
Published as a conference paper at ICLR 2018

DON’T DECAY THE LEARNING RATE,

INCREASE THE BATCH SIZE

Samuel L. Smith∗, Pieter-Jan Kindermans∗, Chris Ying & Quoc V. Le
Google Brain
{slsmith, pikinder, chrisying, qvl}@google.com

ABSTRACT

It is common practice to decay the learning rate. Here we show one can usually
obtain the same learning curve on both training and test sets by instead increasing
the batch size during training. This procedure is successful for stochastic gradi-
ent descent (SGD), SGD with momentum, Nesterov momentum, and Adam. It
reaches equivalent test accuracies after the same number of training epochs, but
with fewer parameter updates, leading to greater parallelism and shorter training
times. We can further reduce the number of parameter updates by increasing the
learning rate ǫ and scaling the batch size B ∝ ǫ. Finally, one can increase the mo-
mentum coefficient m and scale B ∝ 1/(1 − m), although this tends to slightly
reduce the test accuracy. Crucially, our techniques allow us to repurpose existing
training schedules for large batch training with no hyper-parameter tuning. We
train ResNet-50 on ImageNet to 76.1% validation accuracy in under 30 minutes.

1 INTRODUCTION

Stochastic gradient descent (SGD) remains the dominant optimization algorithm of deep learning.
However while SGD finds minima that generalize well (Zhang et al., 2016; Wilson et al., 2017),
each parameter update only takes a small step towards the objective. Increasing interest has focused
on large batch training (Goyal et al., 2017; Hoffer et al., 2017; You et al., 2017a), in an attempt to
increase the step size and reduce the number of parameter updates required to train a model. Large
batches can be parallelized across many machines, reducing training time. Unfortunately, when we
increase the batch size the test set accuracy often falls (Keskar et al., 2016; Goyal et al., 2017).

To understand this surprising observation, Smith & Le (2017) argued one should interpret SGD as
integrating a stochastic differential equation. They showed that the scale of random fluctuations in
the SGD dynamics, g = ǫ(NB − 1), where ǫ is the learning rate, N training set size and B batch
size. Furthermore, they found that there is an optimum fluctuation scale g which maximizes the test
set accuracy (at constant learning rate), and this introduces an optimal batch size proportional to the
learning rate when B ≪ N . Goyal et al. (2017) already observed this scaling rule empirically and
exploited it to train ResNet-50 to 76.3% ImageNet validation accuracy in one hour. Here we show,

• When one decays the learning rate, one simultaneously decays the scale of random fluctu-
ations g in the SGD dynamics. Decaying the learning rate is simulated annealing. We
propose an alternative procedure; instead of decaying the learning rate, we increase the
batch size during training. This strategy achieves near-identical model performance on the
test set with the same number of training epochs but significantly fewer parameter updates.
Our proposal does not require any fine-tuning as we follow pre-existing training schedules;
when the learning rate drops by a factor of α, we instead increase the batch size by α.

• As shown previously, we can further reduce the number of parameter updates by increasing
the learning rate and scaling B ∝ ǫ. One can also increase the momentum coefficient and
scale B ∝ 1/(1−m), although this slightly reduces the test accuracy. We train Inception-
ResNet-V2 on ImageNet in under 2500 parameter updates, using batches of 65536 images,
and reach a validation set accuracy of 77%. We also replicate the setup of Goyal et al.
(2017) on TPU and train ResNet-50 on ImageNet to 76.1% accuracy in under 30 minutes.

∗Both authors contributed equally. Work performed as members of the Google Brain Residency Program.

1



Published as a conference paper at ICLR 2018

We note that a number of recent works have discussed increasing the batch size during training
(Friedlander & Schmidt, 2012; Byrd et al., 2012; Balles et al., 2016; Bottou et al., 2016; De et al.,
2017), but to our knowledge no paper has shown empirically that increasing the batch size and decay-
ing the learning rate are quantitatively equivalent. A key contribution of our work is to demonstrate
that decaying learning rate schedules can be directly converted into increasing batch size schedules,
and vice versa; providing a straightforward pathway towards large batch training.

