
Research Collection

Journal Article

Don’t Forget The Past: Recurrent Depth Estimation from
Monocular Video

Author(s):
Patil, Vaishakh; Van Gansbeke, Wouter; Dai, Dengxin; Van Gool, Luc

Publication Date:
2020-10

Permanent Link:
https://doi.org/10.3929/ethz-b-000455811

Originally published in:
IEEE Robotics and Automation Letters 5(4), http://doi.org/10.1109/LRA.2020.3017478

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000455811
http://doi.org/10.1109/LRA.2020.3017478
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020 1

Don’t Forget The Past: Recurrent Depth Estimation

from Monocular Video
Vaishakh Patil1, Wouter Van Gansbeke2, Dengxin Dai1 and Luc Van Gool1,2

Abstract—Autonomous cars need continuously updated depth
information. Thus far, depth is mostly estimated independently
for a single frame at a time, even if the method starts from
video input. Our method produces a time series of depth maps,
which makes it an ideal candidate for online learning approaches.
In particular, we put three different types of depth estimation
(supervised depth prediction, self-supervised depth prediction,
and self-supervised depth completion) into a common framework.
We integrate the corresponding networks with a ConvLSTM such
that the spatiotemporal structures of depth across frames can
be exploited to yield a more accurate depth estimation. Our
method is flexible. It can be applied to monocular videos only
or be combined with different types of sparse depth patterns.
We carefully study the architecture of the recurrent network
and its training strategy. We are first to successfully exploit
recurrent networks for real-time self-supervised monocular depth
estimation and completion. Extensive experiments show that
our recurrent method outperforms its image-based counterpart
consistently and significantly in both self-supervised scenarios. It
also outperforms previous depth estimation methods of the three
popular groups. Please refer to our webpage 1 for details.

Index Terms—Deep Learning for Visual Perception, RGB-
D Perception, Sensor Fusion, Novel Deep Learning Methods,
Autonomous Vehicle Navigation,

I. INTRODUCTION

H IGH precision depth estimation is essential for a variety

of applications such as augmented reality, autonomous

vehicles, and mobile robots. The last years have witnessed

tremendous progress in depth estimation, especially after the

wide deployment of deep neural networks. On one hand, super-

vised learning algorithms are constantly improving for depth

estimation from RGB images [1], [2], [3], [4]. On the other

hand, self-supervised depth estimation from camera motion

are also steadily improving [5], [6], [7], [8]. Recently, several

studies on depth completion were made, aiming at completing

the depth map obtained by a high-end LiDAR sensor, namely

HDL-64E, by using a paired image for guidance [9], [10],

[11], [12], [13], [14].

Manuscript received: February, 24, 2020; Revised May, 30, 2020; Accepted
July, 20, 2020.

This paper was recommended for publication by Editor Cesar Cadena upon
evaluation of the Associate Editor and Reviewers’ comments.

This work is supported by Toyota Motor Europe.
1Vaishakh Patil, Dengxin Dai and Luc Van Gool are with the Toyota

TRACE-Zurich at the Computer Vision Lab, ETH Zurich, 8092 Zurich,
Switzerland {patil, dai, vangool}@vision.ee.ethz.ch

2 Wouter Van Gansbeke and Luc Van Gool are with the Toyota
TRACE-Leuven at the Dept. of Electrical Engineering ESAT,
KU Leuven, 3001 Leuven, Belgium {wouter.vangansbeke,
luc.vangool}@kuleuven.be

Digital Object Identifier (DOI): see top of this page.
1https://www.trace.ethz.ch/publications/2020/rec depth estimation/

t

t+1

t+2

ti
m
e

Fig. 1. Our method trains and tests on time series of data and produces
accurate depth maps for robotic platforms which perceive the world more as
a video stream than as isolated images.

Whereas great progress is being made in all three cases,

none of those methods would seem optimal for mobile robot

applications though. As they move, mobile platforms - be it

cars or assistive robots - perceive the world more as a video

stream than as isolated images. While videos are used in

the training stage of self-supervised depth prediction methods

for computing the view-synthesis loss across neighboring

frames [5], [6], [7], [15], they ignore the intrinsic temporal

dependency across frames at testing. The perceptual inputs

along a trajectory and the underlying scene geometries are

highly correlated [16]. Given our context of robotic applica-

tions, we propose a depth recovery method that both trains and

tests on time series of data. This way, the perception-geometry

correlation can be leveraged the best.

Also, none of the three settings seem to be optimal by them-

selves. The setting of depth prediction from RGB images is

cheap but requires large training datasets with accurate ground

truth; the setting for self-supervised depth estimation from

videos leverages ego-motion information (to some extent) but

have yet to generate the best results; and the setting for depth

completion with a LiDAR sensor and a camera yields good

results but is quite costly.

Hence, in this work, we put the three different types of

depth estimation, i.e. supervised depth prediction from RGB

images [3], [4], self-supervised depth prediction with monocu-

lar videos [7], [15] and self-supervised depth completion [11]

but with monocular videos, into a common framework, and

then integrate their corresponding ‘backbone’ networks with

a convolutional LSTM (ConvLSTM) such that spatiotemporal

information across frames can be exploited for more accurate

depth estimation. The improvement in accuracy is expected

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

to arise from the strong correlation between depth maps,

spatially across consecutive views. Unlike the conventional

LSTM, this information can be exploited by the spatial infor-

mation preserving convolution operations, within the pipeline

of convLSTM.

