much stronger than Lp-norm bounds and
carries significantly more information on the operator itself. As of now, the most striking
consequence is that sharp weighted norm inequalities for T follow from the corresponding,
rather immediate estimates for the averaging operators. Such a pointwise domination principle,
albeit in a slightly weaker sense, appears explicitly for the first time in the proof of the A2

theorem by Lerner [24]. We also point out the recent improvements by Lacey [21] and Lerner
[25], and the analogue for multilinear Calderón-Zygmund operators obtained independently
by Conde-Alonso and Rey [7] and by Lerner and Nazarov [23]. Most recently, Bernicot, Frey
and Petermichl [4] extend this approach to non-integral singular operators associated with a
second-order elliptic operator, lying outside the scope of classical Calderón-Zygmund theory.

The main focus of the present article is to formulate a similar principle for the class
of multilinear multiplier operators, invariant under simultaneous modulations of the input
functions, which includes the bilinear Hilbert transforms. Besides their intrinsic interest, our
results yield a rich, and sharp in a suitable sense, family of multilinear weighted bounds for this
class of operators. In fact, Theorem 1.6 below is the first result of this kind. Weighted estimates
for the bilinear Hilbert transforms have been mentioned as an open problem in several related
works [11, 12, 15].
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Let Γ = {ξ = (ξ1, ξ2, ξ3) ∈ R3 : ξ1 + ξ2 + ξ3 = 0} and β ∈ Γ be a fixed unit vector, nonde-
generate in the sense that

∆β = min
k 6=j
|βk − βj | > 0.

We are concerned with the trilinear forms

Λm(f1, f2, f2) =

∫

Γ

m(ξ)
3∏

j=1

f̂j(ξj) dξ (1.1)

acting on triples of Schwartz functions on R, where m : Γ→ C is a Fourier multiplier satisfying,
in multi-index notation,

sup
|α|≤N

sup
ξ∈Γ

(
dist(ξ, β⊥)

)α∣∣∂αm(ξ)
∣∣ ≤ CN . (1.2)

The one-parameter family (with respect to β) of trilinear forms adjoint to the bilinear Hilbert
transforms is obtained by choosing

m(ξ) = sign(ξ · β).

In [31], substantially elaborating on the seminal work by Lacey and Thiele [18, 19], Muscalu,
Tao and Thiele prove the following result.

Theorem 1.1. [31, Theorem 1.1] Let m be a multiplier satisfying (1.2). Then the adjoint
bilinear operators Tm to the forms Λm of (1.1) have the mapping properties

Tm : Lq1(R)× Lq2(R)→ L
q1q2
q1+q2 (R) (1.3)

for all exponent pairs (q1, q2) satisfying 1 < inf{q1, q2} <∞ and

1
q1

+ 1
q2
< 3

2 . (1.4)

Not unexpectedly, a pointwise domination principle for this class of bilinear operators is
not allowed to hold, as we elaborate in Remark 1.5 below. This obstruction is overcome by
introducing the closely related notion of domination by sparse positive forms of the adjoint
trilinear form, which we turn to in what follows.

We say that S is a η-sparse collection of intervals I ⊂ R if for every I ∈ S there exists a
measurable EI ⊂ I with |EI | ≥ η|I| such that {EI : I ∈ S} are pairwise disjoint. The positive
sparse trilinear form of type ~p = (p1, p2, p3) associated to the sparse collection S is defined by

PSF~pS(f1, f2, f3)(x) =
∑

I∈S
|I|

3∏

j=1

〈fj〉I,pj , 〈f〉I,p :=

(
1

|I|

∫

I

|f(x)|p dx

) 1
p

; (1.5)

we omit the subscript and write 〈f〉I when p = 1. A rather immediate consequence of the
Hardy-Littlewood maximal theorem is the following proposition. We omit the proof, which is
a simplified version of the proof of Corollary A.1 given in the appendix.

Proposition 1.2. Let T be a bilinear operator. Suppose that for all tuples (f1, f2, f3) ∈
C∞0 (R)3 there holds

|〈T (f1, f2), f3〉| ≤ K sup
S η−sparse

PSF~pS(f1, f2, f3)

Then for all (f1, f2) ∈ C∞0 (R)2 there holds

‖T (f1, f2)‖ q1q2
q1+q2

≤ KCq1,q2,η
2∏

j=1

‖fj‖qj (1.6)
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provided that pj < qj ≤ ∞ for j = 1, 2 and inf{q1, q2} <∞.

Our main result is a strengthening of Theorem 1.1 to a domination by positive sparse forms.
To formulate it, we need one more notion. We say that ~p = (p1, p2, p3) is an admissible tuple if

1 ≤ p1, p2, p3 <∞, ε(~p) := 2−
3∑

j=1

1
min{pj ,2} ≥ 0 (1.7)

If all the constraints hold with strict inequality, we say that ~p is an open admissible tuple.

Theorem 1.3. Let ~p be an open admissible tuple. There exists K = K(~p), N = N(~p) such
that the following holds. For any tuple (f1, f2, f3) ∈ C∞0 (R)3 there exists a 1

6 -sparse collection
S such that

sup
m
|Λm(f1, f2, f3)| ≤ KCNPSF~pS(f1, f2, f3), (1.8)

where the supremum is being taken over the family of multipliers m satisfying (1.2).

We stress that the constants K and N depend only on the exponent tuple ~p, and the choice
of the sparse collection S depends only on f1, f2, f3 and ~p and is, in particular, independent of
the multiplier m.

Remark 1.4 Sharpness of Theorem 1.3. Let (q1, q2) be an exponent pair with

1 < inf{q1, q2} <∞.

Then there exists an open admissible tuple ~p = (p1, p2, p3) with p1 < q1, p2 < q2 if and only if
(1.4) holds for (q1, q2). This observation, coupled with Proposition 1.2, yields Theorem 1.1 as
a corollary of Theorem 1.3.

On the other hand, let φ be an even Schwartz function with 1[−2−4,24] ≤ φ̂ ≤ 1[−2−3,2−3],
{β, γ} be an orthonormal basis of Γ. Define the family of multipliers on Γ

m~σ,M (ξ) =

M−1∑

n=0

σnφ̂
(
28(ξ1 − (ηn)1)

)
φ̂
(
28(ξ2 − (ηn)2)

)
φ̂ (ξ3 − (ηn)3) (1.9)

where ηn = nγ + β, n ∈ N. The same argument as in [20, Section 2.2] yields

sup
~σ∈{−1,1}M

∥∥Tm~σ,M
∥∥
Lq1×Lq2→L

q1q2
q1+q2

≥ CM 1
q1

+ 1
q2
− 3

2

while the family {m~σ,M : M ∈ N, ~σ ∈ {−1, 1}M} satisfies (1.2) uniformly. This implies that the
range (1.4) of Theorem 1.1 is sharp up to equality holding in (1.4) and, in turn, that (1.8)
cannot hold for any tuple violating (1.7). Hence, Theorem 1.3 is sharp up to possibly replacing
the assumption open admissible with the stronger admissible. The behavior of the forms Λm
for tuples at the boundary of the admissible region is studied in detail in [10].

Remark 1.5 No uniform control by a bilinear positive sparse operator. For bilinear Cal-
derón-Zygmund operators T , there holds a pointwise domination by sparse operators of the
type

|T (f1, f2)(x)| ≤ C
∑

I∈S(f1,f2)

〈f1〉I,p1〈f2〉I,p21I(x).
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One can take p1 = p2 = 1: see [23]. Essentially self-adjoint operators T enjoying such pointwise
domination inherit the boundedness property

T : L1 × Lpj → L
pj

1+pj
,∞

which, as described in the previous Remark 1.4, fails for the generic Tm of the class (1.2)
when inf{p1, p2} < 2. In fact, no L1-boundedness properties are expected to hold even for
the bilinear Hilbert transforms. Summarizing, no such pointwise domination principle can be
obtained for Tm when inf{p1, p2} < 2 and, most likely, neither for the case when inf{p1, p2} ≥ 2.
Our formulation in terms of positive sparse forms overcomes this obstacle: a similar idea, albeit
not explicit, appears in the linear setting in [4]. After the first version of this article was made
public, several works based on sparse form domination have appeared within and beyond
Calderón-Zygmund theory, see for example [2, 6, 22, 27] and references therein.