In section 2 we discuss the convergence criteria for SGD in strongly convex minima, in section 3 we
interpret decaying learning rates as simulated annealing, and in section 4 we discuss the difficulties
of training with large momentum coefficients. Finally in section 5 we present conclusive experimen-
tal evidence that the empirical benefits of decaying learning rates in deep learning can be obtained
by instead increasing the batch size during training. We exploit this observation and other tricks to
achieve efficient large batch training on CIFAR-10 and ImageNet.

2 STOCHASTIC GRADIENT DESCENT AND CONVEX OPTIMIZATION

SGD is a computationally-efficient alternative to full-batch training, but it introduces noise into the
gradient, which can obstruct optimization. It is often stated that to reach the minimum of a strongly
convex function we should decay the learning rate, such that (Robbins & Monro, 1951):

∞
∑

i=1

ǫi = ∞, (1)

∞
∑

i=1

ǫ2i < ∞. (2)

ǫi denotes the learning rate at the ith gradient update. Intuitively, equation 1 ensures we can reach
the minimum, no matter how far away our parameters are initialized, while equation 2 ensures that
the learning rate decays sufficiently quickly that we converge to the minimum, rather than bouncing
around it due to gradient noise (Welling & Teh, 2011). However, although these equations appear
to imply that the learning rate must decay during training, equation 2 holds only if the batch size
is constant.1 To consider how to proceed when the batch size can vary, we follow recent work by
Smith & Le (2017) and interpret SGD as integrating the stochastic differential equation below,

dω

dt
= −dC

dω
+ η(t) (3)

C represents the cost function (summed over all training examples), and ω represents the parameters,
which evolve in continuous “time” t towards their final values. Meanwhile η(t) represents Gaussian
random noise, which models the consequences of estimating the gradient on a mini-batch. They
showed that the mean 〈η(t)〉 = 0 and variance 〈η(t)η(t′)〉 = gF (ω)δ(t− t′), where F (ω) describes
the covariances in gradient fluctuations between different parameters. They also proved that the
“noise scale” g = ǫ(NB − 1), where ǫ is the learning rate, N the training set size and B the batch
size. This noise scale controls the magnitude of the random fluctuations in the training dynamics.

Usually B ≪ N , and so we may approximate g ≈ ǫN/B. When we decay the learning rate, the
noise scale falls, enabling us to converge to the minimum of the cost function (this is the origin of
equation 2 above). However we can achieve the same reduction in noise scale at constant learning
rate by increasing the batch size. The main contribution of this work is to show that it is possible to
make efficient use of vast training batches, if one increases the batch size during training at constant
learning rate until B ∼ N/10. After this point, we revert to the use of decaying learning rates.

3 SIMULATED ANNEALING AND THE GENERALIZATION GAP

To the surprise of many researchers, it is now increasingly accepted that small batch training often
generalizes better to the test set than large batch training. This “generalization gap” was explored
extensively by Keskar et al. (2016). Smith & Le (2017) observed an optimal batch size Bopt which
maximized the test set accuracy at constant learning rate. They argued that this optimal batch size

1Strictly speaking, equation 2 holds if the batch size is bounded by a value below the training set size.

2



Published as a conference paper at ICLR 2018

arises when the noise scale g ≈ ǫN/B is also optimal, and supported this claim by demonstrating
empirically that Bopt ∝ ǫN . Earlier, Goyal et al. (2017) exploited a linear scaling rule between batch
size and learning rate to train ResNet-50 on ImageNet in one hour with batches of 8192 images.

