
DON'T BE STUPID 

Dennis K ib l e r 
Paul Morr is 

In format ion & Computer Science Department 
Un ive rs i t y o f C a l i f o r n i a a t I r v i n e 

ABSTRACT 

We are studying control knowledge for a general 
problem solver, named BLOCKHEAD. Currently the 
problem solver is based on negative heur ist ics, 
which has led to surprising eff iciency in suitable 
domains. The lesson seems to be that it is easier 
to avoid being stupid than to t r y to be smart. 
Stupid plans are defined and a plan improvement 
method proposed. Analyses of stupid plans and 
fa i led plans suggest ef fect ive negative heur ist ics. 

Introduction 

We are investigating a general problem solver 

which incorporates control knowledge in the form of 

negative heur ist ics. The problem solver accepts 

problems represented re la t iona l ly , as did STRIPS 

[1 ,2 ] , WARPLAN [3 ] , and NOAH [4 ] . Operators are 

represented as re lat ional productions, following 

Vere [5 ] . An unusual feature is that preconditions 

must match d is t inc t relationships in the current 

state. This allows a more natural description of 

operators. For example, in the BLOCKS world the 

operator to move a block X onto a block Y includes 

the preconditions clear(X) and clear(Y). Since 

these may not match the same item, we do not need 

the addit ional condition notequal(X,Y). 

In contrast to the above mentioned problem 

solvers, BLOCKHEAD does not employ goal reduction: 

i t is a forward-chaining system. Nevertheless, i t 

This research was supported by the Naval Ocean 
Systems Center under grant N66001-80-O0377. 

is goal directed, as we shal l see. 

Forward-chaining systems have been generally 

neglected in studies of problem solving, perhaps 

because goal d i rect ion has been (erroneously) 

regarded as synonymous wi th goal reduction. Note 

that forward systems avoid the d i f f i c u l t issue of 

integration of pa r t i a l plans. 

Both breadth f i r s t and depth f i r s t variants of 

the interpreter have been constructed. Each 

variant avoids repeating already v is i ted states; 

th is generally produces a f i n i t e search space. 

Negative Heuristics 

The problem solver is guided by negative 

heur ist ics. These t e l l one what NOT to do. They 

are not intended to replace posit ive heur ist ics, 

but rather to complement them. Negative heurist ics 

are so natural that people are generally unaware of 

them. In the blocks world, four negative 

heurist ics surprised us by eliminating nearly a l l 

search. Informally, they are: 

1. Don't add to a p i l e containing a block that 

needs to be moved. 

2. Don't add to a p i l e containing a block that 

requires adding another block to it (unless you are 



presently achieving that goal) . sometimes generates non-optimal plans. 

3. Don't move a block of f an i rrelevant p i l e . 

4. Don't move a block onto an irrelevant p i l e . 

A more formal statement of the f i r s t heur ist ic i s , 

(capi tal l e t te rs stand for var iables): 

don't make on(X,Y) if for some W and Z, an 

unachieved goal conjunct is on(ZrW), and Y covers 

w . 

Note that the heurist ics relate the goal to 

the current state and anticipated act ion. The 

heurist ics are designed to eliminate actions which 

c lear ly do not contribute to the goal. This 

provides a form of goal d i rect ion which can be 

highly e f fec t ive . Using these heur is t ics, both the 

breadth f i r s t and depth f i r s t systems solved 

typ ica l ten block problems with almost no 

consideration of f ru i t l ess paths. A f u l l width 

search of a ten block world might generate over 30 

m i l l i on states, so we were somewhat amazed that 

these few guidelines produced such l imi ted 

searches. 