Theorem 1.3 implies multilinear weighted bounds for the forms Λm. Our main weighted
theorem will involve multilinear A ~p

~q Muckenhoupt constants. Given any tuple ~p, a Hölder tuple
~q and a weight vector ~v = (v1, v2, v3) satisfying

3∏

j=1

v
1
qj

j = 1, (1.10)

these are defined as

[~v]
A ~p
~q

:= sup
I⊂R

3∏

j=1

〈
v

pj
pj−qj
j

〉 1
pj
− 1
qj

I . (1.11)

For ~p = (1, 1, 1), these weight classes have been introduced in [26], to which we send for an
exhaustive discussion of their properties. A particular case of (1.11) (where p1 = 1) can be found
in [16] as a necessary and sufficient condition for weighted Lq-boundedness of the bilinear
fractional integrals. Furthermore, the classes (1.11) appear in ongoing work on multilinear
Calderón-Zygmund operators satisfying Hörmander type conditions [5].

Theorem 1.6. Let ~q be a Hölder tuple with 1 < q1, q2, q3 <∞ and ~v be a weight vector
satisfying (1.10). Then there holds

sup
m
|Λm(f1, f2, f3)| ≤

(
inf
~p
C(~p, ~q)[~v]

max
{

qj
qj−pj

}

A ~p
~q

)
3∏

j=1

‖fj‖Lqj (vj)

where the supremum is being taken over the family of multipliers m satisfying (1.2), the
infimum is taken over open admissible tuples ~p with pj < qj , and

C(~p, ~q) = K(~p)CN(~p)




3∏

j=1

qj
qj−pj


 2

3
(∑3

j=1
1
pj
−1
)

max
{

pj
qj−pj

}

. (1.12)

One is usually interested in weighted estimates involving Muckenhoupt and reverse Hölder
constants of each single weight. Recall that the Aq and RHα constant of a weight v on R are
defined as

[v]Aq := sup
I⊂R
〈v〉I〈v

1
1−q 〉q−1

I , [v]RHα := sup
I⊂R
〈vα〉

1
α

I 〈v〉−1
I ,
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A suitable choice of admissible tuple ~p in Theorem 1.6 yields the following corollary.†

Corollary 1.7. Let

1 < q1, q2, r = q1q2
q1+q2

<∞.
and v1, v2 be given weights with v2

1 ∈ Aq1 , v2
2 ∈ Aq2 . Then the operator norms

Tm : Lq1(v1)× Lq2(v2)→ Lr(u3), u3 :=
2∏

j=1

v
r
qj

j

of the family of multipliers satisfying (1.2) with uniform constants CN are uniformly bounded
above by a positive constant depending on {qj , [v2

j ]Aqj : j = 1, 2} only.

We refer to the recent monograph [8] for details on the Aq and RHα classes. Here we remark
that if q > 1 then [8, Section 3.8] v ∈ A q+1

2
∩RH2 if and only if v2 ∈ Aq. We mention that a

theory of linear extrapolation for weights in the Aq ∩RHα classes has been introduced in [1];
see also the already mentioned monograph [8].

As a further application of Corollary 1.7, weighted, vector-valued estimates for multipliers
Tm satisfying condition (1.2), extending the results of [3, 32] can be obtained by a multilinear
version of the extrapolation theory of [1]. These extensions are the object of an upcoming
companion article by the same authors. However, Theorem 1.3 can be employed to recover the
unweighted vector-valued estimates of [3, 32] in a rather direct fashion. In order to keep our
outline as simple as possible, we postpone the complete statement and proof of the vector-valued
estimates to Appendix A.

Structure of the article and proof techniques

The class of multipliers (1.2), in addition to the familiar invariances under isotropic
dilations and translations proper of Coifman-Meyer type multipliers, enjoys a one-parameter
invariance under simultaneous modulation of the three input functions along the line Rγ =
{β, (1, 1, 1)}⊥. The invariance properties of the class (1.2) are essentially shared by a family of
discretized trilinear forms involving the maximal wave packet coefficients of the input functions
parametrized by rank 1 collection of tritiles, which we call tritile form.

The first step in the proof of Theorem 1.3, carried out in Section 2, is to establish that for
any multiplier m satisfying (1.2), the form Λm lies in the convex hull of finitely many tritile
forms. This discretization procedure is largely the same as the one employed in [31]. Theorem
1.3 then reduces to the analogous result for tritile forms, Theorem 2.2. It is of paramount
importance here that the sparse collection S constructed in Theorem 2.2 is independent of the
particular tritile form.

The explicit construction of the collection S, and in fact the proof of Theorem 2.2, is
performed in Section 5 by means of an inductive argument. The intervals of S are, roughly
speaking, the stopping intervals of the pj-Hardy-Littlewood maximal function of the j-th input.
At each stage of the argument, the contribution of those wave packets localized within one of
the stopping intervals will be estimated at the next step of the induction, after a careful removal
of the tail terms. The main term, which is the contribution of the wave packets whose spatial
localization is not contained in the union of the stopping interval is estimated by means of a
localized outer Lpj embedding Theorem for the wave packet transform.

†We have come to know that Xiaochun Li [28] has some unpublished results about weighted estimates for the
bilinear Hilbert transforms.
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This outer Lp embedding, which is the concern of Proposition 4.1, is a close relative of the
main result of [9] by two of us, namely, a localized embedding theorem for the continuous wave
packet transform. In fact, while Proposition 4.1 is proved here via a transference argument
based upon [9, Theorem 1], a direct proof can be given by repeating the arguments of [9]
in the discrete setting. The construction of the outer Lp spaces on rank 1 collections, which
parallels the outer Lp theory introduced by Do and Thiele in [13], is performed in Section 3.

Section 6 contains the proof of the weighted estimates of Theorem 1.6 and 1.7, and the
concluding Section A is dedicated to vector-valued extensions.

Notation

Let χ(x) = (1 + |x|2)−1. For an interval I centered at c(I) and of length `(I) = |I|, we write

χI(x) := χ
(
x−c(I))
`(I)

)
. (1.13)

We will make use of the weighted Lp spaces

‖f‖Lp(χNI ) :=

(
1

|I|

∫

R
|f(x)|p(χI(x))N

)1/p

, 1 ≤ p <∞, ‖f‖L∞(χNI ) = ‖fχNI ‖∞.

with N positive integer. We write

Mp(f)(x) = sup
I⊂R
〈f〉I,p1I(x)

for the p-Hardy Littlewood maximal functions. Finally, the positive constants denoted by C
or those implied by almost inequality sign . and the comparability sign ∼ are meant to be
absolute throughout the article and may vary from line to line without explicit mention.

2. Tritile maps

In this section, we reduce Theorem 1.3 to the corresponding statement for a class of
multilinear forms which we call tritile maps. Throughout, we assume that the nondegenerate
unit vector β ∈ Γ is fixed and let γ ∈ Γ be a unit vector perpendicular to β, spanning the
singular line of the multipliers m from (1.2).

2.1. Rank 1 collection of tri-tiles

A tile T = IT × ωT is the cartesian product of a time interval IT and a frequency interval ωT
obeying the uncertainty principle |IT ||ωT | ∼ 1. Heuristically, a tile specifies the time-frequency
localization of the corresponding associated wave packet adapted family Φ(T ), see below. A
tri-tile P = (P1, P2, P3) is an ordered triple of tiles Pj , j = 1, 2, 3 with the property that

IP1
= IP2

= IP3
=: IP .

The spatial interval IP and the frequency cube ωP1
× ωP2

× ωP3
corresponding to P specify the

time-frequency localization of the trilinear multiplier forms associated to each tri-tile appearing
in the sum (2.4) below. In the following definitions, it is convenient to denote by ωP the convex
hull of the intervals 3ωPj , j = 1, 2, 3.