These results indicate that gradient noise can be beneficial, especially in non-convex optimization. It
has been proposed that noise helps SGD escape “sharp minima” which generalize poorly (Hochreiter
& Schmidhuber, 1997; Chaudhari et al., 2016; Keskar et al., 2016; Smith & Le, 2017). Given these
results, it is unclear to the present authors whether equations 1 and 2 are relevant in deep learning.
Supporting this view, we note that most researchers employ early stopping (Prechelt, 1998), whereby
we intentionally prevent the network from reaching a minimum. Nonetheless, decaying learning
rates are empirically successful. To understand this, we note that introducing random fluctuations
whose scale falls during training is also a well established technique in non-convex optimization;
simulated annealing. The initial noisy optimization phase allows us to explore a larger fraction of
the parameter space without becoming trapped in local minima. Once we have located a promising
region of parameter space, we reduce the noise to fine-tune the parameters.

Finally, we note that this interpretation may explain why conventional learning rate decay schedules
like square roots or exponential decay have become less popular in deep learning in recent years.
Increasingly, researchers favor sharper decay schedules like cosine decay (Loshchilov & Hutter,
2016) or step-function drops (Zagoruyko & Komodakis, 2016). To interpret this shift, we note that
it is well known in the physical sciences that slowly annealing the temperature (noise scale) helps
the system to converge to the global minimum, which may be sharp. Meanwhile annealing the
temperature in a series of discrete steps can trap the system in a “robust” minimum whose cost may
be higher but whose curvature is lower. We suspect a similar intuition may hold in deep learning.

4 THE EFFECTIVE LEARNING RATE AND THE ACCUMULATION VARIABLE

Many researchers no longer use vanilla SGD, instead preferring SGD with momentum. Smith & Le
(2017) extended their analysis of SGD to include momentum, and found that the “noise scale”,

g =
ǫ

1−m

(

N

B
− 1

)

(4)

≈ ǫN

B(1−m)
(5)

This reduces to the noise scale of vanilla SGD when the momentum coefficient m → 0. Intuitively,
ǫeff = ǫ/(1 −m) is the effective learning rate. They proposed to reduce the number of parameter
updates required to train a model by increasing the learning rate and momentum coefficient, while
simultaneously scaling B ∝ ǫ/(1−m). We find that increasing the learning rate and scaling B ∝ ǫ
performs well. However increasing the momentum coefficient while scaling B ∝ 1/(1−m) slightly
reduces the test accuracy. To analyze this observation, consider the momentum update equations,

∆A = −(1−m)A+
dĈ

dω
, (6)

∆ω = −Aǫ. (7)

A is the “accumulation”, while dĈ
dω is the mean gradient per training example, estimated on a batch

of size B. In Appendix A we analyze the growth of the accumulation at the start of training. This
variable tracks the exponentially decaying average of gradient estimates, but initially it is initialized
to zero. We find that the accumulation grows in exponentially towards its steady state value over
a “timescale” of approximately B/(N(1 − m)) training epochs. During this time, the magnitude
of the parameter updates ∆ω is suppressed, reducing the rate of convergence. Consequently when
training at high momentum one must introduce additional epochs to allow the dynamics to catch up.

Furthermore, when we increase the momentum coefficient we increase the timescale required for the
accumulation to forget old gradients (this timescale is also ∼ B/(N(1−m))). Once this timescale
becomes several epochs long, the accumulation cannot adapt to changes in the loss landscape, im-
peding training. This is likely to be particularly problematic at points where the noise scale decays.
Kingma & Ba (2014) proposed initialization bias correction, whereby the learning rate is increased
at early times to compensate the suppressed initial value of the accumulation. However when the
batch size is large, we found that this often causes instabilities during the early stages of training.
We note that Goyal et al. (2017) recommended a reduced learning rate for the first few epochs.

3



Published as a conference paper at ICLR 2018

(a) (b)

Figure 1: Schedules for the learning rate (a) and batch size (b), as a function of training epochs.

