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Abstract. Automata are a useful tool in infinite-state model checking,
since they can represent infinite sets of integers and reals. However, anal-
ogous to the use of bdds to represent finite sets, the sizes of the automata
are an obstacle in the automata-based set representation. In this paper,
we generalize the notion of “don’t cares” for bdds to word languages as
a means to reduce the automata sizes. We show that the minimal weak
deterministic Büchi automaton (wdba) with respect to a given don’t
care set, under certain restrictions, is uniquely determined and can be
efficiently constructed. We apply don’t cares to improve the efficiency
of a decision procedure for the first-order logic over the mixed linear
arithmetic over the integers and the reals based on wdbas.

1 Introduction

As Büchi observed almost 50 years ago [8, 9], automata can be used to de-
cide arithmetical theories, like Presburger arithmetic. Roughly speaking, a Pres-
burger arithmetic formula defines a regular language, for which one can build the
automaton recursively over the structure of the formula. So, automata are used
to represent sets of integers that are definable in Presburger arithmetic. More
recently, model checkers for systems with unbounded integers, like fast [1] and
alv [19] have been developed that use such an automata-based set represen-
tation. The use of automata in these model checkers can be compared to the
use of bdds in model checkers for finite state systems, like smv [17]: automata
describe sets of system states. Moreover, automata constructions can be used
for computing or overapproximating the set of all reachable states.

Sets of reals can be represented by ω-automata. Boigelot, Jodogne, and
Wolper [5] have shown recently that even weak deterministic Büchi automata
(wdbas) suffice to represent the first-order definable sets in (R, Z,+, <), where
Z is the unary predicate stating whether a number is an integer. This result
paves the way for a more effective automata-based decision procedure for the
first-order logic over (R, Z,+, <). wdbas can be handled algorithmically almost
? This work was supported by the German Research Foundation (DFG) and the Swiss

National Science Foundation (SNF).
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as efficiently as automata over finite words. For instance, in contrast to Büchi au-
tomata, they can be efficiently minimized [16] and they are easy to complement.
wdbas and this logic have a wide range of applications, such as the symbolic
verification of linear hybrid automata [3,4]. The automata library lash [15] pro-
vides implementations of all the needed operations for implementing a decision
procedure for the first-order logic over (R, Z,+, <) based on wdbas.

However, analogous to bdds, it turns out that a limiting factor in the
automata-based representation of potential infinite sets of integers or reals is
the size of the automata. In fact, our first results of an automata-based decision
procedure for the first-order theory over (R, Z,+, <) were rather discouraging;
even for medium sized formulas the minimal wdbas were often huge. An analysis
of the constructed automata lead to the results presented in this article.

For bdds, many algorithms and methods have been developed to reduce the
bdd sizes, which have improved the performance bdd-based model-checkers. One
of these techniques is the use of don’t cares [12]. Roughly speaking, don’t cares
are inputs of a combinational circuit for which the circuit output is not specified
or irrelevant. The bdd representation of a circuit can be reduced by choosing
appropriate output values for the don’t care inputs. In this paper, we generalize
the notion of don’t cares for bdds to languages. In the most general sense, a
don’t care set is a language over some alphabet. The set chosen depends on the
application domain. The intuition of a don’t care word is that it is irrelevant
whether this word belongs to a language or not. Adding or removing don’t care
words to languages can result in smaller automata. A trivial example is where
the don’t care set consists of all words. In this case we can either add or remove
all words and obtain an automaton with a single state. However, usually a don’t
care set is a proper subset of all words and it is not obvious which of these
words must be added or removed to obtain smaller automata. Furthermore,
the order in which we add and remove words might lead to different (minimal)
automata accepting the same language modulo the don’t care set. We prove that
under certain restrictions on the don’t care set, the minimal wdba is uniquely
determined and can be efficiently constructed.

To demonstrate the effectiveness of don’t cares for automata, we apply it
to the approach for representing and manipulating sets of integers and reals by
wdbas. First, we define a straightforward don’t care set when encoding reals
by ω-words. Second, we present an automata construction for handling the exis-
tential quantification, which becomes more complicated when using don’t cares.
Third, we show by experiments that introducing don’t care sets can reduce the
automata sizes significantly in computing and representing sets of integers and
reals.

We proceed as follows. In 2, we give preliminaries. In §3, we introduce don’t
care words and present our general results about don’t care sets. In §4, we present
an automata construction for projecting sets of reals that are represented by
wdbas modulo a specific set of don’t cares. In §5, we report on experimental
results. Finally, in §6, we draw conclusions.
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2 Preliminaries

We assume that the reader is familiar with the basics of automata theory and
first-order logic. The purpose of this section is to recall some background in these
areas, and fix the notation and terminology used in the remainder of the text.

2.1 Languages and Deterministic Automata

Let Σ be an alphabet. We denote the set of all finite words over Σ by Σ∗ and
Σ+ denotes the set Σ∗ \ {ε}, where ε is the empty word. Σω is the set of all ω-
words over Σ. The concatenation of words is written as juxtaposition. We write
|w| for the length of w ∈ Σ∗. We often write a word w ∈ Σ∗ of length ` ≥ 0
as w(0) . . . w(`− 1) and an ω-word α ∈ Σω as α(0)α(1)α(2) . . . , where w(i) and
α(i) denote the ith letter of w and α, respectively.