Let g > 10 be a large parameter. We say that the collection of tri-tiles P is of rank 1 if
a. I = {IP : P ∈ P} and Ωj = {ωP : P ∈ P}, j = 1, 2, 3 are log g scale-separated dyadic grids;
b. if P 6= P ′ ∈ P are such that IP = IP ′ then ωPj ∩ ωP ′j = ∅ for each j ∈ {1, 2, 3};
c. if P,Q ∈ P are such that ωPj ⊂ ωQj for some j ∈ {1, 2, 3} then gωP ⊂ gωQ;
d. if P,Q ∈ P are such that ωPj ⊂ ωQj for some j ∈ {1, 2, 3} then 3ωPk ∩ 3ωQk = ∅ for k ∈
{1, 2, 3} \ {j}.
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In the remainder of the paper, we can and will use the value g ∼ (∆β)−1. If P is a rank 1
collection of tri-tiles, we will also make use of the notations

P≤(I) := {P ∈ P : IP ⊂ I}, P=(I) := {P ∈ P : IP = I} (2.1)

for the localizations if P to the interval I ⊂ R.

2.2. Tritile forms

Let AN be a fixed increasing sequence of positive constants. For each tile T we define the
adapted family Φ(T ) to be the collection of Schwartz functions φT satisfying

sup
n≤N

sup
x∈R
|IT |n+1χI(x)−N

∣∣∣
(

e−ic(ωT )·φT (·)
)

(x)
∣∣∣ ≤ AN , supp φ̂T ⊂ ωT . (2.2)

Let P be a rank 1 collection of tritiles and fj ∈ L1
loc(R). We define the tritile maps Fj : P→ C

by

Fj(f)(P ) = sup
φPj∈Φ(Pj)

|〈fj , φPj 〉|, j = 1, 2, 3 (2.3)

and the trisublinear tritile form associated to P by

ΛP(f1, f2, f3) =
∑

P∈P
|IP |

3∏

j=1

Fj(fj)(P ). (2.4)

2.3. Reduction to uniform bounds for tritile forms

The following lemma is a reformulation of the well-known discretization procedure from [31].
Several versions of this procedure have since appeared, see for instance the monographs [30,
33]. We omit the standard (by now) proof.

Lemma 2.1. There exists a finite collection {P1, . . . ,PG} of rank 1 collections of tritiles
such that, for any multiplier m satisfying (1.2) and any tuple of Schwartz functions f1, f2, f3,
there holds

|Λm(f1, f2, f3)| ≤
G∑

j=1

ΛPj (f1, f2, f3)

and the adaptation constants {AN} of the adapted families defining ΛPj depend on {CN} only.
Furthermore, the character G depends only on the nondegeneracy constant of β.

Theorem 1.3 is then an immediate consequence of Lemma 2.1 and of the following discretized
version, whose proof is given in Section 5.

Theorem 2.2. Let ~p be an open admissible tuple. There exists K = K(~p), N = N(~p) such
that the following holds. For any tuple (f1, f2, f3) with fj ∈ Lpj (R) and compactly supported
there exists a 1

6 -sparse collection S such that

sup
P

ΛP(f1, f2, f3) ≤ K(AN )3PSF~pS(f1, f2, f3),

where the supremum is being taken over all rank 1 collections of tritiles P of finite cardinality
and adaptation sequence {AN}. In particular, S depends only on f1, f2, f3 and the tuple ~p.
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3. Outer Lp spaces of tritiles

In this section, we formulate the outer measure space that is needed for our proof, which
is based on a finite rank 1 collection of tritiles P. Recall that ωP = co(3ωP1

, 3ωP2
, 3ωP3

). The
generating collection is the set of trees T ⊂ P(P). The set T ⊂ P is a tree with top data (IT, ξT),
where IT is an interval on the real line and ξT ∈ R if

IP ⊂ IT, ξT ∈ ωP ∀P ∈ P.

By property d. of the rank 1 collections, we have that each tree T can be written as the union

T =
⋃

1≤j<k≤3

T \ (Tj ∪ Tk) (3.1)

where each Tj is a tree with the same top data as T and has the additional property

{3ωPk : P ∈ Tj} are a pairwise disjoint collection for k 6= j.

We consider the outer measure on P(P)

µ(E) = inf




∞∑

j=1

|ITj | : {Tj : j ∈ N} ⊂ T is a cover of E





In this article, with size we indicate a sublinear map s : CP → [0,+∞]: for all λ ∈ R, and
F,G : P→ C

sj(λF +G) ≤ |λ|sj(F ) + sj(G).

For F : P→ C, the super level measure µ(s(F ) > λ) is defined to be the infimum of all values
µ(E) over all E ⊂ P such that

sup
T∈T

s(f1Ec)(T) ≤ λ.

For 0 < p ≤ ∞ we make use of the super level measures to define the strong and weak outer
Lp norms induced by the size s as

‖F‖L∞(P,s) := sup
T∈T

s(F )(T),

‖F‖Lp(P,s) :=

(∫∞

0

pλp−1µ(s(F ) > λ) dλ

) 1
p

, 0 < p <∞,

‖F‖Lp,∞(P,s) := sup
λ>0

λ [µ(s(F ) > λ)]
1
p , 0 < p <∞.

(3.2)

In particular, we will be concerned with the sizes

sj(F )(T) :=


 1

|IT|
∑

P∈T\Tj
|IP ||F (P )|2




1
2

+ sup
P∈T
|F (P )|, j = 1, 2, 3. (3.3)

We will make use of the natural outer Hölder’s inequality involving the sizes sj , which is stated
and proved below.

Lemma 3.1. Let

~q = (q1, q2, q3), 1 ≤ qj ≤ ∞,
3∑

j=1

1

qj
= 1
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be a Hölder tuple. Let Gj : P→ C, j = 1, 2, 3. Then

∑

P∈P
|IP |

3∏

j=1

|Gj(P )| .
3∏

j=1

‖Gj‖Lqj (P,sj).

Proof. Define another size

s1(F )(T) :=
1

|IT|
∑

P∈T
|IP ||F (P )|.

Then it is obvious that for any T there holds

∑

P∈T
|IP |

3∏

j=1

|Gj(P )| ≤ |IT|s1



3∏

j=1

Gj


 (T),

which by the Radon-Nikodym proposition [13, Proposition 3.6] implies that

∑

P∈P
|IP |

3∏

j=1

|Gj(P )| .
∥∥∥

3∏

j=1

Gj

∥∥∥
L1(P,s1)

.

Furthermore, according to (3.1) and the classical Hölder’s inequality, one can easily check that
for any fixed T,

s1




3∏

j=1

Gj


 (T)

≤ 1

|IT|
∑

1≤j<k≤3

∑

P∈T\(Tj∪Tk)

|IP ||
3∏

j=1

Gj(P )|

≤
∑

1≤j<k≤3





 ∑

P∈T\Tj
|IP ||Gj(P )|2




1/2
 ∑

P∈T\Tk
|IP ||Gk(P )|2




1/2
∏

i 6=j,k
sup
P∈T
|Gi(P )|




.
3∏

j=1

sj(Gj)(T).

Hence the outer Hölder inequality in [13] yields that

∥∥∥
3∏

j=1

Gj

∥∥∥
L1(P,s1)

.
3∏

j=1

‖Gj‖Lqj (P,sj),

which completes the proof.

4. Localized Carleson embeddings

In this section, when we write dyadic interval, we mean intervals I ∈ D, where D is a fixed
dyadic grid on R. Fix a dyadic interval Q ⊂ R and f ∈ Lp(R). We define the p-stopping intervals
of f on Q by

If,p,Q = maximal dyadic I ⊂ Q s.t. I ⊂ {x ∈ R : Mp(f13Q)(x) > C〈f〉3Q,p} (4.1)



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Page 10 of 24 AMALIA CULIUC, FRANCESCO DI PLINIO AND YUMENG OU

Notice that If,p,Q is a pairwise disjoint collection of dyadic intervals and that the maximal
theorem guarantees the sparsity condition

∑

I∈If,p,Q
|I| ≤ |{x ∈ R : Mp(f13Q)(x) > C〈f〉3Q,p}| ≤

|Q|
6

(4.2)

provided the constant C in (4.1) is chosen large enough. Furthermore, from the very definition
of If,p,Q, there holds

inf
x∈3I

Mp(f13Q)(x) . 〈f〉3Q,p ∀I ∈ If,p,Q. (4.3)

In what follows, we fix a finite collection of rank 1 tritiles P whose intervals {IP : P ∈ P} are
dyadic. Referring to the notation (2.1) for P≤(I) we define the set of good tritiles

Gf,p,Q = P \


 ⋃

I∈If,p,Q
P≤(I)


 . (4.4)

Recalling the definition of the tritile maps from (2.3), we have the following proposition, which
is used to control the main term of the tritile forms (2.4) localized to 3Q.

