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Abstract

Background: Machine learning approaches have become increasingly popular modeling techniques, relying on

data-driven heuristics to arrive at its solutions. Recent comparisons between these algorithms and traditional

statistical modeling techniques have largely ignored the superiority gained by the former approaches due to

involvement of model-building search algorithms. This has led to alignment of statistical and machine learning

approaches with different types of problems and the under-development of procedures that combine their

attributes. In this context, we hoped to understand the domains of applicability for each approach and to identify

areas where a marriage between the two approaches is warranted. We then sought to develop a hybrid statistical-

machine learning procedure with the best attributes of each.

Methods: We present three simple examples to illustrate when to use each modeling approach and posit a general

framework for combining them into an enhanced logistic regression model building procedure that aids interpretation.

We study 556 benchmark machine learning datasets to uncover when machine learning techniques outperformed

rudimentary logistic regression models and so are potentially well-equipped to enhance them. We illustrate a software

package, InteractionTransformer, which embeds logistic regression with advanced model building capacity by using

machine learning algorithms to extract candidate interaction features from a random forest model for inclusion in the

model. Finally, we apply our enhanced logistic regression analysis to two real-word biomedical examples, one where

predictors vary linearly with the outcome and another with extensive second-order interactions.

Results: Preliminary statistical analysis demonstrated that across 556 benchmark datasets, the random forest approach

significantly outperformed the logistic regression approach. We found a statistically significant increase in predictive

performance when using hybrid procedures and greater clarity in the association with the outcome of terms acquired

compared to directly interpreting the random forest output.

Conclusions: When a random forest model is closer to the true model, hybrid statistical-machine learning procedures

can substantially enhance the performance of statistical procedures in an automated manner while preserving easy

interpretation of the results. Such hybrid methods may help facilitate widespread adoption of machine learning

techniques in the biomedical setting.
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Background
In the era of Big Data, models with highly complex spec-

ifications are employed to study nontrivial biomedical

phenomena, including genetic or epigenetic interactions,

high-resolution modalities such as Computed Tomog-

raphy (CT) scans and histopathology slide images [1–6].

Many statistical approaches to modeling these complex

data rely on expert consultation and annotation to help

determine which variables and targets to study. Oddly,

despite the advances in computing power, these proce-

dures have not been augmented with sophisticated

model-building algorithms. At best commercial software

still only supports simple and restrictive search strategies

such as forward, backward and stepwise selection. In

contrast, machine learning techniques employ a data-

driven set of heuristics to simultaneously build and

estimate models that may include an extensive array of

nonlinear interactions in the data. While machine learn-

ing methods are particularly helpful in exploratory or

predictive settings, not much may be revealed about

how the set of covariates vary with each other and the

dependent variable, which can be detrimental towards

building public trust and acceptance in these modeling

approaches. Unlike statistical models, which are able to

make predictions when the data has a low number of

features as compared to the number of training samples,

machine learning algorithms are much more suitable for

the high dimensional domain, especially if the data is

subject to multicollinearity, and to the low dimensional

domain when it is not clear how the covariates vary with

the outcome. For instance, machine learning technolo-

gies have demonstrated the ability to make impressive

predictions on medical images, genomic data and Elec-

tronic Health Record (EHR) modalities in the presence

of many training instances [7–9]. In recent years, these

approaches have gained much traction in the biomedical

space and will continue to do so in the years to come.

However, with researchers and practitioners flocking

to adopt these new technologies, there are concerns that

traditional statistical methods are being passed over too

quickly. Many published papers that show that machine

learning techniques outperform traditional statistical

models. Yet, many of these papers mislead the reader by

presenting unfair comparisons between the methodolo-

gies, for instance selecting datasets that are difficult to

learn given insufficient model-building strategies or by

comparing a statistical procedure with no embedded

learning component to machine learning procedures

[10]. Meanwhile, these featured datasets run counter to

more clinically focused sets on which one prior study

has demonstrated no performance improvement for ma-

chine learning techniques [11]. Given this ambiguity and

the clear need for models that are inherently interpret-

able for widespread adoption in the biomedical space,

we believe there is much to be gained by entwining or

marrying these methodologies rather than thinking of

them as competitors.

We address a gap among traditional statistical proce-

dures by proposing that sophisticated search algorithms

be paired with them to suggest terms that can be added

to the base specification to improve model fit and the

predictive performance of traditional statistical models.

These search algorithms would consider sets of candi-

date predictors from sets as expansive as those available

to machine learning algorithms. Whereas the implemen-

tations of traditional statistical procedures such as linear

and logistic regression in commercial packages often in-

clude basic search algorithms (e.g., forward, backward

and stepwise regression), these search algorithms would

span all forms of higher-order interactions and nonlinear

transformations. Crucially, they would not be limited to

only the models that can be formed by the predictors in

the model specification but rather would include a myr-

iad of additional predictors formed from functions of

one or more of them and nonlinear transformations of

their sum. Therefore, they would substantially enhance

model-building capacity, potentially bringing the per-

formance of traditional statistical methods on par with

machine learning methods while retaining the easy and

direct interpretability of the results of statistical proce-

dures. In addition, such hybrid procedures would enjoy

the automatic implementation and scalability enjoyed by

the machine learning methods.

In this paper, we aim to illustrate the domains from

which machine learning models can be sensibly applied

to assist traditional statistical models from which to gen-

erate models that can be widely adopted in clinical

applications.