A deterministic finite automaton (dfa) A is a tuple (Q,Σ, δ, qI, F ), where
Q is a finite set of states, Σ is an alphabet, δ : Q × Σ → Q is the transition
function, qI ∈ Q is the initial state, and F ⊆ Q is the set of accepting states.
A state not in F is a rejecting state. The size of A is the cardinality of Q. We
write Aq for the dfa that is identical to A except that q ∈ Q is the initial
state. We extend δ to the function δ̂ : Q × Σ∗ → Q defined as δ̂(q, ε) := q and
δ̂(q, bu) := δ̂(δ(q, b), u), where q ∈ Q, b ∈ Σ, and u ∈ Σ∗. The dfa A defines the
language L∗(A) := {w ∈ Σ∗ : δ̂(qI, w) ∈ F}.

The state q ∈ Q is reachable from p ∈ Q if there is a word w ∈ Σ∗ such
that δ̂(p, w) = q. In the remainder of the text, we assume that every state in
an automaton is reachable from its initial state. A strongly connected component
(scc) of A is a set S ⊆ Q such that every p ∈ S is reachable from every q ∈ S
and S is maximal. For q ∈ Q, SCC(q) denotes the scc S ⊆ Q with q ∈ S. We
call an scc S accepting if S ⊆ F , and rejecting if S ∩ F = ∅.

We can view a dfa as a deterministic Büchi automaton (dba). A run of the
dba A on the ω-word α ∈ Σω is an ω-word ϑ ∈ Qω such that ϑ(0) = qI and
ϑ(i + 1) = δ(ϑ(i), α(i)), for all i ∈ N. The run ϑ is accepting if Inf(ϑ) ∩ F 6= ∅,
where Inf(ϑ) is the set of states that occur infinitely often in ϑ. The dba A

defines the ω-language Lω(A) := {α ∈ Σω : the run of A on α is accepting}.
The dba A is weak if every scc of A is either accepting or rejecting. We use the
initialism wdba for “weak deterministic Büchi automaton.” Similarly, we can
view a dfa as a deterministic co-Büchi automaton (co-dba). Runs of co-dbas
are defined as for dbas. A run ϑ of a co-dba C is accepting if Inf(ϑ) ∩ F = ∅,
where F is the set of “accepting” states of C. We define Lω(C) := {α ∈ Σω :
the run of C on α is accepting (in the co-Büchi sense)}.

2.2 Representing Sets of Reals with Automata

Let R be the structure (R, Z,+, <), where + and < are as expected and Z is
the unary predicate such that Z(x) is true iff x is an integer. For a formula
ϕ(x1, . . . , xr) and a1, . . . , ar ∈ R, we write R |= ϕ[a1, . . . , ar] if ϕ is true in R
when the variable xi is interpreted as ai, for 1 ≤ i ≤ r.
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Boigelot, Jodogne, and Wolper have shown in [5] that for every first-order
definable set X ⊆ Rr in R, there is a wdba A that describes X. Moreover, they
have shown that A can be effectively constructed from a formula ϕ(x1, . . . , xr)
that defines X, i.e., X = {a ∈ Rr : R |= ϕ[a]}. We recall the precise correspon-
dence between subsets of Rr and ω-languages from [5]. In the remainder of the
text, let % > 1 and Σ := {0, . . . , %− 1} be fixed. % is called the base.

Definition 1. Let r ≥ 1.
1. Vr denotes the set of all ω-words over the alphabet Σr ∪{?} of the form v ?γ,

where v ∈ (Σr)+ with v(0) ∈ {0, %− 1}r and γ ∈ (Σr)ω.
2. An ω-word v ? γ ∈ Vr represents the vector of reals with r components

〈〈v?γ〉〉 :=
∑

0<i<|v|

%|v|−i−1 ·v(i)+
∑
i≥0

%−i−1 ·γ(i)+

{
0 if v(0) = 0,
−%|v|−1 if v(0) = %− 1,

where vector addition and scalar multiplication are componentwise.3

3. For a formula ϕ(x1, . . . , xr), we define L(ϕ) := {α ∈ Vr : R |= ϕ[〈〈α〉〉]}.
Note that the encoding v ? γ ∈ V1 of a real is based on the %’s complement
representation. The symbol ? plays the role of a decimal point, separating the
integer part v from the fractional part γ. Moreover, note that every vector in
Rr can be represented by an ω-word in Vr. However, the representation is not
unique. First, we can repeat the first letter arbitrary often without changing the
represented vector. Second, a vector that contains in a component a rational
whose denominator has only prime factors that are also factors of the base %,
has distinct representations, e.g., in base % = 2, 〈〈0 ? 10ω〉〉 = 〈〈0 ? 01ω〉〉 = 1

2 ,
where bω denotes the infinite repetition of the letter b.