ConvLSTMs have been designed to exploit spatiotemporal

information but it is still unclear how they can be trained

properly for self-supervised depth estimation from current

literature. We claim to be the first to propose an novel and

effective strategy to integrate ConvLSTM into the unified

depth estimation pipeline. The training is challenging because

1) the size of the feature maps is large for dense prediction

which limits the sequence length due to memory issues; and

2) under the standard training strategy, ConvLSTM based

networks need a long sequence to learn the hidden state

properly. Our training strategy addresses these issues.

In summary, this work makes three contributions: 1) a

novel recurrent network to exploit spatiotemporal information

for depth estimation, 2) an innovation to effectively train a

ConvLSTM based network for dense prediction tasks with

video inputs; and 3) extensive experiments and detailed ab-

lation studies. Experiments show that our recurrent method

outperforms its image-based counterpart and the current SOTA

methods in self-supervised prediction and completion while

also presenting a unified framework to solve three different

tasks.

II. RELATED WORK

Supervised Depth Estimation from RGB Images. A

large body of work focuses on depth estimation from images

with varying settings: from using image pairs [17], [18], to

using multiple overlapping images captured from different

viewpoints [19] Here we summarize work related to the

supervised learning of depth from a single RGB image. [20] is

among the earliest work popularizing this idea. Local image

statistics are used to infer 3D planes for local patches and

the final results are optimized globally over a defined Markov

Random Field. Later on, deep convolutional neural networks

were used for this task [2], [21], [22], [3]. The research focus

was mainly on improving the network architecture [2], [3],

formulating multi-task learning [21], and combining CNNs

and CRFs [22]. In order to alleviate the dependency on large-

scale ground-truth depth images, methods that learn directly

from stereo pairs were developed [18]. The core idea is to

use left-right view similarity as the supervisory signal. This

line of work has been further extended to a semi-supervised

setting [23], where direct supervision from LiDAR sensors and

indirect supervision from image warping are combined.

Self-supervised Depth Estimation from Videos. To lower

the dependency on ground truth depth images, many recent

works have shifted the focus to self-supervised depth estima-

tion from monocular videos by using view-synthesis or its

variants as the supervisory signal [5], [6], [7], [24], [8], [15],

[25]. While promising results have been shown, the training

of self-supervised methods requires careful hyper-parameter

tuning and suffers from scale ambiguity, which needs to

be addressed, e.g. by using stereo images [24] or by data

normalization [6]. While consecutive video frames are used

for the view-synthesis loss, the spatiotemporal information is

not exploited, especially at testing time.

Depth Completion. While steady progress has been made

for depth estimation from RGB images, the performance can

be improved when assisted by other sources. One notable

example is that of sparse depth inputs, either from cheap

LiDAR sensors [26] or from SLAM or structure-from-motion

systems [27], [28]. There has been a large body of work [9],

[10], [11], [12], [13], [14] developed for the task of depth

completion defined by the KITTI Depth Completion Bench-

mark [9]. Methods have also been developed for depth comple-

tion with sparse Radar points recently [29]. The main research

focus of this strand is how to spatially propagate Automotive

LiDAR depth data under image guidance. The established

knowledge, such as the design of network architectures for

spatial propagation, can be borrowed to design our recurrent

method. The main focus of our work, however, lies in how to

fuse or propagate depth information over frames.

Depth Estimation for Videos. Our method is designed

for online depth estimation in videos. Similar idea of online

estimation is proposed in recent works [30], [31], where they

use ConvLSTM but in supervised framework. There are also

earlier methods for offline depth estimation from videos [32],

in which local motion cues and optical flow are used to

produce temporally consistent depth maps.

III. APPROACH

As stated in Sec. I, depth estimation has been tackled under

multiple settings, each has its own strengths and weaknesses.

These systems, however, are mostly image-based and lack

the capability of integrating information over video sequences

obtained by moving robotic platforms. In this section, we

first summarize three existing depth estimation methods in a

unified formulation and then define our recurrent framework

for learning time series of depth maps for all the three

methods.

Before going into the details, we define certain notations

used by the methods. Let us denote by I(x, y) the RGB vector-

valued image, D̄(x, y) the input sparse depth, and D(x, y) the

ground truth depth map; all three have the same dimensions

H × W . While I(x, y) is dense, D(x, y) has regions with

missing values which are indicated by zero. D̄(x, y) is much

sparser compared to D(x, y); it is usually a sub-sampled

depth map from D(x, y) to simulate sparse input patterns

that can be obtained via a low resolution LiDAR sensor. The

detailed sampling procedures for varying sparse input patterns

are given in Sec. III-C. The timestamp of time series data is

denoted by t in subscript, where t ∈ {1, 2, ..., T} with T the

total number of frames of a data sequence. We assume that

the image and the depth maps are synchronized throughout

the sequence.