First, we describe the machine learning and logistic re-

gression models and their differences, including scenar-

ios under which each outperforms the other. Then, we

demonstrate that extracting interactions via the machine

learning can enhance logistic regression (hybrid ap-

proach) as well as the ability of logistic regression to

“protect the null hypothesis” by inhibiting the additional

of unwarranted interaction terms to the model. Finally,

we show consistencies between the logistic regression

model and the machine learning model when the logistic

regression model is closer to the true model. This study

shows that machine learning can be deployed to assist

with the development of statistical modeling approaches

to obtain machine-learning level performance with stat-

istical model interpretability.

Review of modeling approaches

We now introduce hallmark models from machine

learning and traditional statistics to better highlight do-

mains from which either technique may excel.
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Statistical Analysis System (SAS) is perhaps the most

widely used commercial statistical software package. Its

regression procedures are well established [12]. Some

procedures, such as Proc reg and Proc logistic, include

simple search algorithms that allow progress to be made

towards a best fitting model. For example, forwards,

backwards and stepwise regression can be implemented

with the mere inclusion of an optional term in the speci-

fication of the procedure. Although these procedures

have high utility and a long history (stepwise regression

first made its debut in 1960), their model building search

capacity has to our knowledge not been significantly en-

hanced since 1992 [13–15]. During this time, computa-

tional power has exponentiated. Remarkably, more

expansive and otherwise advanced search algorithms

have not been incorporated. Why not? Perhaps a lack of

focus on, or accommodation of, predictive problems in-

volving large data sets with many predictors. Whatever

the reason, the computational power has for some time

been available to enable these procedures to be en-

hanced. Therefore, we view this omission or gap as an

historical anomaly that we seek to correct herein.

In the literature, comparisons are made between statis-

tical models devoid of model-building and machine

learning approaches enhanced by very sophisticated and

powerful algorithms [10, 11]. This is an unfair compari-

son that risks making traditional statistical methods be

dismissed too rapidly from consideration when choosing

an analytic approach to a problem.

Logistic regression

Logistic regression is the most widely used modeling ap-

proach for binary outcomes in epidemiology and medi-

cine [16]. The model is a part of the family of

generalized linear models that explicitly models the rela-

tionship between the explanatory variable X and re-

sponse variable Y. Conditional on the predictors, a

binary outcome Y is assumed to follow a binomial distri-

bution for which p = P(Y = 1 | X) represents the prob-

ability of the binary response given the predictors:

logit pð Þ ¼ log
p

1−p

� �

¼ β
!

� X
!

¼ β0 þ
X

N

i¼1

βiXi

The approach above assumes a linear relationship be-

tween logarithm of the odds of the outcome and the

predictors as equivalently depicted below:

E YjX½ � ¼ P X
!� �

¼
1

1þ e− β
!
�X
!

In applications involving a large number of predictors,

LASSO or Ridge regression techniques serve to penalize

the model’s complexity to make it more generalizable to

unseen data by reducing the magnitude of the model

coefficients such that high magnitude features become

less tailored to the data used to tune the model parame-

ters. Penalization also aids model estimation by repelling

parameters from boundary values in much the same way

that prior distributions with continuous support nudge

the posterior distribution away from the extremities of

the values a model parameter can attain.

Classification and regression trees

Classification and Regression Trees (CART), otherwise

known as Decision Trees [17], are a series of computa-

tional heuristics that arrive at a solution for a problem

by forming binary splitting rules on the features of the

data based on the criterion of maximizing the informa-

tion gained about the outcome from making the split.

This can be formulated mathematically as:

G Y; Sð Þ ¼ H Yð Þ−H YjSð Þ

where S is an indicator variable indicating which side of

the split contains a given observation. The above equa-

tion states that the information acquired about a set of

labels given the split is the entropy of the original set of

labels minus the entropy of the labels given the split,

where entropy is defined as:

H Yð Þ ¼ ‐

X

pi log pið Þ

The entropy conditioned on the split is the weighted

average of the entropy of the labels partitioned to each

child, weighted by the number of samples sent to each

child:

H YjSð Þ ¼
X

i

ni

NY
H Sið Þ

An alternative criterion that can be used in this frame-

work, and the one used in this work, is Gini Impurity,

which measures the probability of incorrect identifica-

tion of a randomly chosen element and is given by:

G Yð Þ ¼ 1−
X

i
p2i

Decreases in Gini Impurity are expressed similarly to

information gain, and both represent key criterion to de-

cide which features and values should be used to split a

branch. The values that the branches split on can be

viewed as non-linear transforms of the data, while splits

on multiple variables introduce interactions between

those variables. A collection of hyperparameters effect-

ively prune and limit the depth of each tree to generalize

the model to unseen data.

Random forest

Random forest is an extension of the base CART algo-

rithm by considering the construction of multiple CART

Levy and O’Malley BMC Medical Research Methodology          (2020) 20:171 Page 3 of 15



models to arrive at a prediction [18, 19]. While decision

trees are formed by utilizing all of the features, each

CART model considers the best splitting feature out of

n < N randomly selected features at a time, and fits sub-

sequent branches by selecting out of another random set

of n features, all while bootstrapping the training sam-

ples. A collection of these estimators is formed, and re-

sults are aggregated to form predictions. This is done

because each of the CART models may provide high

variance estimates by over-fitting their training observa-

tions. When aggregating results the variance is typically

reduced by de-correlating the individual CART models

by bootstrapping both the observations and the predic-

tors. The number of trees and various aspects of each

estimator’s construction can be limited in order to re-

duce overfitting the training data.

Use cases for each modeling technique

Here, through a series of simple examples, we illustrate

when either the traditional statistics or machine learning

modeling approaches more closely resembles the true

model and should be employed. We have provided a

glossary of terms and summary of comparisons between

these modeling approaches in the Additional file 1 for

quick reference while reading the remainder of the text

(Additional file 1 Tables 1–2).