Additional notation. Let r ≥ 1 and s, t ∈ {1, . . . , r} with s ≤ t. We denote the
tth coordinate of b ∈ Σr by b�t and b�s,t := (b�s, b�s+1, . . . , b�t). We write α�t for
the tth track of α ∈ (Σr∪{?})ω, i.e., α�t is the ω-word γ ∈ (Σ∪{?})ω defined as
γ(i) := ? if α(i) = ?, and γ(i) := α(i)�t otherwise, for i ∈ N. Analogously, α�s,t

denotes the ω-word consisting of the tracks s, s+ 1, . . . , t of α. For m,n ≥ 1 and
ω-words α ∈ (Σm ∪ {?})ω and β ∈ (Σn ∪ {?})ω, we write (α, β) for the ω-word
γ ∈ (Σm+n ∪ {?})ω with γ�1,m = α and γ�m+1,m+n = β. Here, we make the
assumption that α(i) = ? iff β(i) = ?, for all i ∈ N. We use the same notation
for finite words, which is defined analogously.

3 Don’t Cares for Optimizing the Real Representation

In this section, we define our optimized representation of the reals as ω-words,
which leads us to the general concept of don’t care words for ω-languages. We
first give a motivating example.

Example 2. Consider the formula ϕ(x, y) := x 6= 0 ∧ x+y = 0. The minimal
wdba accepting L(ϕ) in base % = 2 is shown in Figure 1(a). This wdba is rather
3 Note that we do not distinguish between vectors and tuples.
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Fig. 1. Minimal wdbas for the formula x 6=0 ∧ x+y =0. For the sake of readability,
we have omitted the rejecting sink states and their incoming transitions.

complex as it must either accept or reject all ω-words that represent the same
pair of reals. For instance, the ω-words α := (1, 0)?(1, 0)ω and β := (0, 1)?(0, 1)ω

represent the pair (0, 0) of reals, which does not satisfy ϕ and thus, the wdba
must reject them. In the optimized encoding we exploit that already the ω-word
γ := (0, 0) ? (0, 0)ω takes care of the fact that the pair of reals (0, 0) is not
in the represented set. That means, we can add α and β to the ω-language.
More general, an ω-word that has a suffix in which at least one of its tracks is
of the form 1ω is treated as a don’t care, i.e., we can freely chose whether the
automaton should accept or reject this ω-word. Observe that for every don’t
care representing the pair (x, y) of reals, there is an ω-word that also represents
(x, y) and is not a don’t care.

Consider again the ω-words α and β, which are don’t cares. When reading
these ω-words, we eventually loop in the states 4 and 5, respectively. Note that
all runs that eventually stay in one of these states are don’t cares. Making the
states 4 and 5 accepting clearly alters the ω-language of the wdba. However, we
only add ω-words that are don’t cares, like α and β. If the states 4 and 5 are
accepting we can merge them with state 3. Analogously, we can make state 2
rejecting. Then, we can merge the states 2 and 9 with the rejecting sink state.
We could also make the states 11 or 12 accepting. However, this would not be
beneficial since it will prevent us from merging the states 10, 11, and 12. The
resulting minimized automaton is depicted in Figure 1(b).

In the context of encoding reals by ω-words we use the following don’t cares.

Definition 3. Let r ≥ 1. An ω-word α ∈ (Σr ∪ {?})ω is a don’t care word if
there are t ∈ {1, . . . , r} and k ∈ N such that α(i) ∈ Σr and α(i)�t = % − 1, for
all i ≥ k. DCr denotes the set of all don’t care words in (Σr ∪ {?})ω.

Instead of constructing a wdba that accepts the ω-language L(ϕ) for a formula
ϕ, we are interested in constructing a wdba that accepts an ω-language that
coincide on all the ω-words in L(ϕ) that are not don’t care words. Note that
removing or adding all don’t care words to L(ϕ) does not necessarily result in a
smaller automaton. Also note that by removing or adding all don’t care words
we can obtain ω-languages that are not recognizable by wdbas.
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The following definition generalizes the concept of ω-words for which we “do
not care” if they belong to an ω-language or not.

Definition 4. A don’t care set D is an ω-language over some alphabet Γ , and
an ω-word in D is a don’t care word. For ω-languages L,L′ ⊆ Γω, we write
L ≡D L′ if L \D = L′ \D.

We want to remark that the so-called don’t care sets will usually depend on the
application context. In our case, the don’t care sets DCr naturally arise from the
encoding of the reals in Definition 1.

In the remainder of this section, we present general results about ω-languages
with respect to a don’t care setD. We focus on ω-languages that can be described
by Büchi automata, in particular by wdbas. In §3.1 and §3.2, we establish some
straightforward facts. Namely, in §3.1, we observe that standard automata con-
structions carry over to handle the Boolean operations when using don’t care
sets, and in §3.2, we show how to solve the emptiness problem for Büchi au-
tomata with respect to an ω-regular don’t care set D ⊆ Γω. In §3.3, we describe
minimization of wdbas with respect to a don’t care set D ⊆ Γω, where we
assume that D fulfills the two properties: (1) D 6= Γω and (2) α ∈ D ⇔ uα ∈ D,
for all u ∈ Γ ∗ and α ∈ Γω. In particular, we show that the minimal wdba is
uniquely determined (up to isomorphism) and we give an efficient algorithm for
constructing it under the assumption that D is ω-regular.