A. Supervised Depth Prediction with RGB Images

Supervised depth prediction with monocular RGB images

has been a popular research topic. Tremendous progress has

been made in the past years [4], [33], [21], [2], [34]. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

PATIL et al.: RECURRENT DEPTH ESTIMATION FROM MONOCULAR VIDEO 3

task is to learn a function f : I → D̂, where D̂ has the same

resolution H×W and has predictions for all pixel coordinates

(x, y) where x ∈ {1, .., H} and y ∈ {1, ...,W}. We represent

the depth estimation network as an encoder-decoder type of

network architecture. Then, the learning takes the form:

X = fencoder(I), (1) D̂ = fdecoder(X), (2)

where X is the summarized representation by the encoder,

which is compact and will be used to pass information across

video frames for depth estimation from a video sequence as

presented in Sec. III-D.

We follow [3] and use the berHu loss, which gives slightly

better results than the L1 and L2 loss. Let us define a binary

mask M(x, y) of dimensions H × W , where M(x, y) = 1
defines (x, y) locations of valid values for the ground truth

depth map D(x, y). The loss can then be formulated as

LberHu =
∑

t

‖Mt ◦Dt −Mt ◦ D̂t‖δ, (3)

where ‘◦’ denotes the Hadamard product in order to ignore

the invalid pixels of the ground truth depth picture Dt when

computing the loss, and ‖.‖δ is set by following [3].

B. Self-supervised Depth Prediction with Monocular Video

Self-supervised depth estimation from monocular video has

been quite successful in recent years [15], [17], [18], [5].

We will mostly follow the presentation of the state-of-the-

art method Monodepth2 [15] in this section. We represent

the depth estimation network with the same encoder-decoder

network as defined in Eq. 1 and Eq. 2. Since there is no

ground-truth depth map D(.), the view-synthesis loss is used

instead of the standard supervised loss functions.

In particular, if K denotes the camera intrinsic matrix,

and Φt→t+∆t the relative camera pose from view t to a

neighboring view t+∆t, the warped image is:

It+∆t→t = It+∆t

〈

KΦt→t+∆tD̂tK
−1

〉

, (4)

where 〈.〉 is a bilinear sampling function to sample the source

image. The view-synthesis loss of our method is defined as

Lvs(t+∆t→t) =
α

2
(1− SSIM(It, It+∆t→t))

+(1− α)‖It − It+∆t→t‖1,
(5)

where α = 0.85.

In addition to estimating depth, the model also needs to

estimate the camera pose Φt→t+∆t. This involves training

a pose estimation network that predicts the corresponding

camera transformations with the same sequence of frames as

input. The Lvs(t+∆t→t) is computed at multiple scales of the

decoder, similar to [15].

The final view-synthesis loss is aggregated over all consid-

ered source (neighboring) frames. In this work, ∆t ∈ {−1, 1},

i.e. for each frame t, the previous frame t − 1 and the next

frame t + 1 are used to compute the loss. Following [15], at

each pixel, we use the minimum photometric error over all

source images. Thus, the final view-synthesis loss is

Lvs = min
∆t∈{−1,1}

Lvs(t+∆t→t). (6)

Following [15], we also use the edge-aware smoothing loss:

Ld

Ld

Ld

Lvs

Lvs

Encoder Decoder
Predicted

dense depth

Pose NetRGB

Sparse depth
Ct-2Ht-2

Ht-1 Ct-1

Ht Ct

Ht+1 Ct+1

5
0

%
 O

v
e

rl
a

p
T

im
e

 (
t)

Dataset Sequence

Fig. 2. The pipeline of our recurrent learning framework for depth recovery
with monocular video and sparse depth sensing.

Lsmooth = |∂xD̂
∗
t |e

‖−∂xIt‖ + |∂yD̂
∗
t |e

‖−∂yIt‖, (7)

where D̂∗
t is mean-normalized D̂t to avoid shrinking the depth

values. Our learning algorithm is trained with a combined loss:

Lself pred = µLvs + νLsmooth. (8)

µ represents the pixel-wise masking of the view-synthesis loss

to ignore certain objects. This addresses the problem that a car,

travelling at the same speed as the camera, will be predicted

at infinite depth [15].

C. Self-supervised Depth Completion with Monocular Video

and Sparse Depth Maps

Supervised depth prediction methods (Sec. III-A) are able to

achieve good performance but require large training sets with

accurate ground truth depth and have difficulty to generalize

to new scenarios. Self-supervised depth prediction methods

(Sec.III-B) are easy to ‘generalize’, but have yet to yield

the state-of-the-art results. In this section, we present another

stream of method called self-supervised depth completion

following [11].

The method requires a monocular video (I1, I2, ..., IT) and

synchronized sparse depth maps (D̄1, D̄2, ..., D̄T) as inputs.

While it is hard to obtain dense depth map Dt, sparse depth

map D̄t are relatively cheap and easy to acquire, e.g. via

2D LiDAR sensors. Compared to self-supervised depth pre-

diction, this vein of research also focuses on developing a

suitable network architecture to better fuse the information

from these two modalities. Typical examples include a simple

concatenation of the two inputs as done in [27] or adding

a distance transformation map to indicate the location of the

sparse values [28].