In Fig. 1a, we have a use case where we have one lin-

ear continuous predictors and a binary endpoint. The

distribution of the response is defined implicitly by the

following data generating process:

Y ¼ 13X1þϵ>0

X1∼Nð0; 1Þ
ε∼Logisticð0; 1Þ

The above simulation implies the log of the probability of

a positive prediction divided by the probability of a negative

prediction varies linearly with the predictor. As such, we fit

a logistic regression model to the data with the aim that it

would capture the true decision boundary and found that

the logistic regression model was able to accurately capture

the binary end points with 90.7% accuracy on a held-out

validation set. This example depicts the case when the true

model is a logistic regression model. To the same data, we

fit two CART-models, a decision tree and the random for-

est model, and find that the true linear decision boundary

between the positive and negative classes was approximated

by these machine learning approaches using a staircase type

fit. Under this model, the two machine learning models

demonstrated lower binary classification accuracy than the

linear approach (accuracy of the decision tree was 74.6%

and of the random forest was also 74.6%). This illustration

demonstrates that generally any model of the generalized

linear model family are, in cases when a predictor varies

continuously with the outcome, not made inadmissible by

the random forest and other ML approaches. This means

that we should be cognizant of cases when the true rela-

tionship is continuous because simpler models produced

via this assumption may lay closer to the true model than

a heuristic that only forms a coarse approximation.

Conversely, we designed two simple examples to illus-

trate when the machine learning approaches are closer

to the true model. In one example, Additional file 1

Figure 1b, we transform a continuous predictor X1 into

the binary dependent outcome variable Y via the model:

Y ¼ 1X1þ0:25ϵ∈ð−6;−2:5Þ∪ð0;1:5Þ

X1∼Uð−10; 10Þ

ϵ∼Nð0; 1Þ

These transformations are difficult to be approximated

by models that suppose the dependence of the outcomes

on the predictors conforms to a highly parsimonious

smooth, continuous functional form. We see that the fit

of the generalized linear model cuts through the middle

of the entire dataset and as such has a worse goodness

of fit (binary classification accuracy of 74.8%) than the

machine learning approaches (94.8 and 94.8% for deci-

sion tree and random forest respectively). This is be-

cause CART techniques are able to do quite well with

sharp and variable decision curves and are able to handle

discontinuities in the data. In this case, the machine

learning model better captures transformations to the

data than the logistic regression modeling approach.

To further illustrate this point, we have included an

additional discussion in the Additional file 1 for analo-

gous situations from which continuous dependent

variables are predicted from continuous predictors

(Additional file 1 Figure 1), or binary prediction from

multiple predictors (Additional file 1 Figure 2).

As the last use case, Fig. 1c, we now consider a binary re-

sponse model with four continuous predictors. The predic-

tors vary linearly with the logit-transformed outcome;

however, in the true model, the final two predictors interact:

Y ¼ 1σ
P

i
X iþβ�X3�X4ð Þ>0:5

X1∼N 0; 1ð Þ
X2∼N 0; 1ð Þ
X3∼N 0; 1ð Þ

X4∈ −0:5; 0:5f g

where:

σ zð Þ ¼
1

1þ e−z

For this experiment, we vary the strength of the inter-

action β, and test the logistic regression, decision tree and
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random forest models, hoping to find that the logistic re-

gression model performs worse as the magnitude of the

interaction increases. This would mean that without adding

interaction terms to the logistic model, the approach would

be unable to detect the presence of two interacting predic-

tors. In Fig. 1c, we see that the accuracy of the generalized

linear model diminishes in the domain of high interaction

strength, while outperforming the machine learning ap-

proaches when the true model discards interactions, the

case when the estimated model conforms to the true

model. It can be noted, that the CART models’ accuracy

does not significantly differ across varying interaction

strengths. This motivates the use of CART, or other

machine learning approaches, to alert an analyst to the

likely presence of an interaction term that can then be

added to the logistic regression model to improve its

performance.

In some cases, we can make reasonable guesses at which

interactions would be the most appropriate to include

such that the logistic model can better approximate the

relationship of the predictors to the outcome. While we

had demonstrated the superior performance of statistical

models when a generalized linear solution space exists,

when this solution space becomes more complex, the ma-

chine learning based approaches are better able to effi-

ciently search over numerous combinations and

Fig. 1 Characteristics of generalized linear modeling approach (blue), decision trees (orange), random forest (green), true model (black); (a-b)

Predictor X1 versus binary response Y for the a) linear continuous predictor, b) non-linear transformed predictor; c) binary prediction performance

as a function of interaction strength, smoothed using Savitzky-Golay filter to best illustrate trends
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specifications of the predictors separately and in combin-

ation. Traditional statistical models are not embedded

with these machine learning model building features.

These two points lead naturally to consideration of proce-

dures that use machine learning methods to enhance trad-

itional models by bolstering their model building capacity.

Proposed new method

Our proposed method utilizes machine learning to suggest

terms to add to traditional statistical models; we refer to

this as our hybrid statistical inference approach. We con-

sider this approach a candidate to move on from the step-

wise regression approaches currently enabled in SAS Proc

Reg and SAS Proc logistic. We propose to augment the

current SAS procedures with the output from a sophisti-

cated and comprehensive search algorithm in the form of

an ordered list of candidate second-order interactions. Lo-

gistic regression procedures can then subsequently be esti-

mated with the most promising of these terms included as

predictors. While we illustrate our idea using this particu-

lar case, we also advocate for the development of far more

expansive algorithms and thus types of inputs to further

enhance traditional statistical methods. Such procedures

may be characterized by a need to iterate between trad-

itional statistical methods and machine learning methods

such that each informs the improvement made to the

other in the next iteration.