3.1 Boolean Operations

The automata construction for Boolean operations, like union and complementa-
tion of ω-languages, need not to be changed when using a don’t care set D ⊆ Γω.
For instance, for complementation, if we have that L ≡D L′, for ω-languages
L,L′ ⊆ Γω, then we have that Γω \ L ≡D Γω \ L′. Note that it is irrelevant
whether L and L′ differ on D, i.e., L ∩D 6= L′ ∩D.

For wdbas, we can use the standard product construction for the intersection
and union. Let A = (Q,Γ, δ, qI, F ) and B = (Q′, Γ, δ′, q′I, F

′) be wdbas. For the
intersection, we define D := (Q×Q′, Γ, η, (qI, q′I), F × F ′), where η((q, q′), b) :=
(δ(q, b), δ′(q′, b)), for q ∈ Q, q′ ∈ Q′, and b ∈ Γ . The construction for the union
is similar. Complementing wdbas is done by flipping accepting and rejecting
states of a wdba. We define C := (Q,Γ, δ, qI, Q \ F ).

Proposition 5. (a) For the wdba D, it holds that Lω(D) ≡D Lω(A)∩Lω(B).
(b) For the wdba C, it holds that Lω(C) ≡D Γω \ Lω(A).

3.2 Emptiness Check

The emptiness problem for Büchi automata modulo a don’t care set D is to
check whether a Büchi automaton A accepts an ω-word that is not in D. If D is
ω-regular, then we can solve this problem by constructing the Büchi automaton
accepting Lω(A) \D and check whether the resulting Büchi automaton accepts
an ω-word. The complexity is in O(n), where n is the number of states of A. Note
that D is fixed and hence, the size of the Büchi automaton for D is a constant.
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3.3 Minimizing WDBAs with Don’t Cares

Löding showed in [16] that the minimal wdba can be constructed in two steps.
In the first steps, the wdba is put in linear time into a normal form by deter-
mining a suitable set of accepting states. This step does not change the accepted
ω-language, since it only alters the acceptance types of states (rejecting or ac-
cepting) that cannot occur infinitely often in a run. In the second step, the
wdba in normal form is minimized by a standard dfa minimization algorithm,
like that of Hopcroft [13]. We extend Löding’s algorithm to wdbas such that it
takes a don’t care set D over the alphabet Γ into account, where we require that
(1) D 6= Γω and (2) α ∈ D ⇔ uα ∈ D, for all u ∈ Γ ∗ and α ∈ Γω.

Definition 6. Let A = (Q,Γ, δ, qI, F ) be a wdba.
1. A is D-minimal if there is no smaller wdba B such that Lω(A) ≡D Lω(B).
2. A state q ∈ Q is D-recurrent if Lω(A′) \ D 6= ∅, where A′ is the wdba

(Q,Γ, δ, q,SCC(q)). A state is D-transient if it is not D-recurrent. An scc is
D-recurrent if it contains a D-recurrent state, otherwise, it is D-transient.

Note that an scc without loops is D-transient. Moreover, note that for the
ω-words not in D, it is irrelevant whether a D-transient scc is accepting or
rejecting. Thus, we can make D-transient sccs accepting or rejecting without
altering the accepted ω-language modulo the don’t care set D.

Similar to Löding’s algorithm, we construct first a suitable set of accepting
states by determining the acceptance types of D-transient states optimal in the
sense that applying a minimization algorithm for dfas yields the minimal wdba
with respect to the don’t care set D. We need the following definitions.

Definition 7. Let A = (Q,Γ, δ, qI, F ) be a wdba.
1. A mapping c : Q→ N is a D-coloring for A if the two conditions hold:

– c(q) is even ⇔ q ∈ F , for every D-recurrent state q ∈ Q, and
– c(p) ≤ c(q), for all p, q ∈ Q and b ∈ Γ with δ(p, b) = q.

The D-coloring c is k-maximal, where k ∈ N, if c(q) ≤ k and c′(q) ≤ c(q),
for every q ∈ Q and every D-coloring c′ : Q→ N for A.

2. A is in D-normal form if for some even k ∈ N, there is a k-maximal D-
coloring c : Q→ N such that F = Fc, where Fc := {q ∈ Q : c(q) is even}.4

The algorithm in Figure 2 computes the D-normal form of a given wdba
A = (Q,Γ, δ, qI, F ). The main task of the algorithm is to compute a k-maximal
coloring for A, where k is even and large enough. This is done by looking at
the acyclic scc graph of A, which the algorithm traverses in a reversed topo-
logical ordering (lines 4–19). The scc graph and the topological ordering can
be computed in linear time. Observe that the states in an scc have the same
color in a D-coloring. In the ith traversal of the for-loop (lines 4–19), we color the
states in the ith scc with respect to the reversed topological ordering, where the
states in the successor sccs are already colored. If there are no successor sccs,
4 Alternatively, we could require that k has to be odd. But we must fix some parity

in order to obtain a canonical form for D-minimal wdbas in D-normal form.
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1: Compute the scc graph G of A.
2: Compute a topological ordering v1, . . . , vm on the vertices of G. To simplify

notation, we identify a vertex vi with its corresponding scc, i.e., a set of states.
3: Let k ≥ m be an even number.
4: for i = m downto 1 do /* Compute a k-maximal D-coloring c : Q → N */
5: if vi has no successors and vi is accepting then
6: Define c(q) := k, for all q ∈ vi.
7: else if vi has no successors and vi is rejecting then
8: Define c(q) := k − 1, for all q ∈ vi.
9: else