We process both inputs individually with few convolutions

before fusing them together. We find that this method works

better than the ones used in [27] and [28]. As to the con-

volutional network, we again use an encoder-decoder type of

network architecture. The encoder takes the form:

X = fencoder(I, D̄), (9)

and the decoder is the same as defined in Eq. 2. As to the loss

functions, in addition to the view-synthesis loss (Eq. 6) and

the edge-aware smoothing loss (Eq. 7) used for self-supervised

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

depth prediction task, the berHu loss is also used but applied

to the input sparse depth map D̄t and its binary mask M̄(x, y).
The total loss for self-supervised depth completion is

Lself comp = λLsparse

berHu + µLvs + νLsmooth. (10)

Sparsity loss can act as supplemental loss to View-synthesis

loss. The self-supervision from sparsity loss can handle scale

ambiguities and textureless regions. It also stabilizes the

training process and helps to converge faster. On the other

hand, the view-synthesis loss is computed densely and can

alleviate the effect of noise in the sparse depth maps.

We evaluate our method with three types of sparse patterns.

Following the literature [27], our first pattern denoted by D̄rand

is created by randomly sampling pixels from ground truth

depth image. The second pattern denoted by D̄line is obtained

by sampling the scanning lines ground truth depth images at

a constant stride. The third pattern is the dense depth map D

itself, which is still sparse compared to images.

D. Learning Time Series of Depth Maps

This section presents a framework to extend the three

groups of methods such that they both train and test on

time series of data. We formulate the depth recovery problem

as a translation problem from a spatiotemporal sequence of

multimodal data (i.e. images and sparse depth maps) to a

spatiotemporal sequence of data (i.e. dense depth maps). In

order to model the spatiotemporal dependencies, we add the

ConvLSTM module to the backbone network presented in

the depth prediction section. The ConvLSTM determines the

future state of a certain cell in the grid from the inputs and

past states of its local neighbors. As argued in [35], if the

hidden state is considered as the hidden representations of

visual structures (objects), then ConvLSTM is able to capture

motions of those visual components via its transitional kernels.

Similarly, for the task of learning depth maps from monocular

videos, we try to capitalize on temporal information to boost

performance. The correlation of the geometry of the scene and

the perceived visual stimuli along motion trajectories should

be captured and exploited. Another well established approach

to exploit temporal information is by concatenating multiple

frames at the input. However, these approaches don’t scale to

longer sequences and require expensive 3D convolutions. We

argue that long sequences are potentially beneficial for depth

estimation from video combined with online learning methods.

Our encoder-decoder network, defined in Eq. 1 and Eq. 9,

generates feature representations at varying levels. The output

by the encoder X is chosen as the input to our ConvLSTM.

The choice is made due to the compactness of X and its

high information density, which leads to a more efficient op-

timization for the ConvLSTM. More specifically, the learning

process at frame t starts with spatial convolutions with the

encoder to get Xt, which is followed by temporal convolutions

with the ConvLSTM

Ht, Ct = fConvLSTM((Xt ⊕Ht−1), Ct−1), (11)

and then followed by spatial convolutions with the decoder,

such that D̂ = fdecoder(Ht). The whole network is trained in

an end-to-end manner. Its pipeline is sketched in Fig. 2 for the

Training ConvLSTM for the sequence

ConvLSTMZero

initial

hidden

states

Training general hidden states
iterations i2i1 in

General

hidden

states

Decoder

Encoder

iterations in i1i2

B
a

tc
h

Sequence1

Sequence2

Sequencem

Stage 1

Stage 2

Fig. 3. Training procedure for hidden state of ConvLSTM.

most complicated task self-supervised depth completion. The

pipelines for supervised depth prediction and self-supervised

depth prediction can be inferred according to their inputs and

loss functions.

IV. TRAINING FRAMEWORK

A. Network Architecture

The network architecture consists of a depth prediction

network and a pose network. The encoder branch of both net-

works contains separate ResNet-18 modules [36]. The decoder

unit of the depth network contains four upconvolutional blocks

inspired from DispNet [37]. The output of the encoder is

connected with the ConvLSTM [35] module. The ConvLSTM

module receives hidden state Ht−1 and cell state Ct−1 of Con-

vLSTM from the previous frame t− 1 (details in Sec. III-D).

The output of this network is disparity extracted at different

spatial resolution from each unit of decoder. The pose decoder

consist of stack of Conv(1) and Conv(3) blocks and produces

a 6 element vector representing axis angle and translation. For

simplicity, we combine the hidden representation H and cell

state C in the ConvLSTM and refer to it further as the hidden

state. The initial hidden state refers to the initialization of the

hidden state.

B. ConvLSTM Training Strategy

In vanilla LSTM based network training, the default strat-

egy is to initialize the hidden state to zero. This is a well

established practise in sequence to sequence learning models.

Here, the impact of the initial hidden state is either trivial or

the length of the sequence is relatively long compared to the

size of the hidden state. In case of training a ConvLSTM based

network with monocular video, the size of the feature maps

in the bottleneck increases drastically. This demands increased

capacity of the hidden state due to the concatenation (Eq. 11).