The hybrid approach stems from principles of explain-

able machine learning. Notably, many machine learning

approaches struggle to gain traction and widespread

adoption because they are unable to explain why they

made their prediction. Existing techniques to explain the

output from random forest algorithms attempt to quan-

tify the marginal association of a variable’s capacity to

reduce the amount of mislabeling in its decision splits.

In contrast, the coefficients of the logistic regression

model can be exponentiated to form an odds-ratio.

However, these methods find global importance for the

importance of each predictor and not the importance of

the predictor for each test instance. The ideal interpret-

ation technique for a machine learning model should

project the random forest fit onto a linear subspace to

determine the overall extent to which a specific factor

contributes to the fit. Our hybrid approach utilizes such

a projection to efficiently derive important model

additions.

Methods
Here, we discuss sensible approaches to enhance statis-

tical modeling. Fundamentally, the essence of our ap-

proach is to build an intuitive understanding of when

the “statistical” model (e.g. linear regression, logistic re-

gression) is more representative of the true model that

describes the data compared to the machine learning ap-

proach and what to do in cases where there is extensive

incongruence. When the machine learning model is

closer to the true approach, we posit that its output con-

tains keys in the form of interactions between predictors

and nonlinear transformations of predictors that can be

exploited to substantially improve the fit of the corre-

sponding statistical model. That is, machine learning

models can be used as an efficient way of traversing the

space of higher-order and nonlinear predictors to iden-

tify the best candidates to improve the fit of statistical

models beyond that possible with main variable predic-

tors, and stepwise search algorithms applied to them,

alone. We conjecture that the addition of a relatively

small number of these more complex forms of predic-

tors will almost always lead to an improvement in fit of

the statistical model to such an extent that its perform-

ance is similar to that of the best machine learning

models. The greater ease of interpretability of statistical

models, and potential to provide superior fits in the case

of continuous relationships of the predictors to the out-

come, then makes them highly competitive alternatives

to machine learning alone. Inspired by a work that used

these concepts to derive meaningful variable transforma-

tions [20], and as a special case of our proposed new

methodology, we extend these ideas to automate the ex-

traction of meaningful interactions via machine learning

that are then added to the statistical modeling technique

to enhance its performance. We also provide user-

friendly software to allow users to apply this method-

ology to their own studies and have included a flowchart

diagram in the Additional file 1 to demonstrate when to

apply a hybrid approach and the steps of the proposed

algorithm (Additional file 1 Figure 3).

SHAP interaction terms extend generalized linear model

building capabilities

A nice feature of ML is that a number of algorithms

have been developed that are amenable to hybridization

with traditional statistical procedures or that provide the

ingredients for making such a hybrid procedure. For ex-

ample, SHAP (SHapley Additive ExPlanations) [21] is an

algorithm designed to help interpret why any model has

made its prediction for an individual testing instance.

These approaches explain “black-box” models by fitting

linear additive surrogate models to each testing sample.

If machine learning models can be characterized by

complex curves over multiple variables, these models

can be thought of as local tangent lines near each com-

bination of variables present in the dataset (locally ac-

curate). The coefficients of these models, dubbed

shapley values, represent the importance of each pre-

dictor to the outcome prediction; these coefficients dir-

ectly sum to the model prediction (additive), and
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features that are important to the prediction over a

number of samples are consistent. SHAP sums the con-

tributions of each feature to the model’s prediction over

all possible permutations of other features.

f xið Þ ≈ gi xið Þ ¼ E f xið Þ½ � þ
X

J

j¼1

ϕ j xi; fð Þ

Interaction extraction and autonomous application

If the logistic regression model is correct, whether or

not it contains interactions, then it will outperform any

other specification. If it is not the correct model, then an

approach with powerful search capability over the pre-

dictor space is likely to find ways to outperform logistic

regression. If quantified in terms of functions of predic-

tors and fed into logistic regression, these identified ways

of improving model fit have the potential to enhance the

fit of the logistic regression model such that its perform-

ance is more in-line with that of a search algorithm. For

example, a subsequent logistic regression model aug-

mented with complex predictors recommended by the

output of a machine learning algorithm might then be

sufficiently close to the truth that it outperforms all

competitors. If not, one can continue iterating between

the procedures until superior performance (and conver-

gence) is obtained.

While the Surrogate Assisted Feature Extraction

(SAFE) Transformer [20] has demonstrated the ability to

accurately characterize variable transformations by esti-

mating how a nonlinear predictor varies with the out-

come, recent advances in SHAP methodology have

allowed for the accurate detection of salient interactions

of tree-based models [22, 23]. Simply put, these method-

ologies expand the aforementioned SHAP method to in-

clude interaction terms for individual samples. A

measure of the global importance of these interactions

can be characterized by summing the interaction effects

over all of the samples to find the salient interactions for

the model’s prediction. These important interactions can

be extracted and added as predictors to the logistic re-

gression model. A related operation is the use of

machine learning algorithms to identify nonlinear trans-

formations of variables that can be used to form other

additional predictors. This is outside the scope of the

current study, which is solely focused on the identifica-

tion the candidate interaction effects and to provide ad-

vice of when they should be included. While our work

seeks to illustrate the potential for collaboration between

traditional statistical approaches and interaction-heavy

machine learning models such as Random Forest, we

have also included a description and discussion of other

non-linear and kernel-based modeling approaches (e.g.

Support Vector Machines, Kernel Logistic Regression

and Neural Network approaches) in the Additional file 1

(see Additional file 1 “Description of Kernel-Based

Methods”) [24–28]. These methods can similarly be

married with logistic regression to obtain highly predict-

ive, but interpretable results.