Proposition 4.1. Let j = 1, 2, 3, Q ⊂ R be a dyadic interval and f be a Schwartz function.
For any 1 < p < 2, q > p′ there exists a positive integer N = N(p, q) and a positive constant
Θ = Θ(p, q)such that

∥∥Fj(f13Q)1Gf,p,Q

∥∥
Lq(P,sj) ≤ ΘAN |Q|

1
q 〈f〉3Q,p. (LCq,p)

4.1. Proof of Proposition 4.1

The Proposition will be proved by a transference argument using the main result of [9],
which is the continuous parameter version recalled below. However, Proposition 4.1 may also be
obtained directly, by repeating the arguments of [9] in the (simpler, in fact) discrete parameter
setting. We leave the details to the interested reader.

4.1.1. A continuous parameters version of Proposition 4.1 We need to define the continuous
outer measure space on the base set

P◦ = [−R,R]× (0, R]× [−R,R], R = 10 max{c(IP ) + |IP |+ c(ωP ) + |ωP | : P ∈ P};
we are using that P is a finite set. Let I ⊂ R be an interval and ξ ∈ R. The corresponding
generalized tent and its lacunary part, with fixed geometric parameters g, b, are defined by

T◦(I, ξ) = {(u, t, η) ∈ P◦ : 0 < t < |I|, |u− c(I)| < |I| − t, |η − ξ| ≤ gt−1},
T◦` (I, ξ) = {(u, t, η) ∈ T◦(I, ξ) : t|ξ − η| > b}.

We use the superscript ◦ to distinguish discrete trees T with top data (IT, ξT) from continuous
tents T◦ with same top data (IT, ξT). It will also be convenient to use the notation

T◦(I) = {(u, t, η) ∈ P◦ : 0 < t < |I|, |u− c(I)| < |I| − t, }
for the projection of T◦(I, ξ) on the first two components. An outer measure µ◦ on P◦, with

T ◦ =
{
T◦(I, ξ) : I ⊂ [−R,R], ξ ∈ [−R,R]

}

as generating collection is then defined for E ⊂ P◦ as

µ◦(E) = inf




∞∑

j=1

|IT◦j | : {T
◦
j : j ∈ N} ⊂ T ◦ is a cover of E
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For F : Z → C Borel measurable, we define the size

s◦(F )(T◦(I, ξ)) :=

(
1

|I|

∫

T◦` (I,ξ)

|F (u, t, η)|2 dudtdη

) 1
2

+ sup
(u,t,η)∈T◦(I,ξ)

|F (u, t, η)|. (4.5)

Denoting by Lp(P◦, s◦), Lp,∞(P◦, s◦) the corresponding strong and weak outer Lp-spaces
defined in a totally analogous way to (3.2), we turn to the reformulation of the main result of
[9]. A family of Schwartz functions

Φ := {φu,t,η : (u, t, η) ∈ P◦}
is said to be an adapted system with adaptation constants AN if

sup
(u,t,η)∈P◦

sup
n≤N

sup
x∈R

tn+1χ

(
x− u
t

)−N ∣∣∣(e−iη·φu,t,η(·))(n)(x)
∣∣∣ ≤ AN (4.6)

for all nonnegative integers N and furthermore

t|ζ − η| > 1 =⇒ φ̂t,η(ζ) = 0.

The wave packet transform of a Schwartz function f is then a function on P◦ defined by

F ◦(f)(u, t, η) = |〈f, φu,t,η〉|.
With the same notation as in (4.1) for If,p,Q, and introducing the corresponding good set of
parameters

G◦f,p,Q = P◦ \
⋃

I∈If,p,Q
T◦(3I) (4.7)

we have the following continuous parameter version of Proposition 4.1.

Proposition 4.2. [9, Theorem 1] Let Q ⊂ R be a dyadic interval and f be a Schwartz
function. For any 1 < p < 2, q > p′ there exists a positive integer N = N(p, q) and a positive
constant Θ = Θ(p, q) such that

∥∥∥F ◦(f13Q)1G◦f,p,Q

∥∥∥
Lq(P◦,s◦)

≤ ΘAN |Q|
1
q 〈f〉3Q,p. (4.8)

Remark 4.3. The above proposition is obtained by choosing λ = |Q|− 1
p in [9, Theorem

1]. There are, however, two minor discrepancies between the result of [9] and the one recalled
above. The first one is that, in definition (4.7), the intervals IM1f,p,Q are used in place of If,p,Q.
This change is necessary in order to perform a reduction argument to compact support in η of
F ◦(f) see [9, Section 7.3.1], and can thus be avoided in the setup of Proposition 4.2 since the
parameter η is already in a compact interval. The second difference is that the adapted family
Φ used in [9] to define the wave packet transform is obtained by applying dilation, translation
and modulation symmetries to a fixed mother wave packet. However, the arguments of [9]
adapt naturally to the more general transform obtained from (4.6). We leave the details for
the interested reader.

4.1.2. Transference For each P ∈ P define

P ◦ := {(u, t, η) ∈ P◦ : |IP | ≤ t ≤ 2|IP |, u ∈ IP , η ∈ ωP } .
Up to possibly splitting P into finitely many subcollections the sets {P ◦ : P ∈ P} are pairwise
disjoint subsets of P◦. Furthermore, the dudtdη-measure of P ◦ is comparable to |IP | up to a
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constant factor. Let f be a fixed Schwartz function and {φPj : P ∈ P} be chosen such that

Fj(f)(P ) ≤ 2|〈f, φPj 〉| =: F̄j(f)(P ) ∀P ∈ P.

Then the family defined by φu,t,η = φPj for all (u, t, η) ∈ P ◦, φu,t,η = 0 if (u, t, η) does not
belong to any P ◦ is an adapted system. As j = 1, 2, 3 is fixed we may write s in place of sj for
simplicity. We claim that, if F ◦(f) is the corresponding wave packet transform

µ
(
s
(
F̄j(f)1Gf,p,Q

)
> Cλ

)
≤ µ◦

(
s◦
(
F ◦(f)1G◦f,p,Q

)
> λ

)
(4.9)

which, by virtue of the above definitions and of Proposition 4.2, implies the estimate of
Proposition 4.1. Let λ be fixed and L denote the right hand side of (4.9). Let {T◦j (Ij , ξj)}
be a countable collection of tents such that

∑

j

|Ij | ≤ L+ ε, sup
T◦

s◦
(
F ◦(f)1G◦f,p,Q1E◦c

)
(T◦) ≤ λ, E◦ :=

⋃

j

T◦j

Now, for each j, let Tj = Tj(Ij , ξj) be the maximal tree of tritiles with top data (Ij , ξj) same
as T◦j and set

E :=
⋃

j

Tj =⇒ µ(E) ≤
∑

j

|Ij | ≤ L+ ε.

To obtain (4.9) and conclude the proof it then suffices to show that for all T ∈ T we have

s
(
F̄j(f)1Gf,p,Q1Ec

)
(T) ≤ Cs◦

(
F ◦(f)1G◦f,p,Q1E◦c

)
(T◦) (4.10)

where T◦ is the tent with same top data as T. Let us verify this for the L2 portion of the size
s. This is a consequence of the following observations

– if P ∈ T \ T1 (i.e. P belongs to the lacunary part), then P ◦ ⊂ T◦`
– if P ∈ Ec ∩ Gf,p,Q, then P̃ ◦ := P ◦ ∩ E◦c ∩ G◦f,p,Q has dudtdη-measure larger than C−1|IP |

of which we leave the verification to the reader, and of the computation
∑

P∈T\T1

P∈Ec∩Gf,p,Q

|IP ||F̄j(f)(P )|2

=
∑

P∈T\T1

P∈Ec∩Gf,p,Q

|IP |
ν(P̃ ◦)

∫

P̃◦

|F ◦(f)(u, t, η)|2 dudtdη ≤ C
∫

T◦`∩E◦c∩G◦f,p,Q

|F ◦(f)(u, t, η)|2 dudtdη

where we have denoted by ν the dudtdη measure. The proof is complete.