10: Let ` := min{c(q) : vj is a successor of vi and q ∈ vj}.
11: if vi is D-transient then
12: Define c(q) := `, for all q ∈ vi.
13: else if (` is even and vi is accepting) or (` is odd and vi is rejecting) then
14: Define c(q) := `, for all q ∈ vi.
15: else
16: Define c(q) := `− 1, for all q ∈ vi.
17: end if
18: end if
19: end for
20: Return the wdba A′ := (Q, Γ, δ, qI, Fc).

Fig. 2. Algorithm for computing the D-normal form of a wdba A = (Q, Γ, δ, qI, F ).

we assign the maximal color to the states depending on k and their acceptance
type (lines 5–8). Note that an scc with no successors cannot be D-transient,
since D 6= Γω. If the scc has successors, the maximal color for the states in this
scc depends on the minimal color ` of the successor sccs (line 10). If the scc
is D-transient (lines 11–12) then ` is the maximal color we can assign to these
states. Depending on `, the states in the scc will then be either accepting or
rejecting in the resulting wdba. If the scc is D-recurrent, the coloring has to
preserve the acceptance type of the states in the scc. Depending on `, we assign
the maximal possible color to the states in the scc (lines 13–15).

In line 11 of the algorithm, we must check whether an scc S is D-transient.
This can be done by checking whether Lω(C) ⊆ D holds, where C is the wdba
(Q,Σ, δ, q, S) and q is an arbitrarily chosen state in S. Note that Lω(C) ⊆ D
iff Lω(C) ∩ (Γω \D) = ∅. Under the assumption that D is ω-regular, it is easy
to see that Lω(C) ∩ (Γω \ D) = ∅ can be checked in time O(|S|), since D is
fixed and we can construct a Büchi automaton for the ω-language Γω \ D in
a preprocessing step. In summary, the checks performed in line 11 take time
O(

∑
S scc of A |S|) = O(|Q|). So, if D is ω-regular, the algorithm in Figure 2

computes a k-maximal coloring in linear time.

Lemma 8. For a given wdba A = (Q,Γ, δ, qI, F ), there is a set F ′ ⊆ Q
such that the wdba A′ := (Q,Γ, δ, qI, F ′) is in D-normal form and Lω(A) ≡D

Lω(A′). The set F ′ can be constructed in time O(|Q|) if D is ω-regular.

Our minimization algorithm for wdbas with the don’t care set D is as follows:
First, we put the given wdba into D-normal form. Second, we apply to the
wdba in D-normal form the classical dfa minimization algorithm [13]. The
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overall complexity is in O(n log n), where n is the size of A. This algorithm
returns the unique minimal wdba for the don’t care set D.

Theorem 9. For a given wdba A = (Q,Γ, δ, qI, F ), there is a D-minimal
wdba A′ with Lω(A) ≡D Lω(A′). A′ can be constructed in time O(|Q| log |Q|)
if D is ω-regular. Furthermore, every D-minimal wdba B in D-normal form
with Lω(A) ≡D Lω(B) is isomorphic to A′.

Remark 10. Similar to Definition 3, we can define for r ≥ 1, the set Ir that
consists of the ω-words over Σr ∪{?} that are not periodic in at least one track.
Note that such a periodic track, if it is also in V1, corresponds to an irrational
number. Obviously, Ir has the properties (1) and (2). The decision procedure
for the first-order logic over R using wdbas given in [5] can be understood as
an automata-based decision procedure for the first-order logic over (Q, Z,+, <)
using wdbas with the don’t care sets Ir. Note that the ω-languages definable
in the first-order logic over (Q, Z,+, <) are in general not ω-regular using the
encoding in Definition 1.2. From this point of view, we see that wdbas modulo
don’t care sets can describe non-ω-regular languages and in this case, they even
have a canonical minimal form (Theorem 9). Analogously, wdbas with the don’t
care sets DCr can describe ω-regular languages that are not in the Borel class Fσ∩
Gδ, which exactly captures the expressive power of wdbas [18]. Furthermore,
by Theorem 9, the ω-words in DCr that have to be added to or removed from
the ω-language are uniquely determined in order to obtain the minimal wdba
for the ω-language modulo the don’t care set DCr.

4 Quantification for the Reals

In this section, we give an automata construction for wdbas that handles the
quantification in the first-order logic over R when using the don’t care sets DCr.

