Don’t Scrap It, Wrap It!
A Wrapper Architecture for Legacy Data Sources

Mary Tork Roth
IBM Almaden Research Center
torkroth@almaden.ibm.com

Abstract

Garlic is a middleware system that provides an in-
tegrated view of a variety of legacy data sources,
without changing how or where data is stored. In
this paper, we describe our architecture for wrap-
pers, key components of Garlic that encapsulate
data sources and mediate between them and the
middleware. Garlic wrappers model legacy data as
objects, participate in query planning, and provide
standard interfaces for method invocation and
query execution. To date, we have built wrappers
for 10 data sources. Our experience shows that
Garlic wrappers can be written quickly and that
our architecture is flexible enough to accommo-
date data sources with a variety of data modeis
and a broad range of traditional and non-tradition-
al query processing capabilities.

1 Introduction

Most large organizations have collected a considerable
amount of data, and have invested heavily in systems and
applications to manage and access that data. It is increas-
ingly clear that powerful applications can be created by
combining information stored in these historically separate
data sources. For example, a medical system that integrates
patient histories, EKG readings, lab results and MRI scans
would greatly reduce the amount of time required for a doc-
tor to retrieve and compare these pieces of information be-
fore making a diagnosis.

Garlic is a middleware system that provides an integrat-
ed view of heterogeneous legacy data without changing
how or where the data is stored. Middleware systems lever-
age the storage and data management facilities provided by
legacy systems, providing a unified schema and common
interface for new applications without disturbing existing

This work was partially supported by DARPA Contract F33615-93-1-1339.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 23rd VLDB Conference Athens, Greece, 1997.

266

Peter Schwarz
IBM Almaden Research Center
schwarz@almaden.ibm.com

applications. Freed from the responsibilities of storage and
data management, these systems focus on providing pow-
erful high-level query services for heterogeneous data.

Middleware systems typically rely on wrappers [4] [18]
[9] that encapsulate the underlying data and mediate be-
tween the data source and the middleware. The wrapper ar-
chitecture and interfaces are crucial, because wrappers are
the focal point for managing the diversity of data sources.
Below a wrapper, each data source, or repository, has its
own data model, schema, programming interface, and que-
ry capability. The data model may be relational, object-ori-
ented, or specialized for a particular domain. The schema
may be fixed, or vary over time. Some repositories support
a query language, while others are accessed using a class li--
brary or other programmatic interface. Most critically, re-
positories vary widely in their support for queries. At one
end of the spectrum are repositories that only support sim-
ple scans over their contents (e.g., files of records). Some-
what more sophisticated repositories may allow a record
ordering to be specified, or be able to apply certain predi-
cates to limit the amount of data retrieved. At the other end
of the spectrum are repositories like relational databases
that support complex operations like joins or aggregation.
Repositories can also be quite idiosyncratic, allowing, for
example, only certain forms of predicates on certain at-
tributes, or joins between certain collections. The wrapper
architecture of Garlic [4] addresses the challenge of diver-
sity by standardizing how information in data sources is de-
scribed and accessed, while taking an approach to query
planning in which the wrapper and the middleware dynam-
ically determine the wrapper’s role in answering a query.

This paper describes the Garlic wrapper architecture,
and summarizes our experience building wrappers for ten
data sources with widely varying data models and degrees
of support for querying. The next section gives a brief over-
view of Garlic, and is followed by a section that summariz-
es the goals of the wrapper architecture. Section 4 describes
how a wrapper is built, and Section 5 discusses the current
status of our system. Section 6 briefly summarizes related
work, and Section 7 concludes the paper and presents some
opportunities for future research.

2 An Overview of Garlic

Garlic applications see heterogeneous legacy data stored in
a variety of data sources as instances of objects in a unified

Garlic
Metadata
Query
Processor
Relational Object Image Complex
DB DB Archive Objects

Figure 1. The Garlic Architecture.

schema. Rather than invent yet another object-oriented data
model, Garlic’s data model and programming interface are
based closely on the Object Database Management Group
(ODMGQG) standard [5]. Methods are of particular impor-
tance to Garlic, since they provide a convenient and natural
way to model the specialized search and data manipulation
facilities of non-traditional data sources. By extending
SQL to allow invocations of such methods in queries, Gar-
lic provides a single straightforward language extension
that can support many different kinds of specialized search.

The overall architecture of Garlic is depicted in
Figure 1. Associated with each repository is a wrapper. In
addition to the repositories containing legacy data, Garlic
provides its own repository for Garlic complex objects,
which users can create to bind together existing objects
from legacy repositories. Garlic also maintains global
metadata that describes the unified schema. Garlic objects
can be accessed both via a C++ programming interface and
through Garlic’s query language, an extension of SQL that
adds support for path expressions, nested collections and
methods. The heart of the Garlic middleware is the query
processing component. The query processor develops plans
to efficiently decompose queries that span multiple reposi-
tories into pieces that individual repositories can handle.
The query execution engine controls the execution of such
a query plan, by assembling the results from the reposito-
ries and performing any additional processing required to
produce the answer to the query.

3 Goals for the Wrapper Architecture

Our experience in building wrappers for Garlic confirms
that the architecture we describe in this paper achieves sev-
eral goals that make it well-suited to integrate a diverse set
of data sources. We summarize these goals here before de-
scribing the wrapper architecture in detail.