5 EXPERIMENTS

In section 5.1, we demonstrate that decreasing the learning rate and increasing the batch size during
training are equivalent. In section 5.2, we show we can further reduce the number of parameter
updates by increasing the effective learning rate and scaling the batch size. In section 5.3 we apply
our insights to train Inception-ResNet-V2 on ImageNet, using vast batches of up to 65536 images.
Finally in section 5.4, we train ResNet-50 to 76.1% ImageNet validation accuracy within 30 minutes.

5.1 SIMULATED ANNEALING IN A WIDE RESNET

Our first experiments are performed on CIFAR-10, using a “16-4” wide ResNet architecture, follow-
ing the implementation of Zagoruyko & Komodakis (2016). We use ghost batch norm (Hoffer et al.,
2017), with a ghost batch size of 128. This ensures the mean gradient is independent of batch size,
as required by the analysis of Smith & Le (2017). To demonstrate the equivalence between decreas-
ing the learning rate and increasing the batch size, we consider three different training schedules, as
shown in figure 1. “Decaying learning rate” follows the original implementation; the batch size is
constant, while the learning rate repeatedly decays by a factor of 5 at a sequence of “steps”. “Hy-
brid” holds the learning rate constant at the first step, instead increasing the batch size by a factor
of 5. However after this first step, the batch size is constant and the learning rate decays by a factor
of 5 at each subsequent step. This schedule mimics how one might proceed if hardware imposes a
limit on the maximum achievable batch size. In “Increasing batch size”, we hold the learning rate
constant throughout training, and increase the batch size by a factor of 5 at every step.

(a) (b)

Figure 2: Wide ResNet on CIFAR10. Training set cross-entropy, evaluated as a function of the
number of training epochs (a), or the number of parameter updates (b). The three learning curves
are identical, but increasing the batch size reduces the number of parameter updates required.

4



Published as a conference paper at ICLR 2018

(a) (b)

Figure 3: Wide ResNet on CIFAR10. Test accuracy during training, for SGD with momentum (a),
and Nesterov momentum (b). In both cases, all three schedules track each other extremely closely.

If the learning rate itself must decay during training, then these schedules should show different
learning curves (as a function of the number of training epochs) and reach different final test set
accuracies. Meanwhile if it is the noise scale which should decay, all three schedules should be
indistinguishable. We plot the evolution of the training set cross entropy in figure 2a, where we train
using SGD with momentum and a momentum parameter of 0.9. The three training curves are almost
identical, despite showing marked drops as we pass through the first two steps (where the noise scale
is reduced). These results suggest that it is the noise scale which is relevant, not the learning rate.

To emphasize the potential benefits of increasing the batch size, we replot the training cross-entropy
in figure 2b, but as a function of the number of parameter updates rather than the number of epochs.
While all three schedules match up to the first “step”, after this point increasing the batch size dra-
matically reduces the number of parameter updates required to train the model. Finally, to confirm
that our alternative learning schedules generalize equally well to the test set, in figure 3a we exhibit
the test set accuracy, as a function of the number of epochs (so each curve can be directly com-
pared). Once again, the three schedules are almost identical. We conclude that we can achieve all of
the benefits of decaying the learning rate in these experiments by instead increasing the batch size.

We present additional results to establish that our proposal holds for a range of optimizers, all using
the schedules presented in figure 1. In figure 3b, we present the test set accuracy, when training
with Nesterov momentum (Nesterov, 1983) and momentum parameter 0.9, observing three near-
identical curves. In figure 4a, we repeat the same experiment with vanilla SGD, again obtaining
three highly similar curves (In this case, there is no clear benefit of decaying the learning rate after
the first step). Finally in figure 4b we repeat the experiment with Adam (Kingma & Ba, 2014). We

(a) (b)

Figure 4: Wide ResNet on CIFAR10. The test set accuracy during training, for vanilla SGD (a) and
Adam (b). Once again, all three schedules result in equivalent test set performance.