5. Proof of Theorem 2.2

Now we are ready to prove Theorem 2.2, to which Theorem 1.3 has been reduced. Since for
any open admissible tuple ~r there exists an open admissible tuple ~p with max{pj} < 2 and
pj ≤ rj , it suffices to prove the case max{pj} < 2. Such a tuple ~p is fixed from now on.

5.1. Construction of the sparse collection

Let fj ∈ Lpj (R), j = 1, 2, 3, be three compactly supported functions and D be a dyadic grid.
For all Q ∈ D, referring to the notation (4.1) for If,p,Q we may then define

I~f,~p,Q := maximal elements of
3⋃

j=1

Ifj ,pj ,Q (5.1)
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It is clear that the intervals I ∈ I~f,~p,Q are pairwise disjoint and that

∑

I∈I~f,~p,Q

|I| ≤ |Q|
2
. (5.2)

Furthermore, as a consequence of (4.3) for each f = fj , p = pj , there holds

inf
x∈3I

Mpjfj(x) . 〈f〉3Q,p ∀I ∈ I~f,~p,Q, j = 1, 2, 3. (5.3)

We put together these stopping intervals in a single sparse collection S = S(D, f1, f2, f3) of
stopping intervals for the condition (4.1). Let us begin by choosing a partition of R by intervals
{Qk ∈ D : k ∈ N} with the property that supp fj ⊂ 3Qk for all j = 1, 2, 3 and k ∈ N. For each
k, let

S(Qk) =

∞⋃

`=0

S`(Qk)

where S0(Qk) = {Qk} and, proceeding iteratively,

S`(Qk) =
⋃

Q∈S`−1(Qk)

I~f,~p,Q, l = 1, 2, . . .

Finally, define

S = S(D, f1, f2, f3) =
∞⋃

k=0

S(Qk).

By construction and by the packing property (5.2), S is a 1
2 -sparse subcollection of D.

5.2. Reduction to a single shifted dyadic grid

It is convenient to reduce to a canonical choice of dyadic grids, as follows. Let

Dj =
{

2k[0, 1) +
(
n+ j

3

)
2k : k, n ∈ Z

}
, j = 0, 1, 2

be the three canonical shifted dyadic grids on R. Recall the well known fact that for all
intervals I ⊂ R there exists a unique Ĩ ∈ D0 ∪ D1 ∪ D2 with 3I ⊂ Ĩ, |Ĩ| ≤ 6 · |3I|, and c(Ĩ)
is least possible. We say that I has type j ∈ {0, 1, 2} if Ĩ ∈ Dj .

Fix a finite rank 1 collection P and a tuple of functions ~f = (f1, f2, f3) as above. We split
P = P0 ∪ P1 ∪ P2 where Pj = {P ∈ P : IP has type j}. For each j ∈ {0, 1, 2} we use the previous

construction with D = Dj to obtain a 1
2 -sparse collection of intervals Sj = S(Dj , ~f) such that

ΛPj (f1, f2, f3) ≤ K(AN )3
∑

Q∈Sj
|3Q|

3∏

`=1

〈f`〉3Q,p` (5.4)

for a suitably large N = N(~p) and K = K(~p). Once (5.4) is performed, we achieve the estimate

ΛP(f1, f2, f3) =
2∑

j=0

ΛPj (f1, f2, f3)

≤
2∑

j=0

K(AN )3
∑

Q∈Sj
|3Q|

3∏

`=1

〈f`〉3Q,p` . K(AN )3PSF~pS̃(f1, f2, f3),

where S̃ = {3Q : Q ∈ Sj0} and j0 ∈ {0, 1, 2} is such that the right hand side of (5.4) is maximal.

Since Sj0 is 1
2 sparse it immediately follows that S̃ is a 1

6 -sparse collection. This completes the
proof of Theorem 2.2, up to (5.4). In the next three subsections, we give the proof of (5.4).
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5.3. Proof of (5.4): main argument

A first observation is that, since the intervals IP and ĨP are comparable, and in view of the
maximal definition of the tritile maps, there is no loss in generality in what follows to assume
IP = ĨP for all P ∈ Pj , that is {IP : P ∈ P} ⊂ Dj . In fact, we are free to work with j = 0 and
accordingly forgo the subscript j till the end of this section.

The main step of the argument for Theorem 1.3 is summarized in the next lemma, whose
proof is postponed to the next subsection. Before the statement, it is convenient to recall from
(2.1) the notation P≤(Q) associated to a generic finite collection of tritiles P and an interval
Q ⊂ R. Let {Qk : k ∈ N} be the intervals employed in the construction of S in Subsection 5.1.
Since {Qk : k ∈ N} partition R, we have the splitting

P =

∞⋃

k=0

P≤(Qk);

in fact the union is finite, as the collection P is. Since S = ∪kS(Qk), (5.4) is a consequence of

ΛP≤(Qk)(f1, f2, f3) ≤ K(AN )3
∑

Q∈S(Qk)

|3Q|
3∏

j=1

〈fj〉3Q,pj . (5.5)

Estimate (5.5) is obtained by iteration of the lemma below, starting with Q = Qk, which is
legitimate because supp fj ⊂ 3Qk for any j = 1, 2, 3, and following the construction of S(Qk).

Lemma 5.1. Let ~f = (f1, f2, f3) be as above and Q ∈ D. For any rank 1 collection of tritiles
P such that {IP : P ∈ P} ⊂ D, there holds

ΛP≤(Q)(f113Q, f213Q, f313Q) ≤ K(AN )3|3Q|
3∏

j=1

〈fj〉3Q,pj +
∑

I∈I~f,~p,Q

ΛP≤(I)(f113I , f213I , f313I).

Observe that since P≤(Qk) is finite, the collections P≤(I) will be empty after a finite number
of iterations, at which point the iterative procedure leading to (5.5) is complete. We are left
with the task of showing that Lemma 5.1 holds true.

5.4. Proof of Lemma 5.1

Throughout this proof only, we make an exception concerning our use of the almost inequality
sign: the implied constant is allowed to be of the form K(AN )3 where K and N depend only
on the tuple ~p. For the sake of brevity, we assume that all fj ’s are supported on 3Q. With
reference to (5.1) for I~f,~p,Q, let

G~f,~p,Q := P≤(Q) \


 ⋃

I∈I~f,~p,Q

P≤(I)


 .

We decompose

ΛP≤(Q)(f1, f2, f3) ≤
∑

P∈G~f,~p,Q

|IP |
3∏

j=1

Fj(fj)(P ) +
∑

I∈I~f,~p,Q

ΛP≤(I)(f1, f2, f3).

We claim that the first term satisfies the following estimate:

∑

P∈G~f,~p,Q

|IP |
3∏

j=1

Fj(fj)(P ) . |Q|
3∏

j=1

〈fj〉3Q,pj . (5.6)
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Indeed, since ~p is open admissible and max{pj} < 2, using Proposition 4.1 we learn that there
exists a Hölder tuple ~q such that Fj has the (LCqj ,pj ) property, j = 1, 2, 3, i.e.

∥∥∥Fj(fj)1Gfj,pj,Q

∥∥∥
Lqj (P,sj)

≤ Θ(pj , qj)AN(pj ,qj)|Q|
1
qj 〈fj〉3Q,pj .

Let Gj(P ) := Fj(fj)(P )1G~f,~p,Q
(P ). By the Hölder inequality of Lemma 3.1, we have that

∑

P∈G~f,~p,Q

|IP |
3∏

j=1

Fj(fj)(P ) .
3∏

j=1

‖Gj‖Lqj (P,sj) (5.7)

Notice that the implicit constant is of the form K(AN )3, where K =
∏3
j=1 Θ(pj , qj) and N =

maxN(pj , qj). Now, since G~f,~p,Q ⊂ Gfj ,pj ,Q for j = 1, 2, 3, we have

‖Gj‖Lqj (P,sj) ≤ ‖Fj(fj)1Gfj,pj,Q
‖Lqj (P,sj) . |Q|

1
qj 〈fj〉3Q,pj .

Inserting the above three inequalities into (5.7) yields (5.6).
We are left with estimating the second term

∑

I∈I~f,~p,Q

ΛP≤(I)(f1, f2, f3),

for which we claim

∑

I∈I~f,~p,Q

ΛP≤(I)(f1, f2, f3) ≤ K(AN )3|Q|
3∏

j=1

〈fj〉3Q,pj +
∑

I∈I~f,~p,Q

ΛP≤(I)(f113I , f213I , f313I).