1. The start-up cost to write a wrapper should be small.
We expect a typical Garlic application to combine data
from several traditional sources (e.g., relational data-
base systems from various vendors) with data from a
variety of non-traditional systems such as image serv-
ers, searchable web sites, etc., and one-of-a-kind
sources such as a home-grown molecular similarity
search engine. Although Garlic is intended to ship with

267

wrappers for popular data sources, we must rely on
third party vendors and customer data administrators to
provide wrappers for more specialized data sources. To
make wrapper authoring as simple as possible, we
require only a small set of key services from a wrapper,
and ensure that a wrapper can be written with very lit-
tle knowledge of Garlic’s internal structure. In our
experience, a wrapper that provides a base level of ser-
vice can be written in a matter of hours. Even such a
basic wrapper permits a significant amount of the
repository’s data and functionality to be exposed
through the Garlic interface.

2. Wrappers should be able to evolve. Our standard meth-
odology in building wrappers has been to start with a
version that models the repository’s content as objects
and allows Garlic to retrieve their attributes. We then
incrementally improve the wrapper to exploit more of
the repository’s native query processing capabilities.

3. The architecture should be flexible and allow for
graceful growth. We require only that a data source
have some form of programmatic interface, and we
make no assumptions about its data model or query
processing capabilities. Wrappers for new data sources
can be integrated into existing Garlic databases without
disturbing legacy applications, other wrappers, or
existing Garlic applications.

4. The architecture should readily lend itself to query
optimization. The author of a Garlic wrapper need not
code to a standard query interface that may be too
high-level or too low-level for the underlying data
source. Instead, a wrapper is a full participant in query
planning, and may use whatever knowledge it has
about a repository’s query and specialized search facil-
ities to dynamically determine how much of a query
the repository is capable of handling. This design
allows us to build wrappers for simple data sources
quickly, and still exploit the unique capabilities of
unusual data sources such as image servers, text search
engines, engines for molecular similarity search, etc.

4 Building a Garlic Wrapper

As shown in Figure 2, a wrapper provides four major ser-
vices in the Garlic system. First, a wrapper models the con-
tents of its repository as Garlic objects, and allows Garlic
to retrieve references to these objects. Secondly, a wrapper
allows Garlic to invoke methods on objects and retrieve
their attributes. This mechanism is important, because it
provides a means by which Garlic can get data out of a re-
pository, even if the repository has almost no support for
querying. Third, a wrapper participates in query planning
when a Garlic query ranges over objects in its repository.
The Garlic metadata does not include information about the
query processing capabilities of individual repositories, so
the Garlic query processor has no a priori knowledge about

Modeling Data Method Invocation Query Query
As Objects Planning Execution
> Query Pian Execution
P(ian
Garlic r—n-
% 1
\ Work Iterator::adM

=]
N

Wrapper | Wrapper

Data Source

natme class

daily_rate

location city

Figure 2, Services Provided by a Wrapper.

what predicates and projections can be handled by a given
repository. Instead, the query processor identifies portions
of a query relevant to a repository and allows the reposito-
ry’s wrapper to determine how much of the work it is will-
ing to handle. The final service provided by a wrapper is
query execution. During query execution, the wrapper
completes the work it reported it could do in the query plan-
ning phase. A wrapper may take advantage of whatever
specialized search facilities the repository provides in order
to return the relevant data to Garlic.

In the sections that follow, we describe each of these ser-
vices in greater detail, and provide an example of how to
build wrappers for a simple travel agency application.

4.1 Modeling Data as Objects

The first service that a wrapper provides is to turn the data
of the underlying repository into objects accessible by Gar-
lic. Each Garlic object has an interface that abstractly de-
scribes the object’s behavior, and an implementation that
provides a concrete realization of the interface. The Garlic
data model permits any number of implementations for a
given interface. For example, two relational database re-
positories that contain information about disjoint sets of
employees may each export distinct implementations of a
common Employee interface.

During an initial registration step, wrappers provide a
description of the content of their repositories using the
Garlic Data Language, or GDL. GDL is a variant of the
ODMG’s Object Description Language (ODMG-ODL).
The interfaces that describe the behavior of objects in a re-
pository are known collectively as the repository schema.
Repositories are registered as parts of a Garlic database and
their individual repository schemas are merged into the glo-
bal schema that is presented to Garlic users.

A wrapper also cooperates with Garlic in assigning
identity to individual objects so that they can be referenced
from Garlic and from Garlic applications. A Garlic object
identifier (OID) has two parts. The first part, the implemen-

tation identifier (IID), is assigned by Garlic and identifies
which implementation is responsible for the object, which
in turn identifies the interface that the object supports and
the repository in which it is stored. The second part of the
OID, the key, is uninterpreted by Garlic. It is provided by
the wrapper and identifies an object within a repository.
Specific objects, usually collections, can be designated as
roots. Root objects are identified by name, as well as by
OID, and as such can serve as starting points for navigation
or querying (e.g., root collection objects can be used in the
from clause of a query).

As an example of how data is modeled as objects in Gar-
lic, consider a simple application for a travel agencyl. The
agency stores information about the countries and cities for
which it arranges tours as tables in a relational database. It
also has access to a web site that provides booking informa-
tion for hotels throughout the world, and to an image server
in which it stores images of different travel destinations.
These images can be retrieved and ordered according to
features such as color, shape, texture, etc.

These sources are easily integrated as a Garlic database.
The description of the Count ry and City interfaces that
describe the relations in the relational database are shown
in the left column of Figure 3. The attributes of each inter-
face correspond to the columns of each relation, and the
primary key value of a tuple serves as the key portion of the
Garlic OID. Note that the count ry attribute on the City
interface and the scene attributes on the Country and
City interfaces are Garlic references to other Garlic ob-
jects. The relational wrapper registers Cities as a root
collection of City objects, and Count ries as aroot col-
lection of Count ry objects.

The web wrapper exports a single root collection of Ho-
tel objects. The GDL for a Hot el object is shown at the

1. For brevity, we have omitted many of the implementation
details of this application. See [22] for a more precise descrip-
tion.