5



Published as a conference paper at ICLR 2018

Figure 5: Wide ResNet on CIFAR10. Test accuracy as a function of the number of parameter
updates. “Increasing batch size” replaces learning rate decay by batch size increases. “Increased
initial learning rate” additionally increases the initial learning rate from 0.1 to 0.5. Finally “Increased
momentum coefficient” also increases the momentum coefficient from 0.9 to 0.98.

use the default parameter settings of TensorFlow, such that the initial base learning rate here was
10−3, β1 = 0.9 and β2 = 0.999. Thus the learning rate schedule is obtained by dividing figure 1a
by 10−2. Remarkably, even here the three curves closely track each other.

5.2 INCREASING THE EFFECTIVE LEARNING RATE

We now focus on our secondary objective; minimizing the number of parameter updates required
to train a model. As shown above, the first step is to replace decaying learning rates by increasing
batch sizes. We show here that we can also increase the effective learning rate ǫeff = ǫ/(1 − m)
at the start of training, while scaling the initial batch size B ∝ ǫeff . All experiments are conducted
using SGD with momentum. There are 50000 images in the CIFAR-10 training set, and since the
scaling rules only hold when B ≪ N , we decided to set a maximum batch size Bmax = 5120.

We consider four training schedules, all of which decay the noise scale by a factor of five in a series
of three steps. “Original training schedule” follows the implementation of Zagoruyko & Komodakis
(2016), using an initial learning rate of 0.1 which decays by a factor of 5 at each step, a momentum
coefficient of 0.9, and a batch size of 128. “Increasing batch size” also uses a learning rate of
0.1, initial batch size of 128 and momentum coefficient of 0.9, but the batch size increases by a
factor of 5 at each step. These schedules are identical to “Decaying learning rate” and “Increasing
batch size” in section 5.1 above. “Increased initial learning rate” also uses increasing batch sizes
during training, but additionally uses an initial learning rate of 0.5 and an initial batch size of 640.
Finally “Increased momentum coefficient” combines increasing batch sizes during training and the
increased initial learning rate of 0.5, with an increased momentum coefficient of 0.98, and an initial
batch size of 3200. Note that we only increase the batch size until it reaches Bmax, after this point
we achieve subsequent decays in noise scale by decreasing the learning rate. We emphasize that, as
in the previous section, all four schedules require the same number of training epochs.

We plot the evolution of the test set accuracy in figure 5, as a function of the number of parameter
updates. Our implementation of the original training schedule requires ∼80000 updates, and reaches
a final test accuracy of 94.3% (the original paper reports 95% accuracy, which we have not been able
to replicate). “Increasing batch size” requires ∼29000 updates, reaching a final accuracy of 94.4%.
“Increased initial learning rate” requires under 6500 updates, reaching a final accuracy of 94.5%.
Finally, “Increased momentum coefficient” requires less than 2500 parameter updates, but reaches
a lower test accuracy of 93.3%. Across five additional training runs for each schedule, the median
accuracies were 94.3%, 94.2%, 94.2% and 93.5% respectively. We discussed a potential explanation
for the performance drop when training with large momentum coefficients in section 4. We provide
additional results in appendix B, varying the initial learning rate between 0.1 and 3.2 while holding
the batch size constant. We find that the test accuracy falls for initial learning rates larger than ∼0.4.

6



Published as a conference paper at ICLR 2018

(a) (b)

Figure 6: Inception-ResNet-V2 on ImageNet. Increasing the batch size during training achieves
similar results to decaying the learning rate, but it reduces the number of parameter updates from
just over 14000 to below 6000. We run each experiment twice to illustrate the variance.

5.3 TRAINING IMAGENET IN 2500 PARAMETER UPDATES

We now apply our insights to reduce the number of parameter updates required to train ImageNet.
Goyal et al. (2017) trained a ResNet-50 on ImageNet in one hour, reaching 76.3% validation accu-
racy. To achieve this, they used batches of 8192, with an initial learning rate of 3.2 and a momentum
coefficient of 0.9. They completed 90 training epochs, decaying the learning rate by a factor of ten at
the 30th, 60th and 80th epoch. ImageNet contains around 1.28 million images, so this corresponds
to ∼14000 parameter updates. They also introduced a warm-up phase at the start of training, in
which the learning rate and batch size was gradually increased.