With more learnable parameters and shorter sequence lengths

during training, the effect of the initial hidden state becomes

dominant. In our training procedure, we try to mitigate the

effects of a zero initial hidden state. The training is divided

into two stages as depicted in Fig. 3. In the first stage, the

initial hidden state is considered as a learnable parameter. The

training begins with the hidden state initialized with zeros.

Further on, for every iteration we first load the initial hidden

state and backpropagate through the hidden state to update

the initial hidden state of the ConvLSTM. The training is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

PATIL et al.: RECURRENT DEPTH ESTIMATION FROM MONOCULAR VIDEO 5

R
G
B

O
u
rs

M
o
n
o
d
e
p
th
2

D
D
V
O

M
o
n
o
d
e
p
th

D
F
-N
e
t

Z
h
a
n

G
e
o
N
e
t

n
e
r

Fig. 4. Qualitative results on the KITTI Eigen split. Our self-supervised recurrent method generates more accurate depth maps compared to competing
methods [15], [6], [18], [8], [24], [7], especially for small objects like poles, tree trunks and traffic signs.

performed on fully randomized batches. This procedure allows

us to learn a general initial hidden state. In the second stage,

the trained initial hidden state is used at the start of every

new sequence. Hence, the training is performed on the video

sequences as opposed to the previous stage. This means that

the weights of ConvLSTM module are adjusted based on

the pretrained hidden state from the first stage. The training

weights from the second stage along with learned initial hidden

state from the first stage are used during testing. It enables

the ConvLSTM to adapt to the sequence faster, resulting in

superior performance as shown in Sec. V-B. The weights are

updated for every frame to optimize for training speed and

memory footprint (i.e. truncated BPTT [38] with window size

of 1). Although this technique is effective for a large dataset

with long sequences, it can result in overfitting when updating

the weights per single image. To alleviate this issue, we also

train in batches during the second stage. This allows us to

update the batch statistics and average the gradients. This

greatly benefits the generalization. Not all sequences have

the same length, therefore we first divide the original video

sequences into smaller “sub-sequences” for training, and load

multiple random “sub-sequences” in parallel afterwards. This

whole procedure is depicted in Fig. 3. The batch is shown by

the dotted blue rectangle. The influence of the sequence length

is evaluated in Sec. V-B.

C. Implementation Details

Training Details. The weights ν and λ are respectively used

for the smoothing and sparsity loss in Eq. 10. The former is

set to 0.001 while the latter is iteration dependent. In fact,

λ(i) changes during training to prevent overfitting on a low

number of LiDAR points. We start with the view-synthesis loss

and smoothing loss first and gradually increase the influence

of the sparsity loss afterwards. This happens linearly with the

number of iterations i, such that λ(i) = 10−2 ·min(1, 10−3 ·i).
After all, the network should be prevented from learning the

identity function in order to discover semantics and depth.

For all experiments, we use a batch size of 12, with the

Adam optimizer and a learning rate of 10−4. The images are

resized to a resolution of 192x640 as in Monodepth2 [15]

baseline. Training takes 10 epochs for the first stage, while we

finetune on sequences during the second stage for 20 epochs.

For the encoder, we used pretrained ImageNet [43] weights.

This is important to achieve competitive results as in [40],

[33], [15], [39]. All the other weights are initialized with He

initialization [44], except for the biases of the convolution

layer at the forget gate. To make the ConvLSTM focus on

the hidden state at the start of training, we set the biases to 1

as in [45]. We replaced the Tanh activations in the ConvLSTM

with ELU [46] in order to match the scale with the output of

encoder (Eq. 11).

V. EXPERIMENTS

To show the effectiveness of our approach, we address the

previously defined conditions in Sec. III: 1) the supervised

depth prediction setup with raw LiDAR ground truth, 2)

the self-supervised depth prediction setup and 3) the self-

supervised depth completion setup. For each case, numbers

are reported on the KITTI dataset in order to evaluate with

other monocular depth estimation methods. We consider Mon-

odepth2 [15] as our baseline in the following self-supervised

depth estimation experiments.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

TABLE I
RESULTS FOR SELF-SUPERVISED DEPTH PREDICTION.

Method ↓ RMSE ↓ RMSE(log) ↓ Abs Rel Diff ↓ Sq Rel Diff ↑ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253

SFMLearner [5] 6.709 0.270 0.183 1.595 0.734 0.902 0.959
DDVO [6] 5.583 0.228 0.151 1.257 0.810 0.936 0.974
GeoNet [7] 5.567 0.226 0.149 1.060 0.796 0.935 0.975
CC [39] 5.464 0.226 0.148 1.149 0.815 0.935 0.973
EPC++ [40] 5.350 0.216 0.141 1.029 0.816 0.941 0.976
Struct2depth (w/o ref.) [41] 5.291 0.215 0.141 1.026 0.816 0.945 0.979
GL-Net (w/o ref.) [42] 5.230 0.210 0.135 1.070 0.841 0.948 0.980
Monodepth2 [15] 4.863 0.193 0.115 0.903 0.877 0.959 0.981
Ours (Average over 5 runs) 4.730 0.188 0.112 0.863 0.879 0.960 0.981

Ours (Best) 4.650 0.187 0.111 0.821 0.883 0.961 0.982

TABLE II
RESULTS OF SELF-SUPERVISED DEPTH COMPLETION.