268

Relational Repository Schema

interface Country {
attribute string name;
attribute string airlines_served;
attribute boolean visa_required;
attribute Image scene;}

interface City {

interface Hotel (

‘Web Repository Schema

attribute readonly string name;
attribute readonly short class;
attribute readonly double daily_rate;
attribute readonly string location;
attribute readonly string city;}

attribute string name;
attribute long population;
attribute boolean airport;
attribute Country country;
attribute Image scene;}

interface Image {

Image Server Repository Schema

attribute readonly string file_name;
double matches(in string file_name);
void display(in string device_name);}

Figure 3. Travel Agency Application Schema.

top of the right hand column in Figure 3. The web site pro-
vides unique identifiers on the HTML page for hotel list-
ings it returns, and these identifiers serve as the key portion
of Hotel OIDs.

The interface for the image data stored in the image
server is provided at the bottom of the right hand column of
Figure 3. The image server repository exports 2 methods
on the Image interface: matches (), which takes as in-
put the name of a file containing the description of an image
feature and retumns as output a score that indicates how well
an image matches the feature, and display (), which
models the server’s ability to output an image on a specified
device. Image file names provide the key for Image OIDs.

4.2 Method Invocation

The second service a wrapper provides is a means to invoke
methods on the objects in its repository. Method invoca-
tions can be generated by Garlic’s query execution engine
(see Section 4.3), or by a Garlic application that has ob-
tained a reference to an object (either as the result of a que-
ry or by looking up a root object by name).

In addition to explicitly-defined methods like mat ch—
es (), two types of accessor methods are implicitly de-
fined for retrieving and updating an object’s attributes — a
“get” method for each attribute in the interface, and a “set”
method for attributes that are not read-only. For instance, a
get_class () method would be implicitly defined for
the read-only class attribute of the Hot el interface.

Garlic uses the IID portion of a target object’s OID to
route a method invocation to the object’s implementation.
The implementation must be able to invoke each explicitly
defined method in the corresponding interface, as well as
the accessor methods. An implementation consists of wrap-
per code that maps Garlic method invocations into appro-
priate operations provided by the repository. To
accommodate the widest possible range of repositories,
Garlic provides two variants of method invocation: stub
and generic dispatch.

A wrapper that utilizes stub dispatch provides a stub
routine for each method of an implementation. Stub dis-
patch is a natural choice for repositories whose native pro-
gramming interface is a class library, such as the image
server in our travel agency example. For the display ()
method, for example, the image server wrapper provides a
routine that first extracts the file name of the target image

from the key field of the OID, and unpacks the device name
from the argument list supplied by Garlic. To display the
image on the screen, the routine calls the appropriate dis-
play function from the image server’s class library, giving
the image file name and display name as arguments.

Generic dispatch is useful for repositories that support a
generic method invocation mechanism, or for repositories
that do not directly support objects and methods. A wrap-
per that supports generic dispatch exports a single method
invocation entry point. An important advantage of generic
dispatch is that it is schema-independent. A single copy of
the generic dispatch code can be shared by repositories that
have a common programming interface but different sche-
mas. The relational wrapper is an example of a wrapper that
uses generic method dispatch. This wrapper supports only
accessor methods, and each method invocation translates
directly to a query over the relation that corresponds to the
target object’s implementation. The wrapper maps the
method name into a column name, maps the IID portion of
the object’s OID into a relation name, extracts the primary
key value from the OID, and uses these values to construct
a query to send to the database.

4.3 Query Planning

A wrapper’s third obligation is to participate in query plan-
ning. The goal of query planning is to develop alternative
plans for answering a query, and then to choose the most ef-
ficient one. The Garlic query optimizer [8] is a cost-based
optimizer modeled on Lohman’s grammar-like rule ap-
proach [12]. STARs (STrategy Altemative Rules) are used
in the optimizer to describe possible execution plans for a
query. The optimizer uses dynamic programming to build
query plans bottom-up. First, single collection access plans
are generated, followed by a phase in which 2-way join
plans are considered, followed by 3-way joins, etc., until a
complete plan for the query has been chosen. Garlic ex-
tends the STAR approach by introducing wrappers as full-
fledged participants during plan enumeration. During each
query planning phase, the Garlic optimizer identifies the
largest possible query fragment that involves a particular
repository, and sends it to the repository’s wrapper. The
wrapper returns zero or more plans that implement some or
all of the work represented by the query fragment. The op-
timizer incorporates each wrapper plan into the set of plans
it is considering to produce the results of the entire query,

269

adding operators to perform in Garlic any portion of the
query fragment that the wrapper did not agree to handle.

As noted previously, repositories vary greatly in their
query processing capabilities. Furthermore, each reposito-
ry has its own unique set of restrictions on the operations it
will perform. These capabilities and restrictions may be
difficult or impossible to express declaratively. For exam-
ple, relational databases often have limits on the number of
tables involved in a join, the maximum length of a query
string, the maximum value of a constant in a query, etc.
These limits vary for different products, and even for differ-
ent versions of the same product. As another example, our
web wrapper is able to handie SQL LIKE predicates, but is
sensitive to the placement of wild card characters. A key
advantage to our approach is that the optimizer does not
need to track the minute details of the capabilities and re-
strictions of the underlying data sources. Instead, the wrap-
per encapsulates this knowledge and ensures that the plans
it produces can actually be executed by the repository.

Our approach allows a wrapper to model as little or as
much of the repository’s capabilities as makes sense. If a
repository has limited query processing power, then the
amount of code necessary to support the query planning in-
terface is small. On the other hand, if a repository does have
specialized search facilities and access methods that Garlic
can exploit, the interface is flexible enough for a wrapper to
encapsulate as much of these capabilities as possible. Even
if a repository can do no more than return the OIDs of ob-
jects in a collection, Garlic can evaluate an arbitrary query
by retrieving data from the repository via method invoca-
tion and processing it within Garlic.