(5.8)
To see this, for each I ∈ I~f,~p,Q, define

ΛP≤(I)
~t(f1, f2, f3) := ΛP≤(I)(f11It1 , f21It2 , f31It3 ) =

∑

P∈P≤(I)

|IP |
3∏

j=1

Fj(fj1Itj )(P ),

where ~t = (t1, t2, t3) ∈ {in, out}3 and

I in := 3I, Iout := R \ 3I.

Therefore, one can split

ΛP≤(I)(f1, f2, f3) ≤
∑

~t∈{in,out}3
ΛP≤(I)

~t(f1, f2, f3).

Among the 23 forms on the right hand side, the one corresponding with ~t such that tj = in for
all j appears exactly in the second term on the right hand side of (5.8), hence it suffices for us
to bound the rest of the 23 − 1 forms. According to Proposition 5.2, which we state and prove
later, for any ~t such that tj = out for at least one j = 1, 2, 3, there holds

ΛP≤(I)
~t(f1, f2, f3) . |I|

3∏

j=1

inf
x∈3I

Mpjfj(x) . |I|
3∏

j=1

〈fj〉3Q,pj

where the last step follows from (5.3). Therefore, multiplying the three inequalities together
and summing over I yields (5.8), which also completes the proof of the lemma.

5.5. Handling the tail terms

Now we proceed with the proposition that has been used in the proof of Lemma 5.2 to
estimate the tail term. In fact, we are going to derive it in a more general form, which not only
includes our tritile maps Fj as a special case, but also applies to more general tritile maps. A
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tritile map F : L1
loc(R)→ CP is said to be almost localized if it satisfies

sup
P∈P=(J)

F (f)(P ) . ‖f‖L1(χMJ ),


 1

|J |
∑

P∈P=(J)

|IP |F (f)(P )2




1
2

. ‖f‖L2(χMJ ),

(5.9)

where M is a fixed large integer (say M = 103), and the notation P=(J) has been introduced
in (2.1).

Proposition 5.2. Assume the type ~t is such that tj = out for at least one j = 1, 2, 3. Let
Fj be almost localized tritile maps for j = 1, 2, 3, and ~p be an open admissible tuple. Then,

Λ
~t
P≤(I)(f1, f2, f3) . |I|

3∏

j=1

inf
x∈3I

Mpjfj(x). (5.10)

The proof of the proposition will rely on the following key lemma.

Lemma 5.3. Let J be an interval. Assume that supp f3 ∩AJ = ∅ for some A ≥ 3. Let ~p be
an open admissible tuple and Fj be an almost localized tritile map for j=1,2,3. Then

ΛP=(J)(f1, f2, f3) :=
∑

P∈P=(J)

|IP |
3∏

j=1

Fj(fj)(P ) . A−100|J |
3∏

j=1

inf
x∈3J

Mpjfj(x).

Proof. The almost localized assumptions (5.9) can be rephrased in the form

‖Fj(f)(·)‖`∞(P=(J)) . ‖f‖L1(χMJ ), ‖Fj(f)(·)‖`2(P=(J)) . ‖f‖L2(χMJ ),

which by off-diagonal Marcinkiewicz interpolation yields for 1 ≤ p ≤ 2

‖Fj(f)(·)‖`p′ (P=(J)) . ‖f‖Lp(χMJ ). (5.11)

Notice that for j = 1, 2,

‖fj‖Lp(χMJ ) . inf
x∈3J

Mpfj(x) (5.12)

while if M is sufficiently large

‖f3‖Lp(χMJ ) .
(

sup
x∈supp f3

χ100
J (x)

)
‖f3‖Lp(χM−100

J ) . A−100 inf
x∈3J

Mpf3(x). (5.13)

Since ~p is open admissible, there exists a Hölder tuple ~q = (q1, q2, q3) with (qj)
′ ≤ pj . Therefore,

using (5.11) for each f = fj

ΛP=(J)(f1, f2, f3) ≤ |J |
3∏

j=1

‖Fj(f)(·)‖`qj (P=(J)) . A−100|J |
3∏

j=1

inf
x∈3J

Mq′j
fj(x),

which is stronger than the estimate claimed of the lemma.

Proof Proof of Proposition 5.2. For the sake of definiteness, let us assume that t3 = out
and Let J = {J : J = IP for some P ∈ P≤(I)}. We partition

Jk = {J ∈ J : 2kJ ⊂ I, 2k+1J 6⊂ I}, P≤,k(I) = {P ∈ P≤(I) : IP ∈ Jk}



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

DOMINATION OF MULTILINEAR SINGULAR INTEGRALS Page 17 of 24

Let us observe the following properties of the intervals J ∈ Jk:

dist(J, supp f31Iout) ∼ 2k|J |,
J ∈ Jk have finite overlap and

∑

J∈Jk
|J | . |I|,

inf
x∈3J

Mpjfj(x) . 2k inf
x∈3I

Mpjfj(x).

(5.14)

We then estimate, using Lemma 5.3 and the above properties

Λ
~t
P≤(I)(f1, f2, f3) ≤

∑

k≥0

∑

J∈Jk
ΛP=(J)(f11It1 , f21It2 , f31Iout)

.
∑

k≥0

∑

J∈Jk
2−100k|J |

3∏

j=1

inf
x∈3J

Mpjfj(x) . |I|
3∏

j=1

inf
x∈3I

Mpjfj(x).

The proof of the proposition is thus completed.

Now that we have proved Proposition 5.2, in order to complete the proof of Lemma 5.1, it
suffices to verify that the tritile maps Fj , j = 1, 2, 3 given in (2.3) are indeed almost localized.

Lemma 5.4. Tritile maps

Fj(f)(P ) = sup
φPj∈Φ(Pj)

|〈fj , φPj 〉|, j = 1, 2, 3

are almost localized. In other words,

sup
P∈P=(J)

Fj(f)(P ) . ‖f‖L1(χMJ ), (5.15)

and 
 1

|J |
∑

P∈P=(J)

|IP |Fj(f)(P )2




1
2

. ‖f‖L2(χMJ ). (5.16)

Proof. To see (5.15), for any P ∈ P=(J) and φPj ∈ Φ(Pj), write

|〈f, φPj 〉| = |〈fχMJ |J |−1, φPjχ
−M
J |J |〉| ≤

∥∥fχMJ
∥∥
L1(χMJ )

∥∥φPjχ−MJ |J |
∥∥
L∞

.

Then according to (2.2), (5.15) follows immediately from
∥∥φPjχ−MJ |J |

∥∥
L∞
≤ AM .

Now we verify that (5.16) holds true. Without loss of generality, one can assume that there
exists {φPj} such that the supremum in the definition of Fj are attained up to an ε. This
can certainly be done if the collection P is finite. Since our estimate will not depend on the
cardinality of the collection, a limiting argument will pass this to the infinite collection case as
well. Hence, we are now trying to show that


 1

|J |
∑

P∈P=(J)

|IP ||〈f, φPj 〉|2



1
2

. ‖f‖L2(χMJ ).

To see this, write

|IP ||〈f, φPj 〉|2 = |〈fχMJ , φPjχ−MJ |IP |1/2〉|2.

Define φ̃Pj := |IP |1/2φPjχ−MJ . We claim that {φ̃Pj} is an orthogonal system with L2

normalization, which yields (5.16) immediately.
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The L2 normalization can be easily seen from

∫

R
|φ̃Pj |2(x) dx ≤ AM+1|J |−1

∫

R
χ2
J(x) dx . AM+1.

And the orthogonality follows from the disjoint frequency supports consideration of {φPj}. More

precisely, since IP = J for all P ∈ P=(J), {supp φ̂Pj ⊂ ωPj} are pairwise disjoint. Therefore,

since the Fourier transform of φ̃Pj is a finite linear combination of derivatives (up to order 2M)

of the Fourier transform of φPj , φ̃Pj and φPj have the same frequency support, which implies
the desired orthogonality.