Although interaction extraction has been studied pre-

viously, very few studies have attempted to characterize

the importance of extracting these interactions over

many datasets. Those that have are limited in that they

focused on selecting a small number of predictors from

which to test for interactions [4, 29]. Our novel contri-

bution is the development of an automated means from

which to extract these interactions and use them to en-

hance statistical model-based analyses.

Software implementation and availability

We have bundled and wrapped our multi-component

methodology into a publicly available open source soft-

ware package, InteractionTransformer, (GitHub: https://

github.com/jlevy44/InteractionTransformer) that can be

run using both R (GitHub via r-devtools: jlevy44/interac-

tiontransformer) and Python (PyPI: interactiontransfor-

mer) to make these methods easily deployable for the

biomedical researcher. InteractionTransformer takes as

input the design matrices and outcome variable and fits

a specified machine learning model to the data. Then, it

extracts the most important SHAP-derived interaction

terms from the machine learning model and augments

the design matrices of the training and test data to in-

clude these interaction terms. It also provides additional

capabilities to plot the salient SHAP features of any

model and extract the variable importance assigned to

all of the interaction terms for additional inspection. A

wiki page detailing installation and usage can be found

here: https://github.com/jlevy44/InteractionTransfor-

mer/wiki .

Evaluation of hybrid approach: dataset acquisition and

experimental description

We seek to estimate the general utility of extracting

these salient interactions and when they should be sens-

ibly employed by characterizing their activity over a large

dataset.

We first acquired a dataset that would allow us to es-

tablish the necessary domains for the application of

these modeling techniques. Inspired by a meta-analysis

of random forest versus logistic regression, we utilized

data from the OpenML database [30] to extract 556

datasets purposed for binary classification problems.

Each dataset was cleaned and preprocessed using a data

pipeline implemented in python.

We ran five-fold cross validation of naive implementa-

tions of L2-regularized logistic regression and random

forest models using the scikit-learn and imbalanced-
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learn packages [31, 32] to compare the overall accuracy

of the random forest models versus logistic regression

models. Then, we characterize the extent to which

extracting these interactions improves the fit of the lo-

gistic regression model. Since the primary domain of re-

search pertinent to this study involves fully identified

models, we excluded high dimensional genomics data-

sets and retained 277 datasets in the p < n domain; i.e.,

the number of observations always outnumbers the

number of predictors. Then, we extracted the pertinent

interactions from the training data of each of these data-

sets using InteractionTransformer. After applying these

interaction terms to the design matrices of the training

and test sets, we scored a naive logistic regression model

using five-fold cross-validation to compare with the ori-

ginal two models. This will characterize the overall ex-

tent to which these interactions enhance the logistic

regression model.

We also compared results and interpretations obtained

by our hybrid approach to that obtained using naïve

implementations of LASSO-penalization on all of the pair-

wise interactions of predictors and all of the aforemen-

tioned kernel-based methods. Finally, we extracted

characteristics of each dataset and trained a model to pre-

dict when the hybrid approach should be deployed, the re-

sults of which are presented in the Additional file 1.

Results
Random forest outperforms logistic regression

A total of 556 OpenML datasets were fitted and tested

on both the naive logistic regression and random forest

models. Five-fold cross validation scores of the C-

statistics (Area Under the Receiver Operating Curve,

AUROC) of the models demonstrated that random for-

est models clearly outperform the logistic regression

models by 0.061 AUROC on average (Fig. 2a) (t = 13.6,

p = 2.3e-36), where the random forest models scored

0.87 and logistic regression models scored an average

cross-validated C-statistic of 0.81.

We then restricted the range of the number of variables

and samples from 5 to 110 and 50 to 2500 respectively to

focus on low dimensional domains where it is more sens-

ible to employ standard statistical modeling techniques in

the biomedical space. Here, out of the remaining 277 data-

sets studied, the random forest model further outper-

formed the logistic regression models by an average 5-fold

cross validated C-statistic difference of 0.077, 0.86

AUROC to 0.78 AUROC respectively (Fig. 2b) (t = 11.5,

p = 3.8e-25). At this point, we felt that it would be pertin-

ent to study the extent to which this difference is merely

driven by the absence of interaction terms in the logistic

regression model using our interaction extraction

approach.

Application of interaction terms

Out of the remaining 277 datasets, we used SHAP to

screen for pertinent interaction terms to add to the de-

sign matrix of the logistic regression model. We per-

formed this procedure, ran a logistic regression model

on the resulting design matrix, and calculated the C-

statistic on a validation set for each of 5 cross validation

folds, as noted in the previous section. The resulting

measures of model fit were compared to the fit of the

original logistic regression models (those not enhanced

by the ML identified interactions) and plotted against

the improvement of the random forest model over the

logistic regression approach. Note that improvement of

the logistic regression models may be bounded by a

maximum score dictated by the maximum score attain-

able by any model, 100%. As seen in Fig. 2c, the domain

in which the random forest model is closer to the true

model is when the differences in the cross-validation

scores on the x-axis is greater than 0. In this case,

extracting interactions proved to be beneficial when the

differences in cross validation scores between the inter-

action and logistic regression model in the y-axis was

greater than 0.

We also sought to determine how a logistic regression

model augmented by interactions extracted from the

machine learning model would respond when the ma-

chine learning model was closer to the true model. We

observed a positive relationship between the improve-

ment of random forest versus improvement of the inter-

action extraction model over the logistic regression

model (m = 0.26, intercept = − 0.01, r = 0.56, p = 6.8e-24).