A wrapper’s participation in query planning is con-
trolled by a set of methods that the optimizer may invoke
during plan enumeration. The plan_access () method
is used to generate single-collection access plans, and the
plan_join () method is used to generate multi-way join
plans. Joins may arise from queries expressed in standard
SQL, or joins may be generated by Garlic for queries that
contain path expressions, a feature of Garlic's extended
SQL. The plan_bind () method is used to generate a
specific kind of plan that can serve as the inner stream of a
bind join (to be described in Section 4.3.3). Each of these
methods takes as input a work request, which is a light-
weight parse-tree description of the query fragment to be
processed. The return value is a set of plans, each of which
includes a list of properties that describe how much of the
work request the plan implements, and at what cost. The
plans are represented by instances of a wrapper-specific
specialization of a Wrapper_Plan class. In addition to
the property list, they encapsulate any repository-specific
information a wrapper needs to actually perform the work
described by the plan.

4.3.1 Single Collection Access Plans

The plan_access () method is the interface by which
the Garlic query optimizer asks a wrapper for plans that re-
turn data from a single collection. It is invoked for each col-
lection to which a Garlic query refers. The work request for

select H.name, H.city, H.daily_rate
from Hotels H
where H.class = 5 and H.location = ‘heach’

Y

I

Garlic Optimizer

/ ‘Web Wrapper Access Plan

for Hotels

Work Request Properties

Project: H.OID, H.name,
H.city, H.daily_rate,
H.class, H.location

Preds:H.class = 5

Cost:< access cost>

Project: H.OID, H.name, H.city,
H.daily_rate, H.class, H.location
Preds: H.class =5
H.location = *beach’

Plan details (private)

”

‘Web Wrapper

l

Hotel Guide Repository

Figure 4. Construction of a Wrapper Access Plan.

a single-collection access includes predicates to apply, at-
tributes to project, and methods to invoke. Since the Garlic
optimizer does not know a priori which (if any) of the pred-
icates a wrapper will be able to apply, the projection list in
a work request contains !l relevant attributes and methods
mentioned in the query, including those that only appear in
predicates. This gives the wrapper an opportunity to supply
values for attributes that the Garlic execution engine will
need in order to apply predicates that the wrapper chooses
not to handle. As a worst-case fallback, the projection list
also always includes the OID, even if the user’s original
query made no mention of it. The execution engine uses the
OID and the method invocation intetface to retrieve the val-
ues of any attributes it needs that are not directly supplied
by the wrapper.

Figure 4 shows the first phase of query planning for a
simple single-collection query against our travel agency
database. Suppose a Garlic user submits a query to find 5-
star hotels with beach front property. The Garlic query op-
timizer analyzes the user’s query and identifies the frag-
ment that involves the Hotels collection. Since the
Hotels collection is managed by the web wrapper, it in-
vokes the web wrapper’s plan_access () method with
a description of the work to be done. This description con-
tains the list of predicates to apply and attributes to project.

During the execution of plan_access (), the web
wrapper looks at the work request to determine how much
of the query it can handle. In general, our web wrapper can
project any attribute and will accept predicates of the form
<attr> <op> <const>, where <op> is either = or the
SQL keyword LIKE. However, the web wrapper cannot
handle equality predicates on strings because the web site
does not adhere to SQL semantics for string equality. The
web site treats the predicate “location = ‘beach’”
as “location LIKE ‘$%beach%’”, which providesa
superset of the results of the equality predicate. This differ-

270

select [.name
from Countries C, Cities I
where C.name = ‘Greece’ and L.population < 500 and I.country = C.OID

'

/ Garlic Optimizer
Work Request
Input Plans
Relational Wrapper
Access Plan for Countries
Properties Relational Wrapper Join

Project: C.OID, C.name Plan for Countries and Cities

Preds: C.name = ‘Greece’
Cost:<Countries access cost>

Properties

Project: C.OID, C.name, 1.OID,
Lname, I.population,

Plan details (private)

Lcountry
Relational Wrapper Preds: C.name = ‘Greece’
Access Plan for Cities 1.population < 500

Lcountry = C.OID

Properties Cost: <join cost >
Project:1.0ID, I.name, . j
Lpopulation, I.country Plan details (private)

Preds: I.population < 500
Cost:<Cities access cost>

Plan details (private)

Join pred:I.country = C.OID
\ I Relational Wrapper I

Relational Database Repository

Figure 5. Construction of a Wrapper Join Plan,

ence in semantics means that the web wrapper cannot re-
port to the optimizer that it can apply a string equality
predicate. Nevertheless, when string equality is requested,
it is still beneficial for the wrapper to apply the less restric-
tive LIKE predicate in order to reduce the amount of data
returned to Garlic. The wrapper therefore creates a plan
that will handle the entire projection list, perform the pred-
icate on class, and the predicate “location LIKE
‘sbeach%’”, while reporting through the plan’s proper-
ties that the locat ion predicate will not be applied. The
wrapper assigns the plan an estimated cost and returns it to
the optimizer. If this access plan is chosen to be part of the
global plan for the user’s query, the optimizer will need to
add the necessary operator to apply the predicate on 1o—
cation, although it would be applied to a far smaller set
of objects than if the wrapper had not (covertly) applied the
LIKE predicate.

4.3.2 Join Plans

The Garlic query optimizer uses the access plans generated
in the first phase of optimization as a starting point for join
enumeration. If the optimizer recognizes that two collec-

271

tions reside in the same repository, it invokes the wrapper’s
plan_join () method (if one is implemented) to try to
push the join down to that repository. The work request in-
cludes the join predicates as well as the single-collection
access plans that the wrapper had previously generated for
the collections being joined. In the plan_join ()

method, the wrapper can re-examine these plans, and con-
sider the effect of adding join predicates.