Roughly speaking, for the straightforward encoding, the existential quantifi-
cation is done by eliminating the track of the quantified variable in the transitions
of the wdba.5 Intuitively, this nondeterministic automaton guesses the digits of
the quantified variable. As explained in [5], we can determinize this automaton
by using the breakpoint construction for weak co-Büchi automata (see [14]). The
construction for handling the existential quantification that we present in this
subsection for the optimized encoding is also based on the breakpoint construc-
tion. However, the construction is more subtle because of the following problem:
Assume that A is a wdba for the formula ϕ(x1, . . . , xr), i.e., Lω(A) ≡DCr

L(ϕ).
Eliminating the track of the variable xr results in a nondeterministic Büchi
automaton that might accept ω-words α 6∈ DCr−1 for which there is only an
ω-word γ ∈ DC1 such that (α, γ) ∈ Lω(A). A wdba for ∃xrϕ must not accept
such ω-words α. A concrete instance of this problem is given in the example:

Example 11. Consider again the formula ϕ(x, y) := x 6= 0 ∧ x + y = 0 and
the wdba in Figure 1(b) from Example 2. Eliminating the x-track, i.e., the
5 Some additional work is needed for the sign bit, see, e.g., [5, 6] for details.
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first track, yields a nondeterministic Büchi automaton that accepts the ω-word
0 ? 0ω, since we can infinitely loop in state q := {3, 4, 5} by reading the letter 0.
However, R 6|= ∃xϕ[〈〈0 ? 0ω〉〉]. Here, the problem is that the only ω-word γ such
that (γ, 0 ? 0ω) is accepted by the wdba in Figure 1(b) is the don’t care word
1 ? 1ω. On the one hand, for the ω-word 0 ? 0ω the state q has to be rejecting.
On the other hand, for the ω-word 0 ? (10)ω the state q has to be accepting.

Before we present our construction, we remark that removing all don’t care
words from the ω-language of the given wdba before applying the construction
in [5] for handling the existential quantification does not work. The reason is that
the resulting dba is not necessarily weak and hence, we cannot longer apply the
breakpoint construction after eliminating the track of the quantified variable.

Assume that A = (Q,Σr ∪ {?}, δ, qI, F ) is a wdba for the formula ϕ with r
free variables, i.e., Lω(A) ≡DCr L(ϕ). We divide the construction of the wdba
for ∃xiϕ into two steps. First, we construct from A a co-dba B that accepts an
ω-language for ∃xiϕ, i.e., Lω(B) ≡DCr−1 L(∃xiϕ). Second, we show that B can
be easily turned into a wdba. To simplify notation, we assume without loss of
generality that i = r and Lω(A) ⊆ Vr.

To define B’s transition function, we need the following definitions. For u ∈
Σ+ with u(0) ∈ {0, %− 1}, we define

u :=


0n if u = (%− 1)n with n > 0,
010n if u = 0(%− 1)n with n ≥ 0,
v(c+ 1)0n if u = vc(%− 1)n with v ∈ Σ+, c ∈ Σ \ {%− 1}, and n ≥ 0.

Note that 〈〈u(%− 1)n ? (%− 1)ω〉〉 = 〈〈u0n ? 0ω〉〉, for all n ≥ 0 and u ∈ Σ+ with
u(0) ∈ {0, %− 1}. We define the relation M ⊆ Q×Q by pMq iff p ∈ F and for
every α ∈ (Σr−1)ω \ DCr−1, it holds that (α, (% − 1)ω) ∈ Lω(A′) ⇒ (α, 0ω) ∈
Lω(Aq), where A′ is the wdba (Q,Σr ∪ {?}, δ, p,SCC(p)).

Intuitively, the construction works as follows. As in the breakpoint construc-
tion, B has states of the form (R,S). Roughly speaking, in the first component
we collect A’s states that are reached by guessing the digits of the variable xr.
The second component checks whether we eventually stay in an accepting scc
of A. In contrast to the breakpoint construction, R and S are not only subsets
of Q but sets of pairs of states of A. The reason for using pairs of states is the
following. Assume that we reach the pair (R,S) from B’s initial state by reading
a finite prefix of an ω-word γ ∈ Vr−1 \ DCr−1. For (p, q) ∈ R, we have that
p is reached by guessing a finite prefix of the digits of a real number for the
quantified variable xr. However, the guessed digits u could be a finite prefix of
a don’t care word α ∈ DC1 ∩ V1. Suppose that we visit p infinitely often when
reading (γ, α). If p is accepting, A accepts (γ, α). However, since (γ, α) is a don’t
care word, 〈〈α〉〉 is not necessarily a real number such that R |= ϕ[〈〈γ〉〉, 〈〈α〉〉]. In
order to detect such a case, we use the state q and the relation M . The state q
is the state that is reached when guessing the corresponding digits for u of the
ω-word β ∈ V1 \ DC1 such that 〈〈α〉〉 = 〈〈β〉〉. If pMq holds, then we know that
R |= ϕ[〈〈γ〉〉, 〈〈α〉〉], since 〈〈α〉〉 = 〈〈β〉〉 and A also accepts β. Hence, p is rightly an
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accepting state for the prefix of γ we have read so far. In the case where pMq
does not hold, we have to treat p as a rejecting state.