Input Method ↓ RMSE ↑ δ < 1.25

D̄
rand
500

Image-based 2.885 0.970
Recurrent 2.738 0.973

D̄
line
8

Image-based 2.750 0.962
Recurrent 2.586 0.968

D̄
line
64

Ma et al. [11] 1.922 0.985
Image-based 1.653 0.988

Recurrent 1.592 0.990

The supervised depth prediction and self-supervised depth

completion experiments are evaluated on the Eigen split de-

fined by Eigen et al. [21]. This split contains 28 raw KITTI

sequences for training, 5 sequences for validation and 28

sequences for testing, all with variable length. Our approach

is not limited to the fixed sequence length adopted during

training. To show this generalization towards longer sequences,

we always evaluate on the complete video sequences during

testing. Only for the self-supervised depth prediction task, we

use a filtered version in order to leave out static frames, as

defined by Zhou et al. [5]. Furthermore, to achieve absolute

depth, our predictions are rescaled with the median ground

truth depth per frame, as done in previous works [15], [41],

[5], [39], [40], [6]. It is worth noting that the predictions of

the self-supervised depth completion setup do not require re-

scaling since the sparsity loss (Eq. 10) enables the predictions

to be scale-aware. The quantitative results are reported on

the selected 697 frames from the 28 test sequences unless

mentioned otherwise. In all our experiments, we cap the

maximum predictions of all networks to 80m.

A. Analysis

In this section, we discuss the qualitative and quantitative

results. We achieve a new state-of-the art for both self-

supervised setups, proving its effectiveness.

Self-Supervised Depth Prediction The results in Table I

shows that our method outperforms recent state-of-the-art

methods. We improve over our baseline by a relatively large

margin (-0.133m RMSE). The qualitative results are depicted

in Fig. 4. The baseline method only use short-range video in-

formation when computing the view-synthesis loss, while our

method leverages longer-range temporal information. Highly

reflective surfaces (e.g. mirrors) or dynamic objects can still

cause problems due to limitations of the self-supervision loss.

We do not report results obtained by refining the model during

test time using test images as in [41] [42].

Self-Supervised Depth Completion. We perform experiments

with three sparse patterns as defined in Sec. III-C. For all

patterns, we compare our recurrent method to its image-based

counterpart. Since our method also uses the input patterns

of 64 LiDAR lines by Velodyne HDL-64E, we report the

results on the common 652 images of Eigen set [21] and

the KITTI depth benchmark dataset for which the corrected

ground truth are available. The results are reported in Table II.

The table shows that the proposed recurrent framework out-

performs its image-based counterpart for all three different

sparse patterns. Our method also outperforms the state-of-the-

art self-supervised depth completion method [11]. In addition

to the use of longer-range temporal information, the better

performance can also be attributed to the good features of

our baseline Monodepth2: pixel-wise masking of the loss and

better strategy to handle occlusions.

Supervised Depth Prediction. The quantitative results are

shown in the Table III. Performing regression towards the re-

projected LiDAR points is not ideal, due to the noisy LiDAR

data [10]. We hypothesize that our recurrent approach can add

consistency and produce more accurate predictions (-0.172m

RMSE). This can be supported by 1) only marginal im-

provement is observed, when training on the corrected KITTI

ground truth (dense), 2) δ1 is considerably higher (+1%) than

in our baseline supporting our claim. In this setup we are still

outperformed by [4]. However, they use a complex network

architecture (ResNet-101) with fully connected layers with

inference time of 500 ms. Thi is not applicable to real-time

depth prediction tasks, as in autonomous driving compared to

TABLE III
RESULTS OF SUPERVISED DEPTH PREDICTION.

Method ↓ RMSE ↓ Abs Rel Diff ↑ δ < 1.25

Eigen et al. [2] fine 7.156 0.215 0.692
Liu et al. [22] 6.986 0.217 0.647

Kumar et al. [31] 5.187 0.137 0.809
Wang et al. [47]* 5.106 0.128 0.836

Kuznietsov et al. [23] 4.621 0.113 0.862
Yang et al. [33] 4.442 0.097 0.888
Guo et al. [34] 4.422 0.105 0.874

Zhang et al. [30] 4.139 0.104 0.883
Fu et al. [4]* 3.714 0.099 0.897

Ours (w/o recurrent) 4.320 0.113 0.874
Ours 4.148 0.102 0.884

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

PATIL et al.: RECURRENT DEPTH ESTIMATION FROM MONOCULAR VIDEO 7

TABLE IV
RESULTS ON EIGEN SPLIT WITH LIDAR SUPERVISION EVALUATED FOR

DIFFERENT ACTIVATION LAYERS AND SEQUENCE LENGTHS.

Activat. Frames ↓ RMSE ↓ Abs Rel ↑ δ < 1.25 ↑ δ < 1.25
2

None 30 4.210 0.108 0.881 0.965
Tanh 30 4.370 0.115 0.874 0.964
ReLU 30 4.173 0.104 0.884 0.965
ELU 30 4.148 0.102 0.884 0.966

ELU 15 4.234 0.107 0.882 0.964
ELU 50 4.155 0.103 0.884 0.966
ELU 100 4.170 0.103 0.883 0.965

our inference time of 10 ms. Note that, here we re-evaluate [4]

with our setting. Also, we report corrected result of [47]

in supervised setting based on predictions provided by the

authors and omit erroneous results for the unsupervised case

in [47].