Let’s return to our travel agency. Figure 5 shows how the
relational wrapper provides a plan for a join between
Countries and Cities. In the first phase of optimiza-
tion (omitted from the picture), the optimizer requested and
received access plans for Cities and Countries from
the relational wrapper. During join enumeration, the opti-
mizer invokes the relational wrapper’s plan_join ()
method and passes in the join predicate as well as the two
access plans previously created. The wrapper agrees to per-
form all of the work from its original access plans and to
accept the join predicate, and creates a new plan for the
join.The new plan’s properties are made up of the proper-
ties from the input plans and the new join predicate.

During the next phase of join enumeration, the optimiz-
er will follow a similar procedure for 3-ways joins of col-
lections that reside in the same repository, and so on.

4.3.3 Bind Plans

During the join enumeration phase, the Garlic optimizer
also considers a particular kind of join called a bind join,
similar to the fetch-matches join methods of [14] and [13].
In a bind join, values produced by the outer node of the join
are passed by Garlic to the inner node, and the inner node
uses these values to evaluate some subset of the join predi-
cates. A wrapper is well suited to serve as the inner node of
a bind join if the programming interface of its repository
provides some mechanism for posing parameterized que-
ries. As an example, ODBC and the call level interfaces of
most relational database systems contain such support.

Suppose our travel agency user is really interested in
finding 5-star hotels on beaches in small towns in Greece.
This query involves the Countries and Cities collec-
tions managed by the relational wrapper, and the Hotels
collection managed by the web wrapper. The web wrapper
does not support the plan_bind () method, but the rela-
tional wrapper does. Figure 6 shows how a bind plan for
this query is created. During the first phase of optimization,
the optimizer would have requested and received an access
plan from the web wrapper for the Hotels collection as
described in Section 4.3.1. It would also have requested and
received access plans for the Countries and Cities
collections from the relational wrapper. While considering
2-way joins, the optimizer would have received a join plan
for Countries and Cities from the relational wrapper,
as described in the previous section.

Next, the optimizer develops a plan to join all three col-
lections. The optimizer recognizes that a bind join is possi-
ble, with the web wrapper’s access plan as the outer stream

select H.name, H.daily_rate

from Hotels H, Countries C, Cities I

where H.class = 5 and H.location = ‘beach’ and C.name = “Greece’ and
Lpopulation < 500 and H.city = L.name and Lcountry = C.QID

&

Work Request

Input Plan

\

Relational Wrapper Join Plan
for Countries and Cities

Relational Wrapper Bind
Plan for Countries, Cities and
and Hotels

Properties
Project: C.OID, C.name, 1.OID,

Lname, Lpopulation,
Lcountry

Preds: C.name = ‘Greece’
Lpopulation < 500
Lcountry = C.OID

Cost: <join cost >

Properties

Project: C.OID, C.name, 1.OID,
I.name, {.population,
ILcountry

Preds: C.name = ‘Greece’
Lpopulation < 500
Lcountry = C.OID
Lname = $BIND_1

Cost: <bind cost >

Plan details (private)

Plan details (private)

Bind pred: I.name = $BIND_1
\ Relational Wrapper /

I Relational Database Repository |

Figure 6. Construction of a Wrapper Bind Plan.

and the join plan provided by the relational wrapper as the
inner stream. The optimizer invokes the relational wrap-
per’s plan_bind () method, passing in a work request
that consists of the join plan for CountriesandCities
that the wrapper previously provided and the description of
the bind join predicate between Cities and Hotels.
The relational wrapper creates a new plan that handles the
work of the original join plan plus the bind predicate. It
uses the input plan’s properties to fill in the new bind plan
propetties, and adds in the bind predicate.

4.4 Query Execution

A wrapper’s final service is to participate in pian translation
and query execution. A Garlic query plan is represented as
a tree of operators, such as FILTER, PROJECT, JOIN, etc.
Wrapper plans show up as the operators at the leaves of the
plan tree. Figure 7 shows an example of a complete Garlic
plan based on the bind join plan for the query discussed in
Section 4.3.3. The outer node of the bind join is the web
wrapper’s access plan from Section 4.3.1, and the inner
node is the relational wrapper’s bind plan described in Sec-
tion 4.3.3. The Garlic optimizer added a FILTER operator
to handle the predicate on locat ion and a PROJECT op-
erator to project name and daily_rate.

The optimized plan must be translated into a form suit-
able for execution. As is common in demand-driven run-
time systems [7], operators are mapped into iterators, and
each wrapper provides a specialized Iterator subclass

272

PROJECT
H.name, H.daily_rate

BIND JOIN
H.city -> $BIND_1

7\
FILTER

H.location = ‘beach’
Properties
| Project: C.OID, C.name, [.OID,

Lname, Lpopulation,
Lcountry

Preds: C.name = ‘Greece’
Lpopulation < 500
Lcountry = C.OID
T.name = $BIND_1

Cost: <bind cost >

Relational Wrapper Bind Plan
for Countries, Cities and Hotels

‘Web Wrapper Access Plan for Hotels

Properties

Project: H.OID, H.name, H.city,
H.daily_rate, H.class,
H.location

Preds:H.class =5

Costi<access cost>

Plan details (private)

Plan details (private)

Figure 7. A Plan for a Garlic Query.

that controls execution of the work described by one of its
plans. The wrapper must also supply an implementation of
Wrapper_Plan::translate (), to translate a wrap-
per’s plan into an instance of the wrapper’s Iterator
subclass. Translation involves converting the information
stored in the plan into a form that can be sent to the repos-
itory. For example, our relational wrapper stores the ele-
ments of the select, from and where clauses of the
query to be sent to the relational database in the private sec-
tion of its plan. At plan translation time, the wrapper ex-
tracts these elements, constructs the query string, and stores
itin an instance of its Iterator subclass. As another ex-
ample, our web wrapper stores the list of attributes to
project and the set of predicates to apply in the private data
section of its plan. At plan translation time, the predicates
are used to form a query URL that the web site will accept.