We also train for 90 epochs and follow the same schedule, decaying the noise scale by a factor of ten
at the 30th, 60th and 80th epoch. However we did not include a warm-up phase. To set a stronger
baseline, we replaced ResNet-50 by Inception-ResNet-V2 (Szegedy et al., 2017). Initially we used
a ghost batch size of 32. In figure 6, we train with a learning rate of 3.0 and a momentum coefficient
of 0.9. The initial batch size was 8192. For “Decaying learning rate”, we hold the batch size fixed
and decay the learning rate, while in “Increasing batch size” we increase the batch size to 81920
at the first step, but decay the learning rate at the following two steps. We repeat each schedule
twice, and find that all four runs exhibit a very similar evolution of the test set accuracy during
training. The final accuracies of the two “Decaying learning rate” runs are 78.7% and 77.8%, while
the final accuracy of the two “Increasing batch size” runs are 78.1% and 76.8%. Although there is
a slight drop, the difference in final test accuracies is similar to the variance between training runs.
Increasing the batch size reduces the number of parameter updates during training from just over
14000 to below 6000. Note that the training curves appear unusually noisy because we reduced the
number of test set evaluations to reduce the model training time.

Goyal et al. (2017) already increased the learning rate close to its maximum stable value. To further
reduce the number of parameter updates we must increase the momentum coefficient. We introduce
a maximum batch size, Bmax = 216 = 65536. This ensures B ≪ N , and it also improved the
stability of our distributed training. We also increased the ghost batch size to 64, matching the batch
size of our GPUs and reducing the training time. We compare three different schedules, all of which
have the same base schedule, decaying the noise scale by a factor of ten at the 30th, 60th and 80th
epoch. We use an initial learning rate of 3 throughout. “Momentum 0.9” uses an initial batch size
of 8192, “Momentum 0.975” uses an initial batch size of 16384, and “Momentum 0.9875” uses an
initial batch size of 32768. For all schedules, we decay the noise scale by increasing the batch size
until reaching Bmax, and then decay the learning rate. We plot the test set accuracy in figure 7.
“Momentum 0.9” achieves a final accuracy of 78.8% in just under 6000 updates. We performed two
runs of “Momentum 0.95”, achieving final accuracies of 78.1% and 77.8% in under 3500 updates.
Finally “Momentum 0.975” achieves final accuracies of 77.5% and 76.8% in under 2500 updates.

7



Published as a conference paper at ICLR 2018

(a) (b)

Figure 7: Inception-ResNet-V2 on ImageNet. Increasing the momentum parameter reduces the
number of parameter updates required, but it also leads to a small drop in final test accuracy.

5.4 TRAINING IMAGENET IN 30 MINUTES

To confirm that increasing the batch size during training can reduce model training times, we repli-
cated the set-up described by Goyal et al. (2017) on a half TPU pod, comprising 256 tensorcores
(Jouppi et al., 2017). Using tensorFlow, we first train ResNet-50 for 90 epochs to 76.1% validation
set accuracy in under 45 minutes, utilising batches of 8192 images. To utilise the full TPU pod, we
then increase the batch size after the first 30 epochs to 16384 images, and achieve the same valida-
tion accuracy of 76.1% in under 30 minutes. The last 60 epochs and the first 30 epochs both take just
under 15 minutes, demonstrating near-perfect scaling efficiency across the pod, such that the number
of parameter updates provides a meaningful measure of the training time. To our knowledge, this
is the first procedure which has reduced the training time of Goyal et al. (2017) without sacrificing
final validation accuracy (You et al., 2017b; Akiba et al., 2017). By contrast, doubling the initial
learning rate and using batches of 16384 images throughout training achieves a lower validation set
accuracy of 75.0% in 22 minutes, demonstrating that increasing the batch size during training is
crucial to the performance gains above. These results show that the ideas presented in this paper
will become increasingly important as new hardware for large-batch training becomes available.