I t is of interest that the depth f i r s t system 

usually required less search than i t s breadth f i r s t 

cousin. This occurred because, in the breadth 

f i r s t approach, equally good pa r t i a l solutions mist 

a l l be explored. With the heur is t ics, most paths 

being explored d id in fac t lead to solut ions, 

giving the depth f i r s t system an advantage with i t s 

"don't care" approach. However, the breadth f i r s t 

problem solver has the advantage of always 

generating a least cost solut ion (modulo the 

heur is t ics) , The depth f i r s t problem solver 

S t u p i d P l a n s 

We say a plan is stupid if it contains a 

(proper) subplan that solves the problem. A plan 

which is not stupid need not be optimal. For 

example, suppose the i n i t i a l state consists of four 

blocks, with b and d on the f l oo r , a on b, and c on 

d. Let the goal be d on b and a on c, as pictured 

below. 

i n i t i a l state goal 

A non-optimal plan to solve th is problem i s : c to 

f l oo r ; a to f loo r ; d to b; a to c. This plan is 

not stupid because no subsequence of the plan w i l l 

solve the problem. Each operation in the plan 

contributes to the solut ion. The plan can be 

improved by omitt ing the second operation and 

interchanging the last two operations. In our view 

th is goes beyond plan s impl i f i ca t ion . 

One could detect and simpl i fy a plan by t ry ing 

a l l possible subplans. Here we describe a less 

expensive algorithm which is not completely 

e f fect ive. Form a graph, the plan graph, in which 

each node corresponds to an operation in the plan 

and is label led wi th that operation. A directed 

edge connects nodel to node2 if there are 

postconditions of nodel which are preconditions of 

node2 and are not preconditions of any intervening 

operations. The edge is label led with th is set of 

(instantiated) postconditions. Plan graphs are 

closely related to the t r iangle tables of Nilsson. 



The plan given as an example would have the 

fol lowing plan graph. Nodes are enclosed in boxes, 

The arcs are directed downwards and are labelled 

wi th relat ionships. 

Using a plan graph, we simpli fy a plan in the 

following way. Mark a l l the nodes that f i n a l l y 

establish one of the goal conjuncts. A l l nodes 

that are not ancestors of any narked node can be 

deleted from the plan. Also, any directed path 

consisting of unmarked nodes that is reducible to 

the ident i ty transformation can also be excised. 

This reduced plan graph can now be translated into 

a plan by choosing any t o t a l ordering of the 

operations which is consistent with the pa r t i a l 

ordering determined by the plan graph. 

negative Heuristic Discovery 

Stupid plans and examples of poor search 

played an important role in our discovery of 

ef fect ive negative heur ist ics. When examining such 

fa i lu res , certain actions struck us as "s tup id . " 

Attempts to explain WHY they were stupid led to the 

negative heur is t ics. We believe th is process can 

be mechanised. Work is proceeding on methods to 

ident i fy the "point of stupid departure" and to 

generalize a description of the system state at 

that point . 

Implementation notes: The breadth f i r s t problem 

solver was f i r s t programmed in LISP and then in 

PROLOG. The compiled PROLOG code executed four 

times faster than the compiled LISP code. The 

PROLOG code was more concise than the LISP code and 

easier to modify. If an AI problem requires 

pattern matching, non-determinism or execution of 

anchor trees, then PROLOG seems to have advantages 

over LISP. 

REFERHNCES 

[1] Nilsson, N . J . , Principle of A r t i f i c i a l 
Tn»ninynffft. paio A l to : Tioga, 1980. 

[2] Pikes, R.E. and Nilsson, N.J. , STRIPS: a new 
approach to the application of theorem proving 
to problem solving. A r t i f i c i a l Intell igencer 
1971, 189-203. 

[3] Warren, D.H.D., WARPLAN: a system for 
generating plans, Memo 76, Dept. of 
Computation Logic, Univ. of Edinburgh, School 
of A r t i f i c i a l Intel l igence, June 1977. 

[4] sacerdoti, E.D., A Structure Plane and 
Behavior, New York: Elsevier, 1977. 

[5] Vere, S.A., Relational Production systems, 
Art i f i c ia l Intelligence, vol 8., 47-68. 