The Garlic execution engine is pipelined, and employs a
fixed set of methods on iterators at runtime to control the
execution of a query. Default implementations for most of
the methods exist, but for each operator, two methods in
particular define the unique behavior of its iterator: ad-
vance () and reset ().The advance {) method com-
pletes the work necessary to produce the next output value,
and the reset () method resets an iterator so that it may
be executed again. An additional bind () method is
unique to wrapper iterators, and provides the mechanism
by which Garlic can transfer the next set of bindings to the
inner node of a bind join.

Our relational wrapper uses standard ODBC calls to im-
plement reset (), advance() and bind (). re-
set () prepares a query at the underlying database, and
bind () binds the parameters sent by Garlic to the un-
bound values in the query string. The advance () method
fetches the next set of tuples from the database.

The web wrapper’s Iterator subclass is very simple.
The reset () method loads the HTML page that corre-
sponds to the query URL generated at plan translation time.
In the advance () method, the wrapper parses the HTML
page to extract the query results. Each HTML page pro-

TABLE 1. A Description of Existing Wrappers.

DB2, Oracle Schema description: Columns of a relation map to attributes of an interface; relations become collections of objects;
primary key value of a tuple is key for OID. Method invocation: accessor methods only, generic dispatch. Query
operations: general expression projections, all basic predicates, joins, bind joins, joins based on OID.

Searchable web sites: Schema description: Each web site exports a single collection of listing objects; HTML page data fields map to

hitp://www.hotelguide.ch, attributes of an interface; unique key for a listing provided by web site is key for OID. Method invocation: accessor

ahotel goide, and
http://www.bigbook.com,
U.S. business listings

methods only; generic dispatch. Query operations: attribute projection, equality predicates on attributes, LIKE
predicates of the form ‘%<value>%.

Proprietary database for molecular
similarity search

Schema description: A single collection of molecule objects; interface has contains_substructure() and
similarity_to() methods to model search capability of engine; molecule I-number is key for OID. Method invocation:
stub dispatch. Query operations: attribute and method projection; predicates of the form <attr> <op> <const> and
<method> <op> <const>, if <op> is a comparison operator; bind plans if similarity_to() is in bind predicate.

QBIC [16] image server that orders images
according to color, texture and shape
features

Schema description: Collections of image objects; interface has matches() method to model ordering capability;
image file name is key for OID. Method invocation: stub dispatch. Query operations: ordering of image objects by
image feature.

Glimpse [15] text search engine that
searches for specific patterns in text files

Schema description: Collections of files; interface contains several methods to model text search capability and
retrieve relevant text of a file; file name is key for OID. Method invocation: stub dispatch. Query operations:
projection of attributes and methods.

Lotus Notes databases:
Phone Directory database, Patent Server
database

Schema description: Notes database becomes a collection of note objects; interface defined by database Form; note
NOTEID is key for Garlic OID. Method invocation: accessor methods only, generic dispatch. Query operations:
attribute projection; predicates with logical, comparison and arithmetic operations; LIKE predicates.

Complex Object Wrapper

Schema description: Collections of objects; interface corresponds to interface of objects in database; database OID is

key for Garlic OID. Method invocation: stub dispatch. Query operations: attribute projection.

vides a link to the next page of results, so after all of the re-
sults on one page are returned to Garlic, the wrapper
follows the link and retrieves the next page.

4.5 Wrapper Packaging

In the previous sections, we have described the services
that a wrapper provides to the Garlic middleware. The
wrapper author’s final task is to package these pieces as a
complete wrapper. A wrapper may include three kinds of
components: interface files that contain one or more inter-
face definitions written in GDL, environment files that con-
tain name/value pairs to encode repository-specific
information for use by the wrapper, and libraries that con-
tain dynamically loadable code to implement schema reg-
istration, method invocation, and the query interfaces.
Libraries are further subdivided as follows: core libraries
that contain common code shared among several similar re-
positories, and implementation libraries that contain repos-
itory-specific implementations of one or more interfaces.
Packaging wrapper code as dynamically loadable librar-
ies that reside in the same address space as Garlic keeps the
cost of communicating with a wrapper as low as possible.
This is important during query processing, since a given
wrapper may be consulted several times during the optimi-
zation of a query, and non-trivial data structures are ex-
changed at each interaction. Very simple repositories can
be accessed without crossing address space boundaries,
and repositories that are divided into client and server com-
ponents are easily accommodated by linking their wrapper
with the repository’s client-side library. This approach en-
capsulates the choice of a particular client-server protocol
(e.g., CORBA-IIOP, ActiveX/DCOM, or ODBC) within
the wrapper, allowing Garlic to integrate repositories re-
gardless of the particular protocol(s) they support.
Decomposing wrappers into interface files, libraries,

273

and environment files gives the designer of a wrapper for a
particular repository or family of repositories considerable
flexibility. For example, our relational wrapper packages
generic method dispatch, query planning and query execu-
tion code as a sharable core library. For each repository, an
interface file describes the objects in the corresponding da-
tabase. An environment file encodes the name of the data-
base to which the wrapper must connect, the names of the
collections exported by the repository and the tables to
which they are bound, the correspondence between at-
tributes in interfaces and columns in tables, etc.
Implementation libraries are useful when a wrapper that
employs stub dispatch is built for a data source whose sche-
ma can evolve over time. As new kinds of objects are added
to the repository schema, implementation libraries can be
registered with stubs for the new implementations.