Formally, B is the co-dba ({q′I}∪ (K×K), Σr−1 ∪{?}, η, q′I,K×{∅}), where
K := P(Q × Q), q′I is a fresh state and η is defined as follows. For the initial
state, we define η(q′I, b) := (∅, ∅), for b 6∈ {0, %− 1}r−1, and for b ∈ {0, %− 1}r−1,
we define η(q′I, b) := (I(b), ∅), where

I(b) :=
{(
δ̂(qI, (b|u|, u)), δ̂(qI, (b|u|, u))

)
: u ∈ Σ+ with u(0) ∈ {0, 1}

}
.

For a state (R,S) ∈ K ×K and b ∈ Σr−1, we define

η
(
(R,S), b

)
:=

{
(R′, R′ ∩M) if S = ∅,
(R′, S′ ∩M) if S 6= ∅,

where
R′ :=

{(
δ(p, (b, %− 1)), δ(q, (b, 0))

)
: (p, q) ∈ R

}
∪{(

δ(p, (b, c)), δ(p, (b, c+ 1))
)

: (p, q) ∈ R and c ∈ Σ \ {%− 1}
}
, and

S′ :=
{(
δ(p, (b, %− 1)), δ(q, (b, 0))

)
: (p, q) ∈ S

}
∪{(

δ(p, (b, c)), δ(p, (b, c+ 1))
)

: (p, q) ∈ S and c ∈ Σ \ {%− 1}
}
.

Finally, η((R,S), ?) := (R′, R′∩M), where R′ := {(δ(p, ?), δ(q, ?)) : (p, q) ∈ R}.
Lemma 12. It holds that Lω(B) ≡DCr−1 L(∃xrϕ).

An scc of B might contain accepting and rejecting states. The next lemma
shows that if an scc of B contains accepting and rejecting states then we can
make all states in this scc accepting. Given this, it is easy to turn the co-dba
B into a wdba A′ for L(∃xrϕ), i.e., Lω(A′) ≡DCr−1 L(∃xrϕ).
Lemma 13. Let ψ(y1, . . . , ys) be a formula and let C = (P,Σs ∪ {?}, µ, pI, E)
be a co-dba with Lω(C) ≡DCs

L(ψ). If S ⊆ P is an scc with S ∩ E 6= ∅ then
Lω(C′) ≡DCs L(ψ), where C′ is the co-dba (P,Σs ∪ {?}, µ, pI, E ∪ S).

The above given construction yields a wdba that has 1 + 22·|Q|2 states.
However, some of the states are not reachable from the initial state q′I, e.g., the
states (R,S) ∈ K ×K with S 6⊆ R are never reachable from q′I. Next, we briefly
discuss the auxiliary computations involved in the construction.

For the transitions from the initial state q′I, we need to compute the sets I(b),
for every b ∈ Σr−1. Computing I(b) separately for each b ∈ Σr−1, yields an
algorithm that is exponential in r and is not practical. The algorithm described
in [6] for determining the initial transitions of dfas for quantifying Presburger
arithmetic formulas, can be adopted to our construction and it works well in
practice, although it has exponential worst case complexity in r.

For computing the relation M , we define the wdbas G := (Q,Σr−1, δ1, qI, F )
and H := (Q,Σr−1, δ2, qI, F ), where δ1(q, b) := δ(p, (b, % − 1)) and δ2(q, b) :=
δ(p, (b, 0)), for q ∈ Q and b ∈ Σr−1. For states p, q ∈ Q, we have that pMq iff
(1) p ∈ F and (2) Lω(G′) ∩ Lω(Hq) contains an ω-word not in DCr−1, where G′

is the wdba (Q,Σr−1, δ1, p,SCC(p)). Since the scc of p consists of at most |F |
states, condition (2) can be checked in time O(|Q| · |F |), see §3.1 and §3.2. An
upper bound for computing M is O(|Q|2 · |F |2), since the first component in M
has to be a state in F .
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Fig. 3. Automata sizes encountered during the computation for Fischer’s protocol with
4 processes. The solid (dashed) lines correspond to the optimized (straightforward)
encoding. The intermediate construction steps correspond to the flows and jumps of
the processes in Fischer’s protocol. We obtain similar results for the other protocols.

5 Experimental Results

In this section, we report on experimental results obtained from our prototype
implementation of an automata-based decision procedure for the first-order logic
over R.6 We want to point out that in our implementation we only used the don’t
care sets DCr (Definition 3). We have carried out tests on two different classes of
problems: (1) randomly generated formulas and (2) the iterative computation of
the reachable states of infinite-state systems. In the later case, we mainly focus
on the sizes of the automata, as our prototype is not intended to compete with
optimized tools for solving the reachability problem.

Random Formulas. We have applied our prototype to randomly generated for-
mulas. For a test set of 100 formulas with 4 variables with about 10 disjunctions
and conjunctions each, the savings in terms of automata sizes encountered dur-
ing the construction are observable (on average 8.4%), although moderate. Our
new construction for the quantification generates larger automata (on average
40.1%), however, after normalization and minimization the resulting automata
with don’t care sets are smaller (on average 7.7%). Our prototype requires up
to one order of magnitude more runtime for the quantification when using don’t
care words. When restricting the 4 variables to the integer domain, the savings
due to the don’t care set become more substantial (on average 48.5%), as ev-
ery integer has encodings that are in the don’t care set. In comparison to an
implementation based on lash [15] without don’t cares, our prototype is faster.
The marginal difference in performance on small quantifier free formulas grows
rapidly when the formulas contain quantifiers or have more variables.