Furthermore, using a sensitivity analysis, we uncovered

37 datasets, where taken together, the hybrid approach

achieved similar performance to the Random Forest ap-

proach (p = 0.07, Mann Whitney U-Test) where previ-

ously the Random Forest model had outperformed the

Logistic Regression approach (Additional file 1 Figure 4).

Taking into account all 277 datasets, the Hybrid Ap-

proach outperformed the Random Forest model in 61

datasets. These results demonstrate the potential for

utilizing the output of the machine learning model to

enhance statistical models such that their predictive ac-

curacy makes a substantial gain on that of the ML pro-

cedure, even when the random forest is (closer to) the

true model. Conversely, when the random forest under-

performed versus the initial logistic regression model,

traditional statistical methods tended to reject the inclu-

sion of the interactions (if the ML output even suggested

them in the first place).

Comparison to LASSO-penalized interaction models and

kernel methods

We wanted to contextualize the performance and infer-

ential abilities gained when utilizing our hybrid approach
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to that achieved by LASSO selection of interactions and

kernel methods across the 277 binary outcome datasets.

Our results indicated that the random forest modeling

approach outperformed all kernel and LASSO-based ap-

proaches, but our hybrid model was able to achieve per-

formance on-par with the less interpretable kernel/

LASSO methods. This is not to mention the many data-

sets from which the Hybrid approach was able to

achieve similar or better performance versus the Ran-

dom Forest Approach, as aforementioned in the previ-

ous section. For instances from which the Random Forest

modeling approach was able to significantly outperform

the Logistic Regression modeling approach, the hybrid

model statistically outperformed the traditional Logistic

Regression modeling approach and achieved similar per-

formance to the kernel and LASSO approaches. Further

description and results for this experimental design can be

found in the Additional file 1 (Additional file 1 Figure 5;

Additional file 1 Tables 3-5).

Selected biomedical case studies

Finally, we explore two test use cases using pertinent

biomedical datasets. In the first, epistasis is studied using

a model rich with interactions where the random forest

model is closer to the true model and a diabetes dataset

where the logistic regression model is closer to the true

model to understand the nature of the extracted

interactions.

Case study 1: interaction extraction helps model epistasis

Epistasis is defined as the interaction between multiple

genes, where the complex interplay between the pres-

ence or absence of two genes in the form of alleles

serves as an effect modifier to elicit the development of

Fig. 2 a-b Boxenplots of prediction performance of Logistic Regression versus Random Forest for a) original 556 datasets, b) subset 277 datasets,

c) linear plot of the performance gains of hybrid approach versus the random forest approach
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a complex trait or disease. Many researchers

conceptualize the components of these interactions to

be binary explanatory variables. The presence of these

interactions can hamper the ability to uncover the true

effect of the target gene in question. There are over 21,

000 distinct protein-coding genes in the human genome,

which can make studying all of the possible interactions

between the genes computationally intractable, especially

given interactions with more than two genes. Machine

learning approaches such as multi-factor dimensionality

reduction seek to characterize all possible pairwise inter-

actions, but still suffer from the computational time

needed to process all such interactions [33, 34].

There exist a few interacting genes that we are unable

to detect, so we expect the random forest model to out-

perform the logistic regression model. When we train

both models and test on the test set, random forest out-

performs logistic regression 0.8 to 0.47, a monstrous

performance gain of 0.33 (Table 1). This makes for a

perfect use case from which to evaluate the ability to ex-

tract interaction terms that enhance the performance of

logistic regression models.

Inspection of SHAP summary plots reveals the salient

features for each training data set for each model. The

SHAP plots for the random forest model upweight genes

that appear to have interactions with other genes but

does not clearly describe which genes it is interacting

with. After we extract the interactions, we augmented

the design matrix for the logistic regression model and

estimated the corresponding logistic regression model.

The results reveal that the added interactions substan-

tially enhances the logistic regression model (AUROC

0.85) while enabling the familiar interaction-effect re-

gression model interpretation. Inspection of the SHAP

plots and exponentiated model coefficients identifies

which genes were explicitly and significantly interacting

with one another, and which were overall most explana-

tory for the complex trait being studied (Fig 3a-d). Fur-

thermore, a study of the SHAP ranking of all of the

interactions of the model yields four interactions as far

stronger performers than any others (Fig. 3e).

We also constructed a design matrix that contained all

possible pairwise epistasis interactions in addition to the

main effect terms and fit a LASSO model to this dataset

to select terms with non-zero coefficients. The resulting

terms were used to fit a standard Logistic Regression

model to see whether a LASSO-selected generalized lin-

ear interaction model could both outperform our hybrid

approach and confer additional interpretability. Not only

did the LASSO-selected interaction model (AUROC

0.771 ± 0.0474) fail to outperform the hybrid approach

(AUROC 0.85), but the model also obfuscated the main

effects in favor of the remaining highly colinear interac-

tions (See Additional file 1 Table 6).

Here, we have demonstrated the power to meaning-

fully extract interactions important to a machine learn-

ing model and add them to an underperforming logistic

regression model to boost its performance to match that

of the machine learning model. Thus, in this case, the

hybrid approach can be viewed as outperforming either

the logistic regression or Random Forest approaches

alone! In our next example, we will study a case where

adding interaction terms did not improve model

performance.