5 Current Status

To test the fiexibility of our architecture, we have imple-
mented wrappers for a diverse set of 10 data sources.
Table 1 describes some of the features of these wrappers.
The data models for these sources vary widely, including
relational, object-oriented, a simple file system, and a spe-
cialized molecular search data model. Likewise, the data
sources provide query processing power that ranges from
simple scanning to basic predicate application to complex
join processing. Wrappers such as the relational wrapper
have been fine tuned and are fairly mature. Others, such as
the molecular wrapper, are still in a state of evolution.
Based on our experience writing these wrappers, we
have identified 3 general categories of wrappers, and pro-
vide a base class for each category. We also provide wrap-
per writers with a library of schema registration tools,
query plan construction routines, and other useful routines
in order to automate the task of writing a wrapper as much

as possible. To test our assertion that wrappers are easy to
write, we asked developers outside of the project to write
several wrappers listed in the table. For example, a summer
student wrote the text and image server wrappers over a pe-
riod of a few weeks, and a chemist was able to write the
molecular database wrapper during a 2-day visit to our lab.

6 Related Work

Presenting a uniform interface to a diverse set of informa-
tion sources has been the goal of a great deal of previous re-
search, dating back to projects like CCA’s Multibase [20].
Surveys of much of this work can be found in [3] [6] [10]
[19], and [1] [21] describe actual implementations. In terms
of query processing, the architectures of these earlier sys-
tems are built around a lingua franca for communicating
with the underlying sources. These systems assume that
any data source, assisted by the translator, can readily exe-
cute any query fragment.

OLE DB [2] takes an important step towards integrating
heterogeneous data sources by defining a standardized con-
struct, the rowset, to represent streams of values obtained
from a data source. A simple tabular data source with no
querying capability can easily expose its data as a rowset.
More powerful data sources can accept commands (either
as text or as a data structure) that specify query processing
operations peculiar to that data source, and produce rowsets
as a result. Thus, although OLE DB does not include a mid-
dleware query processing component like Garlic, it does
define a protocol by which a middleware component and
data sources can interact. This protocol differs from the
Garlic wrapper interface in several ways. First, the format
of an OLE DB command is defined entirely by the data
source which accepts it, whereas Garlic query fragments
are expressed in a standard form based on object-extended
SQL. Secondly, an OLE DB data source must either accept
or reject a command in its entirety, whereas a Garlic wrap-
per can agree to perform part of a work request and leave
any parts it cannot handle to be performed by Garlic.

A different set of techniques for integrating data sources
with various levels of query support relies upon an a priori
declarative specification of query capability for each data
source. In the TSIMMIS system [18], specifications of que-
ry power are expressed in the Query Description and Trans-
lation Language (QDTL) [17]. A QDTL specification for a
data source is a context-free grammar for generating sup-
ported queries. DISCO [9] builds on the notion of capabil-
ity records described in the Information Manifold [11] and
requires a wrapper writer to describe a data source’s capa-
bilities by means of a language based on a set of (relational)
logical operators such as select, project, and scan.

The idea of compact declarative specifications of query
power is attractive, but there are some practical problems
with this approach. First, it is often the case that a data
source cannot process a particular query, but can process a
subsuming query whose answer set includes the answer set
of the original query. In general, finding maximal subsum-
ing queries is computationally costly, and choosing the op-
timal subsuming query may require detailed knowledge of

274

the contents, semantics, and statistics of the repository.

Secondly, in defining a common language to describe all
possible repository capabilities, it is difficult to capture the
unique restrictions associated with any individual reposito-
ry. For example, as we noted earlier, relational database
systems often place limits on the query string length, the
maximum constant value that can appear in a query, etc.
Likewise, our web wrapper can handle LIKE predicates,
but only if the pattern is of a specific form. The molecular
wrapper is sensitive to which attributes and methods appear
together in the projection and predicate lists. A language to
express these and other repository-specific restrictions
would quickly become very cumbersome. Furthermore, in
a strictly declarative approach such as DISCO, as new
sources are integrated, the language would need to be ex-
tended to handle any unanticipated restrictions or capabili-
ties introduced by the new sources.

As we saw in Section 4.3, Garlic forgoes the declarative
approach for one in which the knowledge about what a spe-
cific repository can and cannot do is encapsulated by the
wrapper. Rather than solve the query subsumption problem
in general at the Garlic level, we ask wrapper authors to
solve the simpler special-case problem for their own repos-
itories. Decisions about how much of a query can be han-
dled by a repository are made by the wrapper at query
planning time, taking advantage of repository-specific se-
mantic knowledge. Since our approach is not limited by the
expressive power of a query specification language, we can
accommodate the idiosyncrasies of almost any data source.

7 Conclusions

In this paper, we have described the wrapper architecture
for Garlic, a middleware system designed to provide a uni-
fied view of heterogeneous, legacy data sources. Our archi-
tecture is flexible enough to accommodate almost any kind
of data source. We have developed wrappers for sources
that represent a broad spectrum of data models and query
capabilities. For sources with specialized query processing
capabilities, representing those capabilities as methods has
proven to be viable and convenient.

The Garlic wrapper architecture makes the wrapper
writer’s job relatively simple, and as a result, we have been
able to produce wrappers for new data sources in a matter
of days or hours instead of weeks or months. Wrapper au-
thoring is especially simple for repositories with limited
query power, but even for more powerful repositories, a ba-
sic wrapper can be written very quickly. This allows appli-
cations to access data from new sources as soon as possible,
while subsequent enhancements to the wrapper can trans-
parently improve performance by taking greater advantage
of the repository’s query capabilities.