6. Proof of Theorem 1.6 and Corollary 1.7

6.1. Proof of Theorem 1.6

Fixing a tuple ~q = (q1, q2, q3) and weights ~v = (v1, v2, v3) as in the statement of the theorem,
and any open admissible tuple ~p with pj < qj for j = 1, 2, 3, proving the theorem amounts to
showing that

sup
m
|Λm(f1, f2, f3)| ≤ K(~p, ~q,~v)

3∏

j=1

‖fj‖Lqj (vj) (6.1)

where K(~p, ~q,~v) is the constant appearing in the statement of the theorem, holds for all tuples
~f = (f1, f2, f3) ∈ C∞(R)3. We define

wj = vj
pj

pj−qj , j = 1, 2, 3.

Note that the finiteness of the A ~p
~q constant of ~v implies wj ∈ L1

loc(R). Setting fj = gjw
1
pj

j one
notices that ‖fj‖Lqj (vj) = ‖gj‖Lqj (wj). Applying the domination result from Theorem 1.3, we
bound the left hand side of (6.1) by

sup
S sparse

PSF~pS(f1, f2, f3) = sup
S sparse

PSF~pS
(
g1w

1
p1
1 , g2w

1
p2
2 , g3w

1
p3
3

)
.

By possibly splitting S into three subcollections and using the three grid lemma recalled in
Subsection 5.2, we can restrict to the case of S being a sparse subset of the standard dyadic
grid D0. Therefore, (6.1) will follow from the estimate of the lemma below.

Lemma 6.1. For any gj ∈ Lqj (wj), j = 1, 2, 3, there holds

sup
S⊂D0

1
6−sparse

PSF~pS(g1w
1
p1
1 , g2w

1
p2
2 , g3w

1
p3
3

)
. µ~p,~q[~v]

max
{

qj
qj−pj

}

A ~p
~q

3∏

j=1

‖gj‖Lqj (wj)

where

µ~p,~q :=




3∏

j=1

qj
qj − pj


 2

3
(∑3

j=1
1
pj
−1
)

max
{

pj
qj−pj

}

.
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Proof. We largely follow the argument from [23]. We may work with gj ≥ 0. Let S be a
fixed 1/2-sparse grid. Then

PSF~pS(g1w
1
p1
1 , g2w

1
p2
2 , g3w

1
p3
3

)
=
∑

Q∈S
|Q|

3∏

j=1

(
〈gpjj wj〉Q

) 1
pj

=
∑

Q∈S




3∏

j=1

wj(EQ)
1
qj

(
〈gpjj wj〉Q
〈wj〉Q

) 1
pj


×




3∏

j=1

〈wj〉Q
1
pj
− 1
qj


×


|Q|

3∏

j=1

( 〈wj〉Q
wj(EQ)

) 1
qj


 .

(6.2)

The second product inside the sum of (6.2) is the precursor to [~v]
A ~p
~q

. Arguing as in [23], the

rightmost factor in (6.2) is bounded above uniformly in Q by

2
3
(∑3

j=1
1
pj
−1
)

max
{

pj
qj−pj

}

[~v]
max

{
1

pjqj

}

A ~p
~q

.

Introducing the dyadic weighted maximal functions

Mpj ,wj (f)(x) = sup
Q∈D0

( 〈|f |pjwj〉Q
〈wj〉Q

) 1
pj

1Q(x)

and using the disjointness of EQ and Hölder’s inequality, we estimate the remaining part of
(6.2) by

∑

Q∈S




3∏

j=1

wj(EQ)
1
qj

(
〈gpjj wj〉Q
〈wj〉Q

) 1
pj


 ≤

3∏

j=1

‖Mpj ,wjgj‖Lqj (wj).

The claimed estimate then follows by bookkeeping the last three observations and by relying
upon the sharp Lqj (wj)-boundedness of Mpj ,wj (fj) (see [29] for a proof). The proof of the
lemma is complete.

6.2. Proof of Corollary 1.7

Let

Θ = max
j=1,2

[v2
j ]Aqj .

The openness of the Aq classes (see [17] for a quantified statement) allows us to to find
ε = ε(Θ, q1, q2) > 0 such that

[v
2

1−ε
j ]Aqj ≤ 2Θ, j = 1, 2. (6.3)

We denote by q3 the dual exponent of r and by v3 = u1−q3
3 the dual weight. To prove the

corollary, in light of (6.3), it suffices to find an open admissible tuple ~p with pj < qj such that

[~v]
A ~p
~q
≤

2∏

j=1

[v
2

1−ε
j ]

1−ε
2qj

Aqj
(6.4)

and subsequently applying Theorem 1.6, which is made possible by (6.3).
Referring to the notation of (1.7), let ~p be an open admissible tuple with pj < qj and ε = ε(~p).

We set δ = 1 + ε and reparametrize

1
pj

= 1− δθj
rj
, rj =

qj
qj−1 , θj ≥ 0,

3∑

j=1

θj
rj

= 1. (6.5)

This leads to the following lemma.
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Lemma 6.2. There holds

[~v]
A ~p
~q
≤

2∏

j=1

sup
Q⊂R

(〈
v

1
(1−δθ3)

j

〉1−δθ3

Q

〈
v

1
1−δθj

1
1−qj

j

〉(qj−1)(1−δθj)

Q

) 1
qj

Proof. Observe that
1
pj
− 1

qj
=

1−δθj
rj

Using the relation 1 = v
1
q1
1 v

1
q2
2 v

1
q3
3 , the definition of wj and Hölder, one has

〈wn〉
1
p3
− 1
q3

Q =

〈
2∏

j=1

v
r3

qj(1−δθ3)

j

〉 1−δθ3
r3

Q

≤
2∏

j=1

〈
v

1
(1−δθ3)

j

〉 1−δθ3
qj

Q

and for j = 1, 2

〈wj〉
1
pj
− 1
qj

Q =

〈
v

1
1−δθj

1
1−qj

j

〉 1−δθj
rj

Q

which, rearranging and taking suprema, completes the proof of the lemma.

Now, comparing with (6.5), we may choose θ1 = θ2 = θ3 = 1
2 in Lemma 6.2. This leads to

the estimate

[~v]
A ~p
~q
≤

2∏

j=1

sup
Q⊂R

(〈
v

2
2−δ
j

〉

Q

〈
v

2
2−δ

1
1−qj

j

〉qj−1

Q

) 2−δ
2

1
qj

whose right hand side is the same as that of (6.4). This completes the proof of Corollary 1.7.

Appendix A. Vector-valued estimates from sparse domination

In this section, the tuple ~r = (r1, r2, r3) always satisfies

1 < r1, r2, r3 ≤ ∞,
3∑

j=1

1
rj

= 1. (A.1)

We turn to the study of the trilinear forms

Λm(f1, f2, f3) :=
∑

k

Λmk(f1k, f2k, f3k)

acting on `rj -valued sequences fj = {fjk}, where m = {mk} is a sequence of multipliers
satisfying (1.2) uniformly. The adjoints to the above trilinear forms are the sequence-valued
bilinear operators

Tm(f1, f2) = {Tmk(f1k, f2k)}. (A.2)

A consequence of Theorem 1.3 and of the classical Fefferman-Stein inequalities [14]

‖{Mpfk}‖Lq(R;`r) ≤ C(p, q, r) ‖{fk}‖Lq(R;`r) , 1 ≤ p < min{q, r}, sup{q, r} <∞
‖{Mpfk}‖Lp,∞(R;`r) ≤ C(p, r) ‖{fk}‖Lp(R;`r) , 1 ≤ p < r <∞. (A.3)

are the following vector-valued estimates for the operators Tm of (A.2)

Corollary A.1. Let ~r be a fixed tuple as in (A.1) and m = {mk} be a sequence of
multipliers satisfying (1.2) uniformly. Then the bilinear operator Tm of (A.2) has the mapping
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properties

Tm : Lq1(R; `r1)× Lq2(R; `r2)→ L
q1q2
q1+q2 (R; `s3), s3 :=

r3

r3 − 1
(A.4)

for all exponent pairs (q1, q2) satisfying

1 < inf{q1, q2} <∞,
3∑

j=1

1

min{qj , rj , 2}
< 2,

1

q3
:= max

{
1−

(
1
q1

+ 1
q2

)
, 0
}
. (A.5)

For each pair (q1, q2), the range of tuples ~r for which Tm admits Lq1 × Lq2 a bounded vector-
valued extension is the same as the one recently obtained in [3, Theorem 7] for the vector valued
bilinear Hilbert transforms. Condition (A.5) needs to be imposed in order to ensure that the
set

{
~p = (p1, p2, p3) open admissible : pj < min{rj , qj}, j = 1, 2, 3.