6 RELATED WORK

This paper extends the analysis of SGD in Smith & Le (2017) to include decaying learning rates.
Mandt et al. (2017) also interpreted SGD as a stochastic differential equation, in order to discuss
how SGD could be modified to perform approximate Bayesian posterior sampling. However they
state that their analysis holds only in the neighborhood of a minimum, while Keskar et al. (2016)
showed that the beneficial effects of noise are most pronounced at the start of training. Li et al.
(2017) proposed the use of control theory to set the learning rate and momentum coefficient.

Goyal et al. (2017) observed a linear scaling rule between batch size and learning rate, B ∝ ǫ,
and used this rule to reduce the time required to train ResNet-50 on ImageNet to one hour. To our
knowledge, this scaling rule was fist adopted by Krizhevsky (2014). Bottou et al. (2016) (section
4.2) demonstrated that SGD converges to strongly convex minima in similar numbers of training
epochs if B ∝ ǫ. Hoffer et al. (2017) proposed an alternative scaling rule, B ∝ √

ǫ.

You et al. (2017a) proposed Layer-wise Adaptive Rate Scaling (LARS), which applies different
learning rates to different parameters in the network, and used it to train ImageNet in 14 minutes
(You et al., 2017b), albeit to a lower final accuracy of 74.9%. K-FAC (Martens & Grosse, 2015) is
also gaining popularity as an efficient alternative to SGD. Wilson et al. (2017) argued that adaptive
optimization methods tend to generalize less well than SGD and SGD with momentum (although
they did not include K-FAC in their study), while our work reduces the gap in convergence speed.
Asynchronous-SGD is another popular strategy, which enables the use of multiple GPUs even when
batch sizes are small (Recht et al., 2011; Dean et al., 2012). We do not consider asynchronous-SGD
in this work, since the scaling rules enabled us to use batch sizes on the order of the training set size.

8



Published as a conference paper at ICLR 2018

7 CONCLUSIONS

We can often achieve the benefits of decaying the learning rate by instead increasing the batch size
during training. We support this claim with experiments on CIFAR-10 and ImageNet, and with a
range of optimizers including SGD, Momentum and Adam. Our findings enable the efficient use of
vast batch sizes, significantly reducing the number of parameter updates required to train a model.
This has the potential to dramatically reduce model training times. We further increase the batch
size B by increasing the learning rate ǫ and momentum parameter m, while scaling B ∝ ǫ/(1−m).
Combining these strategies, we train Inception-ResNet-V2 on ImageNet to 77% validation accuracy
in under 2500 parameter updates, using batches of 65536 images. We also exploit increasing batch
sizes to train ResNet-50 to 76.1% ImageNet validation set accuracy on TPU in under 30 minutes.
Most strikingly, we achieve this without any hyper-parameter tuning, since our scaling rules enable
us to directly convert existing hyper-parameter choices from the literature for large batch training.

ACKNOWLEDGMENTS

We thank Prajit Ramachandran, Gabriel Bender, Matthew Johnson and Martin Abadi for helpful
discussions. We also thank Vijay Vasudevan, Brennan Saeta, Jonathan Hseu, Bjarke Roune and the
rest of the TPU team for technical support.

REFERENCES

Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd: Training resnet-
50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325, 2017.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates.
arXiv preprint arXiv:1612.05086, 2016.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016.

Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in opti-
mization methods for machine learning. Mathematical programming, 134(1):127–155, 2012.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and Yann LeCun. Entropy-SGD: Biasing
gradient descent into wide valleys. arXiv preprint arXiv:1611.01838, 2016.

Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated inference with adaptive
batches. In Artificial Intelligence and Statistics, pp. 1504–1513, 2017.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Senior,
Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231, 2012.

Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. arXiv preprint arXiv:1705.08741, 2017.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analy-
sis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, pp. 1–12. ACM, 2017.

9



Published as a conference paper at ICLR 2018

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and adaptive stochastic
gradient algorithms. arXiv preprint arXiv:1511.06251, 2017.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. arXiv preprint
arXiv:1608.03983, 2016.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
bayesian inference. arXiv preprint arXiv:1704.04289, 2017.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International Conference on Machine Learning, pp. 2408–2417, 2015.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
In Soviet Mathematics Doklady, volume 27, pp. 372–376, 1983.

Lutz Prechelt. Early stopping-but when? Neural Networks: Tricks of the trade, pp. 553–553, 1998.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information processing systems,
pp. 693–701, 2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
descent. arXiv preprint arXiv:1710.06451, 2017.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
Inception-ResNet and the impact of residual connections on learning. In AAAI, pp. 4278–4284,
2017.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688,
2011.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 2017a.

Yang You, Zhao Zhang, C Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in minutes.
CoRR, abs/1709.05011, 2017b.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

10



Published as a conference paper at ICLR 2018

A THE GROWTH OF THE ACCUMULATION AT THE START OF TRAINING

The update equations for SGD with momentum,

∆A = −(1−m)A+
dĈ

dω
, (8)

∆ω = −Aǫ. (9)

A is the “accumulation” variable, while dĈ
dω is the mean gradient per training example, estimated on

a batch of size B. We initialize the accumulation to zero, and it takes a number of updates for the
magnitude of the accumulation to “grow in”. During this time, the size of the parameter updates ∆ω
is suppressed, reducing the effective learning rate. We can model the growth of the accumulation

by assuming that the gradient at the start of training is approximately constant, such that dĈ
dω ≈ G.

Consequently the accumulation integrates an underlying differential equation,

dA

ds
= −(1−m)A+G. (10)

The variable s describes the number of parameter updates performed. Since A(0) = 0, this differen-

tial equation has solution, A = G
1−m

(

1− e−(1−m)s
)

. We note that s = (N/B)Nepochs to obtain,

A =
G

1−m

(

1− e−(1−m)(N/B)Nepochs

)

. (11)

Nepochs denotes the number of training epochs performed. The accumulation variable grows in
exponentially, and consequently we can estimate the effective number of “lost” training epochs,

Nlost =

∫

∞

0

e−(1−m)(N/B)NepochsdNepochs (12)

=
B

N(1−m)
(13)

Since the batch size B ∝ ǫ/(1 − m), we find Nlost ∝ ǫ/(N(1 − m)2). We must either introduce
additional training epochs to compensate, or ensure that the number of lost training epochs is neg-
ligible, when compared to the total number of training epochs performed before the decaying the
noise scale. Note that Nlost rises most rapidly when one increases the momentum coefficient.

B INCREASING THE INITIAL LEARNING RATE

We exhibit the test accuracy of our “16-4” wide ResNet implementation on CIFAR10 in figure 8, as
a function of the initial learning rate. For learning rate ǫ = 0.1, the batch size B = 128 is constant
throughout training. This matches the “Original training schedule” of section 5.2 of the main text.
When we increase the learning rate we scale B ∝ ǫ and perform the same number of training epochs.

Figure 8: Wide ResNet on CIFAR10. We can only increase the initial learning rate to ∼ 0.4 before
the final test accuracy starts to fall. Each point provided represents the median of five runs.

11


	Introduction
	Stochastic gradient descent and convex optimization
	Simulated annealing and the generalization gap
	The effective learning rate and the accumulation variable
	Experiments
	Simulated annealing in a wide ResNet
	Increasing the effective learning rate
	Training ImageNet in 2500 parameter updates
	Training ImageNet in 30 minutes

	Related work
	Conclusions
	The growth of the accumulation at the start of training
	Increasing the initial learning rate