Case study 2: random forest and logistic regression

features coherent for diabetes prediction

In the early 1900s, the diversion of irrigation systems

that had once made the Pima Indians of Arizona and

Mexico a prosperous agricultural community disrupted

their lifestyle from one that had subsided on high carbo-

hydrate, low fat diet to one based on a high fat diet and

a more sedentary lifestyle. The Pima Indians have been

willing participants in a myriad of epidemiological, clin-

ical and genetic studies that have ultimately contributed

to a better understanding of the pathogenesis and diag-

nosis of type II diabetes and obesity. Here, we study a

dataset acquired from the National Institute of Diabetes

Table 1 95% confidence intervals for predictive performance (C-statistic) of Logistic Regression, Hybrid Approach, and Random

Forest on held-out test set for the tasks of Epistasis and Diabetes prediction; confidence intervals obtained using 1000 sample non-

parametric bootstrap.
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and Digestive and Kidney Diseases and fit logistic regres-

sion and random forest models to the data to predict

diabetes as a binary outcome as defined by the World

Health Organization [35, 36].

The logistic regression and random forest model both

exhibit similar performance (0.83 C-statistic; Table 1)

while generally agreeing on which variables are the most

important for the model’s decisions (Fig. 4). After adding

interactions to the logistic regression model, the per-

formance does not change. The interaction between

BMI and plasma measurements was the most significant

interaction detected using SHAP (Fig. 4c) and appears to

be the most important variable when running it in the

logistic modeling framework. This is a typical use case

where extracting the interactions does not improve

model performance; logistic regression with no interac-

tions appears closer to the correct model specification

and it is able to strongly hint the fact to us by the non-

significant effects for the interaction terms once added

to the model (guiding us to stay with the no interaction

specification).

Discussion
We have described and illustrated some of the key differ-

ences between traditional statistical modeling and

machine-learning approaches, focusing the latter on a

comparison to random forests. The former approach

models the explanatory variables as varying linearly on the

natural scale of the outcome, while the latter incorporates

unguided interaction and transformation modeling. These

modeling approaches are sometimes compared unfairly

due to model building being inherent to ML but not to lo-

gistic regression. Yet there are many use-cases when logis-

tic regression models outperform machine learning

approaches, particularly when equipped with an equiva-

lent capability for model building. For future biomedical

Fig. 3 a-c Epistasis SHAP summary plots for: a) Logistic Regression, b) Random Forest, and c) Hybrid Approach; d) Odds-ratios for coefficients of

predictors derived from hybrid logistic regression augmented by RF suggested interactions; e) SHAP scores (measures of predictor variable

importance) for top 10 ranked interactions
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applications, the researcher should be privy to which

model specification best captures the relationship between

the predictor and outcome variables. In the following, we

summarize the main discussion points of our work with

sensible modeling recommendations:

� In the domain where the number of variables is

similar to or less than the number of observations,

testing logistic regression and random forest models

on the data should give an indication of which

approach is more suitable.

� The potential for the random forest model accuracy

to exceed that of the logistic regression approach

can be directly evaluated by applying both

techniques and subtracting their goodness-of-fit

measures, or via a meta-estimator that can predict

this potential accuracy based on derived characteris-

tics of the dataset. For example, see the approach

featured in the Additional file 1 (Additional file 1

Figure 6) and for examples in other frameworks, see

PennAI [37, 38].

� If logistic regression outperforms or is on par with

the random forest model, then the true model is

likely to have a systematic component that is linear

on the log-odds scale, and as such the results of the

logistic model should be presented. There should be

consistency between which features both models

found to be important.

� If random forest outperforms logistic regression, the

true model likely involves interactions and nonlinear

variable transforms. One could apply the interaction

extractions as presented in this work on the random

forest model to construct an interpretable logistic

regression model enhanced by the inclusion of

interactions.

� If the number of variables is too high, it may be

computationally inefficient to extract the interaction

term, nor may it improve the logistic regression

model performance. In this case, the variables

should be modeled using the machine learning

model and explained through SHAP or alternatively

the aforementioned dimensionality reduction

technique should be applied.

� If interaction extraction demonstrates limited

improvement, combining this approach with the

variable transformer such as SAFE could potentially

recover most of the performance difference.

� Machine learning approaches may be more suitable

when the number of variables far outnumbers the

number of features -- the high dimensionality and

multi-collinearity domain. In this domain, you could

use machine learning for dimensional reduction of

the analysis data set [39, 40] prior to estimating lo-

gistic regression model on only the remaining terms.

Since variable transformations and interactions are a

staple of machine learning, we envision future model

building approaches to iteratively transform and form

important interactions between the predictors in a

model. In addition to this, we can incorporate feature

grouping or feature selection processes to further elim-

inate issues associated with multi-collinearity and make

sure that we are capturing valuable interactions. Finally,

we envision that future modeling approaches may be

able to hybridize machine learning methods such as

Classification and Regression Trees (CART) and

Fig. 4 a-c Diabetes SHAP summary plots for: a) Logistic Regression, b) Random Forest, and c) Hybrid Approach; d) Odds-ratios of predictors

derived using logistic regression prior to application of hybrid procedure; e) Odds-ratios of predictors derived from hybrid approach logistic

regression coefficients; f) SHAP interaction scores for top 10 ranked interactions
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traditional statistical models through the development of

mechanisms that can automatically add interaction

terms to generalized linear models [41]. We call for deri-

vations of more higher-level interactions and variable

transformations to further enhance traditional statistical

procedures beyond the addition of interaction terms

alone. In addition, we encourage the development of

methods for rigorous mathematical characterization of

hybrid procedures and the conditions and specifications

under which they work best.