Fig. 5. Accumulated average RMSE (RMSE averaged over all previous
frames) for three KITTI video sequences.

In Fig. 6, we evaluate the performance of our method

as a function of the number of sparse points in D̄rand and

the number of scanning lines in D̄line. As expected, our

method benefits from having denser depth samples as the

inputs for both evaluated scenarios. Our recurrent framework

is able to exploit the spatial and temporal structures of the

scenes in the case of sparse points and scanning lines as well

and consistently outperforms its frame-based counterpart. The

improvement in RMSE score drops as number of input points

increases. When supervision from LiDAR gets stronger, the

reliance on other sources decreases.

100 200 500 2000 20000

Number of points (log scale)

1.5

2

2.5

3

3.5

4

R
M

S
E

 [
m

]

Ours:RGB+Self+Sparse(Points)

Ours:RGB+Rec+Self+Sparse(Points)

Ours:RGB+Self+Sparse(Lines)

Ours:RGB+Rec+Self+Sparse(Lines)

4 8 16 32 43

Number of Lines

Fig. 6. Performance of our method as a function of the number of sparse
points and the number of scanning lines.

Fig. 7. Recurrent method demonstrates better temporal Consistency on KITTI
video sequences over image based method.

B. Ablation Study

Pretrained Initial Hidden State. We compare zero-initialized

training strategy with ours and report the results over KITTI

sequences in Fig. 5. The figure shows that training the initial

hidden state as a variable is more effective than using zeros

as initial states. The pretrained initial state helps to speed up

adaptation and improves generalization at the beginning of a

sequence. For example, we observe better initial predictions

for the recurrent model with a learnable initial hidden state

in (eg. sequence 47) Fig. 5 than with the zero initialization.

However, in sequence 101 we show a counter example. Inter-

estingly, the network is still able to outperform the baseline

over time in this sequence. As one can see from the figure,

our training strategy achieves considerable and consistent

improvement over the zero-initialized training after certain

number of frames. The improvements are noticeable when the

car is stationary or in constant motion. The re-scaling factor

in the self-supervised setup varies less in those regions.

TABLE V
REL. IMPROVEMENT OF RECURRENT METHOD COMPARED TO BASELINE

Method ∆ RMSE ∆ δ < 1.25 ∆ ARTE

Self sup. depth prediction -0.133 0.002 -0.010
Self sup. depth completion -0.061 0.002 -0.005

Temporal consistency. We also evaluate our method for

temporal consistency Fig. 7. The quantitative metrices defined

by [30] are not suitable for Datasets with sparse ground truth.

We define our evaluation metric, Absolute Relative Temporal

Error(ARTE), as follows: 1
T

∑

i∈T
|(|D̂i−D̂i−1|−|Di−Di−1|)|

|Di−Di−1|+ǫ
.

We set ǫ to 0.001 and evaluate our predictions for self-

supervised depth estimation first. Compared to the image-

based baseline, our frame-recurrent method reduces the ARTE

from 0.1401 to 0.1297. This improvement is also reflected

in the RMSE (Table V). Additionally, we perform the same

experiment for depth completion. The improvement over the

image-based baseline is lower, i.e. 0.005. This is in line with

the numbers in Table II, indicating that temporal consistency

is more beneficial when fewer LiDAR points are available as

input.

Activation Functions. The Tanh activation was introduced in

LSTMs to deal with vanishing gradient problem in very long

sequences. Intuitively, we expect to see better results with

activations which preserve the input range. This is not the

case for Tanh. The scale of Tanh does not match the scale

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

of the input, a necessity for concatenation of the input with

the hidden state. We evaluate the effect of different activation

functions operating on the states inside the ConvLSTM. The

results are shown in the Table IV. In our case, Tanh is inferior

to ReLU, ELU [46] and even to no activation. The lowest

RMSE score is achieved with ELU.

Training Sequence Length. The effect the training sequence

length is shown in Table IV. Experiments show that a sequence

length of 30 strikes a good balance between performance

and cost. Using short sequences leads to worse results; using

longer ones does not boost the performance further. Training

on very long sequences, 100 or higher, achieves similar results.

This means that the ConvLSTM is able to capture temporal

information by propagating the hidden state through the whole

sequence.

VI. CONCLUSION

This work has introduced a novel method for estimating

time series of depth maps with monocular video and optionally

sparse depth. Our method exploits the spatio-temporal struc-

tures over data frames both at train and test time for accurate

depth maps. Specifically, a recurrent framework has been

developed and evaluated for three different tasks: supervised

depth prediction, self-supervised depth prediction and self-

supervised depth completion. For both self-supervised scenar-

ios, we outperform current SOTA methods significantly.

REFERENCES

[1] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012.

[2] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in NIPS, 2014.

[3] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3DV, 2016.

[4] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep Ordinal
Regression Network for Monocular Depth Estimation,” in CVPR, 2018.

[5] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in CVPR, 2017.