}
(A.6)

is nonempty.

A.1. Proof of Corollary A.1

By an approximation argument, there is no loss in generality in working with multipliers
m = {mk} with mk = 0 for all but finitely many k.

Fix a tuple ~r as in (A.1). We assume sup rj <∞: the case rj =∞ for (at most one) j requires
only minor modifications. We first prove the case where (q1, q2) is an exponent pair satisfying
(A.5) with q3 <∞. In this range ~q = (q1, q2, q3) is a Hölder tuple and the claimed estimate on
Tm is equivalent to proving that

∣∣Λm(f1, f2, f3)
∣∣ ≤

∑

k

|Λmk(f1k, f2k, f3k)| .
3∏

j=1

‖fj‖Lqj (R;`rj ) (A.7)

Since the set (A.6) is nonempty, we may choose an open admissible tuple ~p = (p1, p2, p3) with
pj < min{qj , rj}. We apply the domination Theorem 1.3 to each mk in the above sum, yielding
the existence of sparse collections Sk for which the estimate

|Λmk(f1k, f2k, f3k)| . PSF~pSk(f1k, f2k, f3k)

holds true. If {EI : I ∈ Sk} are the distinguished pairwise disjoint major subsets of I ∈ Sk, we
have

PSF~pSk(f1k, f2k, f3k) .
∑

I∈Sk
|EI |




3∏

j=1

inf
x∈EI

Mpjfjk(x)


 .

∫

R




3∏

j=1

Mpjfjk(x)


 dx (A.8)

Summing over k and using Hölder’s inequality first for the tuple ~r in the sum, and later for
the Hölder tuple ~q in the integral the left-hand side of (A.7) is bounded by

∫

R

∑

k




3∏

j=1

Mpjfjk


 dx ≤

∫

R




3∏

j=1

∥∥{Mpjfjk}
∥∥
`rj


 dx

≤
3∏

j=1

∥∥{Mpjfjk}
∥∥
Lqj (`rj )

.
3∏

j=1

∥∥fj
∥∥
Lqj (`rj )

,

having employed the Fefferman-Stein inequality (A.3) in the last step. This completes the proof
of the case q3 <∞.
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We pass to the case q3 =∞. In this range, we are able to choose an open admissible tuple
with

p1 < min{q1, r1}, p2 < min{q2, r2}, p3 < min{2, r3}.
Also, by virtue of the fact that 1/q1 + 1/q2 > 1, we can find a tuple of exponents ~t = (t1, t2, t3)
satisfying

t1 > q1, t2 > q2, t3 > p3,
1
t1

+ 1
t2

+ 1
t3

= 1. (A.9)

Since the claimed range of exponents (q1, q2) is open, it suffices to prove the weak-type analogue
of (A.4) and then invoke multilinear vector-valued Marcinkiewicz interpolation. Such a weak-
type estimate is equivalent to proving that for all fj ∈ Lqj (R; `rj ), j = 1, 2 of unit norm and
for all sets F3 ⊂ R of finite measure, there exists F ′3 ⊂ F3 with |F3| ≤ 2|F ′3| so that

∣∣Λm(f1, f2, f3)
∣∣ ≤

∑

k

|Λmk(f1k, f2k, f3k)| . |F3|1−
(

1
q1

+ 1
q2

)

∀f3 : ‖f3(x)‖`r3 ≤ 1F ′3(x).

(A.10)

Fix such f1, f2, F3. We proceed with the definition of F ′3 in two steps. First, set

H :=

2⋃

j=1

{
x ∈ R : ‖{Mpjfjk(x)}‖`rj > C|F3|−

1
qj

}

By Chebychev and Fefferman-Stein inequalities (A.3), |H| ≤ 2−12|F3| provided C is chosen
large enough. Then

H̃ :=
⋃

Q∈Q
9Q, Q =

{
max. dyad. int. Q : |Q ∩H| ≥ 2−5|Q|

}

satisfies |H̃| ≤ 9 · 25|H| ≤ 2−3|F3|. Therefore the set F ′3 := F3\H̃ is a major subset of F3. Fixing
now any f3 = {f3k} restricted to F ′3 as in (A.10), we apply the domination Theorem 1.3 to each
mk in (A.10), yielding the existence of sparse collections Sk for which we have the estimate

|Λmk(f1k, f2k, f3k)| . PSF~pSk(f1k, f2k, f3k).

holds true. We claim that for all k

|I ∩H| ≤ 2−5|I| ∀I ∈ Sk. (A.11)

This is because if (A.11) fails for I, I must be contained in 3Q for some Q ∈ Q. But the support
of f3k is contained in H̃c which does not intersect 3Q, whence 〈f3k〉I,p3 = 0. Relation (A.11)
has the consequence that if {EI : I ∈ Sk} denote the distinguished pairwise disjoint subsets of

I ∈ Sk with |EI | ≥ 2−2|I|, the sets ẼI := EI ∩Hc are also pairwise disjoint and |ẼI | ≥ 2−3|I|.
By a similar argument to the one used to get to (A.8) but with ẼI replacing EI , followed by
Hölder’s inequality in k with tuple ~r, and later by Hölder’s inequality for the integral with the
tuple ~t from (A.9), the left hand side of (A.10) is bounded by

∑

k

PSF~pSk(f1k, f2k, f3k) .
∫

Hc




3∏

j=1

∥∥{Mpjfjk(x)}
∥∥
`rj


 dx

.
3∏

j=1

∥∥{Mpjfjk}
∥∥
Ltj (Hc;`rj )

(A.12)

Now by Fefferman-Stein’s inequality since t3 > p3

∥∥{Mp3f3k}
∥∥
Lt3 (Hc;`rj )

. ‖f3‖Lt3 (R;`r3 ) ≤ ‖1F3‖t3 = |F3|
1
t3 (A.13)
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Further, for j = 1, 2, by log-convexity of Ltj -norms

∥∥{Mpjfjk}
∥∥
Ltj (Hc;`rj )

≤
∥∥{Mpjfjk}

∥∥
qj
tj

Lqj (R;`rj )

∥∥{Mpjfjk}
∥∥1− qjtj
L∞(Hc;`rj )

. |F3|
1
tj
− 1
qj (A.14)

where, to obtain the final step, we used the Fefferman-Stein inequality to estimate the

Lqj (R; `rj )-norm by O(1) and the definition of H to estimate the L∞(Hc; `rj )-norm by |F3|−
1
qj .

Using (A.13) and (A.14) for j = 1, 2 to bound the right hand side of (A.12) finally yields (A.10)
and completes the proof of the Theorem.
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commutators of Calderón-Zygmund operators, Adv. Math. 319 (2017), 153–181. MR 3695871

28. Xiaochun Li, personal communication.
29. Kabe Moen, Sharp weighted bounds without testing or extrapolation, Arch. Math. (Basel) 99 (2012),

no. 5, 457–466. MR 3000426
30. Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analysis. Vol. II, Cambridge

Studies in Advanced Mathematics, vol. 138, Cambridge University Press, Cambridge, 2013. MR 3052499
31. Camil Muscalu, Terence Tao, and Christoph Thiele, Multi-linear operators given by singular multipliers,

J. Amer. Math. Soc. 15 (2002), no. 2, 469–496. MR 1887641 (2003b:42017)
32. Prabath Silva, Vector-valued inequalities for families of bilinear Hilbert transforms and applications to

bi-parameter problems, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 695–724. MR 3291796
33. Christoph Thiele, Wave packet analysis, CBMS Regional Conference Series in Mathematics, vol. 105,

Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. MR 2199086
(2006m:42073)

Amalia Culiuc
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332
USA

amalia@math.gatech.edu

Francesco Di Plinio
Department of Mathematics
University of Virginia
Kerchof Hall, Box 400137
Charlottesville, VA 22904-4137
USA

francesco.diplinio@virginia.edu

Yumeng Ou
Department of Mathematics
Massachusetts Institute of Technology
77 Mass. Avenue, Cambridge, MA 02139
USA

yumengou@mit.edu