We acknowledge that the datasets used in this study

were from a machine learning benchmark repository,

which means that there may be some selection bias as to

the suitability of each dataset for machine learning ver-

sus traditional statistical modeling approaches. For in-

stance, other databases such as PMLB [42] have also

been developed to benchmark machine learning algo-

rithms. Also, we remain unconvinced that such an ap-

proach would scale to thousands of predictors on the

basis of computational complexity associated with such

an analysis and remaining issues with fitting a general-

ized linear model in the presence of excessive multicolli-

nearity. We also assume that the stochastic estimation of

feature importance using SHAP converges to an optimal

solution; improperly run permutation importance

methods may incorrectly specify the ideal set of interac-

tions. In addition, because the acquired datasets were

based on binary prediction tasks, we did not attempt to

study approaches with continuous or multinomial out-

comes. We neither explored nor discussed the impact of

class imbalance on shapley value estimation, the accur-

acy of the Hybrid approach, and the explainability of the

regression coefficients of extracted interactions (see

Additional file 1 section “Discussion of the Rare Events

Issue”) [43–45]. While this paper sought to motivate and

demonstrate the capabilities of a hybrid approach on a

binary outcome, our hybrid approach can also be used

to build interpretable models with multinomial and con-

tinuous outcomes. Such capabilities can be readily uti-

lized in practice from our software distribution. Finally,

our approach focused on random forest as a representa-

tive of the ML approaches. Deep learning methodologies

[46] can also be used for interaction extraction, and fu-

ture work could adapt the output of deep learning

models to suggest which interactions or other types of

predictors to add just as considered herein with the case

of random forests.

Conclusion
We demonstrated that machine learning techniques may

not always include the optimal model for a biomedical

problem. In cases where they are, there may be means

from which to learn important interactions from the ma-

chine learning models and apply them to enhance

statistical models. Biomedical analyses may benefit from

entwining the algorithms acquired from machine learn-

ing with the simplicity and interpretability of statistical

procedures. Such work may be a step in the right direc-

tion towards communicating helpful science to clinical

and lay audiences alike, which can further build trust

and acceptance for the incorporation of machine learn-

ing into biomedical clinical settings. Our procedure and

its illustration are just scratching the surface of what can

be achieved by hybrid procedures. We encourage readers

to consider developing or adopting more hybrid statis-

tical - ML procedures, especially in applications for

which transparent interpretation of the results is needed.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12874-020-01046-3.

Additional file 1 Appendix Table 1. Glossary of Terms. Appendix

Table 2. Pros and Cons of Logistic Regression, Decision Tree, and

Random Forest Approaches. Appendix Figure 2. Characteristics of linear

modeling approach (blue), decision trees (orange), random forest (green),

original generated points (black); (a-b) Predictor X versus response Y for

the a) linear continuous predictor, b) non-linear transformed predictor.

Appendix Figure 2. Characteristics of generalized linear modeling ap-

proach (green), decision trees (purple), random forest (red); (a-b) Predic-

tors X1 and X2 versus binary response Y for the a) linear continuous

predictors, b) non-linear transformed predictors. Appendix Figure 3. De-

cision Diagram for Application of Hybrid Approach. Appendix Figure 4.

Performance of Hybrid Approach for select datasets is on par with Ran-

dom Forest for domain where Random Forest outperforms Logistic Re-

gression by at least 2%; (a) 37 datasets selected with highest positive

residual from model regressed on performance gains for Hybrid and Ran-

dom Forest approaches in the aforementioned domain; (b) Boxenplots of

predictive performance of the Logistic Regression, Random Forest and

Hybrid methods for these 37 datasets; other comparison methods en-

force stricter thresholds/cutoffs for performance gain. Appendix Fig-

ure 5. Comparison of Additional Machine Learning Modeling Approaches

Across: (a) 277 benchmark datasets featured in the main text; (b) the 77

datasets that remain after selection of datasets where Random Forest sig-

nificantly outperforms the traditional modeling approaches; the threshold

for outperformance for Random Forest was greater than that utilized in

previous comparison approaches for effect. Appendix Table 3. Compari-

son of median AUROC for each machine learning and statistical modeling

approach across 277 benchmark datasets and a subset of these datasets

where Random Forest significantly outperforms the traditional modeling

approaches (n = 77); 95% confidence intervals were derived using a 1000-

sample non-parametric bootstrap; the threshold for outperformance for

Random Forest was greater than that utilized in previous comparison ap-

proaches for effect. Appendix Table 4. Pairwise comparison of median

AUROC for each of the modeling approaches for the 277 benchmark

datasets; 2-tailed non-parametric Mann-Whitney U tests were corrected

using family-wise error rate Bonferroni correction to find median AUROCs

that were different between the modeling approaches on the 0.05 alpha

significance level; we note here that there still exists 61 datasets from

which the Hybrid approach is still able to outperform the Random Forest

Approach. Appendix Table 5. Pairwise comparison of median AUROC

for each of the modeling approaches for a subset 277 benchmark data-

sets from which the Random Forest outperforms the traditional modeling

approaches (n = 77); 2-tailed non-parametric Mann-Whitney U tests were

corrected using family-wise error rate Bonferroni correction to find me-

dian AUROCs that were different between the modeling approaches on

the 0.05 alpha significance level. Appendix Table 6. Top 10 largest

odds-ratios of the Epistasis Logistic Regression Model coefficients after

using LASSO to select predictors from a logistic regression model which
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included all pairwise predictors; note how all main effects have been ex-

cluded from this list. Appendix Figure 6. Cluster Heatmap of dataset

characteristics of the 277 datasets; rows of matrix indicate datasets; col-

umns of matrix indicate different properties of the dataset; columns were

standardized to illustrate trends; left-hand yellow and blue labels were

applied to indicate whether Random Forrest model outperformed Logis-

tic Regression model (yellow for gain in performance; blue for no gain in

performance, prediction to left of true difference in performance) for a

given dataset; column colors indicate relative importance of dataset char-

acteristics as identified by the Gini index.
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