[6] C. Wang, J. Miguel Buenaposada, R. Zhu, and S. Lucey, “Learning depth
from monocular videos using direct methods,” in CVPR, 2018.

[7] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth, optical
flow and camera pose,” in CVPR, 2018.

[8] Y. Zou, Z. Luo, and J.-B. Huang, “Df-net: Unsupervised joint learning
of depth and flow using cross-task consistency,” in ECCV, 2018.

[9] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger,
“Sparsity invariant cnns,” in 3DV, 2017.

[10] W. Van Gansbeke, D. Neven, B. De Brabandere, and L. Van Gool,
“Sparse and noisy lidar completion with rgb guidance and uncertainty,”
MVA, 2019.

[11] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-
to-dense: Self-supervised depth completion from lidar and monocular
camera,” ICRA, 2019.

[12] M. Jaritz, R. De Charette, E. Wirbel, X. Perrotton, and F. Nashashibi,
“Sparse and dense data with cnns: Depth completion and semantic
segmentation,” in 3DV, 2018.

[13] X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity learned
with convolutional spatial propagation network,” in ECCV, 2018.

[14] A. Eldesokey, M. Felsberg, and F. S. Khan, “Confidence propagation
through cnns for guided sparse depth regression,” arXiv preprint, 2018.

[15] C. Godard, O. M. Aodha, M. Firman, and G. J. Brostow, “Digging into
self-supervised monocular depth estimation,” in ICCV, 2019.

[16] P. Agrawal, J. Carreira, and J. Malik, “Learning to see by moving,” in
ICCV, 2015.

[17] R. Garg, B. V. Kumar, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in ECCV, 2016.

[18] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” in CVPR, 2017.

[19] Y. Furukawa and C. Hernández, “Multi-view stereo: A tutorial,” Found.

and Trends in Comp. Graphics and Vision, 2015.
[20] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure

from a single still image,” PAMI, pp. 824–840, 2009.
[21] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture,” in ICCV,
2015.

[22] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from single
monocular images using deep convolutional neural fields,” PAMI, 2016.

[23] Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep learning
for monocular depth map prediction,” in CVPR, 2017.

[24] H. Zhan, R. Garg, C. Saroj Weerasekera, K. Li, H. Agarwal, and
I. Reid, “Unsupervised learning of monocular depth estimation and
visual odometry with deep feature reconstruction,” in CVPR, 2018.

[25] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova, “Depth from
videos in the wild: Unsupervised monocular depth learning from un-
known cameras,” in ICCV, 2019.

[26] Y. Liao, L. Huang, Y. Wang, S. Kodagoda, Y. Yu, and Y. Liu, “Parse
geometry from a line: Monocular depth estimation with partial laser
observation,” in ICRA, 2017.

[27] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse
depth samples and a single image,” in ICRA, 2018.

[28] Z. Chen, V. Badrinarayanan, G. Drozdov, and A. Rabinovich, “Estimat-
ing depth from rgb and sparse sensing,” in ECCV, 2018.

[29] J.-T. Lin, D. Dai, and L. Van Gool, “Depth estimation from monocular
images and sparse radar data,” in IROS, 2020.

[30] H. Zhang, C. Shen, Y. Li, Y. Cao, Y. Liu, and Y. Yan, “Exploiting
temporal consistency for real-time video depth estimation,” in ICCV,
2019.

[31] A. C. S. Kumar, S. M. Bhandarkar, and M. Prasad, “Depthnet: A
recurrent neural network architecture for monocular depth prediction,”
in CVPRW, 2018.

[32] K. Karsch, C. Liu, and S. B. Kang, “Depth transfer: Depth extraction
from video using non-parametric sampling,” PAMI, 2014.

[33] N. Yang, R. Wang, J. Stuckler, and D. Cremers, “Deep virtual stereo
odometry: Leveraging deep depth prediction for monocular direct sparse
odometry,” in ECCV, 2018.

[34] X. Guo, H. Li, S. Yi, J. Ren, and X. Wang, “Learning monocular depth
by distilling cross-domain stereo networks,” in ECCV, 2018.

[35] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in NIPS, 2015.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[37] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in CVPR, 2016.

[38] R. J. Williams and J. Peng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectories,” Neural Computation,
pp. 490–501, 1990.

[39] A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff, and M. J.
Black, “Competitive collaboration: Joint unsupervised learning of depth,
camera motion, optical flow and motion segmentation,” in CVPR, 2019.

[40] C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia, and A. Yuille,
“Every pixel counts++: Joint learning of geometry and motion with 3d
holistic understanding,” arXiv preprint, 2018.

[41] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction
without the sensors: Leveraging structure for unsupervised learning from
monocular videos,” in AAAI, 2019.

[42] Y. Chen, C. Schmid, and C. Sminchisescu, “Self-supervised learning
with geometric constraints in monocular video: Connecting flow, depth,
and camera,” in ICCV, 2019.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
ICCV, 2015.

[45] R. Józefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in ICML, 2015.

[46] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint,
2015.

[47] R. Wang, S. M. Pizer, and J.-M. Frahm, “Recurrent neural network
for (un-) supervised learning of monocular video visual odometry and
depth,” in CVPR, 2019.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2020.3017478

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