Our design also allows the Garlic query optimizer to de-
velop efficient query execution strategies. Qur approach
does not require a complex language to describe the minute
details of the capabilities and restrictions of the underlying
data sources. Furthermore, we do not require a wrapper to
raise a repository’s query processing capabilities to a fixed
level, or “dumb down” the query processing interface to the

lowest common denominator. Instead, our architecture al-
lows each wrapper to determine on a case-by-case basis
how much of a query its repository is capable of handling.

In the future, we will continue to refine the wrapper in-
terfaces. An open research question is to develop a truly
satisfactory cost model for a diverse set of data sources. We
intend to focus on making the wrapper’s job of providing a
cost model easier, by providing a basic framework that a
wrapper writer can customize for a specific repository. We
will also investigate the possibility of introducing QDTL-
style templates to allow a wrapper to declare up-front a
specification of the expressions it will support. With such
information, the Garlic query processor could filter out ex-
pressions that a wrapper is unable to handle before the
work request is generated. Such a template would be a step
toward a hybrid system, combining Garlic’s dynamic ap-
proach to query planning with the declarative approach of
TSIMMIS and DISCO; striking an appropriate balance be-
tween the techniques is an interesting research opportunity.

Acknowledgements

We would like to thank the Garlic team members, both past
and present, whose hard work and technical contributions
made the Garlic project possible. In particular, Laura Haas
spent many hours with us working out the details of the
query processing interface. We’d also like to thank Mike
Carey and Laura Haas for reviewing an initial draft of this
paper and providing us with excellent suggestions that im-
proved its presentation and readability.

References

[1] R. Ahmed, et. al., “The Pegasus Heterogeneous Multi-
database System”, IEEE Computer, 24(12) pp. 19-27,
December 1991.

[2] J. Blakely, “Data Access for the Masses Through OLE
DB”, Proc. of the ACM SIGMOD Conference on Manage-
ment of Data, Montreal, PQ, Canada, June 1996.

[3] O. Bukhres, and A. Elmagarmid, eds., Object-Oriented
Multidatabase Systems, Prentice Hall, publishers, New Jer-
sey, 1996.

[4] M. Carey, et al., “Towards Heterogeneous Multimedia
Information Systems: The Garlic Approach”, Proc. IEEE
RIDE-DOM, Taipei, Taiwan, March 1995.

[5] R. Cattell, ed., Object Database Standard: ODMG-93
(Release 1.2), Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1996.

[6] A. Elmagarmid and C. Pu, eds., “Special Issues on Het-
erogeneous Databases”, ACM Comp. Surveys 22(3), Sep-
tember 1990.

[7]1 G. Graefe, “Query Evaluation Techniques for Large
Data Bases”, ACM Computing Surveys 25(2), June 1993.

[8] L. Haas, et. al., “Optimizing Queries Across Diverse
Data Sources”, Proc of the 23rd International Conference
on Very Large Data Bases, Athens, Greece, August 1997.

275

[9] Kapitskaia, O., et. al., “Dealing with Discrepancies in
Wrapper Functionality”, INRIA Technical Report RR-3138,
1997.

[10] W.Kim, Modern Database Systems: The Object
Model, Interoperability, and Beyond, ACM Press, Addison-
Wesley Publishers, 1995.

{11] A. Levy, et. al., “Querying Heterogeneous Information
Sources Using Source Descriptions”, Proc of the 22nd
International Conference on Very Large Data Bases, Bom-
bay, India, September 1996.

[12] G. Lohman, “Grammar-like Functional Rules for Rep-
resenting Query Optimization Alternatives”, Proc. of the
ACM SIGMOD Conference on Management of Data, Chi-
cago, IL, USA, May 1988.

[13] H. Lu and M. Carey, “Some Experimental Results on
Distributed Join Algorithms in a Local Network™, Proc.
11th Intemnational Conference on Very Large Data Bases,
Stockholm, Sweden, August 1985.

[14] L. Mackert and G. Lohman, “R* Optimizer Validation
and Performance Evaluation for Distributed Queries”, in
Readings in Database Systems, M. Stonebraker, ed., Mor-
gan-Kaufmann Publishers, San Mateo, CA, 1988.

[15] U. Manber, et. al., http://glimpse.cs.arizona.edw/

[16] W. Niblack, et al., “The QBIC Project: Querying
Images By Content Using Color, Texture and Shape”, Proc.
SPIE, San Jose, CA, February1993.

{17] Y. Papakonstantinou, et. al., “A Query Translation
Scheme for Rapid Implementation of Wrappers”, Proc. of
the Conference on Deductive and Object-Oriented Data-
bases (DOOD), 1995.

[18] Y. Papakonstantinou, et. al., “Object Exchange Across
Heterogeneous Information Sources”, Data Engineering
Conf., March 1995.

[19] S. Ram, guest ed., IEEE Computer Special Issue on
Heterogeneous Distributed Database Systems, 24(12),
December 1991.

[20] R. Rosenberg and T. Landers, “An Overview of
MULTIBASE”, in Distributed Databases, H. Schneider, ed.
North-Holland Publishers, New York, NY, 1982.

[21] R. Stout, “EDA/SQL”, in Modern Database Systems:
The Object Model, Interoperability, and Beyond, W. Kim,
ed., pp 649-663, ACM Press, Addison-Wesley Publishers,
1995.

[22] M. Tork Roth, and P. Schwarz, “A Wrapper Architec-
ture for Legacy Data Sources”, IBM Technical Report
RJ10077, 1997, http://www.almaden.ibm.com/cs/garlic/.