Reachability Analysis. Infinite-state systems, like systems with unbounded inte-
gers or linear hybrid automata can be analyzed symbolically in the first-order
logic over R. We have analyzed the Bakery protocol, Fischer’s protocol, and the
railroad crossing example [11]. Using don’t care words, the automata constructed
6 Our prototype is publicly available online at http://www.informatik.

uni-freiburg.de/∼eisinger/research/rva.html.
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with don’t cares without don’t cares
iterations peak final runtime peak final runtime

Fischer 2 9 238 53 43.98s 2,318 182 49.52s

Fischer 3 15 44,631 405 164.75s 90,422 2,045 184.59s

Fischer 4 21 51,676 4,377 2,739.58s 417,649 27,548 4,353.66s

Fischer 5 27 145,629 55,885 20,972.79s 1625,141 430,727 53,940.37s

Railroad 8 152,826 7,735 1,594.32s 365,004 9,411 1,080.24s

Bakery 2 30 107 - 52.42s 557 - 63.64s

Bakery 3 30 314 - 107.74s 2,010 - 121.09s

Bakery 4 30 909 - 201.41s 8,883 - 272.70s

Fig. 4. Iterations required to reach the fixpoint of the reachable state set for several
infinite-state systems, construction times, and peak and final automata sizes. Note that
the fixpoint for Bakery cannot be reached using our naive fixpoint computation.

during the iterative computation of the reachable states become smaller by an
order of magnitude (see Figures 3 and 4). This saving can be explained by the
following two observations. First, the formulas that describe the transitions of a
system contain many variables (the formulas for Fischer’s protocol with 5 pro-
cesses have 34 variables). Note that the don’t care sets contain more words if the
formula contains many free variables. Second, the construction of the reachable
state set requires a large number of automata constructions. Although the saving
in a single automata construction might be small, the overall saving grows with
the number of automata constructions.

6 Conclusions

We generalized the concept of don’t cares for bdds to automata and demon-
strated that don’t cares are effective in reducing the automata sizes. On the one
hand, we were able to prove rather general results about don’t cares sets, like the
minimization of wdbas. On the other hand, we presented an automata construc-
tion for the quantification in the first-order logic R, which depends on the used
don’t care set. We demonstrated the potential of don’t cares by a prototype.

Related to our work is [2] on widening sets of integers that are represented by
automata. In order to obtain always an overapproximation of a set, widening an
automaton represented set only adds words to the language. In contrast, we al-
low words to be removed, and adding or removing don’t care words still yields an
exact automata-based representation of a set. Moreover, for the sets of vectors of
reals, we used a don’t care set for which the automata-based set representation
is still unique. We want to point out that the widening method [2] is complemen-
tary to don’t care words and hence, they can be combined in infinite-state model
checkers that use an automata-based representation for the reachable states of a
system. Analogously, don’t care words are complementary to acceleration tech-
niques like [7]. However, further work is needed in combining these techniques,
since the automata constructions might need some adjustment to work also for
don’t care words (see, e.g., the automata construction in §4).
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Future work also includes improving the mechanization of the automata con-
struction for handling the existential quantification in the first-order logic over
R, which is currently the bottleneck in our prototype. Another direction we
want to pursue is to exploit don’t cares further. For example, for carrying out
the quantification of x in the second disjunct of the formula ψ(y) ∨ ∃xϕ(x, y),
we can use the language of the automaton for ψ as a don’t care set for making
the automaton for ϕ smaller before we apply the construction for the existential
quantification. Overall, we believe that don’t care words have a large potential
for making automata-based model checking more effective.
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8. J. Büchi, Weak second-order arithmetic and finite automata, Zeitschrift der math-
ematischen Logik und Grundlagen der Mathematik, 6 (1960), pp. 66–92.

9. , On a decision method in restricted second order arithmetic, in Logic,
Methodology and Philosophy of Science, Stanford University Press, 1962, pp. 1–11.

10. J. Eisinger and F. Klaedtke, Don’t care words with an application to the
automata-based approach for real addition, Tech. Rep. 223, Institut für Informatik,
Albert-Ludwigs-Universität Freiburg, 2006.

11. T. Henzinger, The theory of hybrid automata, in LICS’96, pp. 278–292.
12. Y. Hong, P. A. Beerel, J. R. Burch, and K. L. McMillan, Safe BDD mini-

mization using don’t cares, in DAC’97, ACM Press, pp. 208–213.
13. J. E. Hopcroft, An n log n algorithm for minimizing the states in a finite au-

tomaton, in Theory of Machines and Computations, 1971, pp. 189–196.
14. O. Kupferman and M. Vardi, Weak alternating automata are not that weak,

ACM ToCL, 2 (2001), pp. 408–429.
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